JP6912883B2 - Linear rolling bearing - Google Patents

Linear rolling bearing Download PDF

Info

Publication number
JP6912883B2
JP6912883B2 JP2016236600A JP2016236600A JP6912883B2 JP 6912883 B2 JP6912883 B2 JP 6912883B2 JP 2016236600 A JP2016236600 A JP 2016236600A JP 2016236600 A JP2016236600 A JP 2016236600A JP 6912883 B2 JP6912883 B2 JP 6912883B2
Authority
JP
Japan
Prior art keywords
rail
base plate
piezoelectric element
plate
pair
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016236600A
Other languages
Japanese (ja)
Other versions
JP2018091447A (en
Inventor
滋樹 中南
滋樹 中南
英範 木田
英範 木田
田中 久也
久也 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aseismic Devices Co Ltd
Original Assignee
Aseismic Devices Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aseismic Devices Co Ltd filed Critical Aseismic Devices Co Ltd
Priority to JP2016236600A priority Critical patent/JP6912883B2/en
Publication of JP2018091447A publication Critical patent/JP2018091447A/en
Priority to JP2021075664A priority patent/JP7090776B2/en
Application granted granted Critical
Publication of JP6912883B2 publication Critical patent/JP6912883B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Vibration Prevention Devices (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)

Description

本発明は、上下一対の構造である上部構造と下部構造との間に設けられる直動転がり支承に係る。特に、地震の態様の変化に対応できる直動転がり支承に関する。 The present invention relates to a linear motion rolling bearing provided between an upper structure and a lower structure, which are a pair of upper and lower structures. In particular, it relates to linear bearings that can respond to changes in the mode of earthquakes.

地震が発生すると、建物、構造物等の対象構造物が水平、垂直に揺すられる。
地震等による加速度レベルが大きいと、対象構造物が損傷をうけたり、対象構造物の中にあるものが予想を越えて加速度を受けたり、予想を超える変位をうけたりする。
そこで、基礎から対象構造物へ伝達する振動エネルギーを減少させて振動を免震する免震装置、または対象構造物が振動した際に振動エネルギーを吸収し振動レベルを小さくして振動を制振する制振装置として各種の構造の装置が試されている。
構造とその構造を構成する要素の諸元を適正に設定することにより、所望の免震性能や制振性能を発揮できる。
例えば、直動転がり支承がその目的で用いられる。
When an earthquake occurs, target structures such as buildings and structures are shaken horizontally and vertically.
If the acceleration level due to an earthquake or the like is large, the target structure may be damaged, the contents of the target structure may be accelerated more than expected, or the target structure may be displaced more than expected.
Therefore, a seismic isolation device that reduces the vibration energy transmitted from the foundation to the target structure to isolate the vibration, or absorbs the vibration energy when the target structure vibrates and reduces the vibration level to suppress the vibration. Devices with various structures are being tested as vibration isolation devices.
By properly setting the structure and the specifications of the elements that make up the structure, the desired seismic isolation performance and vibration damping performance can be exhibited.
For example, linear rolling bearings are used for that purpose.

直動転がり支承は、主にリニアレール、リニアブロック、ゴムシム、フランジプレートで構成される。直動転がり支承構造はリニアガイドをゴムシムを介してガイド方向を直交させて組んだものである。直動転がり支承構造は、建造物の鉛直軸力を支えながら、少ない転がり摩擦抵抗で360°水平方向に可動する。
一般に、直動転がり支承は、免震機能のうち支持機構と周期調整機能のみを有しているため、別途復元材が必要となる。復元材には積層ゴムが用いられることがある。鉛直剛性の異なる部材を一つの免震装置に配置するため不陸が生じるという不都合があった。また、過大な変形を抑制するためには、ダンパーが必要になる。
さらに近年、長周期地震動の発生が懸念されており、これらの影響により直動転がり支承が長時間揺すられて、レール又はブロックが発熱することにより、摩擦抵抗が増加して水平性能を保持しにくくなる恐れがあった。
Linear rolling bearings mainly consist of linear rails, linear blocks, rubber shims, and flange plates. The linear motion rolling bearing structure is an assembly of linear guides with the guide directions orthogonal to each other via rubber shims. The linear rolling bearing structure can move 360 ° horizontally with little rolling friction resistance while supporting the vertical axial force of the building.
In general, linear motion rolling bearings have only a support mechanism and a cycle adjustment function among the seismic isolation functions, so a separate restoration material is required. Laminated rubber may be used as the restoration material. Since members having different vertical rigidity are arranged in one seismic isolation device, there is an inconvenience that non-landing occurs. In addition, a damper is required to suppress excessive deformation.
Furthermore, in recent years, there have been concerns about the occurrence of long-period ground motions, and due to these effects, the linear rolling bearings are shaken for a long time, and the rails or blocks generate heat, which increases frictional resistance and makes it difficult to maintain horizontal performance. There was a fear of becoming.

従来の直動転がり支承として、特許文献1に公開されるダンパーが知られている。 As a conventional linear motion rolling bearing, a damper published in Patent Document 1 is known.

本発明は以上に述べた問題点に鑑み案出されたもので、地震動や建造物に応じて適切な振動抑制効果が得られる直動転がり支承を提供しようとする。 The present invention has been devised in view of the above-mentioned problems, and an object of the present invention is to provide a linear motion rolling bearing capable of obtaining an appropriate vibration suppression effect according to a seismic motion or a building.

上記目的を達成するため、本発明に係る上下一対の構造である上部構造と下部構造との間に設けられ構造物を支持する直動転がり支承を、仮想のX軸と仮想のY軸とが水平面内で直交し、上部構造を支持する基礎板構造である上部基礎板構造と、前記上部基礎板構造に支持され前記X軸方向に延びるレール構造である上部レール構造と、前記上部レール構造に前記X軸方向に相対移動自在に案内されるブロック構造である上部ブロック構造と、下部構造に支持される基礎板構造である下部基礎板構造と、前記下部基礎板構造に支持され前記Y軸方向に延びるレール構造である下部レール構造と、前記下部レール構造に前記Y軸方向に相対移動自在に案内されるブロック構造である下部ブロック構造と、板状の輪郭をもつ構造である中間板構造と、を備え、前記上部ブロック構造と前記下部ブロック構造とが前記中間板構造を挟んで連結される、ものとした。 In order to achieve the above object, a virtual X-axis and a virtual Y-axis are provided between the upper structure and the lower structure, which are a pair of upper and lower structures according to the present invention, to support a structure. The upper base plate structure, which is a base plate structure that is orthogonal in the horizontal plane and supports the upper structure, the upper rail structure, which is a rail structure that is supported by the upper base plate structure and extends in the X-axis direction, and the upper rail structure. An upper block structure that is a block structure that is guided so as to be relatively movable in the X-axis direction, a lower base plate structure that is a base plate structure supported by the lower structure, and a lower base plate structure that is supported by the lower base plate structure and is supported in the Y-axis direction. A lower rail structure that extends to the lower rail structure, a lower block structure that is guided to the lower rail structure so as to be relatively movable in the Y-axis direction, and an intermediate plate structure that has a plate-like contour. , And the upper block structure and the lower block structure are connected with the intermediate plate structure interposed therebetween.

上記本発明の構成により、仮想のX軸と仮想のY軸とが水平面内で直交する。上部基礎板構造は、上部構造を支持する基礎板構造である。上部レール構造は、前記上部基礎板構造に支持され前記X軸方向に延びるレール構造である。上部ブロック構造は、前記上部レール構造に前記X軸方向に相対移動自在に案内されるブロック構造である。下部基礎板構造は、下部構造に支持される基礎板構造である。下部レール構造は、前記下部基礎板構造に支持され前記Y軸方向に延びるレール構造である。下部ブロック構造は、前記下部レール構造に前記Y軸方向に相対移動自在に案内されるブロック構造である。中間板構造は、板状の輪郭をもつ構造である。前記上部ブロック構造と前記下部ブロック構造とが前記中間板構造を挟んで連結される。
その結果、地震が発生すると構造物が水平方向に移動できる。
According to the configuration of the present invention, the virtual X-axis and the virtual Y-axis are orthogonal to each other in the horizontal plane. The superstructure plate structure is a foundation plate structure that supports the superstructure. The upper rail structure is a rail structure that is supported by the upper base plate structure and extends in the X-axis direction. The upper block structure is a block structure that is guided to the upper rail structure so as to be relatively movable in the X-axis direction. The lower base plate structure is a base plate structure supported by the lower structure. The lower rail structure is a rail structure that is supported by the lower base plate structure and extends in the Y-axis direction. The lower block structure is a block structure that is guided to the lower rail structure so as to be relatively movable in the Y-axis direction. The intermediate plate structure is a structure having a plate-like contour. The upper block structure and the lower block structure are connected with the intermediate plate structure interposed therebetween.
As a result, the structure can move horizontally when an earthquake occurs.

以下に、本発明の実施形態に係る直動転がり支承を説明する。本発明は、以下に記載した実施形態のいずれか、またはそれらの中の二つ以上が組み合わされた態様を含む。 The linear motion rolling bearings according to the embodiment of the present invention will be described below. The present invention includes any of the embodiments described below, or a combination of two or more of them.

本発明の実施形態に係る直動転がり支承は、電気回路と、を備え、前記中間板構造が板状の輪郭を形成し該輪郭の中に整列する複数の圧電素子をもつ圧電素子部材を有し、前記電気回路が前記中間板構造の複数の該圧電素子の一対の電極に電気的に接続され、前記中間板構造の前記圧電素子部材の板状の厚みが変化すると前記中間板構造の前記圧電素子の一対の電極に電位差が生ずる。
上記本発明に係る実施形態の構成により、前記中間板構造の圧電素子部材は、板状の輪郭を形成し該輪郭の中に整列する複数の圧電素子をもつ。前記電気回路が前記中間板構造の複数の該圧電素子の一対の電極に電気的に接続される。前記中間板構造の前記圧電素子部材の板状の厚みが変化すると前記中間板構造の前記圧電素子の一対の電極に電位差が生ずる。
その結果、地震が発生し構造物が水平方向に移動する際に上下振動により電位差が電気回路にかかる。
The linear motion rolling support according to the embodiment of the present invention includes an electric circuit, and has a piezoelectric element member having a plurality of piezoelectric elements in which the intermediate plate structure forms a plate-like contour and is aligned in the contour. Then, when the electric circuit is electrically connected to a pair of electrodes of the plurality of piezoelectric elements of the intermediate plate structure and the plate-like thickness of the piezoelectric element member of the intermediate plate structure changes, the intermediate plate structure is described. A potential difference occurs between the pair of electrodes of the piezoelectric element.
According to the configuration of the embodiment according to the present invention, the piezoelectric element member having the intermediate plate structure has a plurality of piezoelectric elements that form a plate-like contour and are aligned in the contour. The electric circuit is electrically connected to a pair of electrodes of the plurality of piezoelectric elements having the intermediate plate structure. When the plate-like thickness of the piezoelectric element member having the intermediate plate structure changes, a potential difference occurs between the pair of electrodes of the piezoelectric element having the intermediate plate structure.
As a result, when an earthquake occurs and the structure moves in the horizontal direction, a potential difference is applied to the electric circuit due to vertical vibration.

本発明の実施形態に係る直動転がり支承は、地震が発生したと判断したとき、構造物を支持する他の支承との間に発生した不陸の程度に応じて前記電気回路が前記中間板構造の前記圧電素子の一対の電極に電圧を印可して前記中間板構造の前記圧電素子部材の板状の厚みを変化させる。
上記本発明に係る実施形態の構成により、地震が発生したと判断したとき、構造物を支持する他の支承との間に発生した不陸の程度に応じて前記電気回路が前記中間板構造の前記圧電素子の一対の電極に電圧を印可して前記中間板構造の前記圧電素子部材の板状の厚みを変化させる。
その結果、他の支承との間の不陸の程度を減らす機能を実現できる。
In the linear rolling bearing according to the embodiment of the present invention, when it is determined that an earthquake has occurred, the electric circuit has the intermediate plate according to the degree of non-landing between the bearing and the other bearing supporting the structure. A voltage is applied to the pair of electrodes of the piezoelectric element of the structure to change the plate-like thickness of the piezoelectric element member of the intermediate plate structure.
According to the configuration of the embodiment according to the present invention, when it is determined that an earthquake has occurred, the electric circuit has the intermediate plate structure according to the degree of non-landing between the support and the other support supporting the structure. A voltage is applied to the pair of electrodes of the piezoelectric element to change the plate-like thickness of the piezoelectric element member having the intermediate plate structure.
As a result, it is possible to realize a function of reducing the degree of non-landing with other bearings.

また、本発明の実施形態に係る直動転がり支承は、前記基礎板構造が上下一対の板状の構造である第一基礎板構造と第二基礎板構造と該第一基礎板構造と該第二基礎板構造とに挟まれる板状の構造である第三基礎板構造とを有し、前記第三基礎板構造が板状の輪郭を形成し輪郭の中に整列する複数の圧電素子をもつ圧電素子部材を持ち、前記電気回路が前記第三基礎板構造の複数の該圧電素子の一対の電極に電気的に接続され、前記第三基礎板構造の前記圧電素子部材の板状の厚みが変化する変形をすると前記第三基礎板構造の前記圧電素子の一対の電極に電位差が生ずる。
上記本発明に係る実施形態の構成により、前記基礎板構造が上下一対の板状の構造である第一基礎板構造と第二基礎板構造と該第一基礎板構造と該第二基礎板構造とに挟まれる板状の構造である第三基礎板構造とを有する。前記第三基礎板構造が板状の輪郭を形成し輪郭の中に整列する複数の圧電素子をもつ圧電素子部材を持つ。前記電気回路が前記第三基礎板構造の複数の該圧電素子の一対の電極に電気的に接続される。前記第三基礎板構造の前記圧電素子部材の板状の厚みが変化する変形をすると前記第三基礎板構造の前記圧電素子の一対の電極に電位差が生ずる。
その結果、地震が発生し構造物が水平方向に移動する際に上下振動により電流が電気回路に流れる。
Further, in the linear motion rolling support according to the embodiment of the present invention, the first foundation plate structure, the second foundation plate structure, the first foundation plate structure, and the first base plate structure in which the foundation plate structure is a pair of upper and lower plate-like structures. It has a third base plate structure which is a plate-like structure sandwiched between the two base plate structures, and the third base plate structure has a plurality of piezoelectric elements which form a plate-like contour and are aligned in the contour. Having a piezoelectric element member, the electric circuit is electrically connected to a pair of electrodes of the piezoelectric element of the third foundation plate structure, and the plate-like thickness of the piezoelectric element member of the third foundation plate structure is increased. When the deformation is changed, a potential difference is generated in the pair of electrodes of the piezoelectric element having the third foundation plate structure.
According to the configuration of the embodiment according to the present invention, the first foundation plate structure, the second foundation plate structure, the first foundation plate structure, and the second foundation plate structure in which the foundation plate structure is a pair of upper and lower plate-like structures. It has a third base plate structure which is a plate-like structure sandwiched between the two. The third base plate structure has a piezoelectric element member having a plurality of piezoelectric elements that form a plate-like contour and are aligned in the contour. The electric circuit is electrically connected to a pair of electrodes of the plurality of piezoelectric elements having the third base plate structure. When the plate-like thickness of the piezoelectric element member of the third base plate structure is deformed to change, a potential difference is generated between the pair of electrodes of the piezoelectric element of the third base plate structure.
As a result, when an earthquake occurs and the structure moves in the horizontal direction, a current flows through the electric circuit due to vertical vibration.

