JP6907544B2 - Variable heat insulating element, its driving method, and its forming method - Google Patents
Variable heat insulating element, its driving method, and its forming method Download PDFInfo
- Publication number
- JP6907544B2 JP6907544B2 JP2017004437A JP2017004437A JP6907544B2 JP 6907544 B2 JP6907544 B2 JP 6907544B2 JP 2017004437 A JP2017004437 A JP 2017004437A JP 2017004437 A JP2017004437 A JP 2017004437A JP 6907544 B2 JP6907544 B2 JP 6907544B2
- Authority
- JP
- Japan
- Prior art keywords
- conductive film
- spin
- film
- heat insulating
- magnetic film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims description 54
- 230000005291 magnetic effect Effects 0.000 claims description 105
- 239000000463 material Substances 0.000 claims description 56
- 230000007246 mechanism Effects 0.000 claims description 38
- 230000003993 interaction Effects 0.000 claims description 25
- 238000009413 insulation Methods 0.000 claims description 18
- 230000001681 protective effect Effects 0.000 claims description 15
- 230000005415 magnetization Effects 0.000 claims description 14
- 230000015572 biosynthetic process Effects 0.000 claims 1
- 239000010408 film Substances 0.000 description 190
- 230000000694 effects Effects 0.000 description 26
- 239000004020 conductor Substances 0.000 description 18
- 230000005678 Seebeck effect Effects 0.000 description 17
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 16
- 241000269800 Percidae Species 0.000 description 13
- 230000005355 Hall effect Effects 0.000 description 12
- 239000012212 insulator Substances 0.000 description 10
- 239000004065 semiconductor Substances 0.000 description 10
- 238000004519 manufacturing process Methods 0.000 description 8
- 230000006870 function Effects 0.000 description 7
- 239000000696 magnetic material Substances 0.000 description 7
- 229910052751 metal Inorganic materials 0.000 description 7
- 239000002184 metal Substances 0.000 description 7
- 238000002347 injection Methods 0.000 description 6
- 239000007924 injection Substances 0.000 description 6
- 238000012546 transfer Methods 0.000 description 6
- 230000007613 environmental effect Effects 0.000 description 5
- 229910052742 iron Inorganic materials 0.000 description 5
- 229910052759 nickel Inorganic materials 0.000 description 5
- 230000008859 change Effects 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 229910052723 transition metal Inorganic materials 0.000 description 4
- 229910000859 α-Fe Inorganic materials 0.000 description 4
- 239000000956 alloy Substances 0.000 description 3
- 230000002547 anomalous effect Effects 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 239000002772 conduction electron Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 229910052763 palladium Inorganic materials 0.000 description 3
- 238000000059 patterning Methods 0.000 description 3
- 229910052697 platinum Inorganic materials 0.000 description 3
- 239000000523 sample Substances 0.000 description 3
- 230000005676 thermoelectric effect Effects 0.000 description 3
- 239000010409 thin film Substances 0.000 description 3
- 150000003624 transition metals Chemical class 0.000 description 3
- 230000005422 Nernst effect Effects 0.000 description 2
- 230000005679 Peltier effect Effects 0.000 description 2
- 239000000443 aerosol Substances 0.000 description 2
- 238000010923 batch production Methods 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 239000011247 coating layer Substances 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000004907 flux Effects 0.000 description 2
- 230000017525 heat dissipation Effects 0.000 description 2
- UCNNJGDEJXIUCC-UHFFFAOYSA-L hydroxy(oxo)iron;iron Chemical compound [Fe].O[Fe]=O.O[Fe]=O UCNNJGDEJXIUCC-UHFFFAOYSA-L 0.000 description 2
- 239000010410 layer Substances 0.000 description 2
- 230000005389 magnetism Effects 0.000 description 2
- 238000001755 magnetron sputter deposition Methods 0.000 description 2
- 229910052748 manganese Inorganic materials 0.000 description 2
- 230000000149 penetrating effect Effects 0.000 description 2
- 238000007747 plating Methods 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000007650 screen-printing Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000004528 spin coating Methods 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 230000005303 antiferromagnetism Effects 0.000 description 1
- 239000010953 base metal Substances 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 230000005293 ferrimagnetic effect Effects 0.000 description 1
- 230000005308 ferrimagnetism Effects 0.000 description 1
- 230000005307 ferromagnetism Effects 0.000 description 1
- 239000002223 garnet Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 230000004941 influx Effects 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- MTRJKZUDDJZTLA-UHFFFAOYSA-N iron yttrium Chemical compound [Fe].[Y] MTRJKZUDDJZTLA-UHFFFAOYSA-N 0.000 description 1
- SZVJSHCCFOBDDC-UHFFFAOYSA-N iron(II,III) oxide Inorganic materials O=[Fe]O[Fe]O[Fe]=O SZVJSHCCFOBDDC-UHFFFAOYSA-N 0.000 description 1
- 238000004943 liquid phase epitaxy Methods 0.000 description 1
- 238000001459 lithography Methods 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 238000003980 solgel method Methods 0.000 description 1
- 239000011343 solid material Substances 0.000 description 1
- 238000000348 solid-phase epitaxy Methods 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 229910052596 spinel Inorganic materials 0.000 description 1
- 239000011029 spinel Substances 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 238000000927 vapour-phase epitaxy Methods 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Images
Landscapes
- Hall/Mr Elements (AREA)
Description
本発明は、スピンゼーベック効果及びスピンペルチェ効果を用いた可変断熱素子とその駆動方法及びその形成方法に関する。 The present invention relates to a variable heat insulating element using the spin Seebeck effect and the spin Perche effect, a method for driving the same, and a method for forming the same.
電気伝導性を持つ固体材料に電流を流すことで、材料中の一定の方向に熱流を発生するペルチェ効果は、熱を移動する技術、ヒートポンプ技術として広く用いられている。 The Perche effect, which generates a heat flow in a certain direction in a material by passing an electric current through a solid material having electrical conductivity, is widely used as a technology for transferring heat and a heat pump technology.
一方、同じ材料に熱流を流す、すなわち材料の両端に温度差を発生させることで、材料中の一定の方向に電流を発生するゼーベック効果が起きることも広く知られている。 On the other hand, it is also widely known that the Seebeck effect of generating an electric current in a certain direction in a material occurs by passing a heat flow through the same material, that is, by generating a temperature difference at both ends of the material.
特許文献1では、これらの効果を組み合わせることで、温度差のある環境で、材料に発生するゼーベック効果から電流を取り出し、その電流によってペルチェ効果を起こすことで、材料の見かけの熱抵抗が変化するエネルギー再利用型の熱制御システムが開示されている。 In Patent Document 1, by combining these effects, a current is extracted from the Seebeck effect generated in the material in an environment with a temperature difference, and the Pelche effect is caused by the current, so that the apparent thermal resistance of the material changes. An energy-recycling thermal control system is disclosed.
具体的には、特許文献1は、モータと制動を行うブレーキとを備え、少なくともモータの冷却を行う可変熱抵抗を利用した冷却システムである。モータとブレーキとの間で熱の伝達を媒介する熱伝達経路に、通電状態に従って熱抵抗が変化するペルチェ素子が配置されている。ブレーキがモータより高温の場合は、ペルチェ素子の熱抵抗を大きくして、ブレーキからモータに対する熱伝達を遮断してモータの過熱や性能の低下を回避している。逆にモータがブレーキより高温の場合は、ペルチェ素子の熱抵抗を小さくして、モータからブレーキへの熱伝達を促進してモータを冷却し、また、ブレーキの温度をモータの熱で速やかに上昇させてブレーキ性能を確保している。ペルチェ素子はN型半導体とP型半導体を電極によってπ型に接続したものである。 Specifically, Patent Document 1 is a cooling system including a motor and a brake for braking, and at least using a variable thermal resistance for cooling the motor. A perche element whose thermal resistance changes according to the energized state is arranged in a heat transfer path that mediates heat transfer between the motor and the brake. When the brake is hotter than the motor, the thermal resistance of the Pelche element is increased to block the heat transfer from the brake to the motor to avoid overheating and deterioration of the performance of the motor. On the contrary, when the temperature of the motor is higher than that of the brake, the thermal resistance of the Pelche element is reduced to promote heat transfer from the motor to the brake to cool the motor, and the temperature of the brake is quickly raised by the heat of the motor. The braking performance is ensured. The Pelche element is an N-type semiconductor and a P-type semiconductor connected in a π-type by electrodes.
また近年では、固体中の電子スピンを利用した熱電効果であるスピンゼーベック効果と、その逆効果であるスピンペルチェ効果が、非特許文献1、非特許文献2でそれぞれ開示されている。非特許文献1には、磁性絶縁体LaY2Fe5O12に温度勾配を加えると、スピンゼーベック効果によって熱流がスピン圧に変換され、磁性絶縁体上に形成したPtがスピン圧を電圧に変換することが記載されている。また非特許文献2には、フェリ磁性絶縁体YIG(Y3Fe5O12)とPtの界面を通して流れるスピン流によって熱流が発生する、スピンペルチェ効果が生じることが記載されている。 Further, in recent years, the spin Seebeck effect, which is a thermoelectric effect utilizing electron spin in a solid, and the spin Perche effect, which is the opposite effect, are disclosed in Non-Patent Document 1 and Non-Patent Document 2, respectively. According to Non-Patent Document 1, when a temperature gradient is applied to the magnetic insulator LaY 2 Fe 5 O 12 , the heat flow is converted into a spin pressure by the spin Seebeck effect, and the Pt formed on the magnetic insulator converts the spin pressure into a voltage. It is stated that it should be done. Further, Non-Patent Document 2 describes that a spin perche effect is generated in which a heat flow is generated by a spin flow flowing through the interface between the ferrimagnetic insulator YIG (Y 3 Fe 5 O 12) and Pt.
特許文献1ではペルチェ素子を用いているため、N型半導体とP型半導体を電極によってπ型に接続する必要があり構造が複雑になる。スピンペルチェ効果を利用するスピンペルチェ素子は、ペルチェ素子と比較して、簡易な構造を持ち、壊れにくく、より安価に作製できるメリットが期待されている。しかし熱電変換の実効効率の点で大きく劣っている。またスピンペルチェ効果の逆効果であるスピンゼーベック効果を発現するスピンゼーベック素子は、ゼーベック効果を発現するゼーベック素子よりも、簡易な構造を持ち、壊れにくく、より安価に作製できるメリットが期待されている。しかし、これも熱電変換の実効効率の点で大きく劣っている。 Since the Pelche element is used in Patent Document 1, it is necessary to connect the N-type semiconductor and the P-type semiconductor in a π-type by electrodes, which complicates the structure. A spin-perche element that utilizes the spin-perche effect is expected to have a simple structure, is hard to break, and can be manufactured at a lower cost than a perche element. However, it is significantly inferior in the effective efficiency of thermoelectric conversion. Further, a spin Seebeck element that exhibits the spin Seebeck effect, which is the opposite effect of the spin Perche effect, is expected to have a simpler structure, is hard to break, and can be manufactured at a lower cost than a Seebeck element that exhibits the Seebeck effect. .. However, this is also significantly inferior in terms of the effective efficiency of thermoelectric conversion.
そのためスピンペルチェ効果、スピンゼーベック効果を用いた可変断熱素子は実用化に至っていない。本発明の目的は、この問題を解決し、スピンペルチェ効果、スピンゼーベック効果を用いた可変断熱素子を提供することである。 Therefore, a variable heat insulating element using the spin Perche effect and the spin Seebeck effect has not been put into practical use. An object of the present invention is to solve this problem and to provide a variable heat insulating element using a spin Perche effect and a spin Seebeck effect.
本発明は、少なくとも一方向の内部磁化を有する磁性膜を有し、前記磁性膜の一方の面に前記磁性膜と磁気的に結合した第一の伝導膜と、前記磁性膜のもう一方の面に前記磁性膜と磁気的に結合した第二の伝導膜とを備え、
前記第一、第二の伝導膜はいずれも、少なくとも一部にスピン軌道相互作用を有する材料を含み、スピン軌道相互作用の大きさに関係するスピンホール角を有し、前記スピンホール角が互い異なる符号であり、前記第一の伝導膜、前記第二の伝導膜、電気的コンダクタンスを変化させることができる制御機構と、が閉回路を構成可能であることを特徴とする可変断熱素子である。
The present invention has a magnetic film having internal magnetization in at least one direction, a first conductive film magnetically bonded to the magnetic film on one surface of the magnetic film, and the other surface of the magnetic film. Is provided with a second conductive film magnetically bonded to the magnetic film.
Both the first and second conductive films contain at least a part of a material having a spin-orbit interaction, have a spin Hall angle related to the magnitude of the spin-orbit interaction, and the spin-hole angles are mutual. It is a variable heat insulating element having a different reference numeral, wherein the first conductive film, the second conductive film, and a control mechanism capable of changing the electrical conductance can form a closed circuit. ..
また本発明は、このような可変断熱素子の制御機構を短絡状態とすることで前記可変断熱素子の熱抵抗が高い状態にするか、または前記制御機構を開放状態とすることで前記の熱抵抗が前記短絡状態よりも低い状態にすることを特徴とする可変断熱素子の駆動方法である。 Further, in the present invention, the thermal resistance of the variable heat insulating element is increased by short-circuiting the control mechanism of the variable heat insulating element, or the thermal resistance of the variable heat insulating element is opened. Is a method for driving a variable heat insulating element, which is characterized in that the temperature is lower than the short-circuited state.
また本発明は、支持体上に、少なくとも一部にスピン軌道相互作用を有する材料を含み、スピン軌道相互作用の大きさに関係する第1のスピンホール角を有する第一の伝導膜を形成し、前記第一の伝導膜上に、少なくとも一方向の内部磁化を有し、前記第一の伝導膜と磁気的に結合した磁性膜を形成し、前記磁性膜上に少なくとも一部にスピン軌道相互作用を有する材料を含み、スピン軌道相互作用の大きさに関係し、前記第1のスピンホール角とは異なる符号の第2のスピンホール角を有し、前記磁性膜と磁気的に結合した第二の伝導膜を形成し、
前記第一の伝導膜及び前記第二の伝導膜に接続することを特徴とする可変断熱素子の形成方法、である。
Further, the present invention forms a first conductive film on the support, which includes a material having a spin-orbit interaction at least in part and has a first spin-hole angle related to the magnitude of the spin-orbit interaction. , A magnetic film having internal magnetization in at least one direction and magnetically bonded to the first conductive film is formed on the first conductive film, and spin-orbit couplings are formed on the magnetic film at least partially. A second spin-hole angle that includes a material having an action, is related to the magnitude of spin-orbit interaction, has a second spin-hole angle having a code different from that of the first spin-hole angle, and is magnetically bonded to the magnetic film. Form a second conductive film,
A method for forming a variable heat insulating element, which comprises connecting to the first conductive film and the second conductive film.
本発明によれば、スピンペルチェ効果、スピンゼーベック効果を用いた可変断熱素子を得ることができる。 According to the present invention, a variable heat insulating element using the spin Pelche effect and the spin Seebeck effect can be obtained.
また本発明の可変断熱素子の形成方法では、素子の一部もしくは全てについて、簡便な塗布プロセス等を適用すれば一括生産を行うことが可能で、製作コストを大きく低減することができる。 Further, in the method for forming a variable heat insulating element of the present invention, batch production can be performed by applying a simple coating process or the like to a part or all of the elements, and the manufacturing cost can be greatly reduced.
以下、本発明の実施形態に係る可変断熱素子とその製造方法について、図を参照しながら詳細に説明する。但し、以下に述べる実施形態には、本発明を実施するために技術的に好ましい限定がされているが、発明の範囲を以下に限定するものではない。
(第1の実施形態)
<可変断熱素子の構造>
まず、第1の実施形態の可変断熱素子の構造を、図1を参照して説明する。
Hereinafter, the variable heat insulating element and the manufacturing method thereof according to the embodiment of the present invention will be described in detail with reference to the drawings. However, although the embodiments described below have technically preferable limitations for carrying out the present invention, the scope of the invention is not limited to the following.
(First Embodiment)
<Structure of variable insulation element>
First, the structure of the variable heat insulating element of the first embodiment will be described with reference to FIG.
図1は、本実施形態の可変断熱素子の構造を概略的に示す断面図である。本実施形態の可変断熱素子は、一定の保持力と内部磁化を有する磁性膜101を有する。磁性膜101の一方の面(図では上面)には第一の伝導膜102を形成する。また磁性膜101の他方の面(図では下面)には第二の伝導膜103を形成する。第一の伝導膜102、第2の伝導膜103とも平面形状は矩形状である。 FIG. 1 is a cross-sectional view schematically showing the structure of the variable heat insulating element of the present embodiment. The variable heat insulating element of the present embodiment has a magnetic film 101 having a constant holding force and internal magnetization. The first conductive film 102 is formed on one surface (upper surface in the figure) of the magnetic film 101. A second conductive film 103 is formed on the other surface (lower surface in the figure) of the magnetic film 101. Both the first conductive film 102 and the second conductive film 103 have a rectangular planar shape.
第一の伝導膜102と第二の伝導膜103の両端には、コンタクト用のパッド104、105、106が、スクリーン印刷などのパターニング手法を用いて形成してある。また、パッド105によって、第一の伝導膜102と第二の伝導膜103は電気的に接続している。さらに、パッド104、106はそれぞれ制御機構107に接続している。
<各要素を構成する材料と機能>
磁性膜101は、スピンゼーベック効果を発現する材料で形成される。すなわち、磁性膜101は、熱流Q0の入力に比例して、内部にスピン流JS0、JS1を生じる。
Contact pads 104, 105, and 106 are formed on both ends of the first conductive film 102 and the second conductive film 103 by using a patterning technique such as screen printing. Further, the first conductive film 102 and the second conductive film 103 are electrically connected by the pad 105. Further, the pads 104 and 106 are connected to the control mechanism 107, respectively.
<Materials and functions that make up each element>
The magnetic film 101 is formed of a material that exhibits a spin Seebeck effect. That is, the magnetic film 101 internally generates spin currents J S0 and J S1 in proportion to the input of the heat flow Q 0.
磁性膜101は、強磁性やフェリ磁性、反強磁性などの磁性を有し、磁性材料固有のネール温度や、キュリー温度以上となる温度域などの特定の条件を除けば少なくとも一方向の磁化を有する。本実施形態では図1の紙面に垂直な方向に磁化されている。材質は、絶縁体、もしくは絶縁性の高い材料であることが好ましい。 The magnetic film 101 has magnetism such as ferromagnetism, ferrimagnetism, and antiferromagnetism, and is magnetized in at least one direction except for specific conditions such as the Néel temperature peculiar to magnetic materials and the temperature range above the Curie temperature. Have. In this embodiment, it is magnetized in the direction perpendicular to the paper surface of FIG. The material is preferably an insulator or a material having high insulating properties.