また、本発明の実施形態に係る直動転がり支承は、地震が発生したと判断したとき、構造物を支持する他の支承との間に発生した不陸の程度に応じて、前記電気回路が前記第三基礎板構造の前記圧電素子の一対の電極に電圧を印可して前記第三基礎板構造の前記圧電素子部材の板状の厚みを変化させる。
上記本発明に係る実施形態の構成により、地震が発生したと判断したとき、構造物を支持する他の支承との間に発生した不陸の程度に応じて、前記電気回路が前記第三基礎板構造の前記圧電素子の一対の電極に電圧を印可して前記第三基礎板構造の前記圧電素子部材の板状の厚みを変化させる。
その結果、構造体を支持する支承の間の不陸を解消する機能を実現することができる。
Further, in the linear rolling bearing according to the embodiment of the present invention, when it is determined that an earthquake has occurred, the electric circuit has the electric circuit according to the degree of non-landing generated between the bearing and the other bearing supporting the structure. A voltage is applied to the pair of electrodes of the piezoelectric element of the third base plate structure to change the plate-like thickness of the piezoelectric element member of the third base plate structure.
According to the configuration of the embodiment according to the present invention, when it is determined that an earthquake has occurred, the electric circuit is the third foundation according to the degree of non-landing that occurs between the structure and other support supporting the structure. A voltage is applied to the pair of electrodes of the piezoelectric element of the plate structure to change the plate-like thickness of the piezoelectric element member of the third base plate structure.
As a result, it is possible to realize a function of eliminating the unevenness between the bearings supporting the structure.

また、本発明の実施形態に係る直動転がり支承は、前記レール構造と前記基礎板構造との間に挟まれる板状の構造であるレール支持構造と、を備え、前記レール支持構造が板状の輪郭を形成し輪郭の中に整列する複数の圧電素子をもつ圧電素子部材を持ち、前記電気回路が前記レール基礎板構造の複数の該圧電素子の一対の電極に電気的に接続され、前記レール支持構造の前記圧電素子部材の板状の厚みが変化する変形をすると前記レール基礎板構造の前記圧電素子の一対の電極に電位差が生ずる。
上記本発明に係る実施形態の構成により、前記レール支持構造が前記レール構造本体と前記基礎板構造との間に挟まれる板状の構造である。前記レール支持構造の圧電素子部材は、板状の輪郭を形成し輪郭の中に整列する複数の圧電素子をもつ。前記電気回路が前記レール支持構造の複数の該圧電素子の一対の電極に電気的に接続される。前記レール支持構造の前記圧電素子部材の板状の厚みが変化する変形をすると前記レール支持構造の前記圧電素子の一対の電極に電位差が生ずる。
その結果、地震が発生し構造物が水平方向に移動する際に上下振動により電流が電気回路に流れる。
Further, the linear motion rolling support according to the embodiment of the present invention includes a rail support structure which is a plate-like structure sandwiched between the rail structure and the base plate structure, and the rail support structure is plate-shaped. The electric circuit has a piezoelectric element member having a plurality of piezoelectric elements that form the contour of the above and are aligned in the contour, and the electric circuit is electrically connected to a pair of electrodes of the plurality of piezoelectric elements of the rail base plate structure. When the plate-like thickness of the piezoelectric element member of the rail support structure is deformed to change, a potential difference is generated between the pair of electrodes of the piezoelectric element of the rail base plate structure.
According to the configuration of the embodiment according to the present invention, the rail support structure is a plate-like structure sandwiched between the rail structure main body and the base plate structure. The piezoelectric element member of the rail support structure has a plurality of piezoelectric elements that form a plate-like contour and are aligned in the contour. The electric circuit is electrically connected to a pair of electrodes of the plurality of piezoelectric elements of the rail support structure. When the plate-like thickness of the piezoelectric element member of the rail support structure is deformed to change, a potential difference is generated between the pair of electrodes of the piezoelectric element of the rail support structure.
As a result, when an earthquake occurs and the structure moves in the horizontal direction, a current flows through the electric circuit due to vertical vibration.

また、本発明の実施形態に係る直動転がり支承は、地震が発生したと判断したとき、構造物を支持する他の支承との間に発生した不陸の程度に応じて、前記電気回路が前記前記レール支持構造の前記圧電素子の一対の電極に電圧を印可して前記レール支持構造の前記圧電素子部材の板状の厚みを変化させる。
上記本発明に係る実施形態の構成により、地震が発生したと判断したとき、構造物を支持する他の支承との間に発生した不陸の程度に応じて、前記電気回路が前記前記レール支持構造の前記圧電素子の一対の電極に電圧を印可して前記レール支持構造の前記圧電素子部材の板状の厚みを変化させる。
その結果、構造体を支持する支承の間の不陸を解消する機能を与えることができる。
Further, in the linear rolling bearing according to the embodiment of the present invention, when it is determined that an earthquake has occurred, the electric circuit has the electric circuit according to the degree of non-landing generated between the bearing and the other bearing supporting the structure. A voltage is applied to the pair of electrodes of the piezoelectric element of the rail support structure to change the plate-like thickness of the piezoelectric element member of the rail support structure.
According to the configuration of the embodiment according to the present invention, when it is determined that an earthquake has occurred, the electric circuit supports the rail according to the degree of non-landing that occurs between the support and the other support supporting the structure. A voltage is applied to the pair of electrodes of the piezoelectric element of the structure to change the plate-like thickness of the piezoelectric element member of the rail support structure.
As a result, it is possible to provide a function of eliminating the unevenness between the bearings supporting the structure.

本発明の実施形態に係る直動転がり支承は、前記レール構造が軸方向に延びる平滑面であるレール平滑面を形成し、前記レール平滑面に接触して摺動できるレール摩擦部材と前記ブロック構造に支持され前記レール摩擦部材を前記レール平滑面に押し付けるレール押し付け構造とを有するレール摩擦構造と、を備える。
上記本発明に係る実施形態の構成により、前記レール構造が軸方向に延びる平滑面であるレール平滑面を形成する。レール摩擦構造は、前記レール平滑面に接触して摺動できるレール摩擦部材と前記ブロック構造に支持され前記レール摩擦部材を前記レール平滑面に押し付けるレール押し付け構造とを有する。
その結果、地震が発生し構造物が水平方向に相対移動するとレール摩擦部材とレール平滑面との間に発生する摩擦力が構造物の振動を減衰できる。
In the linear motion rolling support according to the embodiment of the present invention, the rail friction member and the block structure which form a rail smooth surface which is a smooth surface extending in the axial direction and can slide in contact with the rail smooth surface. The rail friction structure includes a rail pressing structure that is supported by the rail and presses the rail friction member against the rail smooth surface.
According to the configuration of the embodiment according to the present invention, a rail smooth surface is formed, which is a smooth surface in which the rail structure extends in the axial direction. The rail friction structure includes a rail friction member that can slide in contact with the rail smooth surface and a rail pressing structure that is supported by the block structure and presses the rail friction member against the rail smooth surface.
As a result, when an earthquake occurs and the structure moves relative to each other in the horizontal direction, the frictional force generated between the rail friction member and the rail smooth surface can attenuate the vibration of the structure.

本発明の実施形態に係る直動転がり支承は、 前記レール押し付け構造が板状の輪郭を形成し輪郭の中に整列する複数の圧電素子をもつ圧電素子部材を持ち、前記電気回路が前記前記レール押し付け構造の複数の該圧電素子の一対の電極に電気的に接続され、地震が発生したと判断すると前記電気回路が前記レール押し付け構造の前記圧電素子の一対の電極に電圧を印可して前記レール押し付け構造の前記圧電素子部材の板状の厚みを変化させる。
上記本発明に係る実施形態の構成により、前記レール押し付け構造の圧電素子部材は、板状の輪郭を形成し輪郭の中に整列する複数の圧電素子をもつ。前記電気回路が前記前記レール押し付け構造の複数の該圧電素子の一対の電極に電気的に接続される。地震が発生したと判断すると前記電気回路が前記レール押し付け構造の前記圧電素子の一対の電極に電圧を印可して前記レール押し付け構造の前記圧電素子部材の板状の厚みを変化させる。
その結果、圧電素子の一対の電極に印可する電圧を変化させてレール摩擦部材とレール平滑面との間に発生する摩擦力を調整できる。
The linear motion rolling support according to the embodiment of the present invention has a piezoelectric element member having a plurality of piezoelectric elements in which the rail pressing structure forms a plate-like contour and is aligned in the contour, and the electric circuit has the rail. When it is determined that an earthquake has occurred by being electrically connected to a pair of electrodes of the plurality of piezoelectric elements of the pressing structure, the electric circuit applies a voltage to the pair of electrodes of the piezoelectric element of the rail pressing structure to apply a voltage to the rail. The plate-like thickness of the piezoelectric element member having a pressing structure is changed.
According to the configuration of the embodiment according to the present invention, the piezoelectric element member having the rail pressing structure has a plurality of piezoelectric elements that form a plate-like contour and are aligned in the contour. The electric circuit is electrically connected to a pair of electrodes of the plurality of piezoelectric elements of the rail pressing structure. When it is determined that an earthquake has occurred, the electric circuit applies a voltage to the pair of electrodes of the piezoelectric element of the rail pressing structure to change the plate-like thickness of the piezoelectric element member of the rail pressing structure.
As a result, the frictional force generated between the rail friction member and the rail smooth surface can be adjusted by changing the voltage applied to the pair of electrodes of the piezoelectric element.

本発明の実施形態に係る直動転がり支承は、前記基礎板構造が軸方向に延びる平滑面である基礎板平滑面を形成し、前記基礎板平滑面に接触して摺動できる基礎板摩擦部材と前記ブロック構造に支持され前記基礎板摩擦部材を前記基礎板平滑面に押し付ける基礎板押し付け構造とを有する基礎板摩擦構造と、を備える。
上記本発明に係る実施形態の構成により、前記基礎板構造が軸方向に延びる平滑面である基礎板平滑面を形成する。基礎板摩擦構造は、前記基礎板平滑面に接触して摺動できる基礎板摩擦部材と前記ブロック構造に支持され前記基礎板摩擦部材を前記基礎板平滑面に押し付ける基礎板押し付け構造とを有する。
その結果、地震が発生し構造物が水平方向に相対移動すると基礎板摩擦部材と基礎板平滑面との間に発生する摩擦力が構造物の振動を減衰できる。
In the linear motion rolling bearing according to the embodiment of the present invention, a foundation plate friction member that forms a foundation plate smooth surface on which the foundation plate structure extends in the axial direction and can slide in contact with the foundation plate smooth surface. And a foundation plate friction structure having a foundation plate pressing structure supported by the block structure and pressing the foundation plate friction member against the smooth surface of the foundation plate.
According to the configuration of the embodiment according to the present invention, the foundation plate smooth surface is formed, which is a smooth surface in which the foundation plate structure extends in the axial direction. The base plate friction structure includes a base plate friction member that can slide in contact with the base plate smooth surface and a base plate pressing structure that is supported by the block structure and presses the base plate friction member against the base plate smooth surface.
As a result, when an earthquake occurs and the structure moves relative to each other in the horizontal direction, the frictional force generated between the foundation plate friction member and the foundation plate smooth surface can attenuate the vibration of the structure.

本発明の実施形態に係る直動転がり支承は、前記基礎板押し付け構造が板状の輪郭を形成し輪郭の中に整列する複数の圧電素子をもつ圧電素子部材を持ち、前記電気回路が前記基礎板押し付け構造の複数の該圧電素子の一対の電極に電気的に接続され、地震が発生したと判断すると前記電気回路が前記基礎板押し付け構造の前記圧電素子の一対の電極に電圧を印可して前記基礎板押し付け構造の前記圧電素子部材の板状の厚みを変化させる。
上記本発明に係る実施形態の構成により、前記基礎板押し付け構造の圧電素子部材は、が板状の輪郭を形成し輪郭の中に整列する複数の圧電素子をもつ。前記電気回路が前記基礎板押し付け構造の複数の該圧電素子の一対の電極に電気的に接続される。地震が発生したと判断すると前記電気回路が前記基礎板押し付け構造の前記圧電素子の一対の電極に電圧を印可して前記基礎板押し付け構造の前記圧電素子部材の板状の厚みを変化させる。
その結果、圧電素子の一対の電極に印可する電圧を変化させて基礎板摩擦部材と基礎板平滑面との間に発生する摩擦力を調整できる。
The linear motion rolling support according to the embodiment of the present invention has a piezoelectric element member having a plurality of piezoelectric elements in which the base plate pressing structure forms a plate-like contour and is aligned in the contour, and the electric circuit is the foundation. It is electrically connected to a pair of electrodes of the piezoelectric element of the plate pressing structure, and when it is determined that an earthquake has occurred, the electric circuit applies a voltage to the pair of electrodes of the piezoelectric element of the base plate pressing structure. The plate-like thickness of the piezoelectric element member of the base plate pressing structure is changed.
According to the configuration of the embodiment according to the present invention, the piezoelectric element member having the base plate pressing structure has a plurality of piezoelectric elements that form a plate-like contour and are aligned in the contour. The electric circuit is electrically connected to a pair of electrodes of the plurality of piezoelectric elements of the base plate pressing structure. When it is determined that an earthquake has occurred, the electric circuit applies a voltage to the pair of electrodes of the piezoelectric element of the base plate pressing structure to change the plate-like thickness of the piezoelectric element member of the base plate pressing structure.
As a result, the frictional force generated between the base plate friction member and the base plate smooth surface can be adjusted by changing the voltage applied to the pair of electrodes of the piezoelectric element.

また、本発明の実施形態に係る直動転がり支承は、前記ブロック構造の温度を検知する温度センサと、を備え、前記電気回路は前記温度センサの検知する前記ブロック構造の温度の値の変化に応じて前記圧電素子の一対の電極に印可する電圧の値を変化させる。
上記本発明に係る実施形態の構成により、温度センサは、前記ブロック構造の温度を検知する。前記電気回路は前記温度センサの検知する前記ブロック構造の温度の値の変化に応じて前記圧電素子の一対の電極に印可する電圧の値を変化させる。
その結果、ブロック構造の温度の値に応じて摩擦力を変化させる機能を実現させることができる。
Further, the linear motion rolling support according to the embodiment of the present invention includes a temperature sensor for detecting the temperature of the block structure, and the electric circuit responds to a change in the temperature value of the block structure detected by the temperature sensor. The value of the voltage applied to the pair of electrodes of the piezoelectric element is changed accordingly.
According to the configuration of the embodiment according to the present invention, the temperature sensor detects the temperature of the block structure. The electric circuit changes the value of the voltage applied to the pair of electrodes of the piezoelectric element according to the change in the temperature value of the block structure detected by the temperature sensor.
As a result, it is possible to realize a function of changing the frictional force according to the temperature value of the block structure.