例えば、磁性絶縁体であれば、イットリウム鉄ガーネット(YIG,Y3Fe5O12)、ビスマス(Bi)をドープしたBiY2Fe5O12、ランタン(La)を添加したLaY2Fe5O12、その他f電子を有する元素RでYの一部を置換したRxY3−xFe5O12、また遷移金属元素MでFeの一部を置換したMxY3Fe5−xO12が挙げられる。また、マグネタイト(Fe3O4)や、組成MFe2O4(Mは金属元素で、Fe、Ni、Zn、Coのいずれか一つ以上を含む)からなるスピネルフェライト材料が挙げられる。 For example, in the case of a magnetic insulator, yttrium iron garnet (YIG, Y 3 Fe 5 O 12 ), bismuth (Bi) -doped BiY 2 Fe 5 O 12 , and lantern (La) -added LaY 2 Fe 5 O 12 R x Y 3-x Fe 5 O 12 in which a part of Y is replaced by an element R having f electrons, and M x Y 3 Fe 5-x O 12 in which a part of Fe is replaced by a transition metal element M. Can be mentioned. Examples thereof include magnetite (Fe 3 O 4 ) and a spinel ferrite material having a composition of MFe 2 O 4 (M is a metal element and contains one or more of Fe, Ni, Zn, and Co).
また、磁性半導体であれば、組成CuMO2やSrMO3(Mは金属元素で、Mn、Ni、Co、Feのいずれかを含む)、Fe3O4などの、Fe、Co、Niから選択される少なくとも一つを含む半導体的性質を持つ磁性酸化物(磁性酸化物半導体)が挙げられる。尚、電子による熱伝導を抑えるという観点から言えば、絶縁体や半導体を用いることが望ましい。 If it is a magnetic semiconductor, it is selected from Fe, Co, and Ni having a composition of CuMO 2 or SrMO 3 (M is a metal element and contains any of Mn, Ni, Co, and Fe) and Fe 3 O 4. Examples thereof include magnetic oxides (magnetic oxide semiconductors) having semiconductor properties including at least one of them. From the viewpoint of suppressing heat conduction by electrons, it is desirable to use an insulator or a semiconductor.
第一の伝導膜102には、逆スピンホール効果、もしくはスピン軌道相互作用を発現する導電体を用いることが好ましい。逆スピンホール効果の大きさは、スピンホール伝導度/電気伝導度で規定され、実効的には−1〜+1の間を取るスピンホール角と呼ばれる材料固有の値で表すことができる。 For the first conductive film 102, it is preferable to use a conductor that exhibits the reverse spin Hall effect or spin-orbit interaction. The magnitude of the inverse spin Hall effect is defined by spin Hall conductivity / electrical conductivity, and can be effectively expressed by a material-specific value called the spin Hall angle, which is between -1 and +1.
本実施形態の可変断熱素子では、磁性膜101中の温度勾配に沿って、温度の高い方から低い方へ流れる熱スピン流が発生し、さらにスピン注入と呼ばれる過程を経て、最終的に伝導膜へのスピン角運動量の流入が生じる。 In the variable heat insulating element of the present embodiment, a thermal spin current that flows from the higher temperature side to the lower temperature side is generated along the temperature gradient in the magnetic film 101, and further undergoes a process called spin injection, and finally the conductive film. There is an influx of spin angular momentum into.
スピン注入とは、磁性膜101において伝導膜102の界面近傍で磁化方向を中心に歳差運動するスピンが、伝導膜102中の伝導電子と相互作用し、スピン角運動量を受け渡したり、受け取ったりする現象である。 In spin injection, spins that age-shift around the magnetization direction in the magnetic film 101 near the interface of the conductive film 102 interact with conduction electrons in the conductive film 102 to transfer or receive spin angular momentum. It is a phenomenon.
その結果、伝導膜102中のスピン注入界面付近には、スピンを持った伝導電子が移動し純スピン流が生成する。この純スピン流は、アップスピンとダウンスピンを持った伝導電子が互いに逆方向に同量流れる。その結果、電荷移動は存在しないが、両スピンは符号と移動する向きの両方が互いに異なるために加算された結果として、スピン角運動量だけが流れる現象である。 As a result, conduction electrons having spin move near the spin injection interface in the conduction film 102, and a pure spin current is generated. In this pure spin current, conduction electrons having upspin and downspin flow in the same amount in opposite directions. As a result, there is no charge transfer, but both spins are added because both the sign and the direction of movement are different from each other, and as a result, only the spin angular momentum flows.
そして、この純スピン流が逆スピンホール効果により電流に変換される。 Then, this pure spin current is converted into an electric current by the reverse spin Hall effect.
本明細書では、このスピン注入現象が起こりうる状態を磁気的に結合していると表現する。このスピン注入現象は、磁性膜101と伝導膜102が直接接触している場合、もしくは直接接触はしていなくても、スピン角運動量が伝達しうる程度に接近している場合に生じるものである。すなわち、磁性膜101と伝導膜102の間に空隙が存在する場合や、中間層が挿入されている場合であっても、スピン注入現象が起こり得る場合は、磁気的な結合があると考える。 In the present specification, it is expressed that the states in which this spin injection phenomenon can occur are magnetically coupled. This spin injection phenomenon occurs when the magnetic film 101 and the conductive film 102 are in direct contact with each other, or when the spin angular momentum is close enough to be transmitted even if the magnetic film 101 and the conductive film 102 are not in direct contact with each other. .. That is, if there is a gap between the magnetic film 101 and the conductive film 102, or if the spin injection phenomenon can occur even when the intermediate layer is inserted, it is considered that there is a magnetic bond.
すなわち、第一の伝導膜102は、磁性膜101に磁気的に結合しており、スピンゼーベック効果により発生したスピン流JS0が界面を超えて伝導体側へ流れ込み、逆スピンホール効果による起電力に相当する熱起電力E0を発生する。 That is, the first conductive film 102 is magnetically coupled to the magnetic film 101, spin current J S0 generated by the spin Seebeck effect beyond the surface flows into the conduction side, the electromotive force generated by inverse spin Hall effect A corresponding thermoelectromotive force E 0 is generated.
スピン流から電流への変換効率は、大きな逆スピンホール効果を持つ材料でより大きくなる。例えば、逆スピンホール効果の比較的大きなAuやPt、Pd、Biなどの遷移金属、d軌道やf軌道を有する遷移金属、またはそれらを含有する合金材料を用いる。また、Cuなどの一般的な金属膜材料に、Feや、Irなどの材料を0.5〜10mol%程度ドープするだけでも、同様の効果を得ることができる。 The spin current-to-current conversion efficiency is greater for materials with a large reverse spin Hall effect. For example, a transition metal such as Au, Pt, Pd, or Bi having a relatively large reverse spin Hall effect, a transition metal having a d orbital or an f orbital, or an alloy material containing them is used. Further, the same effect can be obtained only by doping a general metal film material such as Cu with a material such as Fe or Ir in an amount of about 0.5 to 10 mol%.
また、伝導膜102として磁性を持つ材料を用いることも効果的である。この場合、異常ネルンスト効果と呼ばれる磁性起因の熱電効果を生じる。異常ネルンスト効果による起電力の向きは、異常ネルンスト係数の符号によって逆スピンホール効果と同一、もしくは反並行となる。 It is also effective to use a magnetic material as the conductive film 102. In this case, a magnetic-induced thermoelectric effect called the anomalous Nernst effect occurs. The direction of the electromotive force due to the anomalous Nernst effect is the same as or antiparallel to the inverse spin Hall effect, depending on the sign of the anomalous Nernst coefficient.
通常は両効果の起電力の向きが同一方向となる材料を用いることが好ましい。ただし、両効果の符号が異なっても、結果的に重なり合って現れる熱起電力E0が大きくなる材料を用いることが適切である。 Usually, it is preferable to use a material in which the electromotive force directions of both effects are in the same direction. However, even if the signs of both effects are different, it is appropriate to use a material in which the thermoelectromotive force E 0 that appears as a result of overlapping is large.
さらに伝導膜102は、ITO(Indium Tin Oxide=酸化インジウムスズ)などの酸化物伝導体や、組成CuMO2やSrMO3(Mは金属元素で、Mn、Ni、Co、Feのいずれかを含む)などの磁性酸化物半導体であってもよい。 Further, the conductive film 102 includes an oxide conductor such as ITO (Indium Tin Oxide) and compositions CuMO 2 and SrMO 3 (M is a metal element and contains any of Mn, Ni, Co, and Fe). It may be a magnetic oxide semiconductor such as.
第二伝導膜103にも、上記の伝導膜102に用いる材料と同様に逆スピンホール効果、もしくはスピン軌道相互作用を発現する導電体を用いることができる。ただし、第一の伝導膜102が持つスピンホール角と異なる符号のスピンホール角を有する導電体材料を用いることが好ましい。第二伝導膜103では、磁性膜101でスピンゼーベック効果により発生するスピン流JS1を補償するように、第二伝導膜103から界面を超えて磁性膜101側へスピン流が流れ出し、結果として逆スピンホール効果による熱起電力E1を発生するためである。 As the second conductive film 103, a conductor that exhibits the reverse spin Hall effect or spin-orbit interaction can be used as in the material used for the above-mentioned conductive film 102. However, it is preferable to use a conductor material having a spin Hall angle having a code different from that of the first conductive film 102. In the second conductive film 103, a spin current flows out from the second conductive film 103 to the magnetic film 101 side beyond the interface so as to compensate for the spin current J S1 generated by the spin Seebeck effect in the magnetic film 101, resulting in reverse. in order to generate a thermoelectromotive force E 1 by the spin Hall effect.
例えば、第一の伝導膜102にPtやPd、Niなどの金属を主に含む材料を用いた場合、第二の伝導膜103には、遷移金属の中でもW、Ta、Mo、Nb、Cr、V、Tiを用いると、第一の伝導膜102に用いたPtや、Pd、Ni、これらを含有する合金とは逆符号の電圧を得ることが出来る。すなわち、逆スピンホール効果によって発生する電流の向きが反対になる。 For example, when a material mainly containing a metal such as Pt, Pd, or Ni is used for the first conductive film 102, W, Ta, Mo, Nb, Cr, among the transition metals, are used for the second conductive film 103. When V and Ti are used, it is possible to obtain a voltage having a sign opposite to that of Pt, Pd, Ni, and an alloy containing these, which are used for the first conductive film 102. That is, the directions of the currents generated by the reverse spin Hall effect are opposite.
また、第一の伝導膜102と同様に、第二の伝導膜103にも母材の金属に不純物を添加した合金材料や、磁性を持つ材料を用いることができる。 Further, similarly to the first conductive film 102, an alloy material in which impurities are added to the base metal or a magnetic material can be used for the second conductive film 103.
パッド104、105,106には、電気伝導性が高い材料を用いることができる。さらに、パッド104、105,106は単一の材料で構成しても良いし、複合材料を用いることも可能である。さらに、第一の伝導膜102や、第二の伝導膜103の一部が、パッド104,105、106の機能の一部若しくは全てを担うように設計することも可能である。 For the pads 104, 105, 106, a material having high electrical conductivity can be used. Further, the pads 104, 105 and 106 may be made of a single material, or a composite material may be used. Further, it is also possible to design the first conductive film 102 and a part of the second conductive film 103 to carry a part or all of the functions of the pads 104, 105 and 106.
例えば磁性膜101、第一の伝導膜102、第二の伝導膜103との密着性を高めるため、それぞれの材料との界面には密着性の高い材料を用い、その他は伝導性の高い材料を用いることができる。また、表面の保護のために表面全体を化学的に安定な材料や、耐摩耗性に優れた材料で覆うことができる。 For example, in order to improve the adhesion to the magnetic film 101, the first conductive film 102, and the second conductive film 103, a material having high adhesion is used at the interface with each material, and other materials having high conductivity are used. Can be used. Further, in order to protect the surface, the entire surface can be covered with a chemically stable material or a material having excellent wear resistance.
制御機構107は、パッド104と106とに接続し、何らかの外部要因を反映して、パッド104と106の間を流れる電流量を制御する機構を有する。 The control mechanism 107 has a mechanism that is connected to the pads 104 and 106 and controls the amount of current flowing between the pads 104 and 106 by reflecting some external factor.
例えば、外部からの制御により短絡と開放の切り替えができるスイッチを用いることができる。 For example, a switch that can switch between short circuit and open can be used by external control.
また、制御機構107として、バイモルフスイッチなどの、環境温度に依存して、開放、短絡を自発的に変化させられる素子を用いることができる。この場合、外部制御無しで閾値として設定する温度付近で解放、短絡が切り替わる素子を実現できる。 Further, as the control mechanism 107, an element such as a bimorph switch that can spontaneously change the opening and shorting depending on the environmental temperature can be used. In this case, it is possible to realize an element in which the release and the short circuit are switched near the temperature set as the threshold value without external control.
また、PTC(Positive Temperature Coefficient)サーミスタやNTC(Negative Temperature Coefficient)サーミスタ等などの、環境温度に依存して電気的コンダクタンスを自発的に変化させられる素子を用いることができる。この場合、外部制御無しで基準となる温度付近で温度に依存して断熱の効果が変化する素子を実現できる。 Further, an element such as a PTC (Positive Temperature Coefficient) thermistor or an NTC (Negative Temperature Coefficient) thermistor, which can spontaneously change the electrical conductance depending on the environmental temperature, can be used. In this case, it is possible to realize an element in which the heat insulating effect changes depending on the temperature near the reference temperature without external control.
また、温度だけでなく、外部の光や音、湿度などの環境条件を計測するセンサを用いることで、外部環境情報を反映して動作する素子を実現することができる。 Further, by using a sensor that measures not only temperature but also environmental conditions such as external light, sound, and humidity, it is possible to realize an element that operates by reflecting external environmental information.
また、電流の整流機能を持つダイオードなどを用いた場合、熱流がある一方向に流れたときのみ可変断熱の効果が得られる素子を実現できる。 Further, when a diode having a current rectifying function or the like is used, it is possible to realize an element in which the effect of variable heat insulation can be obtained only when the heat flow flows in one direction.
さらに、制御機構107には、素子全体の状態を把握するための温度センサや電流センサ、電圧センサ、磁気センサなどの計測素子を備え、制御機構の動作にその情報を反映させることができる。また、素子全体の状態に応じて、外部の電流源から電流を取り込む形で、素子を動作させることも可能である。 Further, the control mechanism 107 is provided with measuring elements such as a temperature sensor, a current sensor, a voltage sensor, and a magnetic sensor for grasping the state of the entire element, and the information can be reflected in the operation of the control mechanism. It is also possible to operate the element by taking in a current from an external current source according to the state of the entire element.
以上の要素から、制御機構107を介して、第一の伝導膜102と、第二の伝導膜103とが直列に接続する閉回路が構成される。 From the above elements, a closed circuit is configured in which the first conductive film 102 and the second conductive film 103 are connected in series via the control mechanism 107.
制御機構107が短絡した状態を仮定すると、熱流入力Q0に比例する熱起電力E0+E1が発生する。さらに、制御機構107を含む閉回路全体のインピーダンスZにより決まる電流Iが閉回路に流れる。 Assuming that the control mechanism 107 is short-circuited, a thermoelectromotive force E 0 + E 1 proportional to the heat flow input Q 0 is generated. Further, a current I determined by the impedance Z of the entire closed circuit including the control mechanism 107 flows through the closed circuit.
電流Iは、スピンゼーベック効果の逆効果に当たるスピンペルチェ効果による熱電変換により熱流を発生させる。 The current I generates a heat flow by thermoelectric conversion by the spin Perche effect, which is the opposite effect of the spin Seebeck effect.
すなわち、電流Iに起因して第一の伝導膜102ではスピンホール効果によるスピン流が生成し、磁性膜101に流れ込む成分JsAを発生する。さらにJsAは、スピンペルチェ効果によって熱流QAを生む。また、第二の伝導膜103では、磁性膜101から流れ出すスピン流成分JsBを発生し、JsBによる熱流QBを生む。
すなわち、制御機構107の持つインピーダンスがほぼゼロに等しい時、熱流QA、QBはともに最大となり素子の実効的な熱抵抗が大きくなる。逆に制御機構107を開放した状態にするなどしてインピーダンスが無限大に大きい時、QA、QBは消失し、素子は材料本来の熱抵抗を持つ状態となる。素子に加わる温度差を利用した熱電効果によって、素子の熱抵抗を、素子を構成する材料自体の熱抵抗よりも大きくすることができ、断熱性能を高めることができる。断熱性能を抑え放熱を行いたい場合には、熱抵抗の増加を抑制することができる。また、熱抵抗の増減を適切に制御することができる。
That is, a spin current is generated in the first conductive film 102 due to the current I due to the spin Hall effect, and a component J sA flowing into the magnetic film 101 is generated. Furthermore J sA is produce heat flow Q A by spin Peltier effect. Further, in the second conductive film 103, a spin current component J sB flowing out from the magnetic film 101 is generated, and a heat flow Q B due to J sB is generated.
That is, when the impedance of the control mechanism 107 is almost equal to zero, both the heat flows Q A and Q B are maximized, and the effective thermal resistance of the element is increased. When impedance such as by the state of opening the control mechanism 107 conversely large infinity, Q A, Q B disappears, element is in a state of having a material inherent thermal resistance. Due to the thermoelectric effect utilizing the temperature difference applied to the element, the thermal resistance of the element can be made larger than the thermal resistance of the material itself constituting the element, and the heat insulating performance can be improved. When it is desired to suppress heat insulation performance and dissipate heat, it is possible to suppress an increase in thermal resistance. In addition, the increase or decrease in thermal resistance can be appropriately controlled.
以上述べたように、本実施形態による可変断熱素子では、既存のスピンゼーベック、スピンペルチェ効果を用いた素子と比較して、伝導膜が磁性膜の両面を覆っているため、片面だけを覆っている場合と比較して、単純計算では約2倍の熱起電力が得られる。従ってスピンペルチェ効果、スピンゼーベック効果を用いた可変断熱素子を提供することができる。また伝導膜が磁性膜の両側を覆うだけであるので構造も簡単である。 As described above, in the variable heat insulating element according to the present embodiment, since the conductive film covers both sides of the magnetic film as compared with the existing elements using the spin Seebeck and spin Pelche effects, it covers only one side. A simple calculation yields about twice as much thermoelectromotive force as in the case of. Therefore, it is possible to provide a variable heat insulating element using the spin Pelche effect and the spin Seebeck effect. Moreover, the structure is simple because the conductive film only covers both sides of the magnetic film.
さらに、本実施形態では符号の異なる熱起電力を発生する二種類の伝導膜を利用するため、それぞれの伝導膜が電気的に接続した素子構造をより簡便に実現でき、製造コストの低減を実現できる。
<可変断熱素の形成方法>
次に、本実施形態の可変断熱素子の形成方法を、図2乃至図4を参照して説明する。
Further, in the present embodiment, since two types of conductive films that generate thermoelectromotive forces having different codes are used, it is possible to more easily realize an element structure in which the respective conductive films are electrically connected, and to reduce the manufacturing cost. can.
<Method of forming variable adiabatic element>
Next, a method of forming the variable heat insulating element of the present embodiment will be described with reference to FIGS. 2 to 4.
本実施形態の可変断熱素子は、支持体200上に成膜される。 The variable heat insulating element of the present embodiment is formed on the support 200.