以上説明したように、本発明に係る直動転がり支承は、その構成により、以下の効果を有する。
前記下部構造が前記下部基礎板構造を支持し、前記下部基礎板構造が前記Y軸方向に延びる前記下部レール構造を支持し、前記下部レール構造が前記下部ブロック構造をY軸方向に相対移動自在に案内し、前記下部ブロック構造が中間板構造を挟んで前記上部ブロック構造に連結され、前記上部レール構造が前記上部ブロック構造をX軸方向に相対移動自在に案内し、前記上部レール構造が前記上部基礎板構造に支持され、前記上部基礎板構造が上部構造を支持する様にしたので、地震が発生すると構造物が水平方向に移動できる。
前記中間板構造の圧電素子部材が板条の輪郭のなかに複数の圧電素子をもち、圧電素子部材の板状の厚みが変化すると圧電素子の一対の電極に電位差が生じ、電位差により電気回路に電流が流れる様にしたので、地震が発生し構造物が水平方向に移動する際に上下振動により電位差が電気回路にかかる。
地震が発生し、構造物を支持する他の支承との間に発生した不陸の程度に応じて前記中間板構造の前記圧電素子の一対の電極に電圧を印可して前記中間板構造の前記圧電素子部材の板状の厚みを変化させる様にしたので、他の支承との間の不陸の程度を減らす機能を実現できる。
板状の輪郭のなかに整列される複数の圧電素子をもつ圧電素子部材を持つ第三基礎板部材が第一基礎板構造と第二基礎板構造とに挟まれ、前記圧電素子部材の板状の厚みが変化すると圧電素子の一対の端子に電位差が生じる様にしたので、地震が発生し構造物が水平方向に移動する際に上下振動により電流が電気回路に流れる。
地震が発生し、構造物を支持する他の支承との間に不陸の程度に応じて記第三基礎板構造の圧電素子の一対の電極に電圧を印可して前記圧電素子部材の板状の厚みを変化させる様にしたので、構造体を支持する支承の間の不陸を解消する機能を実現することができる。
前記レール支持構造が板状の輪郭のなかに整列される複数の圧電素子をもつ圧電素子部材を持ち、前記圧電素子部材の板状の厚みが変化すると圧電素子の一対の端子に電位差が生じる様にしたので、地震が発生し構造物が水平方向に移動する際に上下振動により電流が電気回路に流れる。
地震が発生し、構造物を支持する他の支承との間に不陸の程度に応じてレール支持構造の圧電素子の一対の電極に電圧を印可して前記圧電素子部材の板状の厚みを変化させる様にしたので、構造体を支持する支承の間の不陸を解消する機能を与えることができる。
ブロック構造に支持されるレール押付け機構がレール摩擦部材をレール構造に形成されるレール平滑面に押付ける様にしたので、地震が発生し構造物が水平方向に相対移動するとレール摩擦部材とレール平滑面との間に発生する摩擦力が構造物の振動を減衰できる。
前記レール押し付け構造が圧電素子部材の板状の輪郭の中に複数の圧電素子をもち、複数の圧電素子の一対の電力に電圧を印可して圧電素子部材の板状の厚みを変化させる様にしたので、圧電素子の一対の電極に印可する電圧を変化させてレール摩擦部材とレール平滑面との間に発生する摩擦力を調整できる。
ブロック構造に支持される基礎板押付け機構が基礎板摩擦部材を基礎板構造に形成される基礎板平滑面に押付ける様にしたので、地震が発生し構造物が水平方向に相対移動すると基礎板摩擦部材と基礎板平滑面との間に発生する摩擦力が構造物の振動を減衰できる。
前記基礎板押し付け構造が圧電素子部材の板状の輪郭の中に複数の圧電素子をもち、複数の圧電素子の一対の電力に電圧を印可して圧電素子部材の板状の厚みを変化させる様にしたので、圧電素子の一対の電極に印可する電圧を変化させて基礎板摩擦部材と基礎板平滑面との間に発生する摩擦力を調整できる。
前記温度センサの検知する前記ブロック構造の温度の値の変化に応じて前記圧電素子の一対の電極に印可する電圧の値を変化させる様にしたので、ブロック構造の温度の値に応じて摩擦力を変化させる機能を実現させることができる。
従って、簡易な構造により動特性または振動特性を調整できる直動転がり支承を提供できる。
As described above, the linear motion rolling bearing according to the present invention has the following effects depending on its configuration.
The lower structure supports the lower base plate structure, the lower base plate structure supports the lower rail structure extending in the Y-axis direction, and the lower rail structure allows the lower block structure to move relative to the Y-axis direction. The lower block structure is connected to the upper block structure with an intermediate plate structure interposed therebetween, the upper rail structure guides the upper block structure relative to the X-axis direction, and the upper rail structure is the said. Since it is supported by the upper base plate structure and the upper base plate structure supports the upper structure, the structure can move in the horizontal direction when an earthquake occurs.
The piezoelectric element member having the intermediate plate structure has a plurality of piezoelectric elements in the contour of the strip, and when the plate-like thickness of the piezoelectric element member changes, a potential difference is generated between the pair of electrodes of the piezoelectric element, and the potential difference causes an electric circuit. Since the current is allowed to flow, a potential difference is applied to the electric circuit due to vertical vibration when an earthquake occurs and the structure moves in the horizontal direction.
A voltage is applied to a pair of electrodes of the piezoelectric element of the intermediate plate structure according to the degree of non-landing generated between the earthquake and other bearings supporting the structure, and the intermediate plate structure is described. Since the plate-like thickness of the piezoelectric element member is changed, the function of reducing the degree of non-landing with other bearings can be realized.
A third base plate member having a piezoelectric element member having a plurality of piezoelectric elements aligned in a plate-shaped contour is sandwiched between the first base plate structure and the second base plate structure, and the plate shape of the piezoelectric element member. When the thickness of the piezoelectric element changes, a potential difference is generated between the pair of terminals of the piezoelectric element. Therefore, when an earthquake occurs and the structure moves in the horizontal direction, a current flows through the electric circuit due to vertical vibration.
When an earthquake occurs, a voltage is applied to the pair of electrodes of the piezoelectric element of the third foundation plate structure according to the degree of non-landing between the bearing and other bearings that support the structure, and the plate shape of the piezoelectric element member is applied. Since the thickness of the structure is changed, it is possible to realize a function of eliminating the unevenness between the bearings supporting the structure.
The rail support structure has a piezoelectric element member having a plurality of piezoelectric elements aligned in a plate-like contour, and when the plate-like thickness of the piezoelectric element member changes, a potential difference occurs between a pair of terminals of the piezoelectric element. Therefore, when an earthquake occurs and the structure moves in the horizontal direction, a current flows through the electric circuit due to vertical vibration.
When an earthquake occurs, a voltage is applied to a pair of electrodes of the piezoelectric element of the rail support structure according to the degree of non-landing with other supports that support the structure to increase the plate-like thickness of the piezoelectric element member. Since it is changed, it is possible to provide a function of eliminating the unevenness between the supports supporting the structure.
Since the rail pressing mechanism supported by the block structure presses the rail friction member against the rail smooth surface formed in the rail structure, when an earthquake occurs and the structure moves relative to each other in the horizontal direction, the rail friction member and the rail are smoothed. The frictional force generated between the surface and the surface can dampen the vibration of the structure.
The rail pressing structure has a plurality of piezoelectric elements in the plate-shaped contour of the piezoelectric element member, and a voltage is applied to a pair of electric powers of the plurality of piezoelectric elements to change the plate-shaped thickness of the piezoelectric element member. Therefore, the voltage applied to the pair of electrodes of the piezoelectric element can be changed to adjust the frictional force generated between the rail friction member and the rail smooth surface.
The foundation plate pressing mechanism supported by the block structure presses the foundation plate friction member against the smooth surface of the foundation plate formed in the foundation plate structure, so that when an earthquake occurs and the structure moves relative to the horizontal direction, the foundation plate The frictional force generated between the friction member and the smooth surface of the foundation plate can dampen the vibration of the structure.
The base plate pressing structure has a plurality of piezoelectric elements in the plate-shaped contour of the piezoelectric element member, and a voltage is applied to a pair of electric powers of the plurality of piezoelectric elements to change the plate-shaped thickness of the piezoelectric element member. Therefore, the voltage applied to the pair of electrodes of the piezoelectric element can be changed to adjust the frictional force generated between the base plate friction member and the base plate smooth surface.
Since the value of the voltage applied to the pair of electrodes of the piezoelectric element is changed according to the change in the temperature value of the block structure detected by the temperature sensor, the frictional force is changed according to the temperature value of the block structure. It is possible to realize the function of changing the temperature.
Therefore, it is possible to provide a linear motion rolling bearing whose dynamic characteristics or vibration characteristics can be adjusted by a simple structure.

本発明の第一の実施形態に係る直動転がり支承の側面概念図である。It is a side conceptual diagram of the linear motion rolling bearing which concerns on 1st Embodiment of this invention. 本発明の第一の実施形態に係る直動転がり支承の平面概念図である。It is a plane conceptual view of the linear motion rolling bearing which concerns on 1st Embodiment of this invention. 本発明の第一の実施形態に係る圧電素子部材その1の平面概念図である。It is a plan view of the piezoelectric element member 1 which concerns on 1st Embodiment of this invention. 本発明の第一の実施形態に係る圧電素子部材その1の断面図、側面概念図である。It is sectional drawing and side conceptual view of the piezoelectric element member 1 which concerns on 1st Embodiment of this invention. 本発明の第一の実施形態に係る圧電素子部材その2の断面図、側面概念図である。2 is a cross-sectional view and a side conceptual view of the piezoelectric element member 2 according to the first embodiment of the present invention. 本発明の第一の実施形態に係る圧電素子部材その3の断面図、側面概念図である。It is sectional drawing and side conceptual view of the piezoelectric element member 3 which concerns on 1st Embodiment of this invention. 本発明の第二の実施形態に係る直動転がり支承の側面概念図である。It is a side conceptual diagram of the linear motion rolling bearing which concerns on the 2nd Embodiment of this invention. 本発明の第二の実施形態に係る直動転がり支承の平面概念図である。It is a plan view of the linear motion rolling bearing which concerns on the 2nd Embodiment of this invention. 本発明の第二の実施形態に係るレール摩擦構造の作用説明図である。It is an operation explanatory drawing of the rail friction structure which concerns on 2nd Embodiment of this invention. 構造物の概念図である。It is a conceptual diagram of a structure.

以下、本発明を実施するための最良の形態を、図面を参照して説明する。
本発明は、上下一対の構造である上部構造と下部構造との間に設けられ構造物を支持する直動転がり支承にかかるものである。
説明の便宜のため、直動転がり支承を建物に取り付ける場合を例に説明する。
上階構造Rは、建物の下部構造である。
下階構造Bは、建物の基礎構造である。
仮想のX軸と仮想のY軸とが水平面内で直交する。
Hereinafter, the best mode for carrying out the present invention will be described with reference to the drawings.
The present invention relates to a linear bearing that is provided between an upper structure and a lower structure, which are a pair of upper and lower structures, and supports the structure.
For convenience of explanation, the case where a linear motion rolling bearing is attached to a building will be described as an example.
The upper floor structure R is a lower structure of the building.
The lower floor structure B is the foundation structure of the building.
The virtual X-axis and the virtual Y-axis are orthogonal in the horizontal plane.

最初に、本発明の第一実施形態に係る直動転がり支承を、図を基に、説明する
図1は、本発明の第一の実施形態に係る直動転がり支承の側面概念図である。図2は、本発明の第一の実施形態に係る直動転がり支承の平面概念図である。図3は、本発明の第一の実施形態に係る圧電素子部材の平面概念図である。図4は、本発明の第一の実施形態に係る圧電素子部材の断面図、側面概念図である。
First, the linear motion rolling bearing according to the first embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a side conceptual diagram of the linear motion rolling bearing according to the first embodiment of the present invention. FIG. 2 is a plan conceptual diagram of a linear motion rolling bearing according to the first embodiment of the present invention. FIG. 3 is a plan conceptual view of the piezoelectric element member according to the first embodiment of the present invention. FIG. 4 is a cross-sectional view and a side conceptual view of the piezoelectric element member according to the first embodiment of the present invention.

本発明の第一の実施形態にかかる直動転がり支承は、上部基礎板構造100xと上部レール構造210xと上部ブロック構造220xと下部基礎板構造100yと下部レール構造210yと下部ブロック構造220yと中間板構造300と電気回路400とで構成される。 The linear motion rolling bearing according to the first embodiment of the present invention includes an upper foundation plate structure 100x, an upper rail structure 210x, an upper block structure 220x, a lower foundation plate structure 100y, a lower rail structure 210y, a lower block structure 220y, and an intermediate plate. It is composed of a structure 300 and an electric circuit 400.

上部基礎板構造100xは、上部構造Rを支持する基礎板構造100である。
基礎板構造は、板状の構造である。
例えば、上部基礎板構造100xは、上部構造Rの下面にアンカーボルト140により固定される。
The upper base plate structure 100x is a base plate structure 100 that supports the upper structure R.
The base plate structure is a plate-like structure.
For example, the upper foundation plate structure 100x is fixed to the lower surface of the upper structure R by anchor bolts 140.

下部基礎板構造100yは、下部構造Bに支持される基礎板構造100である。
基礎板構造は、板状の構造である。
例えば、下部基礎板構造100yは、下部構造Bの上面にアンカーボルト140により固定される。
The lower base plate structure 100y is a base plate structure 100 supported by the lower structure B.
The base plate structure is a plate-like structure.
For example, the lower foundation plate structure 100y is fixed to the upper surface of the lower structure B by anchor bolts 140.

上部レール構造210xは、上部基礎板構造100xに支持されX軸方向に延びるレール構造210である。
例えば、上部レール構造210xは、下部基礎板構造100yの下面にボルト結合される。
上部ブロック構造220xは、上部レール構造210xにX軸方向に相対移動自在に案内されるブロック構造220である。
例えば、上部ブロック構造220xは、上部レール構造210xの下部に案内される。
エンドレスに連なった一連の鉄球がレール構造210に設けられたレール溝とブロック構造220に設けられたトンネル状の孔の中を転がり、上部ブロック構造220xが上部レール構造210xにX軸方向に相対移動できる。
The upper rail structure 210x is a rail structure 210 supported by the upper base plate structure 100x and extending in the X-axis direction.
For example, the upper rail structure 210x is bolted to the lower surface of the lower base plate structure 100y.
The upper block structure 220x is a block structure 220 that is guided to the upper rail structure 210x so as to be relatively movable in the X-axis direction.
For example, the upper block structure 220x is guided to the lower part of the upper rail structure 210x.
A series of endless iron balls roll in the rail groove provided in the rail structure 210 and the tunnel-shaped hole provided in the block structure 220, and the upper block structure 220x is relative to the upper rail structure 210x in the X-axis direction. You can move.

下部レール構造210yは、下部基礎板構造100yに支持されY軸方向に延びるレール構造である。
例えば、下部レール構造210yは、下部基礎板構造100yの上面にボルト結合される。
下部ブロック構造220yは、下部レール構造210yにY軸方向に相対移動自在に案内されるブロック構造である。
例えば、下部ブロック構造220yは、下部レール構造210yの上部に案内される。
エンドレスに連なった一連の鉄球がレール構造210に設けられたレール溝とブロック構造220に設けられたトンネル状の孔の中を転がり、下部ブロック構造220yが下部レール構造210yにY軸方向に相対移動できる。
The lower rail structure 210y is a rail structure supported by the lower base plate structure 100y and extending in the Y-axis direction.
For example, the lower rail structure 210y is bolted to the upper surface of the lower base plate structure 100y.
The lower block structure 220y is a block structure that is guided by the lower rail structure 210y so as to be relatively movable in the Y-axis direction.
For example, the lower block structure 220y is guided to the upper part of the lower rail structure 210y.
A series of endless iron balls roll in the rail groove provided in the rail structure 210 and the tunnel-shaped hole provided in the block structure 220, and the lower block structure 220y is relative to the lower rail structure 210y in the Y-axis direction. You can move.

中間板構造300は、板状の輪郭をもつ構造である。
上部ブロック構造220xと下部ブロック構造220yとが中間板構造300を挟んで連結される。
中間板構造300は、圧電素子部材310を含む。
中間板構造300は、圧電素子部材310と一対の金属板部材320とで構成されてもよい。
圧電素子部材310は、一対の金属板部材320に上下から挟まれる。
圧電素子部材310は、板状の輪郭を形成し、輪郭の中に整列する複数の圧電素子310aをもつ。
The intermediate plate structure 300 is a structure having a plate-like contour.
The upper block structure 220x and the lower block structure 220y are connected with the intermediate plate structure 300 interposed therebetween.
The intermediate plate structure 300 includes a piezoelectric element member 310.
The intermediate plate structure 300 may be composed of the piezoelectric element member 310 and a pair of metal plate members 320.
The piezoelectric element member 310 is sandwiched between a pair of metal plate members 320 from above and below.
The piezoelectric element member 310 has a plurality of piezoelectric elements 310a that form a plate-shaped contour and are aligned in the contour.

以下に、圧電素子部材の構造の3つのタイプを、図を基に説明する。
最初に、圧電素子部材の構造その1を説明する。
図3、図4は、圧電素子部材310の構造その1を例示する。
圧電素子部材310は、複数の圧電素子310aと一対の仕切り板310bとで構成されてもよい。
複数の圧電素子310aが、一対の仕切り板310bに上下方向から挟まれてもよい。
中間板構造300の圧電素子部材310の板状の厚みが変化すると中間板構造300の圧電素子310aの一対の電極に電位差が生ずる
例えば、複数の圧電素子310aは、一対の仕切り板310bの間に整列する。
中間板構造300の圧電素子部材310の板状の厚みが変化すると中間板構造300の圧電ゴム板310cに内在する圧電素子に圧縮歪みまたは伸長歪みが生じて一対の電極に電位差が生ずる。
Hereinafter, three types of the structure of the piezoelectric element member will be described with reference to the drawings.
First, the structure 1 of the piezoelectric element member will be described.
3 and 4 illustrate the structure 1 of the piezoelectric element member 310.
The piezoelectric element member 310 may be composed of a plurality of piezoelectric elements 310a and a pair of partition plates 310b.
A plurality of piezoelectric elements 310a may be sandwiched between a pair of partition plates 310b from above and below.
When the plate-like thickness of the piezoelectric element member 310 of the intermediate plate structure 300 changes, a potential difference occurs between the pair of electrodes of the piezoelectric element 310a of the intermediate plate structure 300. For example, the plurality of piezoelectric elements 310a are located between the pair of partition plates 310b. Align.
When the plate-like thickness of the piezoelectric element member 310 of the intermediate plate structure 300 changes, compression strain or elongation strain occurs in the piezoelectric element contained in the piezoelectric rubber plate 310c of the intermediate plate structure 300, and a potential difference occurs between the pair of electrodes.

次に、圧電素子の構造その2を説明する。
図5は、圧電素子部材310の構造その2を例示する。
圧電素子部材310は、圧電ゴム板310cで構成されてもよい。
圧電素子部材310は、圧電ゴム板310cと一対の仕切り板310bとで構成されてもよい。
圧電ゴム板310cは、ゴム製の厚板の中に圧電素子が埋め込まれたものであってもよい。
圧電ゴム板310cは、ゴム製の厚板に圧電素子を貼り付けられたものであってもよい。
一枚の 圧電ゴム板310cが、一対の仕切り板310bに上下方向から挟まれてもよい。
中間板構造300の圧電素子部材310の板状の厚みが変化すると中間板構造300の圧電ゴム板310cに内在する圧電素子の一対の電極に電位差が生ずる
中間板構造300の圧電素子部材310の板状の厚みが変化すると中間板構造300の圧電素子310aに圧縮歪みまたは伸長歪みが生じて一対の電極に電位差が生ずる。
Next, the structure 2 of the piezoelectric element will be described.
FIG. 5 illustrates structure 2 of the piezoelectric element member 310.
The piezoelectric element member 310 may be composed of a piezoelectric rubber plate 310c.
The piezoelectric element member 310 may be composed of a piezoelectric rubber plate 310c and a pair of partition plates 310b.
The piezoelectric rubber plate 310c may have a piezoelectric element embedded in a thick rubber plate.
The piezoelectric rubber plate 310c may be a thick rubber plate to which a piezoelectric element is attached.
A single piezoelectric rubber plate 310c may be sandwiched between a pair of partition plates 310b from above and below.
When the plate-like thickness of the piezoelectric element member 310 of the intermediate plate structure 300 changes, a potential difference is generated between the pair of electrodes of the piezoelectric element contained in the piezoelectric rubber plate 310c of the intermediate plate structure 300. When the thickness of the shape changes, the piezoelectric element 310a of the intermediate plate structure 300 is subjected to compression strain or elongation strain, and a potential difference is generated between the pair of electrodes.

次に、圧電素子の構造その3を説明する。
図6は、圧電素子部材310の構造その3を例示する。
圧電素子部材310は、圧電ゴム板310cで構成されてもよい。
圧電素子部材310は、圧電ゴム板310cと一対の仕切り板310bとで構成されてもよい。
圧電ゴム板310cは、ゴム製の厚板の中に圧電素子が埋め込まれたものである。
圧電ゴム板310cは、ゴム製の厚板に圧電素子が貼り付けられたものであってもよい。
複数の圧電ゴム板310cが、一対の仕切り板310bに上下方向から挟まれてもよい。
中間板構造300の圧電素子部材310の板状の厚みが変化すると中間板構造300の複数の圧電ゴム板310cに内在する圧電素子の一対の電極に電位差が生ずる
中間板構造300の圧電素子部材310の板状の厚みが変化すると中間板構造300の圧電ゴム板310cに内在する圧電素子に圧縮歪みまたは伸長歪みが生じて一対の電極に電位差が生ずる。
Next, the structure 3 of the piezoelectric element will be described.
FIG. 6 illustrates structure 3 of the piezoelectric element member 310.
The piezoelectric element member 310 may be composed of a piezoelectric rubber plate 310c.
The piezoelectric element member 310 may be composed of a piezoelectric rubber plate 310c and a pair of partition plates 310b.
The piezoelectric rubber plate 310c is a thick rubber plate in which a piezoelectric element is embedded.
The piezoelectric rubber plate 310c may be a thick rubber plate to which a piezoelectric element is attached.
A plurality of piezoelectric rubber plates 310c may be sandwiched between a pair of partition plates 310b from above and below.
When the plate-like thickness of the piezoelectric element member 310 of the intermediate plate structure 300 changes, a potential difference is generated between the pair of electrodes of the piezoelectric element contained in the plurality of piezoelectric rubber plates 310c of the intermediate plate structure 300. When the plate-like thickness of the above changes, the piezoelectric element contained in the piezoelectric rubber plate 310c of the intermediate plate structure 300 is subjected to compression strain or elongation strain, and a potential difference is generated between the pair of electrodes.

電気回路400は、電気回路本体410と不陸検知センサ430とで構成されてもよい。
電気回路400は、中間板構造300の複数の圧電素子310aの一対の電極に電気的に接続される。
電気回路400は、中間板構造300の複数の圧電素子310aの一対の電極に電気的に接続されるコンデンサを持っていてもよい。
この様にすると、中間板構造300の圧電素子部材310の板状の厚みが変化すると中間板構造300の圧電素子310aに圧縮歪みまたは伸長歪みが生じて一対の電極に電位差が生じ、電気回路に電位差に起因してで電流が流れる。
不陸検知センサ430は造物を支持する他の支承との間に発生した不陸を検知するセンサである。
例えば、不陸検知センサ430は、支承毎に支承が支持する上部構造と下部構造との離間距離を検知する。
支承毎の上部構造と下部構造との離間距離に差が生じたときに、不陸検知センサ430は、不陸を検知する。
The electric circuit 400 may be composed of an electric circuit main body 410 and a non-land detection sensor 430.
The electric circuit 400 is electrically connected to a pair of electrodes of a plurality of piezoelectric elements 310a of the intermediate plate structure 300.
The electric circuit 400 may have a capacitor that is electrically connected to a pair of electrodes of a plurality of piezoelectric elements 310a of the intermediate plate structure 300.
In this way, when the plate-like thickness of the piezoelectric element member 310 of the intermediate plate structure 300 changes, compression strain or extension strain occurs in the piezoelectric element 310a of the intermediate plate structure 300, causing a potential difference between the pair of electrodes, resulting in an electric circuit. Current flows due to the potential difference.
The non-land detection sensor 430 is a sensor that detects the non-land generated between the land and other bearings that support the structure.
For example, the non-land detection sensor 430 detects the distance between the upper structure and the lower structure supported by the bearing for each bearing.
The non-landing detection sensor 430 detects non-landing when there is a difference in the separation distance between the upper structure and the lower structure for each bearing.

地震が発生したと判断したとき、電気回路400が中間板構造300の圧電素子310aの一対の電極に電圧を印可して中間板構造300の圧電素子部材310の板状の厚みを変化させる。
地震が発生したと判断したとき、構造物を支持する他の支承との間に発生した不陸の程度に応じて電気回路400が中間板構造300の圧電素子310aの一対の電極に電圧を印可して中間板構造300の圧電素子部材310の板状の厚みを変化させてもよい。
例えば、他の支承のうちの特定の支承の支持する下部構造と上部構造の離間距離を基準として、直動転がり支承の支持する下部構造と上部構造の離間距離を基準に対して所定の値になる様にする。
この様にすると、複数の支承の支持する構造物の上部構造の不陸を抑制し、直動転がり支承が安定してX軸方向とY軸方向に移動できる。
When it is determined that an earthquake has occurred, the electric circuit 400 applies a voltage to the pair of electrodes of the piezoelectric element 310a of the intermediate plate structure 300 to change the plate-like thickness of the piezoelectric element member 310 of the intermediate plate structure 300.
When it is determined that an earthquake has occurred, the electric circuit 400 can apply a voltage to the pair of electrodes of the piezoelectric element 310a of the intermediate plate structure 300 according to the degree of non-landing that occurs between the support and the other support supporting the structure. Then, the plate-like thickness of the piezoelectric element member 310 of the intermediate plate structure 300 may be changed.
For example, based on the distance between the lower structure and the superstructure supported by a specific bearing among other bearings, the distance between the lower structure and the superstructure supported by the linear bearing is set to a predetermined value with respect to the reference. To be.
In this way, the non-landing of the superstructure of the structure supported by the plurality of bearings can be suppressed, and the linear rolling bearings can be stably moved in the X-axis direction and the Y-axis direction.

次に、本発明の第二の実施形態にかかる直動転がり支承を、図を基に、説明する。
図7は、本発明の第二の実施形態に係る直動転がり支承の側面概念図である。図8は、本発明の第二の実施形態に係る直動転がり支承の平面概念図である。図9は、本発明の第二の実施形態に係るレール摩擦構造の作用説明図である。
Next, the linear motion rolling bearing according to the second embodiment of the present invention will be described with reference to the drawings.
FIG. 7 is a side conceptual diagram of a linear motion rolling bearing according to a second embodiment of the present invention. FIG. 8 is a plan conceptual diagram of a linear motion rolling bearing according to a second embodiment of the present invention. FIG. 9 is an explanatory view of the operation of the rail friction structure according to the second embodiment of the present invention.

本発明の第二の実施形態にかかる直動転がり支承は、上部基礎板構造100xと上部レール構造210xと上部ブロック構造220xと下部基礎板構造100yと下部レール構造210yと下部ブロック構造220yと中間板構造300と電気回路400とで構成される。
本発明の第二の実施形態にかかる直動転がり支承は、上部基礎板構造100xと上部レール構造210xと上部ブロック構造220xと下部基礎板構造100yと下部レール構造210yと下部ブロック構造220yと中間板構造300と電気回路400とレール摩擦構造500とで構成されてもよい。
本発明の第二の実施形態にかかる直動転がり支承は、上部基礎板構造100xと上部レール構造210xと上部ブロック構造220xと下部基礎板構造100yと下部レール構造210yと下部ブロック構造220yと中間板構造300と電気回路400と基礎板摩擦構造600とで構成されてもよい。
本発明の第二の実施形態にかかる直動転がり支承は、上部基礎板構造100xと上部レール構造210xと上部ブロック構造220xと下部基礎板構造100yと下部レール構造210yと下部ブロック構造220yと中間板構造300と電気回路400とレール支持構造230とで構成されてもよい。
本発明の第二の実施形態にかかる直動転がり支承は、上部基礎板構造100xと上部レール構造210xと上部ブロック構造220xと下部基礎板構造100yと下部レール構造210yと下部ブロック構造220yと中間板構造300と電気回路400とレール摩擦構造500とレール支持構造230と基礎板摩擦構造600で構成されてもよい。
The linear motion rolling bearing according to the second embodiment of the present invention includes an upper foundation plate structure 100x, an upper rail structure 210x, an upper block structure 220x, a lower foundation plate structure 100y, a lower rail structure 210y, a lower block structure 220y, and an intermediate plate. It is composed of a structure 300 and an electric circuit 400.
The linear motion rolling bearing according to the second embodiment of the present invention includes an upper foundation plate structure 100x, an upper rail structure 210x, an upper block structure 220x, a lower foundation plate structure 100y, a lower rail structure 210y, a lower block structure 220y, and an intermediate plate. It may be composed of a structure 300, an electric circuit 400, and a rail friction structure 500.
The linear motion rolling bearing according to the second embodiment of the present invention includes an upper foundation plate structure 100x, an upper rail structure 210x, an upper block structure 220x, a lower foundation plate structure 100y, a lower rail structure 210y, a lower block structure 220y, and an intermediate plate. It may be composed of a structure 300, an electric circuit 400, and a foundation plate friction structure 600.
The linear motion rolling bearing according to the second embodiment of the present invention includes an upper foundation plate structure 100x, an upper rail structure 210x, an upper block structure 220x, a lower foundation plate structure 100y, a lower rail structure 210y, a lower block structure 220y, and an intermediate plate. It may be composed of a structure 300, an electric circuit 400, and a rail support structure 230.
The linear motion rolling bearing according to the second embodiment of the present invention includes an upper foundation plate structure 100x, an upper rail structure 210x, an upper block structure 220x, a lower foundation plate structure 100y, a lower rail structure 210y, a lower block structure 220y, and an intermediate plate. It may be composed of a structure 300, an electric circuit 400, a rail friction structure 500, a rail support structure 230, and a foundation plate friction structure 600.

上部レール構造210xと上部ブロック構造220xと下部レール構造210yと下部ブロック構造220yの構造は、第一の実施形態にかかるものの構造と同じなので、説明を省略し、中間板構造300と電気回路400とレール摩擦構造500とレール支持構造230と基礎板摩擦構造600を順に説明する。 Since the structures of the upper rail structure 210x, the upper block structure 220x, the lower rail structure 210y, and the lower block structure 220y are the same as those of the first embodiment, the description thereof will be omitted, and the intermediate plate structure 300 and the electric circuit 400 will be described. The rail friction structure 500, the rail support structure 230, and the base plate friction structure 600 will be described in order.