まず、支持体200上に第一の伝導膜202を図2に示すような、矩形の一部が飛び出た平面形状となるように成膜する。この飛び出た部分がパッド206になる。その成膜方法は、スパッタ法、蒸着法、メッキ法、スクリーン印刷法、インクジェット法、スプレー法及びスピンコート法などのいずれかの方法で成膜する方法が挙げられる。また、ナノコロイド溶液の塗布・焼結などを用いることができる。 First, a first conductive film 202 is formed on the support 200 so as to have a planar shape in which a part of a rectangle protrudes as shown in FIG. This protruding portion becomes the pad 206. Examples of the film forming method include a method of forming a film by any one of a sputtering method, a vapor deposition method, a plating method, a screen printing method, an inkjet method, a spray method and a spin coating method. Further, coating / sintering of a nanocolloidal solution or the like can be used.
図2に示す形状を形成する方法には、工業的に用いるパターニング方法を適用することが可能である。例として、ステンシル法、直接描画法、リソグラフィ法、マスクエッチング法などが挙げられる。 An industrially used patterning method can be applied to the method of forming the shape shown in FIG. Examples include a stencil method, a direct drawing method, a lithography method, and a mask etching method.
続いて、上記パターニング方法を用いるなどして、図3に示す平面形状の通り磁性膜201を成膜する。磁性膜201は平面視では第一の伝導膜202と大部分重なるが、第一の伝導膜202の前述の飛び出た部分とその反対側の端の部分は重なっていない。この反対側の端の部分がもう一つのパッドになる。 Subsequently, the magnetic film 201 is formed as shown in the planar shape shown in FIG. 3 by using the above patterning method or the like. The magnetic film 201 largely overlaps with the first conductive film 202 in a plan view, but the above-mentioned protruding portion of the first conductive film 202 and the opposite end portion do not overlap. This opposite end is another pad.
磁性膜201の形成方法としては、スパッタ法、有機金属分解法(MOD(Metal Organic Decomposition)法)、ゾルゲル法、エアロゾルデポジション法(AD(Aerosol Deposition)法)、フェライトめっき法、液相エピタキシー法、固相エピタキシー法、気相エピタキシー法、ディップ法、スプレー法、スピンコート法及び印刷法などのいずれかの方法を用いて成膜する方法が挙げられる。 Examples of the method for forming the magnetic film 201 include a sputtering method, an organic metal decomposition method (MOD (Metal Organic Decomposition) method), a sol-gel method, an aerosol deposition method (AD (Aerosol Deposition) method), a ferrite plating method, and a liquid phase epitaxy method. , Solid phase epitaxy method, vapor phase epitaxy method, dip method, spray method, spin coating method, printing method and the like.
さらに、第二の伝導膜203を、磁性膜201と同様の手法を用いるなどして、図4に示す形状つまり第一の伝導膜202を左右反転した平面形状に成膜する。 Further, the second conductive film 203 is formed into a film having the shape shown in FIG. 4, that is, the first conductive film 202 having a left-right inverted planar shape by using the same method as the magnetic film 201.
最後に、伝導膜202と伝導膜203に制御機構207を接続することで可変断熱素子が得られる。 Finally, a variable heat insulating element can be obtained by connecting the control mechanism 207 to the conductive film 202 and the conductive film 203.
本実施形態の方法では、素子の一部もしくは全てについて、簡便な塗布プロセス等を適用すれば一括生産を行うことが可能で、製作コストを大きく低減することができる。また、薄膜シート型の素子を広い面積に渡って適用することも可能で、形状の自由度を持ち合わせている。支持体200を薄くすれば、平面だけなく曲がった面や複雑な形状を持つ面にも実装可能となる。 In the method of the present embodiment, batch production can be performed by applying a simple coating process or the like to a part or all of the elements, and the manufacturing cost can be greatly reduced. It is also possible to apply a thin film sheet type element over a wide area, and it has a degree of freedom in shape. If the support 200 is made thin, it can be mounted not only on a flat surface but also on a curved surface or a surface having a complicated shape.
図1で説明したパッド104の部分は、伝導膜202の中で磁性膜201にも伝導膜203にも重ならない部分(図4のパッド204)が担っている。また図1のパッド105の部分は、伝導膜202と伝導膜203が直接重なる部分(図4のパッド205)が担っている。さらにパッド106の部分は、伝導膜203の中で磁性膜201にも伝導膜202にも重ならない部分(図4のパッド206)が担っている。 The portion of the pad 104 described with reference to FIG. 1 is covered by a portion of the conductive film 202 that does not overlap with the magnetic film 201 or the conductive film 203 (pad 204 of FIG. 4). Further, the portion of the pad 105 in FIG. 1 is covered by a portion (pad 205 in FIG. 4) in which the conductive film 202 and the conductive film 203 directly overlap each other. Further, the portion of the pad 106 is borne by a portion of the conductive film 203 that does not overlap with the magnetic film 201 or the conductive film 202 (pad 206 in FIG. 4).
以下、第1の実施形態について、実施例を用いてさらに具体的に説明する。
(実施例1)
本実施形態の具体的な例として実施例1を、図2乃至図4を参照して説明する。
Hereinafter, the first embodiment will be described in more detail with reference to Examples.
(Example 1)
As a specific example of this embodiment, Example 1 will be described with reference to FIGS. 2 to 4.
まず、支持体200として大きさ10cm×10cm、厚さ25μmのポリイミドフィルムを準備した。 First, a polyimide film having a size of 10 cm × 10 cm and a thickness of 25 μm was prepared as the support 200.
続いて、マグネトロンスパッタ法を用いて、支持体200上に第一の伝導膜202としてWを、ステンシルマスクを用いて凡そ幅8cm×長さ8cmの大きさで、厚さ5nm分を蒸着した。 Subsequently, using the magnetron sputtering method, W was deposited on the support 200 as the first conductive film 202, and a thickness of 5 nm was deposited on the support 200 using a stencil mask to a size of about 8 cm in width and 8 cm in length.
次に、既知のフェライト薄膜製造法を用いて、図2の可変断熱素子に用いる磁性膜101として、Ni0.1Zn0.1Fe1.8O4膜を作製した。磁性膜のサイズは凡そ幅9cm×長さ6cm、膜厚は1umとした。 Next, using a known ferrite thin film manufacturing method, a Ni 0.1 Zn 0.1 Fe 1.8 O 4 film was produced as the magnetic film 101 used for the variable heat insulating element of FIG. The size of the magnetic film was approximately 9 cm in width × 6 cm in length, and the film thickness was 1 um.
さらに、マグネトロンスパッタ法を用いて、第二の伝導膜203としてPtを、ステンシルマスクを用いて凡そ幅8cm×長さ8cmの大きさで、厚さ5nm分を蒸着した。 Further, using the magnetron sputtering method, Pt was deposited as the second conductive film 203 using a stencil mask to have a size of about 8 cm in width × 8 cm in length and a thickness of 5 nm.
最後に、制御機構207として外部からオンとオフの制御ができるリレーを接続し、本実施形態の可変断熱素子を作製した。 Finally, a relay that can be turned on and off from the outside is connected as the control mechanism 207, and the variable heat insulating element of the present embodiment is manufactured.
この可変断熱素子を、温度が摂氏23度の環境温度にある基準熱浴と、摂氏53度の高温側の熱浴の間に挟んだとき、素子と各熱浴との界面熱抵抗、支持体の熱抵抗などを考慮し、可変断熱素子自身には約1[mK]の温度差が安定的に生じる状況を考える。 When this variable heat insulating element is sandwiched between a reference heat bath whose temperature is an ambient temperature of 23 degrees Celsius and a heat bath on the high temperature side of 53 degrees Celsius, the interfacial thermal resistance between the element and each heat bath and the support Considering the thermal resistance of the variable heat insulating element itself, consider a situation in which a temperature difference of about 1 [mK] is stably generated.
制御機構207が開放状態の時、素子の厚さの大部分を占める磁性膜201には、約10[kW/m2]の熱流束密度で熱流が流れ、熱抵抗θ0は約0.1[μK/(W/m2)]となる。 When the control mechanism 207 is in the open state, heat flows through the magnetic film 201, which occupies most of the thickness of the element, with a heat flux density of about 10 [kW / m 2 ], and the thermal resistance θ 0 is about 0.1. It becomes [μK / (W / m 2 )].
制御機構207が短絡状態となった場合、実効的な熱抵抗θ1は、フーリエの関係式にスピンペルチェ熱流成分を加えた式 θ1=1[mK]/(10[MW/m2]+QA+QB)で表すことができる。この時、QA、QB共にQ0と逆符号となるためθ1はθ0よりも大きくなる。 When the control mechanism 207 is short-circuited, the effective thermal resistance θ 1 is the equation θ 1 = 1 [mK] / (10 [MW / m 2 ] + Q) obtained by adding the spin Pelche heat flow component to the Fourier relational expression. It can be represented by A + Q B). At this time, both Q A and Q B have the opposite sign to Q 0 , so θ 1 is larger than θ 0.
すなわちリレーで構成されるスイッチを操作することによって、可変断熱素子の熱抵抗が高い状態、もしくは低い状態に設定することができる。
(第2の実施形態)
図5の断面図を用いて第2の実施形態を説明する。
That is, the thermal resistance of the variable heat insulating element can be set to a high state or a low state by operating a switch composed of a relay.
(Second embodiment)
A second embodiment will be described with reference to the cross-sectional view of FIG.
本実施形態の可変断熱素子は、実施例1に記載の支持体が電気伝導性を持つ材料である場合や、可変断熱素子の伝導膜が表面に露出しないように、絶縁性の保護膜で被覆する必要がある場合に対応することを目的としている。 The variable heat insulating element of the present embodiment is covered with an insulating protective film so that the support according to the first embodiment is made of a material having electrical conductivity or the conductive film of the variable heat insulating element is not exposed on the surface. The purpose is to respond when it is necessary to do so.