中間板構造300は、板状の輪郭をもつ構造である。
中間板構造300は、ゴム製の板状の輪郭をもつ構造であってもよい。
中間板構造300の構造は、第一の実施形態にかかる直動転がり支承のものの構造と同じであってもよい。
The intermediate plate structure 300 is a structure having a plate-like contour.
The intermediate plate structure 300 may have a rubber plate-like contour.
The structure of the intermediate plate structure 300 may be the same as that of the linear bearing bearing according to the first embodiment.

最初に、基礎板構造100を説明する。
基礎板構造100が上下一対の基礎板構造と第3基礎板構造130とで構成されても良い。
上下一対の基礎板構造は、第一基礎板構造110と第二基礎板構造120とである。
第三基礎板構造130は、第一基礎板構造110と第二基礎板構造120とに挟まれる。
第三基礎板構造130は、第一基礎板構造110と第二基礎板構造120とに上下方向に挟まれる。
図7に、下部基礎板構造100yが上下一対の基礎板構造と第3基礎板構造130とで構成される様子が示される。
First, the foundation plate structure 100 will be described.
The foundation plate structure 100 may be composed of a pair of upper and lower foundation plate structures and a third foundation plate structure 130.
The upper and lower pair of base plate structures are a first base plate structure 110 and a second base plate structure 120.
The third base plate structure 130 is sandwiched between the first base plate structure 110 and the second base plate structure 120.
The third foundation plate structure 130 is sandwiched between the first foundation plate structure 110 and the second foundation plate structure 120 in the vertical direction.
FIG. 7 shows how the lower foundation plate structure 100y is composed of a pair of upper and lower foundation plate structures and a third foundation plate structure 130.

第3基礎板構造130は、圧電素子部材131で構成されてもよい。
圧電素子部材131の構造は、第一の実施形態にかかる直動転がり支承で説明したものと同じなので、説明を省略する。
電気回路400が第三基礎板構造130の複数の圧電素子の一対の電極に電気的に接続されてもよい。
第三基礎板構造130の圧電素子部材131の板状の厚みが変化する変形をすると第三基礎板構造130の圧電素子131aの一対の電極に電位差が生ずる。
地震が発生したと判断したとき、電気回路が第三基礎板構造130の圧電素子131aの一対の電極に電圧を印可して第三基礎板構造130の圧電素子部材131の板状の厚みを変化させてもよい。
地震が発生したと判断したとき、構造物を支持する他の支承との間に発生した不陸の程度に応じて、電気回路400が第三基礎板構造130の圧電素子131aの一対の電極に電圧を印可して第三基礎板構造130の圧電素子部材131の板状の厚みを変化させてもよい。
The third base plate structure 130 may be composed of the piezoelectric element member 131.
Since the structure of the piezoelectric element member 131 is the same as that described in the linear motion rolling bearing according to the first embodiment, the description thereof will be omitted.
The electric circuit 400 may be electrically connected to a pair of electrodes of a plurality of piezoelectric elements of the third base plate structure 130.
When the plate-like thickness of the piezoelectric element member 131 of the third base plate structure 130 is deformed to change, a potential difference is generated between the pair of electrodes of the piezoelectric element 131a of the third base plate structure 130.
When it is determined that an earthquake has occurred, the electric circuit applies a voltage to the pair of electrodes of the piezoelectric element 131a of the third foundation plate structure 130 to change the plate-like thickness of the piezoelectric element member 131 of the third foundation plate structure 130. You may let me.
When it is determined that an earthquake has occurred, the electric circuit 400 is attached to the pair of electrodes of the piezoelectric element 131a of the third foundation plate structure 130 according to the degree of non-landing that occurs between the support and the other support supporting the structure. A voltage may be applied to change the plate-like thickness of the piezoelectric element member 131 of the third base plate structure 130.

次に、レール支持構造230を説明する。
直動転がり支承は、レール支持構造230を備えていてもよい。
レール支持構造230は、レール構造210と基礎板構造100との間に挟まれる板状の構造であってもよい。
図7には、レール支持構造230が下部レール構造210yと下部基礎板構造100yとの間に挟まれる様子が示される。
レール支持構造230が圧電素子部材231を持っていてもよい。
圧電素子部材231は、板状の輪郭を形成し輪郭の中に整列する複数の圧電素子をもつ構造である。
圧電素子部材231は、複数の圧電素子231aと複数の圧電素子231aを挟む一対の仕切り板231bとで構成されてもうよい。
圧電素子部材231の構造は、第一の実施形態にかかる直道転がり支承の記載で説明したものと同じなので、説明を省略する。
電気回路400がレール支持構造230の複数の圧電素子231aの一対の電極に電気的に接続されてもよい。
レール支持構造230の圧電素子部材231の板状の厚みが変化する変形をするとレール支持構造230の圧電素子231aの一対の電極に電位差が生ずる。
地震が発生したと判断したとき、電気回路400がレール支持構造230の圧電素子231aの一対の電極に電圧を印可してレール支持構造230の圧電素子部材231の板状の厚みを変化させてもうよい。
地震が発生したと判断したとき、構造物を支持する他の支承との間に発生した不陸の程度に応じて、電気回路400がレール支持構造230の圧電素子231aの一対の電極に電圧を印可してレール支持構造230の圧電素子部材231の板状の厚みを変化させてもよい。
Next, the rail support structure 230 will be described.
The linear rolling bearing may include a rail support structure 230.
The rail support structure 230 may have a plate-like structure sandwiched between the rail structure 210 and the foundation plate structure 100.
FIG. 7 shows how the rail support structure 230 is sandwiched between the lower rail structure 210y and the lower base plate structure 100y.
The rail support structure 230 may have the piezoelectric element member 231.
The piezoelectric element member 231 has a structure having a plurality of piezoelectric elements that form a plate-shaped contour and are aligned in the contour.
The piezoelectric element member 231 may be composed of a plurality of piezoelectric elements 231a and a pair of partition plates 231b sandwiching the plurality of piezoelectric elements 231a.
Since the structure of the piezoelectric element member 231 is the same as that described in the description of the straight road rolling bearing according to the first embodiment, the description thereof will be omitted.
The electric circuit 400 may be electrically connected to a pair of electrodes of a plurality of piezoelectric elements 231a of the rail support structure 230.
When the plate-like thickness of the piezoelectric element member 231 of the rail support structure 230 is deformed to change, a potential difference is generated between the pair of electrodes of the piezoelectric element 231a of the rail support structure 230.
When it is determined that an earthquake has occurred, the electric circuit 400 applies a voltage to the pair of electrodes of the piezoelectric element 231a of the rail support structure 230 to change the plate-like thickness of the piezoelectric element member 231 of the rail support structure 230. good.
When it is determined that an earthquake has occurred, the electric circuit 400 applies a voltage to the pair of electrodes of the piezoelectric element 231a of the rail support structure 230 according to the degree of non-landing that occurs between the support and the other support supporting the structure. The plate-like thickness of the piezoelectric element member 231 of the rail support structure 230 may be changed by applying.

次に、レール摩擦構造500の構造を説明する。
レール構造210が、軸方向に延びる平滑面であるレール平滑面S1を形成してもよい。
レール平滑面S1は、レール構造210の基礎板構造100に取り付けられる面である取付面の反対側の面に形成されてもよい。
レール平滑面S1は、レール構造210の側面に形成されてもよい。
レール摩擦構造500は、レール摩擦部材510とレール押し付け構造520とで構成される。
レール摩擦部材510は、レール平滑面S1に接触して摺動できる摩擦部材である。
レール押し付け構造520は、ブロック構造220に支持されレール摩擦部材510をレール平滑面S1に押し付ける構造である。
図7には、下部ブロック構造220yに固定されるレール押し付け構造520がレール摩擦部材510を、下部レール構造210yに形成されるレール平滑面S1に押付ける様子が示される。
この様にすると、下部ブロック構造220yが下部レール構造210yに対してY軸に沿って相対移動する際に、下部ブロック構造220yに摩擦抵抗力が作用する。
Next, the structure of the rail friction structure 500 will be described.
The rail structure 210 may form a rail smooth surface S1 which is a smooth surface extending in the axial direction.
The rail smooth surface S1 may be formed on a surface opposite to the mounting surface, which is a surface to be mounted on the base plate structure 100 of the rail structure 210.
The rail smooth surface S1 may be formed on the side surface of the rail structure 210.
The rail friction structure 500 is composed of a rail friction member 510 and a rail pressing structure 520.
The rail friction member 510 is a friction member that can slide in contact with the rail smooth surface S1.
The rail pressing structure 520 is a structure that is supported by the block structure 220 and presses the rail friction member 510 against the rail smooth surface S1.
FIG. 7 shows how the rail pressing structure 520 fixed to the lower block structure 220y presses the rail friction member 510 against the rail smooth surface S1 formed on the lower rail structure 210y.
In this way, when the lower block structure 220y moves relative to the lower rail structure 210y along the Y axis, a frictional resistance force acts on the lower block structure 220y.

レール押し付け構造520が、圧電素子部材521を持っていてもよい。
レール押し付け構造520が、圧電素子部材521とレール弾性部材(図示せす)とが積層されたものであってもよい。
圧電素子部材521は、板状の輪郭を形成し輪郭の中に整列する複数の圧電素子をもつ部材である。
圧電素子部材521の構造は、第一の実施形態にかかる直動転がり支承の記載で説明したものと同じなので、説明を省略する。
レール弾性部材(図示せず)は、弾性素材でできた板状部材である。
レール弾性部材(図示せず)は、組み立てられた状態で与圧縮され、所定のばね定数をもつ。
例えば、圧電素子部材521は、レール弾性部材(図示せず)を介してレール摩擦部材510を押す。
電気回路400がレール押し付け構造520の複数の圧電素子521aの一対の電極に電気的に接続さる。
地震が発生したと判断すると、電気回路400がレール押し付け構造520の圧電素子521aの一対の電極に電圧を印可してレール押し付け構造620の圧電素子部材521の板状の厚みを変化させる。
電気回路400は温度センサ420の検知するブロック構造220の温度の値の変化に応じて圧電素子521aの一対の電極に印可する電圧の値を変化させてもよい。
電気回路400は、温度センサ420の検知するブロック構造220の温度の値が大きくなると圧電素子521aの一対の電極に印可する電圧の値を大きくし、温度センサ420の検知するブロック構造220の温度の値が小さくなると圧電素子521aの一対の電極に印可する電圧の値を小さくしてもよい。
The rail pressing structure 520 may have the piezoelectric element member 521.
The rail pressing structure 520 may be a stack of a piezoelectric element member 521 and a rail elastic member (shown).
The piezoelectric element member 521 is a member having a plurality of piezoelectric elements that form a plate-shaped contour and are aligned in the contour.
Since the structure of the piezoelectric element member 521 is the same as that described in the description of the linear motion rolling bearing according to the first embodiment, the description thereof will be omitted.
The rail elastic member (not shown) is a plate-shaped member made of an elastic material.
The rail elastic member (not shown) is compressed in the assembled state and has a predetermined spring constant.
For example, the piezoelectric element member 521 pushes the rail friction member 510 via a rail elastic member (not shown).
The electric circuit 400 is electrically connected to a pair of electrodes of a plurality of piezoelectric elements 521a of the rail pressing structure 520.
When it is determined that an earthquake has occurred, the electric circuit 400 applies a voltage to the pair of electrodes of the piezoelectric element 521a of the rail pressing structure 520 to change the plate-like thickness of the piezoelectric element member 521 of the rail pressing structure 620.
The electric circuit 400 may change the value of the voltage applied to the pair of electrodes of the piezoelectric element 521a according to the change in the temperature value of the block structure 220 detected by the temperature sensor 420.
The electric circuit 400 increases the value of the voltage applied to the pair of electrodes of the piezoelectric element 521a when the temperature value of the block structure 220 detected by the temperature sensor 420 increases, and the temperature of the block structure 220 detected by the temperature sensor 420 increases. When the value becomes smaller, the value of the voltage applied to the pair of electrodes of the piezoelectric element 521a may be reduced.

次に、基礎板摩擦構造600の構造の説明をする。
基礎板構造100が軸方向に延びる平滑面である基礎板平滑面S2を形成してもよい。
基礎板平滑面S2は、基礎板構造100の上部構造Rまたは下部構造Bに取り付けられる面である取付面の反対側の面に形成されてもよい。
基礎板摩擦構造600は、基礎板摩擦部材610と基板押し付け構造620とで構成される。
基礎板摩擦部材610は、基礎板平滑面S2に接触して摺動できる摩擦部材である。
基礎板押し付け構造620は、ブロック構造220に支持され基礎板摩擦部材610を基礎板平滑面S2に押し付ける構造である。
図7には、上部ブロック構造220xに支持される基礎板押し付け構造620が基礎板摩擦部材610を上部基礎板構造100xが形成する基礎板平滑面S2に押付ける様子が示される。
この様にすると、上部ブロック構造220xが上部基礎板構造100xに対してX軸に沿って相対移動する際に、上部ブロック構造220xに摩擦抵抗力が作用する。
Next, the structure of the foundation plate friction structure 600 will be described.
The foundation plate smooth surface S2, which is a smooth surface on which the foundation plate structure 100 extends in the axial direction, may be formed.
The base plate smooth surface S2 may be formed on a surface opposite to the mounting surface, which is a surface to be attached to the superstructure R or the lower structure B of the base plate structure 100.
The base plate friction structure 600 is composed of a base plate friction member 610 and a substrate pressing structure 620.
The base plate friction member 610 is a friction member that can slide in contact with the base plate smooth surface S2.
The base plate pressing structure 620 is a structure that is supported by the block structure 220 and presses the base plate friction member 610 against the base plate smooth surface S2.
FIG. 7 shows how the foundation plate pressing structure 620 supported by the upper block structure 220x presses the foundation plate friction member 610 against the foundation plate smooth surface S2 formed by the upper foundation plate structure 100x.
In this way, when the upper block structure 220x moves relative to the upper base plate structure 100x along the X axis, a frictional resistance force acts on the upper block structure 220x.

基礎板押し付け構造620が、圧電素子部材621を持っていてもよい。
基礎板押し付け構造620が、圧電素子部材621と基礎板弾性部材(図示せず)とが積層されたものであってもよい。
圧電素子部材621は、板状の輪郭を形成し輪郭の中に整列する複数の圧電素子をもつ部材である。
圧電素子部材621の構造は、第一の実施形態にかかる直動転がり支承の記載で説明したものと同じなので、説明を省略する。
基礎板弾性部材(図示せず)は、弾性素材でできた板状部材である。
基礎板弾性部材(図示せず)は、組み立てられた状態で与圧縮され、所定のばね定数をもつ。
例えば、圧電素子部材521は、基礎板弾性部材(図示せず)を介して基礎板摩擦部材610を押す。
電気回路400が基礎板押し付け構造620の複数の圧電素子621aの一対の電極に電気的に接続さる。
地震が発生したと判断すると、電気回路400が基礎板押し付け構造620の圧電素子621aの一対の電極に電圧を印可して基礎板押し付け構造620の圧電素子部材621の板状の厚みを変化させる。
電気回路400は温度センサ420の検知するブロック構造220の温度の値の変化に応じて圧電素子621aの一対の電極に印可する電圧の値を変化させてもよい。
電気回路400は、温度センサ420の検知するブロック構造220の温度の値が大きくなると圧電素子621aの一対の電極に印可する電圧の値を大きくし、温度センサ420の検知するブロック構造220の温度の値が小さくなると圧電素子621aの一対の電極に印可する電圧の値を小さくしてもよい。
The base plate pressing structure 620 may have the piezoelectric element member 621.
The base plate pressing structure 620 may be a laminate of the piezoelectric element member 621 and the base plate elastic member (not shown).
The piezoelectric element member 621 is a member having a plurality of piezoelectric elements that form a plate-shaped contour and are aligned in the contour.
Since the structure of the piezoelectric element member 621 is the same as that described in the description of the linear motion rolling bearing according to the first embodiment, the description thereof will be omitted.
The base plate elastic member (not shown) is a plate-shaped member made of an elastic material.
The base plate elastic member (not shown) is compressed in the assembled state and has a predetermined spring constant.
For example, the piezoelectric element member 521 pushes the base plate friction member 610 via the base plate elastic member (not shown).
The electric circuit 400 is electrically connected to a pair of electrodes of a plurality of piezoelectric elements 621a of the base plate pressing structure 620.
When it is determined that an earthquake has occurred, the electric circuit 400 applies a voltage to the pair of electrodes of the piezoelectric element 621a of the foundation plate pressing structure 620 to change the plate-like thickness of the piezoelectric element member 621 of the foundation plate pressing structure 620.
The electric circuit 400 may change the value of the voltage applied to the pair of electrodes of the piezoelectric element 621a according to the change in the temperature value of the block structure 220 detected by the temperature sensor 420.
The electric circuit 400 increases the value of the voltage applied to the pair of electrodes of the piezoelectric element 621a when the temperature value of the block structure 220 detected by the temperature sensor 420 increases, and the temperature of the block structure 220 detected by the temperature sensor 420 increases. When the value becomes smaller, the value of the voltage applied to the pair of electrodes of the piezoelectric element 621a may be reduced.