すなわち、実施例1の可変断熱素子に加えて、絶縁や保護のための被覆層を設けている物であり、さらに被覆層に磁性絶縁体を用いることで、付加的なスピンペルチェ効果によるより大きな断熱可変効果が得られることを特徴としている。 That is, in addition to the variable heat insulating element of Example 1, a coating layer for insulation and protection is provided, and by using a magnetic insulator for the coating layer, it is larger due to the additional spin perche effect. It is characterized by obtaining a variable heat insulation effect.
本実施形態の可変断熱素子は、図5に示すように電気伝導性を持つ支持体500、それぞれ実施例1と同様の磁性膜501、第一の伝導膜502、第二の伝導膜503、制御機構507として、外部からのON/OFF制御が可能なスイッチを備えている。 As shown in FIG. 5, the variable heat insulating element of the present embodiment includes a support 500 having electrical conductivity, a magnetic film 501 similar to that of the first embodiment, a first conductive film 502, a second conductive film 503, and a control. The mechanism 507 includes a switch capable of external ON / OFF control.
さらに、可変断熱素子と支持体500との間に保護用磁性膜508を、可変断熱素子の表面に保護用磁性膜509を備えている。二つの保護用磁性膜は、材料として磁性膜501と同じフェライト膜を用いている。 Further, a protective magnetic film 508 is provided between the variable heat insulating element and the support 500, and a protective magnetic film 509 is provided on the surface of the variable heat insulating element. The two protective magnetic films use the same ferrite film as the magnetic film 501 as a material.
その結果、スピンゼーベック効果によって生じた電流は、第一、第二の伝導膜から素子の外部に散逸することなく、効果的にスピンペルチェ効果による熱流束の発生に寄与することができるため効果的である。 As a result, the current generated by the spin Seebeck effect can effectively contribute to the generation of heat flux by the spin Perche effect without being dissipated from the first and second conductive films to the outside of the device, which is effective. Is.
また保護用磁性膜に、磁性膜501と同様に磁性を持ち熱スピン流の伝搬を実現する材料を用いた場合、両方の保護用磁性膜からのスピン流による熱起電の電流成分が加わるためより効果的である。
(第3の実施形態)
第3の実施形態では、第1、第2の実施形態、実施例1で述べた可変断熱素子をシールド材に用いた例を説明する。
Further, when the protective magnetic film is made of a material having magnetism similar to that of the magnetic film 501 and realizing the propagation of the thermal spin current, the current component of thermoelectric current due to the spin current from both protective magnetic films is added. It is more effective.
(Third Embodiment)
In the third embodiment, an example in which the variable heat insulating element described in the first and second embodiments and the first embodiment is used as the shielding material will be described.
例えば、人工衛星や宇宙探査機の内部温度を一定に保つ目的で機体を覆うシールド材は、太陽からの輻射熱流入や、太陽の陰になっている部分からの輻射熱流出を最小限にするために、材料の熱抵抗を高くすることが一般的に好ましい。逆にシールドの内部で発熱の大きな機器を動作させる場合には、逆に熱抵抗を低減して放熱を促すことが好ましい。熱抵抗を高くしたい場合には可変断熱素子を短絡し、逆に熱抵抗を低減したい場合には開放する。そのためには制御機構として、例えば前述のバイモルフスイッチ、PTCサーミスタ、NTCサーミスタ等を用いることで、環境温度に依存して自動的に開放、短絡を切り替えるようにすればよい。 For example, the shield material that covers the aircraft for the purpose of keeping the internal temperature of artificial satellites and space probes constant is to minimize the inflow of radiant heat from the sun and the outflow of radiant heat from the shaded part of the sun. , It is generally preferable to increase the thermal resistance of the material. On the contrary, when operating a device that generates a large amount of heat inside the shield, it is preferable to reduce the thermal resistance and promote heat dissipation. If you want to increase the thermal resistance, short-circuit the variable heat insulating element, and conversely, if you want to reduce the thermal resistance, open it. For that purpose, for example, by using the above-mentioned bimorph switch, PTC thermistor, NTC thermistor or the like as a control mechanism, it is sufficient to automatically switch between opening and shorting depending on the environmental temperature.
可変断熱素子は、そのような場合に通常の材料では実現が困難な、固体素子による熱抵抗変化機能を提供することが可能で、特にスピンゼーベック、スピンペルチェ効果を用いると薄膜やシート状の素子形状を持つ特徴を生かして、シールド材へ容易に実装することが可能である。 In such a case, the variable heat insulating element can provide a thermal resistance change function by a solid element, which is difficult to realize with ordinary materials. Especially, when the spin Seebeck and spin perche effects are used, a thin film or sheet-like element is used. Taking advantage of its shape, it can be easily mounted on a shield material.
さらに、第2の実施形態で説明した可変断熱素子は磁性膜と導電性の膜からなる多層構造を有している。 Further, the variable heat insulating element described in the second embodiment has a multilayer structure composed of a magnetic film and a conductive film.
図6に示すように支持体600の上に、それぞれ実施例1と同様の材料で形成される第一の磁性膜601、第二の磁性膜602、第三の磁性膜603、さらに実施例1と同様の第一の伝導材料604、第一の磁性材料と異なる符号のスピンホール角を有する第二の伝導材料605が図6に示すように積層構造を形成している。
As shown in FIG. 6, a first magnetic film 601, a second magnetic film 602, a third magnetic film 603, and further Example 1 formed of the same material as in Example 1 on the support 600, respectively. The first
この時、各々の磁性膜の上面と下面には異なる伝導材料からなる膜が存在する。すなわち、積層方向へ第一の伝導材料604と第二の伝導材料605は交互に存在し、また交互に接続している。交互に接続する箇所は、素子上方から見て互い違いにしており、重ならないようにしている。
At this time, there are films made of different conductive materials on the upper surface and the lower surface of each magnetic film. That is, the first
さらに、伝導材料は外部の制御機構607と閉回路を形成している。また、素子全体は保護用磁性膜606で覆われ、絶縁が保たれている。 Further, the conductive material forms a closed circuit with an external control mechanism 607. Further, the entire element is covered with a protective magnetic film 606 to maintain insulation.
複数の磁性材料、伝導材料で形成される積層構造は、その周期、材料の組み合わせ等に対応して、光の反射膜、反射防止膜としても機能する。反射膜は、膜を突き抜ける光に対して、透過防止膜として機能する。 The laminated structure formed of a plurality of magnetic materials and conductive materials also functions as a light reflection film and an antireflection film according to the period, the combination of materials, and the like. The reflective film functions as a transmission prevention film for light penetrating the film.
すなわち、人工衛星や宇宙探査機に用いるシールド材としては、波長が約500nm付近にピークを持つ太陽光スペクトルによる熱流入を抑えるために、可変断熱素子に用いる各材料の屈折率と膜厚を最適化して、反射効率が高くなるように設計するとよい。
(第4の実施形態)
図7の断面図を用いて本実施形態を説明する。本実施形態は、第3の実施形態で述べた、複数の磁性材料、伝導材料で形成される積層構造を持つ可変断熱素子の制御機構707に、直列に外部電源710を接続している。
That is, as a shield material used for artificial satellites and space probes, the refractive index and film thickness of each material used for the variable heat insulating element are optimized in order to suppress heat inflow due to the solar spectrum having a peak at a wavelength of about 500 nm. It is advisable to design it so that the reflection efficiency is high.
(Fourth Embodiment)
The present embodiment will be described with reference to the cross-sectional view of FIG. In this embodiment, an external power supply 710 is connected in series to the control mechanism 707 of the variable heat insulating element having a laminated structure formed of a plurality of magnetic materials and conductive materials described in the third embodiment.
第2の実施形態2で説明した人工衛星や宇宙探査機の機体を覆うシールド材は、シールドの内部で発熱の大きな機器を動作させる場合には、放熱効率を最大にすることが好ましい。 The shield material that covers the body of the artificial satellite or space probe described in the second embodiment preferably maximizes the heat dissipation efficiency when operating a device that generates a large amount of heat inside the shield.
この場合、スピンゼーベック効果により素子内部で発生したエネルギーによる断熱性能変化分だけでなく、図7に示すように、多層型可変断熱素子701に外部電源710を接続して、外部エネルギーによる積極的な放熱を行うことができる。 In this case, not only the change in heat insulation performance due to the energy generated inside the element due to the spin Seebeck effect, but also the external power supply 710 is connected to the multilayer variable heat insulation element 701 as shown in FIG. It can dissipate heat.
外部電源710によって多層型可変断熱素子701に電流を流す。外部電源710の制御機構のある側を+、その反対側を−とすると、電流は上層の伝導膜からその下層の伝導膜、・・・と流れ、最下層の伝導膜から外部電源710に戻る。制御機構は短絡しておく。保護抵抗を入れてもよい。 A current is passed through the multilayer variable heat insulating element 701 by the external power supply 710. If the side with the control mechanism of the external power supply 710 is + and the opposite side is-, the current flows from the upper conductive film to the lower conductive film, and so on, and returns to the external power supply 710 from the lowermost conductive film. .. The control mechanism is short-circuited. A protective resistor may be inserted.
電流を流すとスピンホール効果によって、伝導膜に挟まれた磁性膜にスピン流が生じ、その結果熱流(温度勾配)が発生する。つまり図1で述べたのと逆工程によって多層型可変断熱素子701の膜厚方向に温度勾配が発生する。温度勾配の高温側を放熱したい箇所、例えば電子機器の表面に接触させると、電子機器から放熱させることが可能となる。外部電源710から流す電流を調整することによってスピン流の大きさつまり温度勾配の大きさを調整することができるので、断熱性能の調整が可能になる。 When an electric current is passed, a spin current is generated in the magnetic film sandwiched between the conductive films due to the spin Hall effect, and as a result, a heat flow (temperature gradient) is generated. That is, a temperature gradient is generated in the film thickness direction of the multilayer variable heat insulating element 701 by the reverse process described in FIG. When the high temperature side of the temperature gradient is brought into contact with a place where heat is desired to be dissipated, for example, the surface of the electronic device, heat can be dissipated from the electronic device. Since the magnitude of the spin current, that is, the magnitude of the temperature gradient can be adjusted by adjusting the current flowing from the external power source 710, the heat insulating performance can be adjusted.