以下に、直動転がり支承の摩擦構造の作用を、レール摩擦構造を例に、図を基に、説明する。
図9は、本発明の実施形態に係る直動転がり支承の作用を示す。
左のグラフは、レール押し付け構造520がレール摩擦部材510をレール平滑面S1に押し付けないときにブロック構造220がレール構造210の上を往復した際の摩擦力の変化を示す。
右のグラフは、レール押し付け構造520がレール摩擦部材510をレール平滑面S1に押し付けたときにブロック構造220がレール構造210の上を往復した際の摩擦力を示す。
ここで、グラフの横軸はブロック構造220のレール構造210に対する相対移動距離を示し、グラフの縦軸はその際の摩擦力を示す。
電気回路400がレール押し付け構造520の圧電素子521aの一対の電極に電圧を印可しないと、レール押し付け構造520がレール摩擦部材510をレール平滑面S1に押し付ける。
電気回路400がレール押し付け構造520の圧電素子521aの一対の電極に電圧を印可すると、レール押し付け構造520がレール摩擦部材510をレール平滑面S1に押し付ける。
Below, the action of the friction structure of the linear motion rolling bearing will be described with reference to the figure, taking the rail friction structure as an example.
FIG. 9 shows the action of the linear motion rolling bearing according to the embodiment of the present invention.
The graph on the left shows the change in frictional force when the block structure 220 reciprocates on the rail structure 210 when the rail pressing structure 520 does not press the rail friction member 510 against the rail smooth surface S1.
The graph on the right shows the frictional force when the block structure 220 reciprocates on the rail structure 210 when the rail pressing structure 520 presses the rail friction member 510 against the rail smooth surface S1.
Here, the horizontal axis of the graph shows the relative movement distance of the block structure 220 with respect to the rail structure 210, and the vertical axis of the graph shows the frictional force at that time.
If the electric circuit 400 does not apply a voltage to the pair of electrodes of the piezoelectric element 521a of the rail pressing structure 520, the rail pressing structure 520 presses the rail friction member 510 against the rail smooth surface S1.
When the electric circuit 400 applies a voltage to the pair of electrodes of the piezoelectric element 521a of the rail pressing structure 520, the rail pressing structure 520 presses the rail friction member 510 against the rail smooth surface S1.

以下に、直動転がり支承を建造物に導入する様子を示す。
図10は、直動転がり支承(「CLB」と呼称する。)が建物に導入される様子を示す。
通常は、建物の基礎に直動転がり支承が設置される。
また、直動転がり支承はTMDの支承として利用されることがある。
The following shows how a linear rolling bearing is introduced into a building.
FIG. 10 shows how a linear rolling bearing (referred to as “CLB”) is introduced into a building.
Normally, a linear bearing is installed on the foundation of the building.
In addition, linear rolling bearings may be used as TMD bearings.

本願発明の直動転がり支承を採用すると、従来の直動転がり支承の不具合点であった不陸を解消できる。
また、直動転がり支承にダンパーの機能を付加できる。
また、地震により長時間揺すられた場合でも、直動転がり支承の温度上昇を抑制でき、
良好な支持機能と周期調整機能とを維持できる。
By adopting the linear motion rolling bearing of the present invention, it is possible to solve the problem of the conventional linear motion rolling bearing.
In addition, a damper function can be added to the linear motion rolling bearing.
In addition, even if it is shaken for a long time due to an earthquake, the temperature rise of the linear bearing can be suppressed.
Good support function and cycle adjustment function can be maintained.

また、以上説明したように、本発明に係る直動転がり支承は、その構成により、以下の効果を有する。
下部構造Bが下部基礎板構造100yを支持し、下部基礎板構造100yがY軸方向に延びる下部レール構造210yを支持し、下部レール構造210yが下部ブロック構造220yをY軸方向に相対移動自在に案内し、下部ブロック構造220yが中間板構造300を挟んで上部ブロック構造220xに連結され、上部レール構造210xが上部ブロック構造220xをX軸方向に相対移動自在に案内し、上部レール構造210xが上部基礎板構造100xに支持され、上部基礎板構造100xが上部構造Rを支持する様にしたので、地震が発生すると構造物が水平方向に移動できる。
中間板構造300の圧電素子部材310が板状の輪郭のなかに複数の圧電素子310aをもち、圧電素子部材310の板状の厚みが変化すると圧電素子310aの一対の電極に電位差が生じ、電位差により電気回路400に電流が流れる様にしたので、地震が発生し構造物が水平方向に移動する際に上下振動により電位差が電気回路にかかる。
地震が発生し、構造物を支持する他の支承との間に発生した不陸の程度に応じて中間板構造の圧電素子の一対の電極に電圧を印可して中間板構造の圧電素子部材の板状の厚みを変化させる様にしたので、他の支承との間の不陸を減らす機能を実現できる。
板状の輪郭のなかに整列される複数の圧電素子をもつ圧電素子部材131を持つ第三基礎板部材130が第一基礎板構造110と第二基礎板構造120とに挟まれ、圧電素子部材131の板状の厚みが変化すると圧電素子231aの一対の端子に電位差が生じる様にしたので、地震が発生し構造物が水平方向に移動する際に上下振動により電流が電気回路400に流れる。
地震が発生し、構造物を支持する他の支承との間に不陸の程度に応じて記第三基礎板構造130の圧電素子131aの一対の電極に電圧を印可して圧電素子部材131の板状の厚みを変化させる様にしたので、構造体を支持する支承の間の不陸を解消する機能を実現することができる。
レール支持構造230が板状の輪郭のなかに整列される複数の圧電素子231aをもつ圧電素子部材231を持ち、圧電素子部材231の板状の厚みが変化すると圧電素子231aの一対の端子に電位差が生じる様にしたので、地震が発生し構造物が水平方向に移動する際に上下振動により電流が電気回路に流れる。
地震が発生し、不陸検知センサの検知する値を基に、構造物を支持する他の支承との間に不陸の程度に応じてレール支持構造230の圧電素子231aの一対の電極に電圧を印可して圧電素子部材231の板状の厚みを変化させる様にしたので、構造体を支持する支承の間の不陸を解消する機能を与えることができる。
ブロック構造220に支持されるレール押し付け機構520がレール摩擦部材510をレール構造210に形成されるレール平滑面S1に押付ける様にしたので、地震が発生し構造物が水平方向に相対移動するとレール摩擦部材510とレール平滑面S1との間に発生する摩擦力が構造物の振動を減衰できる。
レール押し付け構造520が圧電素子部材521の板状の輪郭の中に複数の圧電素子521aをもち、複数の圧電素子521aの一対の電力に電圧を印可して圧電素子部材521の板状の厚みを変化させる様にしたので、圧電素子521aの一対の電極に印可する電圧を変化させてレール摩擦部材510とレール平滑面S1との間に発生する摩擦力を調整できる。
ブロック構造220に支持される基礎板押付け機構620が基礎板摩擦部材610を基礎板構造100に形成される基礎板平滑面S2に押付ける様にしたので、地震が発生し構造物が水平方向に相対移動すると基礎板摩擦部材610と基礎板平滑面S2との間に発生する摩擦力が構造物の振動を減衰できる。
基礎板押し付け構造620が圧電素子部材621の板状の輪郭の中に複数の圧電素子621aをもち、複数の圧電素子621aの一対の電力に電圧を印可して圧電素子部材621の板状の厚みを変化させる様にしたので、圧電素子621aの一対の電極に印可する電圧を変化させて基礎板摩擦部材610と基礎板平滑面S2との間に発生する摩擦力を調整できる。
温度センサ420の検知するブロック構造の温度の値の変化に応じて圧電素子521a、621aの一対の電極に印可する電圧の値を変化させる様にしたので、ブロック構造の温度の値に応じて摩擦力を変化させる機能を実現させることができる。
Further, as described above, the linear motion rolling bearing according to the present invention has the following effects depending on its configuration.
The lower structure B supports the lower foundation plate structure 100y, the lower foundation plate structure 100y supports the lower rail structure 210y extending in the Y-axis direction, and the lower rail structure 210y allows the lower block structure 220y to move relative to the Y-axis direction. The lower block structure 220y is connected to the upper block structure 220x with the intermediate plate structure 300 in between, the upper rail structure 210x guides the upper block structure 220x in the X-axis direction so as to be relatively movable, and the upper rail structure 210x is the upper part. Since the structure is supported by the foundation plate structure 100x and the upper foundation plate structure 100x supports the upper structure R, the structure can move in the horizontal direction when an earthquake occurs.
The piezoelectric element member 310 of the intermediate plate structure 300 has a plurality of piezoelectric elements 310a in a plate-like contour, and when the plate-like thickness of the piezoelectric element member 310 changes, a potential difference occurs between the pair of electrodes of the piezoelectric element 310a, and the potential difference occurs. As a result, a current flows through the electric circuit 400, so that when an earthquake occurs and the structure moves in the horizontal direction, a potential difference is applied to the electric circuit due to vertical vibration.
A voltage is applied to a pair of electrodes of the piezoelectric element of the intermediate plate structure according to the degree of non-landing that occurs between the earthquake and other bearings that support the structure. Since the thickness of the plate is changed, the function of reducing the unevenness between the bearings and other bearings can be realized.
A third base plate member 130 having a piezoelectric element member 131 having a plurality of piezoelectric elements aligned in a plate-shaped contour is sandwiched between the first base plate structure 110 and the second base plate structure 120, and the piezoelectric element member When the plate-like thickness of 131 changes, a potential difference is generated between the pair of terminals of the piezoelectric element 231a. Therefore, when an earthquake occurs and the structure moves in the horizontal direction, a current flows through the electric circuit 400 due to vertical vibration.
When an earthquake occurs, a voltage is applied to the pair of electrodes of the piezoelectric element 131a of the third foundation plate structure 130 according to the degree of non-landing with other bearings that support the structure, and the piezoelectric element member 131 Since the thickness of the plate is changed, it is possible to realize a function of eliminating the unevenness between the bearings supporting the structure.
The rail support structure 230 has a piezoelectric element member 231 having a plurality of piezoelectric elements 231a aligned in a plate-shaped contour, and when the plate-shaped thickness of the piezoelectric element member 231 changes, a potential difference is applied to the pair of terminals of the piezoelectric element 231a. When an earthquake occurs and the structure moves in the horizontal direction, current flows through the electric circuit due to vertical vibration.
When an earthquake occurs, based on the value detected by the non-landing detection sensor, the voltage is applied to the pair of electrodes of the piezoelectric element 231a of the rail support structure 230 according to the degree of non-landing between the bearing and other bearings that support the structure. Is applied to change the plate-like thickness of the piezoelectric element member 231. Therefore, it is possible to provide a function of eliminating the unevenness between the bearings that support the structure.
Since the rail pressing mechanism 520 supported by the block structure 220 presses the rail friction member 510 against the rail smooth surface S1 formed on the rail structure 210, the rail is moved when an earthquake occurs and the structure moves relative to the horizontal direction. The frictional force generated between the friction member 510 and the smooth rail surface S1 can dampen the vibration of the structure.
The rail pressing structure 520 has a plurality of piezoelectric elements 521a in the plate-like contour of the piezoelectric element member 521, and applies a voltage to a pair of electric powers of the plurality of piezoelectric elements 521a to increase the plate-like thickness of the piezoelectric element member 521. Since the voltage is changed, the voltage applied to the pair of electrodes of the piezoelectric element 521a can be changed to adjust the frictional force generated between the rail friction member 510 and the rail smooth surface S1.
Since the foundation plate pressing mechanism 620 supported by the block structure 220 presses the foundation plate friction member 610 against the foundation plate smooth surface S2 formed on the foundation plate structure 100, an earthquake occurs and the structure moves in the horizontal direction. When relatively moved, the frictional force generated between the foundation plate friction member 610 and the foundation plate smooth surface S2 can dampen the vibration of the structure.
The base plate pressing structure 620 has a plurality of piezoelectric elements 621a in the plate-like contour of the piezoelectric element member 621, and a voltage is applied to a pair of electric powers of the plurality of piezoelectric elements 621a to apply a voltage to the plate-like thickness of the piezoelectric element member 621. Therefore, the voltage applied to the pair of electrodes of the piezoelectric element 621a can be changed to adjust the frictional force generated between the base plate friction member 610 and the base plate smooth surface S2.
Since the value of the voltage applied to the pair of electrodes of the piezoelectric elements 521a and 621a is changed according to the change in the temperature value of the block structure detected by the temperature sensor 420, friction is applied according to the temperature value of the block structure. The function of changing the force can be realized.

本発明は以上に述べた実施形態に限られるものではなく、発明の要旨を逸脱しない歯非で各種の変更が可能である。
構造物に作用する加速度の最大振幅値が変化するのに応じて、電気回路のインピーダンスを変化させてもよい。
構造物に作用する加速度の最大振幅値が変化するのに応じて、電気回路のコンデンサの静電容量を変化させてもよい。
圧電素子の一対の端子に発生する電位差により電気回路に発生する電流を蓄電器に蓄電し利用してもよい。
下部基礎板構造100yが、第一基礎板構造110と第二基礎板構造120と第三基礎板構造130とで構成される例で説明したが、これに限定されない。例えば、本構造を上部基礎板構造100xまたは両方に適応してもよい。
レール支持構造230が下部レール構造210yを支持する例で説明したが、これに限定されない。例えば、本構造を上部レール構造210xまたは両方に適応してもよい。
レール摩擦構造500を下部レール構造210yに適応する例で説明したがこれに限定されない。例えば、本構造を上部レール構造210xまたは両方に適応してもよい。
レール平滑面S1をレール構造210の基礎板構造100にい固定される面の反対側に設けたが、これに限定されない。例えば、レール平滑面S1をレール構造210の両側面にまたは両側面に設けても良い。
基礎板摩擦構造600を上部基礎板構造100xに設ける例で説明したが、これに限定されない。例えば、基礎板摩擦構造600を下部基礎板構造100yまたは両方に設けてもよい。
The present invention is not limited to the embodiments described above, and various modifications can be made without departing from the gist of the invention.
The impedance of the electric circuit may be changed according to the change in the maximum amplitude value of the acceleration acting on the structure.
The capacitance of the capacitor of the electric circuit may be changed according to the change of the maximum amplitude value of the acceleration acting on the structure.
The current generated in the electric circuit due to the potential difference generated in the pair of terminals of the piezoelectric element may be stored in the capacitor and used.
Although the lower foundation plate structure 100y has been described with an example composed of the first foundation plate structure 110, the second foundation plate structure 120, and the third foundation plate structure 130, the present invention is not limited thereto. For example, this structure may be adapted to the upper base plate structure 100x or both.
The example described in which the rail support structure 230 supports the lower rail structure 210y has been described, but the present invention is not limited to this. For example, the structure may be adapted to the upper rail structure 210x or both.
The rail friction structure 500 has been described with an example of applying the lower rail structure 210y, but the present invention is not limited to this. For example, the structure may be adapted to the upper rail structure 210x or both.
The rail smooth surface S1 is provided on the opposite side of the surface fixed to the base plate structure 100 of the rail structure 210, but the present invention is not limited to this. For example, the rail smooth surface S1 may be provided on both side surfaces or both side surfaces of the rail structure 210.
Although the example in which the base plate friction structure 600 is provided in the upper base plate structure 100x has been described, the present invention is not limited to this. For example, the base plate friction structure 600 may be provided in the lower base plate structure 100y or both.

CLB 直動転がり支承
S1 レール平滑面
S2 基礎板平滑面
R 上部構造
B 下部構造
X X軸
Y Y軸
100 基礎板構造
100x 上部基礎板構造
100y 下部基礎板構造
110 第一基礎板構造
120 第二基礎板構造
130 第三基礎板構造
131 圧電素子部材
131a 圧電素子
131b 仕切り板
140 アンカーボルト
210 レール構造
210x 上部レール構造
210y 下部レール構造
220 ブロック構造
220x 上部ブロック構造
220y 下部ブロック構造
230 レール支持構造
231 圧電素子部材
231a 圧電素子
231b 仕切り板
300 中間板構造
310 圧電素子部材
310a 圧電素子
310b 仕切り板
310c 圧電ゴム板
320 金属板材
400 電気回路
410 電気回路本体
420 温度センサ
430 不陸検知センサ
500 レール摩擦構造
510 レール摩擦部材
520 レール押し付け構造
521 圧電素子部材
521a 圧電素子
521b 仕切り板
522 レール弾性部材
600 基礎板摩擦構造
610 基礎板摩擦部材
620 基礎板押し付け構造
621 圧電素子部材
621a 圧電素子
621b 仕切り板
622 基礎板弾性部材
CLB Linear rolling support S1 Rail smooth surface S2 Base plate smooth surface R Upper structure B Lower structure X X axis Y Y axis 100 Base plate structure 100 x Upper base plate structure 100y Lower base plate structure 110 First foundation plate structure 120 Second foundation Plate structure 130 Third base plate structure 131 Piezoelectric element member 131a Piezoelectric element 131b Partition plate 140 Anchor bolt 210 Rail structure 210x Upper rail structure 210y Lower rail structure 220 Block structure 220x Upper block structure 220y Lower block structure 230 Rail support structure 231 Piezoelectric element Member 231a Piezoelectric element 231b Partition plate 300 Intermediate plate structure 310 Piezoelectric element member 310a Piezoelectric element 310b Partition plate 310c Piezoelectric rubber plate 320 Metal plate material 400 Electric circuit 410 Electric circuit body 420 Temperature sensor 430 Landless detection sensor 500 Rail friction structure 510 Rail friction Member 520 Rail pressing structure 521 Piezoelectric element member 521a Piezoelectric element 521b Partition plate 522 Rail elastic member 600 Base plate friction structure 610 Base plate friction member 620 Piezoelectric element member 621 Piezoelectric element 621b Partition plate 622 Base plate elastic member

特開平08−240033号Japanese Patent Application Laid-Open No. 08-240033

Claims (14)

上下一対の構造である上部構造と下部構造との間に設けられ構造物を支持する鉛直剛性の異なる複数の支承のうちの直動転がり支承であって、
仮想のX軸と仮想のY軸とが水平面内で直交し、
上部構造を支持する基礎板構造である上部基礎板構造と、
前記上部基礎板構造に支持され前記X軸方向に延びるレール構造である上部レール構造と、
前記上部レール構造に一連の鉄球の転がりにより前記X軸方向に相対移動自在に案内されるブロック構造である上部ブロック構造と、
下部構造に支持される基礎板構造である下部基礎板構造と、
前記下部基礎板構造に支持され前記Y軸方向に延びるレール構造である下部レール構造と、
前記下部レール構造に一連の鉄球の転がりにより前記Y軸方向に相対移動自在に案内されるブロック構造である下部ブロック構造と、
板状の輪郭をもつ構造である中間板構造と、
電気回路と、
を備え、
前記上部ブロック構造と前記下部ブロック構造とが前記中間板構造を挟んで連結され、
前記中間板構造が板状の輪郭を形成し該輪郭の中に整列する複数の圧電素子をもつ圧電素子部材を有し、
前記電気回路が前記中間板構造の複数の該圧電素子の一対の電極に電気的に接続され、
前記中間板構造の前記圧電素子部材の板状の厚みが変化すると前記中間板構造の前記圧電素子の一対の電極に電位差が生ずる、
地震が発生したと判断したとき、構造物を支持する他の支承との間に発生した不陸の程度に応じて前記電気回路が前記中間板構造の前記圧電素子の一対の電極に電圧を印可して前記中間板構造の前記圧電素子部材の板状の厚みを変化させる、
ことを特徴とする直動転がり支承。
It is a linear motion rolling bearing among a plurality of bearings having different vertical rigidity provided between the upper structure and the lower structure, which are a pair of upper and lower structures, and supports the structure.
The virtual X-axis and the virtual Y-axis are orthogonal in the horizontal plane,
The superstructure, which is the base plate structure that supports the superstructure,
The upper rail structure, which is a rail structure supported by the upper base plate structure and extending in the X-axis direction,
An upper block structure, which is a block structure that is guided to the upper rail structure so as to be relatively movable in the X-axis direction by rolling a series of iron balls,
The lower base plate structure, which is the base plate structure supported by the lower structure,
The lower rail structure, which is a rail structure supported by the lower base plate structure and extending in the Y-axis direction,
A lower block structure, which is a block structure that is guided to the lower rail structure so as to be relatively movable in the Y-axis direction by rolling a series of iron balls,
An intermediate plate structure, which is a structure with a plate-like contour,
Electric circuit and
With
The upper block structure and the lower block structure are connected with the intermediate plate structure interposed therebetween.
The intermediate plate structure has a piezoelectric element member having a plurality of piezoelectric elements that form a plate-like contour and are aligned in the contour.
The electric circuit is electrically connected to a pair of electrodes of the plurality of piezoelectric elements having the intermediate plate structure.
When the plate-like thickness of the piezoelectric element member having the intermediate plate structure changes, a potential difference is generated between the pair of electrodes of the piezoelectric element having the intermediate plate structure.
When it is determined that an earthquake has occurred, the electric circuit can apply a voltage to the pair of electrodes of the piezoelectric element of the intermediate plate structure according to the degree of non-landing that occurs between the support and the other support supporting the structure. Then, the plate-like thickness of the piezoelectric element member having the intermediate plate structure is changed.
Linear rolling bearings that are characterized by this.
地震が発生したと判断したとき、構造物を支持する他の支承のうちの特定の支承の支持する下部構造と上部構造の離間距離を基準として、直動転がり支承の支持する下部構造と上部構造の離間距離を基準に対して所定の値になる様に、前記電気回路が前記中間板構造の前記圧電素子の一対の電極に電圧を印可して前記中間板構造の前記圧電素子部材の板状の厚みを変化させる、
ことを特徴とする請求項1に記載の直動転がり支承。
When it is determined that an earthquake has occurred, the substructure and the superstructure supported by the linear rolling bearing are based on the distance between the substructure and the superstructure supported by a specific bearing among the other bearings supporting the structure. The electric circuit applies a voltage to the pair of electrodes of the piezoelectric element of the intermediate plate structure so that the separation distance becomes a predetermined value with respect to the reference, and the plate shape of the piezoelectric element member of the intermediate plate structure. Change the thickness of
The linear bearing bearing according to claim 1, wherein the bearing is characterized by the above.
前記基礎板構造が上下一対の板状の構造である第一基礎板構造と第二基礎板構造と該第一基礎板構造と該第二基礎板構造とに挟まれる板状の構造である第三基礎板構造とを有し、
前記第三基礎板構造が板状の輪郭を形成し輪郭の中に整列する複数の圧電素子をもつ圧電素子部材を持ち、
前記電気回路が前記第三基礎板構造の複数の該圧電素子の一対の電極に電気的に接続され、
前記第三基礎板構造の前記圧電素子部材の板状の厚みが変化する変形をすると前記第三基礎板構造の前記圧電素子の一対の電極に電位差が生じ、
地震が発生したと判断したとき、構造物を支持する他の支承との間に発生した不陸の程度に応じて前記電気回路が前記第三基礎板構造の前記圧電素子の一対の電極に電圧を印可して前記第三基礎板構造の前記圧電素子部材の板状の厚みを変化させる、
ことを特徴とする請求項2に記載の直動転がり支承。
The first base plate structure is a pair of upper and lower plate-like structures, and is a plate-like structure sandwiched between the first base plate structure, the second base plate structure, the first base plate structure, and the second base plate structure. Has a three-base plate structure,
The third base plate structure has a piezoelectric element member having a plurality of piezoelectric elements that form a plate-like contour and are aligned in the contour.
The electric circuit is electrically connected to a pair of electrodes of the plurality of piezoelectric elements of the third base plate structure.
When the plate-like thickness of the piezoelectric element member of the third base plate structure is deformed to change, a potential difference is generated between the pair of electrodes of the piezoelectric element of the third base plate structure.
When it is determined that an earthquake has occurred, the electric circuit applies a voltage to the pair of electrodes of the piezoelectric element of the third base plate structure according to the degree of non-landing that occurs between the support and the other support supporting the structure. To change the plate-like thickness of the piezoelectric element member of the third base plate structure.
The linear bearings according to claim 2, characterized in that.
地震が発生したと判断したとき、構造物を支持する他の支承のうちの特定の支承の支持する下部構造と上部構造の離間距離を基準として、直動転がり支承の支持する下部構造と上部構造の離間距離を基準に対して所定の値になる様に、前記電気回路が前記第三基礎板構造の前記圧電素子の一対の電極に電圧を印可して前記第三基礎板構造の前記圧電素子部材の板状の厚みを変化させる、
ことを特徴とする請求項3に記載の直動転がり支承。
When it is determined that an earthquake has occurred, the substructure and the superstructure supported by the linear rolling bearing are based on the distance between the substructure and the superstructure supported by a specific bearing among the other bearings supporting the structure. The electric circuit applies a voltage to a pair of electrodes of the piezoelectric element of the third base plate structure so that the separation distance becomes a predetermined value with respect to the reference. Change the plate-like thickness of the member,
The linear bearings according to claim 3, characterized in that.
前記レール構造と前記基礎板構造との間に挟まれる板状の構造であるレール支持構造とを備え、
前記レール支持構造が板状の輪郭を形成し輪郭の中に整列する複数の圧電素子をもつ圧電素子部材を持ち、
前記電気回路が前記レール支持構造の複数の該圧電素子の一対の電極に電気的に接続され、
前記レール支持構造の前記圧電素子部材の板状の厚みが変化する変形をすると前記レール支持構造の前記圧電素子の一対の電極に電位差が生じ、
地震が発生したと判断したとき、構造物を支持する他の支承との間に発生した不陸の程度に応じて前記電気回路が前記レール支持構造の前記圧電素子の一対の電極に電圧を印可して前記レール支持構造の前記圧電素子部材の板状の厚みを変化させる、
ことを特徴とする請求項4に記載の直動転がり支承。
It is provided with a rail support structure which is a plate-like structure sandwiched between the rail structure and the base plate structure.
The rail support structure has a piezoelectric element member having a plurality of piezoelectric elements that form a plate-like contour and are aligned in the contour.
The electric circuit is electrically connected to a pair of electrodes of the plurality of piezoelectric elements of the rail support structure.
When the plate-like thickness of the piezoelectric element member of the rail support structure is deformed to change, a potential difference is generated between the pair of electrodes of the piezoelectric element of the rail support structure.
When it is determined that an earthquake has occurred, the electric circuit can apply a voltage to the pair of electrodes of the piezoelectric element of the rail support structure according to the degree of non-landing that occurs between the support and the other support of the structure. Then, the plate-like thickness of the piezoelectric element member of the rail support structure is changed.
The linear bearing bearing according to claim 4, wherein the bearing is characterized by the above.
地震が発生したと判断したとき、構造物を支持する他の支承のうちの特定の支承の支持する下部構造と上部構造の離間距離を基準として、直動転がり支承の支持する下部構造と上部構造の離間距離を基準に対して所定の値になる様に、前記電気回路が前記レール支持構造の前記圧電素子の一対の電極に電圧を印可して前記レール支持構造の前記圧電素子部材の板状の厚みを変化させる、
ことを特徴とする請求項5に記載の直動転がり支承。
When it is determined that an earthquake has occurred, the substructure and the superstructure supported by the linear rolling bearing are based on the distance between the substructure and the superstructure supported by a specific bearing among the other bearings supporting the structure. The electric circuit applies a voltage to the pair of electrodes of the piezoelectric element of the rail support structure so that the separation distance becomes a predetermined value with respect to the reference, and the plate shape of the piezoelectric element member of the rail support structure. Change the thickness of
The linear bearing bearing according to claim 5, characterized in that.
前記レール構造が軸方向に延びる平滑面であるレール平滑面を形成し、
前記レール平滑面に接触して摺動できるレール摩擦部材と前記ブロック構造に支持され前記レール摩擦部材を前記レール平滑面に押し付けるレール押し付け構造とを有するレール摩擦構造と、
を備えることを特徴とする請求項6に記載の直動転がり支承。
The rail structure forms a rail smooth surface which is a smooth surface extending in the axial direction.
A rail friction structure having a rail friction member that can slide in contact with the rail smooth surface and a rail pressing structure that is supported by the block structure and presses the rail friction member against the rail smooth surface.
The linear motion rolling bearing according to claim 6, wherein the bearing is provided with.
前記レール押し付け構造が板状の輪郭を形成し輪郭の中に整列する複数の圧電素子をもつ圧電素子部材を持ち、
前記電気回路が前記レール押し付け構造の複数の該圧電素子の一対の電極に電気的に接続され、
地震が発生したと判断すると前記電気回路が前記レール押し付け構造の前記圧電素子の一対の電極に電圧を印可して前記レール押し付け構造の前記圧電素子部材の板状の厚みを変化させる、
ことを特徴とする請求項7に記載の直動転がり支承。
The rail pressing structure has a piezoelectric element member having a plurality of piezoelectric elements that form a plate-like contour and are aligned in the contour.
The electric circuit is electrically connected to a pair of electrodes of the plurality of piezoelectric elements of the rail pressing structure.
When it is determined that an earthquake has occurred, the electric circuit applies a voltage to the pair of electrodes of the piezoelectric element of the rail pressing structure to change the plate-like thickness of the piezoelectric element member of the rail pressing structure.
The linear bearing bearing according to claim 7, characterized in that.
前記基礎板構造が軸方向に延びる平滑面である基礎板平滑面を形成し、
前記基礎板平滑面に接触して摺動できる基礎板摩擦部材と前記ブロック構造に支持され前記基礎板摩擦部材を前記基礎板平滑面に押し付ける基礎板押し付け構造とを有する基礎板摩擦構造と、
を備えることを特徴とする請求項8に記載の直動転がり支承。
The foundation plate structure forms a foundation plate smooth surface which is a smooth surface extending in the axial direction.
A base plate friction structure having a base plate friction member that can slide in contact with the base plate smooth surface and a base plate pressing structure that is supported by the block structure and presses the base plate friction member against the base plate smooth surface.
The linear motion rolling bearing according to claim 8, wherein the bearing is provided with.
前記基礎板押し付け構造が板状の輪郭を形成し輪郭の中に整列する複数の圧電素子をもつ圧電素子部材を持ち、
前記電気回路が前記基礎板押し付け構造の複数の該圧電素子の一対の電極に電気的に接続され、
地震が発生したと判断すると前記電気回路が前記基礎板押し付け構造の前記圧電素子の一対の電極に電圧を印可して前記基礎板押し付け構造の前記圧電素子部材の板状の厚みを変化させる、
ことを特徴とする請求項9に記載の直動転がり支承。
The base plate pressing structure has a piezoelectric element member having a plurality of piezoelectric elements that form a plate-like contour and are aligned in the contour.
The electric circuit is electrically connected to a pair of electrodes of the plurality of piezoelectric elements of the base plate pressing structure.
When it is determined that an earthquake has occurred, the electric circuit applies a voltage to the pair of electrodes of the piezoelectric element of the base plate pressing structure to change the plate-like thickness of the piezoelectric element member of the base plate pressing structure.
The linear bearing bearing according to claim 9, wherein the bearing is characterized by the above.
上下一対の構造である上部構造と下部構造との間に設けられ構造物を支持する鉛直剛性の異なる複数の支承のうちの直動転がり支承であって、
仮想のX軸と仮想のY軸とが水平面内で直交し、
上部構造を支持する基礎板構造である上部基礎板構造と、
前記上部基礎板構造に支持され前記X軸方向に延びるレール構造である上部レール構造と、
前記上部レール構造に前記X軸方向に相対移動自在に案内されるブロック構造である上部ブロック構造と、
下部構造に支持される基礎板構造である下部基礎板構造と、
前記下部基礎板構造に支持され前記Y軸方向に延びるレール構造である下部レール構造と、
前記下部レール構造に前記Y軸方向に相対移動自在に案内されるブロック構造である下部ブロック構造と、
電気回路と、
を備え、
前記上部ブロック構造と前記下部ブロック構造とが連結され、
前記基礎板構造が上下一対の板状の構造である第一基礎板構造と第二基礎板構造と該第一基礎板構造と該第二基礎板構造とに挟まれる板状の構造である第三基礎板構造とを有し、
前記第三基礎板構造が板状の輪郭を形成し輪郭の中に整列する複数の圧電素子をもつ圧電素子部材を持ち、
前記電気回路が前記第三基礎板構造の複数の該圧電素子の一対の電極に電気的に接続され、
前記第三基礎板構造の前記圧電素子部材の板状の厚みが変化する変形をすると前記第三基礎板構造の前記圧電素子の一対の電極に電位差が生じ、
地震が発生したと判断したとき、構造物を支持する他の支承との間に発生した不陸の程度に応じて前記電気回路が前記第三基礎板構造の前記圧電素子の一対の電極に電圧を印可して前記第三基礎板構造の前記圧電素子部材の板状の厚みを変化させる、
ことを特徴とする直動転がり支承。
It is a linear motion rolling bearing among a plurality of bearings having different vertical rigidity provided between the upper structure and the lower structure, which are a pair of upper and lower structures, and supports the structure.
The virtual X-axis and the virtual Y-axis are orthogonal in the horizontal plane,
The superstructure, which is the base plate structure that supports the superstructure,
The upper rail structure, which is a rail structure supported by the upper base plate structure and extending in the X-axis direction,
An upper block structure, which is a block structure that is guided to the upper rail structure so as to be relatively movable in the X-axis direction,
The lower base plate structure, which is the base plate structure supported by the lower structure,
The lower rail structure, which is a rail structure supported by the lower base plate structure and extending in the Y-axis direction,
A lower block structure, which is a block structure that is guided to the lower rail structure so as to be relatively movable in the Y-axis direction,
Electric circuit and
With
The upper block structure and the lower block structure are connected to each other.
The first base plate structure is a pair of upper and lower plate-like structures, and is a plate-like structure sandwiched between the first base plate structure, the second base plate structure, the first base plate structure, and the second base plate structure. Has a three-base plate structure,
The third base plate structure has a piezoelectric element member having a plurality of piezoelectric elements that form a plate-like contour and are aligned in the contour.
The electric circuit is electrically connected to a pair of electrodes of the plurality of piezoelectric elements of the third base plate structure.
When the plate-like thickness of the piezoelectric element member of the third base plate structure is deformed to change, a potential difference is generated between the pair of electrodes of the piezoelectric element of the third base plate structure.
When it is determined that an earthquake has occurred, the electric circuit applies a voltage to the pair of electrodes of the piezoelectric element of the third base plate structure according to the degree of non-landing that occurs between the support and the other support supporting the structure. To change the plate-like thickness of the piezoelectric element member of the third base plate structure.
Linear rolling bearings that are characterized by this.
地震が発生したと判断したとき、構造物を支持する他の支承のうちの特定の支承の支持する下部構造と上部構造の離間距離を基準として、直動転がり支承の支持する下部構造と上部構造の離間距離を基準に対して所定の値になる様に、前記電気回路が前記第三基礎板構造の前記圧電素子の一対の電極に電圧を印可して前記第三基礎板構造の前記圧電素子部材の板状の厚みを変化させる、
ことを特徴とする請求項11に記載の直動転がり支承。
When it is determined that an earthquake has occurred, the substructure and the superstructure supported by the linear rolling bearing are based on the distance between the substructure and the superstructure supported by a specific bearing among the other bearings supporting the structure. The electric circuit applies a voltage to a pair of electrodes of the piezoelectric element of the third base plate structure so that the separation distance becomes a predetermined value with respect to the reference. Change the plate-like thickness of the member,
The linear bearing bearing according to claim 11, characterized in that.
上下一対の構造である上部構造と下部構造との間に設けられ構造物を支持する鉛直剛性の異なる複数の支承のうちの直動転がり支承であって、
仮想のX軸と仮想のY軸とが水平面内で直交し、
上部構造を支持する基礎板構造である上部基礎板構造と、
前記上部基礎板構造に支持され前記X軸方向に延びるレール構造である上部レール構造と、
前記上部レール構造に一連の鉄球の転がりにより前記X軸方向に相対移動自在に案内されるブロック構造である上部ブロック構造と、
下部構造に支持される基礎板構造である下部基礎板構造と、
前記下部基礎板構造に支持され前記Y軸方向に延びるレール構造である下部レール構造と、
前記下部レール構造に一連の鉄球の転がりにより前記Y軸方向に相対移動自在に案内されるブロック構造である下部ブロック構造と、
前記レール構造と前記基礎板構造との間に挟まれる板状の構造であるレール支持構造と、
電気回路と、
を備え、
前記上部ブロック構造と前記下部ブロック構造とが連結され、
前記レール支持構造が板状の輪郭を形成し輪郭の中に整列する複数の圧電素子をもつ圧電素子部材を持ち、
前記電気回路が前記レール支持構造の複数の該圧電素子の一対の電極に電気的に接続され、
前記レール支持構造の前記圧電素子部材の板状の厚みが変化する変形をすると前記レール支持構造の前記圧電素子の一対の電極に電位差が生じ、
地震が発生したと判断したとき、構造物を支持する他の支承との間に発生した不陸の程度に応じて前記電気回路が前記レール支持構造の前記圧電素子の一対の電極に電圧を印可して前記レール支持構造の前記圧電素子部材の板状の厚みを変化させる、
ことを特徴とする直動転がり支承。
It is a linear motion rolling bearing among a plurality of bearings having different vertical rigidity provided between the upper structure and the lower structure, which are a pair of upper and lower structures, and supports the structure.
The virtual X-axis and the virtual Y-axis are orthogonal in the horizontal plane,
The superstructure, which is the base plate structure that supports the superstructure,
The upper rail structure, which is a rail structure supported by the upper base plate structure and extending in the X-axis direction,
An upper block structure, which is a block structure that is guided to the upper rail structure so as to be relatively movable in the X-axis direction by rolling a series of iron balls,
The lower base plate structure, which is the base plate structure supported by the lower structure,
The lower rail structure, which is a rail structure supported by the lower base plate structure and extending in the Y-axis direction,
A lower block structure, which is a block structure that is guided to the lower rail structure so as to be relatively movable in the Y-axis direction by rolling a series of iron balls,
A rail support structure, which is a plate-like structure sandwiched between the rail structure and the base plate structure,
Electric circuit and
With
The upper block structure and the lower block structure are connected to each other.
The rail support structure has a piezoelectric element member having a plurality of piezoelectric elements that form a plate-like contour and are aligned in the contour.
The electric circuit is electrically connected to a pair of electrodes of the plurality of piezoelectric elements of the rail support structure.
When the plate-like thickness of the piezoelectric element member of the rail support structure is deformed to change, a potential difference is generated between the pair of electrodes of the piezoelectric element of the rail support structure.
When it is determined that an earthquake has occurred, the electric circuit can apply a voltage to the pair of electrodes of the piezoelectric element of the rail support structure according to the degree of non-landing that occurs between the support and the other support of the structure. Then, the plate-like thickness of the piezoelectric element member of the rail support structure is changed.
Linear rolling bearings that are characterized by this.
地震が発生したと判断したとき、構造物を支持する他の支承のうちの特定の支承の支持する下部構造と上部構造の離間距離を基準として、直動転がり支承の支持する下部構造と上部構造の離間距離を基準に対して所定の値になる様に、前記電気回路が前記レール支持構造の前記圧電素子の一対の電極に電圧を印可して前記レール支持構造の前記圧電素子部材の板状の厚みを変化させる、
ことを特徴とする請求項13に記載の直動転がり支承。
When it is determined that an earthquake has occurred, the substructure and the superstructure supported by the linear rolling bearing are based on the distance between the substructure and the superstructure supported by a specific bearing among the other bearings supporting the structure. The electric circuit applies a voltage to the pair of electrodes of the piezoelectric element of the rail support structure so that the separation distance becomes a predetermined value with respect to the reference, and the plate shape of the piezoelectric element member of the rail support structure. Change the thickness of
The linear bearing bearing according to claim 13, characterized in that.
JP2016236600A 2016-12-06 2016-12-06 Linear rolling bearing Active JP6912883B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016236600A JP6912883B2 (en) 2016-12-06 2016-12-06 Linear rolling bearing
JP2021075664A JP7090776B2 (en) 2016-12-06 2021-04-28 Linear rolling bearings

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016236600A JP6912883B2 (en) 2016-12-06 2016-12-06 Linear rolling bearing

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2021075664A Division JP7090776B2 (en) 2016-12-06 2021-04-28 Linear rolling bearings

Publications (2)

Publication Number Publication Date
JP2018091447A JP2018091447A (en) 2018-06-14
JP6912883B2 true JP6912883B2 (en) 2021-08-04

Family

ID=62565458

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2016236600A Active JP6912883B2 (en) 2016-12-06 2016-12-06 Linear rolling bearing
JP2021075664A Active JP7090776B2 (en) 2016-12-06 2021-04-28 Linear rolling bearings

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2021075664A Active JP7090776B2 (en) 2016-12-06 2021-04-28 Linear rolling bearings

Country Status (1)

Country Link
JP (2) JP6912883B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7441593B2 (en) 2020-05-11 2024-03-01 株式会社免制震ディバイス Seismic isolation device
CN113447858B (en) * 2020-11-11 2022-11-11 重庆康佳光电技术研究院有限公司 Circuit backboard detection device and detection method

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04151017A (en) * 1990-10-09 1992-05-25 Yamazaki Mazak Corp Direct-acting guide device
JPH0544771A (en) * 1991-08-06 1993-02-23 Hitachi Plant Eng & Constr Co Ltd Vibration isolation device
JPH07174188A (en) * 1994-10-31 1995-07-11 Nippon Thompson Co Ltd Vibration isolating device and rolling guide unit provided with this device
JP3195512B2 (en) * 1995-03-02 2001-08-06 住友建設株式会社 Seismic isolation structure
JPH09133179A (en) * 1995-11-02 1997-05-20 Mitsubishi Heavy Ind Ltd Variable resistance force unit
JP3434137B2 (en) * 1996-08-28 2003-08-04 三菱重工業株式会社 Seismic isolation device for structures
JP3818471B2 (en) * 1997-11-27 2006-09-06 株式会社フジタ Rolling guides for seismic isolation using rolling guides and rolling guides
JP3392036B2 (en) * 1998-01-20 2003-03-31 住友建設株式会社 Sliding support device
JPH11303930A (en) * 1998-04-16 1999-11-02 Mitsubishi Steel Mfg Co Ltd Seismic control friction damper
JP2001018772A (en) * 1999-07-07 2001-01-23 Toyota Motor Corp Brake device for vehicle
JP2001304331A (en) * 2000-04-21 2001-10-31 Ohbayashi Corp Variable damping element
JP2006275137A (en) * 2005-03-29 2006-10-12 Tokai Rubber Ind Ltd Vibration restraining device

Also Published As

Publication number Publication date
JP7090776B2 (en) 2022-06-24
JP2021107742A (en) 2021-07-29
JP2018091447A (en) 2018-06-14

Similar Documents

Publication Publication Date Title
JP7090776B2 (en) Linear rolling bearings
US5261200A (en) Vibration-proofing device
JP2013142429A (en) Mechanism for seismic base isolation
JP4852552B2 (en) Negative rigid device and seismic isolation structure provided with the negative rigid device
CN109780112B (en) Piezoelectric type rigidity-variable damping-variable dynamic vibration absorber
JP2019035493A (en) Slide bearing device
KR101593576B1 (en) Piezoelectric magnetorheological fluid base isolator
JP6745095B2 (en) Damper mounting structure
KR20120001068A (en) Hybrid vibration isolating mount system
JP2001304331A (en) Variable damping element
JP6796817B2 (en) Seismic isolation mechanism
JP6854116B2 (en) Damping wall
WO2019097933A1 (en) Vibration control device
JP5462059B2 (en) Foundation structure
JP6274172B2 (en) Seismic isolation table device
CN205206074U (en) But frictional force variable damping ware
JP5801139B2 (en) Shock damper
JPH10169710A (en) Base isolation device for structure
JP6846313B2 (en) Superstructure bearing structure
JP5850760B2 (en) Damping device for vibration isolator
JP2002340085A (en) Vibration damper device
JP7090006B2 (en) Seismic isolation device
RU2426920C1 (en) Vibratory bearing
JP2011256564A (en) Seismic isolator placed on foundation of building
RU2576801C1 (en) Vibration isolator for foundations of buildings, operating in seismic hazard areas

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190912

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200811

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201008

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210406

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210428

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20210428

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20210511

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20210514

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210706

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210709

R150 Certificate of patent or registration of utility model

Ref document number: 6912883

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250