なお可変断熱素子は多層型に限らず、図1に示したような単層型可変断熱素子を用いてもかまわない。 上記の実施形態の一部または全部は、以下の付記のようにも記載されうるが、以下には限られない。
(付記1)
少なくとも一方向の内部磁化を有する磁性膜を有し、前記磁性膜の一方の面に前記磁性膜と磁気的に結合した第一の伝導膜と、前記磁性膜のもう一方の面に前記磁性膜と磁気的に結合した第二の伝導膜とを備え、
前記第一、第二の伝導膜はいずれも、少なくとも一部にスピン軌道相互作用を有する材料を含み、スピン軌道相互作用の大きさに関係するスピンホール角を有し、前記スピンホール角が互い異なる符号であり、前記第一の伝導膜、前記第二の伝導膜、電気的コンダクタンスを変化させることができる制御機構と、が閉回路を構成可能であることを特徴とする可変断熱素子。
(付記2)
前記第一の伝導膜、前記第二の伝導膜及び前記制御機構が直列の閉回路を構成する付記1に記載の可変断熱素子。
(付記3)
前記第一、第二の伝導膜が一端で電気的に接続されている付記1または2に記載の可変断熱素子。
(付記4)
前記磁性膜は絶縁体または半導体である付記1から3のいずれか一項に記載の可変断熱素子。
(付記5)
前記第一、第二の伝導膜が磁性膜である付記1から4のいずれか一項に記載の可変断熱素子。
(付記6)
前記第一の伝導膜、前記第二の伝導膜、前記制御機構、及び電源が直列の閉回路を構成する付記1から5のいずれか一項に記載の可変断熱素子。
(付記7)
前記第一の伝導体、及び第二の伝導体を覆う絶縁性の保護膜を有する付記1から6のいずれか一項に記載の可変断熱素子。
(付記8)
前記絶縁性の保護膜は、少なくとも一方向の内部磁化を有する磁性膜で前記第一の伝導体、及び第二の伝導体に磁気的に結合している付記7に記載の可変断熱素子。
(付記9)
前記第一伝導膜、前記磁性膜、前記第二の伝導膜が複数積層している付記1から8のいずれか一項に記載の可変断熱素子。
(付記10)
前記磁性膜、前記第一伝導膜、前記第二の伝導膜、前記保護膜の少なくともいずれか一つが、膜を突き抜ける光に対して、透過防止膜として機能する付記7から9のいずれか一項に記載の可変断熱素子。
(付記11)
前記可変断熱素子はシート状の支持体に形成されている付記1から10のいずれか一項に記載の可変断熱素子。
(付記12)
前記制御機構は開放と短絡の切り替えができるスイッチである付記1から11のいずれか一項に記載の可変断熱素子。
(付記13)
前記スイッチとして、温度に応じて開放と短絡が切り替わるスイッチを用いる付記12に記載の可変断熱素子。
(付記14)
前記制御機構として整流素子を設け、熱流がある一方向に流れたとき前記可変断熱素子の熱抵抗を高い状態にする付記1から11のいずれか一項に記載の可変断熱素子。
(付記15)
付記1から14のいずれか一項に記載の可変断熱素子の制御機構を短絡状態とすることで前記可変断熱素子の熱抵抗が高い状態にするか、または前記制御機構を開放状態とすることで前記の熱抵抗が前記短絡状態よりも低い状態にすることを特徴とする可変断熱素子の駆動方法。
(付記16)
前記可変断熱素子の熱抵抗が高い状態とは、前記熱抵抗が前記可変断熱素子を構成する材料の熱抵抗よりも高い状態である付記15に記載の可変断熱素子の駆動方法。
(付記17)
付記6から16のいずれか一項に記載の可変断熱素子の駆動方法であって、前記電源から前記直列の閉回路に流す電流によって生じた温度勾配の高温側を、放熱したい箇所に接触させる可変断熱素子の駆動方法。
(付記18)
支持体上に、少なくとも一部にスピン軌道相互作用を有する材料を含み、スピン軌道相互作用の大きさに関係する第1のスピンホール角を有する第一の伝導膜を形成し、前記第一の伝導膜上に、少なくとも一方向の内部磁化を有し、前記第一の伝導膜と磁気的に結合した磁性膜を形成し、前記磁性膜上に少なくとも一部にスピン軌道相互作用を有する材料を含み、スピン軌道相互作用の大きさに関係し、前記第1のスピンホール角とは異なる符号の第2のスピンホール角を有し、前記磁性膜と磁気的に結合した第二の伝導膜を形成し、
前記第一の伝導膜及び前記第二の伝導膜に接続することを特徴とする可変断熱素子の形成方法。
The variable heat insulating element is not limited to the multilayer type, and a single layer type variable heat insulating element as shown in FIG. 1 may be used. Some or all of the above embodiments may also be described, but not limited to:
(Appendix 1)
A first conductive film having a magnetic film having internal magnetization in at least one direction and magnetically bonded to the magnetic film on one surface of the magnetic film, and the magnetic film on the other surface of the magnetic film. With a second conductive film that is magnetically coupled to
Both the first and second conductive films contain at least a part of a material having a spin-orbit interaction, have a spin Hall angle related to the magnitude of the spin-orbit interaction, and the spin-hole angles are mutually exclusive. A variable heat insulating element having a different reference numeral, wherein the first conductive film, the second conductive film, and a control mechanism capable of changing the electrical conductance can form a closed circuit.
(Appendix 2)
The variable heat insulating element according to Appendix 1, wherein the first conductive film, the second conductive film, and the control mechanism form a closed circuit in series.
(Appendix 3)
The variable heat insulating element according to Appendix 1 or 2, wherein the first and second conductive films are electrically connected at one end.
(Appendix 4)
The variable heat insulating element according to any one of Supplementary note 1 to 3, wherein the magnetic film is an insulator or a semiconductor.
(Appendix 5)
The variable heat insulating element according to any one of Supplementary note 1 to 4, wherein the first and second conductive films are magnetic films.
(Appendix 6)
The variable heat insulating element according to any one of Supplementary note 1 to 5, wherein the first conductive film, the second conductive film, the control mechanism, and the power supply form a closed circuit in series.
(Appendix 7)
The variable heat insulating element according to any one of Supplementary note 1 to 6, which has an insulating protective film covering the first conductor and the second conductor.
(Appendix 8)
The variable heat insulating element according to Appendix 7, wherein the insulating protective film is a magnetic film having internal magnetization in at least one direction and is magnetically bonded to the first conductor and the second conductor.
(Appendix 9)
The variable heat insulating element according to any one of Appendix 1 to 8, wherein a plurality of the first conductive film, the magnetic film, and the second conductive film are laminated.
(Appendix 10)
Any one of the items 7 to 9 in which at least one of the magnetic film, the first conductive film, the second conductive film, and the protective film functions as a transmission prevention film with respect to light penetrating the film. The variable insulation element described in.
(Appendix 11)
The variable heat insulating element according to any one of Appendix 1 to 10, wherein the variable heat insulating element is formed on a sheet-shaped support.
(Appendix 12)
The variable heat insulating element according to any one of Appendix 1 to 11, wherein the control mechanism is a switch capable of switching between open and short circuits.
(Appendix 13)
The variable heat insulating element according to Appendix 12, wherein as the switch, a switch that switches between open and short circuits according to temperature is used.
(Appendix 14)
The variable heat insulating element according to any one of Supplementary note 1 to 11, wherein a rectifying element is provided as the control mechanism, and when a heat flow flows in a certain direction, the thermal resistance of the variable heat insulating element is increased.
(Appendix 15)
By short-circuiting the control mechanism of the variable heat insulating element according to any one of Appendix 1 to 14, the thermal resistance of the variable heat insulating element is increased, or by opening the control mechanism. A method for driving a variable heat insulating element, which comprises setting the thermal resistance to a state lower than the short-circuited state.
(Appendix 16)
The method for driving a variable heat insulating element according to Appendix 15, wherein the state in which the thermal resistance of the variable heat insulating element is high is a state in which the thermal resistance is higher than the thermal resistance of the material constituting the variable heat insulating element.
(Appendix 17)
The method for driving a variable heat insulating element according to any one of Appendix 6 to 16, wherein the high temperature side of the temperature gradient generated by the current flowing from the power supply to the closed circuit in series is brought into contact with a portion to be dissipated. How to drive the heat insulating element.
(Appendix 18)
A first conductive film containing a material having spin-orbit interaction at least in part and having a first spin-hole angle related to the magnitude of spin-orbit interaction is formed on the support, and the first conductive film is formed. A material having internal magnetization in at least one direction, forming a magnetic film magnetically bonded to the first conductive film on the conductive film, and having spin-orbit interaction at least partially on the magnetic film. A second conductive film that includes, has a second spin-hole angle of a code different from that of the first spin-hole angle, and is magnetically coupled to the magnetic film, is related to the magnitude of spin-orbit interaction. Form and
A method for forming a variable heat insulating element, which comprises connecting to the first conductive film and the second conductive film.
101、201、501 磁性膜
102、202、502 第一の伝導膜
103、203、503 第二の伝導膜
104、105、106、205 パッド
107、207、507、607、707 制御機構
200、500、600 支持体
508、509、606 保護用磁性膜
601 第一の磁性膜
602 第二の磁性膜
603 第三の磁性膜
604 第一の伝導材料
605 第二の伝導材料
701 多層型可変断熱素子
710 外部電源
101, 201, 501 Magnetic film 102, 202, 502 First conductive film 103, 203, 503 Second conductive film 104, 105, 106, 205 Pad 107, 207, 507, 607, 707 Control mechanism 200, 500, 600 Support 508, 509, 606 Protective magnetic film 601 First magnetic film 602 Second magnetic film 603 Third
Claims (11)
前記第一、第二の伝導膜はいずれも、少なくとも一部にスピン軌道相互作用を有する材料を含み、スピン軌道相互作用の大きさに関係するスピンホール角を有し、前記スピンホール角が互いに異なる符号であり、
前記第一の伝導膜、前記第二の伝導膜、電気的コンダクタンスを変化させることができる制御機構、及び電源が直列の閉回路を構成する可変断熱素子。 A first conductive film having a magnetic film having internal magnetization in at least one direction and magnetically bonded to the magnetic film on one surface of the magnetic film, and the magnetic film on the other surface of the magnetic film. With a second conductive film that is magnetically coupled to
Both the first and second conductive films contain at least a part of a material having a spin-orbit interaction, have a spin Hall angle related to the magnitude of the spin-orbit interaction, and the spin-hole angles are mutual. to a different code,
The first conductive film, the second conductive film, a control mechanism capable of changing the electrical conductance, and a variable heat insulating element in which a power source constitutes a closed circuit in series.
前記第一の伝導膜及び前記第二の伝導膜を接続し、
前記第一の伝導膜、前記第二の伝導膜、電気的コンダクタンスを変化させることができる制御機構及び電源を、直列の閉回路を構成するように接続することを特徴とする可変断熱素子の形成方法。 A first conductive film containing a material having spin-orbit interaction at least in part and having a first spin-hole angle related to the magnitude of spin-orbit interaction is formed on the support, and the first conductive film is formed. A material having internal magnetization in at least one direction, forming a magnetic film magnetically bonded to the first conductive film on the conductive film, and having spin-orbit interaction at least partially on the magnetic film. A second conductive film that includes, has a second spin-hole angle of a code different from that of the first spin-hole angle, and is magnetically coupled to the magnetic film, is related to the magnitude of spin-orbit interaction. Form and
Connecting the first conductive film and the second conductive film,
Formation of a variable heat insulating element characterized by connecting the first conductive film, the second conductive film, a control mechanism capable of changing electrical conductance, and a power supply so as to form a closed circuit in series. Method.
前記第一、第二の伝導膜はいずれも、少なくとも一部にスピン軌道相互作用を有する材料を含み、スピン軌道相互作用の大きさに関係するスピンホール角を有し、前記スピンホール角が互いに異なる符号であり、前記第一の伝導膜、前記第二の伝導膜、電気的コンダクタンスを変化させることができる制御機構と、が閉回路を構成可能であり、 Both the first and second conductive films contain at least a part of a material having a spin-orbit interaction, have a spin Hall angle related to the magnitude of the spin-orbit interaction, and the spin-hole angles are mutually exclusive. A closed circuit can be configured by the first conductive film, the second conductive film, and a control mechanism capable of changing the electrical conductance, which have different symbols.
前記第一の伝導膜、及び第二の伝導膜を覆い、少なくとも一方向の内部磁化を有する絶縁性の保護膜を有する可変断熱素子。 A variable heat insulating element that covers the first conductive film and the second conductive film and has an insulating protective film having internal magnetization in at least one direction.
前記第一、第二の伝導膜はいずれも、少なくとも一部にスピン軌道相互作用を有する材料を含み、スピン軌道相互作用の大きさに関係するスピンホール角を有し、前記スピンホール角が互いに異なる符号であり、 Both the first and second conductive films contain at least a part of a material having a spin-orbit interaction, have a spin Hall angle related to the magnitude of the spin-orbit interaction, and the spin-hole angles are mutually exclusive. It has a different code and
前記第一の伝導膜、前記第二の伝導膜、電気的コンダクタンスを変化させることができる制御機構及び電源、が直列の閉回路を構成可能とする可変断熱素子の駆動方法であって、 A method for driving a variable heat insulating element, wherein the first conductive film, the second conductive film, a control mechanism capable of changing electrical conductance, and a power supply can form a closed circuit in series.
前記電源から前記直列の閉回路に流す電流によって生じた温度勾配の高温側を、放熱したい箇所に接触させる可変断熱素子の駆動方法。 A method for driving a variable heat insulating element in which a high temperature side of a temperature gradient generated by a current flowing from a power source to a closed circuit in series is brought into contact with a portion where heat is desired to be dissipated.
前記第一、第二の伝導膜はいずれも、少なくとも一部にスピン軌道相互作用を有する材料を含み、スピン軌道相互作用の大きさに関係するスピンホール角を有し、前記スピンホール角が互いに異なる符号であり、 Both the first and second conductive films contain at least a part of a material having a spin-orbit interaction, have a spin Hall angle related to the magnitude of the spin-orbit interaction, and the spin-hole angles are mutually exclusive. It has a different code and
前記第一の伝導膜、前記磁性膜、前記第二の伝導膜が複数積層し、 A plurality of the first conductive film, the magnetic film, and the second conductive film are laminated,
前記第一の伝導膜、前記第二の伝導膜、電気的コンダクタンスを変化させることができる制御機構及び電源、が直列の閉回路を構成可能とする可変断熱素子の駆動方法であって、 A method for driving a variable heat insulating element, wherein the first conductive film, the second conductive film, a control mechanism capable of changing electrical conductance, and a power supply can form a closed circuit in series.
前記電源から前記直列の閉回路に流す電流によって生じた温度勾配の高温側を、放熱したい箇所に接触させる可変断熱素子の駆動方法。 A method for driving a variable heat insulating element in which a high temperature side of a temperature gradient generated by a current flowing from a power source to a closed circuit in series is brought into contact with a portion where heat is desired to be dissipated.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017004437A JP6907544B2 (en) | 2017-01-13 | 2017-01-13 | Variable heat insulating element, its driving method, and its forming method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017004437A JP6907544B2 (en) | 2017-01-13 | 2017-01-13 | Variable heat insulating element, its driving method, and its forming method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2018113413A JP2018113413A (en) | 2018-07-19 |
JP6907544B2 true JP6907544B2 (en) | 2021-07-21 |
Family
ID=62912403
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017004437A Active JP6907544B2 (en) | 2017-01-13 | 2017-01-13 | Variable heat insulating element, its driving method, and its forming method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6907544B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102290180B1 (en) * | 2019-11-13 | 2021-08-17 | 울산과학기술원 | Transparent spin thermoelectric element and manufaturing method thereof |
CN118020407A (en) * | 2021-09-29 | 2024-05-10 | 日东电工株式会社 | Thermoelectric conversion element and method for manufacturing thermoelectric conversion element |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013047254A1 (en) * | 2011-09-27 | 2013-04-04 | 日本電気株式会社 | Member with thermoelectric conversion function, and method for producing same |
WO2015115056A1 (en) * | 2014-01-29 | 2015-08-06 | 日本電気株式会社 | Thermoelectric transducer, thermoelectric transducer module, and manufacturing method for thermoelectric transducer |
JP6267562B2 (en) * | 2014-03-26 | 2018-01-24 | 株式会社Kelk | Thermoelectric power generation apparatus and thermoelectric power generation method |
-
2017
- 2017-01-13 JP JP2017004437A patent/JP6907544B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2018113413A (en) | 2018-07-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5585314B2 (en) | Thermoelectric conversion element and thermoelectric conversion device | |
JP5991589B2 (en) | Thermoelectric conversion element, method for manufacturing thermoelectric conversion element, and thermoelectric conversion method | |
US10461238B2 (en) | Thermoelectric conversion structure and method for making the same | |
EP2876687B1 (en) | Thermoelectric conversion element and manufacturing method for same | |
JP5987835B2 (en) | Thermoelectric conversion element | |
WO2014115518A1 (en) | Thermoelectric transducer and method for manufacturing same | |
JP6907544B2 (en) | Variable heat insulating element, its driving method, and its forming method | |
JP5775163B2 (en) | Thermoelectric conversion element and thermoelectric conversion module using the same | |
JP6066091B2 (en) | Thermoelectric conversion element and manufacturing method thereof | |
JP6565689B2 (en) | Thermoelectric conversion element, thermoelectric conversion element module, and method of manufacturing thermoelectric conversion element | |
WO2014010286A1 (en) | Thermoelectric conversion element, and method for producing same | |
JP6349863B2 (en) | Spin current thermoelectric conversion element, manufacturing method thereof, and thermoelectric conversion device | |
JP2018006546A (en) | Thermoelectric conversion element, manufacturing method thereof and thermoelectric conversion device | |
WO2018146713A1 (en) | Thermoelectric conversion element and method for manufacturing same | |
JP7505310B2 (en) | Thermoelectric materials | |
US11417818B2 (en) | Thermoelectric conversion element | |
JP6172439B2 (en) | Spin current thermoelectric transducer | |
JP2021125578A (en) | Heat flow switching element | |
JP6299237B2 (en) | Thermoelectric conversion element and manufacturing method thereof | |
JP2015185778A (en) | Thermoelectric conversion element and method for manufacturing the same | |
JP6413466B2 (en) | Thermoelectric conversion element | |
WO2023054583A1 (en) | Thermoelectric body, thermoelectric generation element, multilayer thermoelectric body, multilayer thermoelectric generation element, thermoelectric generator, and heat flow sensor | |
JP2014154852A (en) | Thermoelectric conversion element and method of manufacturing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20191216 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20201008 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20201013 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20201209 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20210601 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20210614 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6907544 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |