WO2014010286A1 - Thermoelectric conversion element, and method for producing same - Google Patents

Thermoelectric conversion element, and method for producing same Download PDF

Info

Publication number
WO2014010286A1
WO2014010286A1 PCT/JP2013/061213 JP2013061213W WO2014010286A1 WO 2014010286 A1 WO2014010286 A1 WO 2014010286A1 JP 2013061213 W JP2013061213 W JP 2013061213W WO 2014010286 A1 WO2014010286 A1 WO 2014010286A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermoelectric conversion
conversion unit
electromotive
layer
conversion element
Prior art date
Application number
PCT/JP2013/061213
Other languages
French (fr)
Japanese (ja)
Inventor
明宏 桐原
石田 真彦
滋 河本
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2014524669A priority Critical patent/JPWO2014010286A1/en
Publication of WO2014010286A1 publication Critical patent/WO2014010286A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/853Thermoelectric active materials comprising inorganic compositions comprising arsenic, antimony or bismuth
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/17Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the structure or configuration of the cell or thermocouple forming the device
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/855Thermoelectric active materials comprising inorganic compositions comprising compounds containing boron, carbon, oxygen or nitrogen
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/857Thermoelectric active materials comprising compositions changing continuously or discontinuously inside the material

Definitions

  • the present invention relates to a thermoelectric conversion element based on a spin Seebeck effect and an inverse spin Hall effect, and a manufacturing method thereof.
  • spintronics In recent years, an electronic technology called “spintronics” has been in the spotlight. Conventional electronics have used only “charge”, which is one property of electrons, while spintronics also actively uses “spin”, which is another property of electrons. In particular, the “spin-current”, which is the flow of electron spin angular momentum, is an important concept. Since the energy dissipation of the spin current is small, there is a possibility that highly efficient information transfer can be realized by using the spin current. Therefore, generation, detection and control of spin current are important themes.
  • spin-Hall effect spin-Hall effect
  • inverse spin-Hall effect an electromotive force is generated when a spin current flows.
  • the spin current can be detected.
  • both the spin Hall effect and the reverse spin Hall effect are significantly expressed in a substance (eg, Pt, Au) having a large “spin orbit coupling”.
  • the spin Seebeck effect is a phenomenon in which when a temperature gradient is applied to a magnetic material, a spin current is induced in a direction parallel to the temperature gradient (see, for example, Patent Document 1, Non-Patent Document 1, and Non-Patent Document 2). ). That is, heat is converted into a spin current by the spin Seebeck effect (thermal spin current conversion).
  • membrane which is a ferromagnetic metal is reported.
  • Non-Patent Documents 1 and 2 report the spin Seebeck effect at the interface between a magnetic insulator such as yttrium iron garnet (YIG, Y 3 Fe 5 O 12 ) and a metal film.
  • the spin current induced by the temperature gradient can be converted into an electric field (current, voltage) using the above-described inverse spin Hall effect. That is, by using the spin Seebeck effect and the inverse spin Hall effect in combination, “thermoelectric conversion” that converts a temperature gradient into electricity becomes possible.
  • FIG. 1 shows a configuration of a thermoelectric conversion element disclosed in Patent Document 1.
  • a thermal spin current conversion unit 102 is formed on the sapphire substrate 101.
  • the thermal spin current conversion unit 102 has a stacked structure of a Ta film 103, a PdPtMn film 104, and a NiFe film 105.
  • the NiFe film 105 has in-plane magnetization.
  • a Pt electrode 106 is formed on the NiFe film 105, and both ends of the Pt electrode 106 are connected to terminals 107-1 and 107-2, respectively.
  • the NiFe film 105 plays a role of generating a spin current from the temperature gradient by the spin Seebeck effect, and the Pt electrode 106 generates an electromotive force from the spin current by the reverse spin Hall effect. Play a role. Specifically, when a temperature gradient is applied in the in-plane direction of the NiFe film 105, a spin current is generated in a direction parallel to the temperature gradient due to the spin Seebeck effect. Then, a spin current flows from the NiFe film 105 to the Pt electrode 106 or a spin current flows from the Pt electrode 106 to the NiFe film 105.
  • an electromotive force is generated in a direction orthogonal to the spin current direction and the NiFe magnetization direction by the inverse spin Hall effect.
  • the electromotive force can be taken out from terminals 107-1 and 107-2 provided at both ends of the Pt electrode 106.
  • thermoelectric conversion element Higher output of thermoelectric conversion element is desired.
  • thermoelectric conversion element in one aspect of the present invention, includes a plurality of stacked thermoelectric conversion unit structures.
  • Each of the plurality of thermoelectric conversion unit structures includes a magnetic layer and an electromotive layer formed on the magnetic layer and formed of a material that exhibits spin-orbit interaction.
  • Each thermoelectric conversion unit structure is folded so that the electromotive layer is exposed to the outside. Moreover, the electromotive layers are in contact between adjacent thermoelectric conversion unit structures.
  • thermoelectric conversion element in another aspect of the present invention, includes the step of (A) providing a thermoelectric conversion sheet.
  • the thermoelectric conversion sheet includes a magnetic layer and an electromotive layer formed on the magnetic layer and formed of a material that exhibits spin-orbit interaction.
  • the manufacturing method further includes (B) a step of creating a thermoelectric conversion unit structure by folding the thermoelectric conversion sheet so that the electromotive layer is exposed to the outside, and (C) so that the electromotive layers are in contact with each other. Laminating a plurality of thermoelectric conversion unit structures.
  • thermoelectric conversion element further increase in output of the thermoelectric conversion element is realized.
  • FIG. 1 is a perspective view schematically showing a thermoelectric conversion element described in Patent Document 1.
  • FIG. 2 is a perspective view schematically showing the thermoelectric conversion element according to the embodiment of the present invention.
  • FIG. 3 is a perspective view schematically showing a thermoelectric conversion unit structure in the embodiment of the present invention.
  • FIG. 4 is a cross-sectional view showing a method for manufacturing a thermoelectric conversion element in the first example.
  • FIG. 5 is a cross-sectional view showing a method for manufacturing a thermoelectric conversion element in the first example.
  • FIG. 6 is a cross-sectional view showing a method for manufacturing a thermoelectric conversion element in the first example.
  • FIG. 7 is a cross-sectional view showing the structure of the thermoelectric conversion element in the first example.
  • FIG. 1 is a perspective view schematically showing a thermoelectric conversion element described in Patent Document 1.
  • FIG. 2 is a perspective view schematically showing the thermoelectric conversion element according to the embodiment of the present invention.
  • FIG. 3 is a perspective
  • FIG. 8 is a cross-sectional view showing another structure of the thermoelectric conversion element in the first example.
  • FIG. 9 is a cross-sectional view showing still another structure of the thermoelectric conversion element in the first example.
  • FIG. 10 is a cross-sectional view showing still another structure of the thermoelectric conversion element in the first example.
  • FIG. 11 is a cross-sectional view illustrating a method for manufacturing a thermoelectric conversion element in the second example.
  • FIG. 12 is a cross-sectional view showing a method for manufacturing a thermoelectric conversion element in the second example.
  • FIG. 13 is a cross-sectional view showing a method for manufacturing a thermoelectric conversion element in the second example.
  • FIG. 14 is a cross-sectional view showing a method for manufacturing a thermoelectric conversion element in the second example.
  • FIG. 14 is a cross-sectional view showing a method for manufacturing a thermoelectric conversion element in the second example.
  • FIG. 15 is a cross-sectional view showing the structure of the thermoelectric conversion element in the second example.
  • FIG. 16 is a cross-sectional view showing another structure of the thermoelectric conversion element in the second example.
  • FIG. 17 is a cross-sectional view showing still another structure of the thermoelectric conversion element in the second example.
  • FIG. 2 is a perspective view schematically showing a thermoelectric conversion element 1 according to the present embodiment.
  • the thermoelectric conversion element 1 has a laminated structure in which a plurality of thermoelectric conversion unit structures 10 are laminated.
  • the stacking direction is the Z direction, and the in-plane directions orthogonal to the Z direction are the X direction and the Y direction.
  • the X direction and the Y direction are orthogonal to each other.
  • a first conductive structure 51 is formed on the first side surface 11 of the laminated structure.
  • a second conductive structure 52 is formed on the second side surface 12 of the laminated structure. Both the first conductive structure 51 and the second conductive structure 52 are conductors.
  • the first side surface 11 and the second side surface 12 face each other in the X direction. That is, the first conductive structure 51 and the second conductive structure 52 face each other in the X direction.
  • FIG. 3 schematically shows a single thermoelectric conversion unit structure 10.
  • the thermoelectric conversion unit structure 10 includes a magnetic layer 30 and an electromotive layer (conductive layer) 40.
  • the electromotive layer 40 is formed on the magnetic layer 30.
  • the electromotive layer 40 is in contact with the magnetic layer 30.
  • the magnetic layer 30 is formed of a material that exhibits a spin Seebeck effect.
  • the material of the magnetic layer 30 may be a ferromagnetic metal or a magnetic insulator.
  • the ferromagnetic metal include NiFe, CoFe, and CoFeB.
  • magnetic insulators include yttrium iron garnet (YIG, Y 3 Fe 5 O 12 ), YIG doped with bismuth (Bi) (Bi: YIG), and YIG added with lanthanum (La) (LaY 2 Fe 5 O 12 ).
  • yttrium gallium iron garnet Y 3 Fe 5-x Ga x O 12 . From the viewpoint of suppressing heat conduction by electrons, it is desirable to use a magnetic insulator.
  • the electromotive layer (conductive layer) 40 is formed of a material that exhibits a reverse spin Hall effect (spin orbit interaction). More specifically, the material of the electromotive layer 40 contains a metal material having a large spin orbit interaction. For example, Au, Pt, Pd, Ir, other metal materials having f orbitals having a relatively large spin-orbit interaction, or alloy materials containing them are used. Further, the same effect can be obtained by simply doping a general metal film material such as Cu with a material such as Au, Pt, Pd, or Ir by about 0.5 to 10%. Alternatively, the electromotive layer 40 may be an oxide such as ITO.
  • thermoelectric conversion unit structure 10 has a function as a “thermoelectric conversion portion” using the spin Seebeck effect and the inverse spin Hall effect. More specifically, the magnetic body 30 generates (drives) a spin current from the temperature gradient ⁇ T by the spin Seebeck effect. The direction of the spin current is parallel or antiparallel to the direction of the temperature gradient ⁇ T.
  • the electromotive layer 40 generates an electromotive force from the spin current by the reverse spin Hall effect.
  • the direction of the generated electromotive force is given by the outer product of the direction of the magnetization M of the magnetic layer 30 and the direction of the temperature gradient ⁇ T (E, J // M ⁇ ⁇ T).
  • the thermoelectric conversion unit structure 10 is configured such that the direction of the electromotive force in the electromotive layer 40 is the in-plane direction for efficient power generation.
  • the direction of the magnetization M of the magnetic layer 30 is the ⁇ Y direction
  • the direction of the temperature gradient ⁇ T is the ⁇ Z direction
  • the direction of the electromotive force is the + X direction.
  • the magnetization M of the magnetic layer 30 only needs to include at least a Y-direction component, thereby generating at least an electromotive force in the X direction.
  • the end portion of the electromotive layer 40 on the first side surface 11 side is a first end portion 41.
  • an end portion of the electromotive layer 40 on the second side surface 12 side (+ X direction side) is a second end portion 42.
  • the first end portion 41 and the second end portion 42 face each other in the X direction.
  • the first end 41 of the electromotive layer 40 is physically connected to the first conductive structure 51 shown in FIG.
  • the second end portion 42 of the electromotive layer 40 is physically connected to the second conductive structure 52 shown in FIG.
  • “physically connected” includes the case where the electromotive layer 40 and the first conductive structure 51 or the second conductive structure 52 are integrally formed. That is, the electromotive layer 40 and the first conductive structure 51 or the second conductive structure 52 may be formed separately or integrally.
  • thermoelectric conversion unit structure 10 When the first end 41 (second end 42) of the electromotive layer 40 of each thermoelectric conversion unit structure 10 is physically connected to the first conductive structure 51 (second conductive structure 52), a plurality of stacked layers The electromotive layers 40 of the thermoelectric conversion unit structure 10 are electrically connected to each other.
  • the first conductive structure 51 and the second conductive structure 52 are preferably formed of a low resistance material.
  • the material of the first conductive structure 51 and the second conductive structure 52 is Pt.
  • thermoelectric conversion element 1 As described above, in the thermoelectric conversion element 1 according to the present embodiment, a plurality of thermoelectric conversion unit structures 10 are laminated.
  • the electromotive layer 40 of each thermoelectric conversion unit structure 10 is commonly connected to the first conductive structure 51 and the second conductive structure 52. Therefore, by using the first conductive structure 51 and the second conductive structure 52, it is possible to simultaneously extract the electromotive force generated in the plurality of thermoelectric conversion unit structures 10. Thereby, it is possible to increase the power generation amount, that is, the output power without increasing the element area.
  • the resistance value between the first end 41 and the second end 42 of the single electromotive layer 40 is “R1”, and the entire first conductive structure 51 (second conductive structure 52) in the Z direction.
  • the resistance value is “R2”
  • the condition “R1> R2” is preferably satisfied.
  • thermoelectric conversion element 1 which concerns on this Embodiment is demonstrated.
  • the magnetic layer 30 is formed on the substrate 20, and the electromotive layer 40 is formed on the magnetic layer 30. Further, the lamination of the substrate 20, the magnetic layer 30 and the electromotive layer 40 is taken as one unit, and the lamination is repeated a plurality of times.
  • the laminated structure shown in FIG. 5 is obtained.
  • the side surface on the ⁇ X direction side of the stacked structure is the first side surface 11, and the side surface on the + X direction side is the second side surface 12.
  • the laminated structure of the substrate 20, the magnetic layer 30 and the electromotive layer 40 corresponds to a single thermoelectric conversion unit structure 10.
  • the end of the electromotive layer 40 on the first side surface 11 side ( ⁇ X direction side) is the first end portion 41
  • the end of the electromotive layer 40 on the second side surface 12 side (+ X direction side) is the first end portion 41.
  • Two end portions 42 is provided.
  • a conductive film is formed from the lateral direction.
  • the first conductive structure 51 is formed so as to be in contact with the first side surface 11
  • the second conductive structure 52 is formed so as to be in contact with the second side surface 12.
  • a first external terminal 61 and a second external terminal 62 are attached to the first conductive structure 51 and the second conductive structure 52, respectively.
  • the first external terminal 61 and the second external terminal 62 are used for taking out electric power.
  • the magnetization process of the magnetic layer 30 may be performed at any timing.
  • the electromotive layer 40 and the first conductive structure 51 (second conductive structure 52) are electrically connected by being in physical contact. Therefore, it is possible to simultaneously extract the electromotive force generated in the plurality of thermoelectric conversion unit structures 10. Thereby, it is possible to increase the power generation amount, that is, the output power without increasing the element area.
  • electromotive layers 40 may be formed above and below the magnetic layer 30.
  • the side surface 11 may be formed in a slope shape.
  • the first electrode 45 and the second electrode 46 may be formed on both ends of the electromotive layer 40.
  • the first electrode 45 and the second electrode 46 are made of a low resistance material (eg, Cu) and extend in the Y direction.
  • the side surface of the first electrode 45 is in contact with the first conductive structure 51 together with the first end 41 of the electromotive layer 40.
  • the side surface of the second electrode 46 is in contact with the second conductive structure 52 together with the second end portion 42 of the electromotive layer 40.
  • Such a structure also increases the contact area with the first conductive structure 51 and the second conductive structure 52 (that is, the contact resistance is reduced).
  • the insulating film 47 may be formed on the electromotive layer 40 so as to fill the space between the first electrode 45 and the second electrode 46.
  • the insulating film 47 is made of a material having high thermal conductivity (low thermal resistance), for example, polyimide. Such an insulating film 47 prevents generation of spaces in the laminated structure and improves power generation efficiency.
  • thermoelectric conversion element 1 Second Example Next, a second example of the manufacturing method of the thermoelectric conversion element 1 according to the present embodiment will be described.
  • the thickness of the electromotive layer 40 is set to about the “spin diffusion length (spin relaxation length)” depending on the material.
  • the film thickness is preferably set to about 10 to 30 nm.
  • the electromotive layer 40 and the first conductive structure 51 (second conductive structure 52) are formed by separate processes. In this case, the contact resistance between the thin electromotive layer 40 and the first conductive structure 51 (second conductive structure 52) is inevitably increased. That is, the contact portions (the first end portion 41 and the second end portion 42) with respect to the thin electromotive layer 40 are increased in resistance.
  • the second example is for solving such a problem.
  • thermoelectric conversion sheet 70 as shown in FIG. 11 is provided.
  • This thermoelectric conversion sheet 70 also has a laminated structure of the substrate 20, the magnetic layer 30 and the electromotive layer 40.
  • the thermoelectric conversion sheet 70 has flexibility.
  • flexibility includes the concepts of both plasticity and elasticity. That is, the thermoelectric conversion sheet 70 can be bent.
  • the substrate 20 is a polyimide substrate (thickness: 25 ⁇ m)
  • the magnetic layer 30 is a ferrite magnetic body (thickness: 3 ⁇ m)
  • the electromotive layer 40 is a Pt film (thickness: 10 nm).
  • the ferrite magnetic body is formed by, for example, a ferrite plating method.
  • the Pt film is formed by sputtering, for example.
  • thermoelectric conversion sheet 70 is folded so that the electromotive layer 40 is exposed to the outside.
  • the thermoelectric conversion sheet 70 is bent at two locations.
  • the bent portions corresponding to these two locations in the electromotive layer 40 are the “first side surface conductive portion 40S1” and the “second side surface conductive portion 40S2”.
  • the first side surface conductive portion 40S1 and the second side surface conductive portion 40S2 face each other in the X direction.
  • the first side surface conductive portion 40S1 is located on the ⁇ X direction side
  • the second side surface conductive portion 40S2 is located on the + X direction side.
  • the portion of the electromotive layer 40 exposed in the upward direction (+ Z direction) is hereinafter referred to as “upper electromotive layer 40U”.
  • the portion of the electromotive layer 40 that is exposed in the downward direction ( ⁇ Z direction) is hereinafter referred to as a “lower electromotive layer 40L”. That is, the upper electromotive layer 40U is formed on the upper surface side, and the lower electromotive layer 40L is formed on the lower surface side.
  • Each of the upper electromotive layer 40U and the lower electromotive layer 40L corresponds to the single electromotive layer 40 shown in FIG.
  • the upper electromotive layer 40U (lower electromotive layer 40L) and the first side surface conductive portion 40S1 are integrally formed.
  • a transition portion from the upper electromotive layer 40U (lower electromotive layer 40L) to the first side surface conductive portion 40S1 corresponds to the first end portion 41 shown in FIG. That is, the first side conductive portion 40S1 is integrated with the upper electromotive layer 40U (lower electromotive layer 40L) so as to extend from the first end 41 of the upper electromotive layer 40U (lower electromotive layer 40L). Is formed.
  • the transition portion from the upper electromotive layer 40U (lower electromotive layer 40L) to the first side surface conductive portion 40S1 has a certain radius of curvature.
  • the upper electromotive layer 40U (lower electromotive layer 40L) and the second side surface conductive portion 40S2 are integrally formed.
  • a transition portion from the upper electromotive layer 40U (lower electromotive layer 40L) to the second side surface conductive portion 40S2 corresponds to the second end portion 42 shown in FIG. That is, the second side conductive portion 40S2 is formed integrally with the upper electromotive layer 40U (lower electromotive layer 40L) so as to extend from the second end portion 42.
  • the transition portion from the upper electromotive layer 40U (lower electromotive layer 40L) to the second side surface conductive portion 40S2 has a certain radius of curvature.
  • thermoelectric conversion unit structure 10 corresponds to the thermoelectric conversion unit structure 10 according to the present embodiment.
  • the thermoelectric conversion unit structure 10 shown in FIG. 12 in the electromotive layer 40 excluding the first side surface conductive portion 40S1 and the second side surface conductive portion 40S2 (that is, the upper electromotive layer 40U and the lower electromotive layer 40L), An electromotive force in the direction is generated.
  • thermoelectric conversion unit structure 10 As shown in FIG. 13, as a result of bending, a gap 15 may exist on the lower surface side of the thermoelectric conversion unit structure 10.
  • thermoelectric conversion unit structure 10 shown in FIG. 12 (or FIG. 13) is laminated in a plurality of stages.
  • the electromotive layers 40 are in contact with each other over a wide area between the thermoelectric conversion unit structures 10 that are vertically adjacent to each other. More specifically, the lower electromotive layer 40L of the upper thermoelectric conversion unit structure 10 and the upper electromotive layer 40U of the lower thermoelectric conversion unit structure 10 are in contact with each other.
  • first side surface conductive portions 40S1 are physically connected to each other between the thermoelectric conversion unit structures 10 adjacent to each other in the vertical direction.
  • the “first conductive structure 51” shown in FIG. 2 is formed by connecting the first side surface conductive portions 40S1 of the plurality of thermoelectric conversion unit structures 10 stacked.
  • the second side surface conductive portions 40S2 are physically connected to each other between the thermoelectric conversion unit structures 10 that are vertically adjacent to each other.
  • the second side conductive portions 40S2 of the plurality of laminated thermoelectric conversion unit structures 10 are connected to form the “second conductive structure 52” shown in FIG.
  • a first external terminal 61 and a second external terminal 62 are attached to the first conductive structure 51 and the second conductive structure 52, respectively.
  • the first external terminal 61 and the second external terminal 62 are used for taking out electric power.
  • the magnetization process of the magnetic layer 30 may be performed at any timing.
  • the electromotive layers 40 of the plurality of laminated thermoelectric conversion unit structures 10 are electrically connected to each other. Therefore, it is possible to simultaneously extract the electromotive force generated in the plurality of thermoelectric conversion unit structures 10. Thereby, it is possible to increase the power generation amount, that is, the output power without increasing the element area.
  • thermoelectric conversion unit structure 10 is formed by bending the thermoelectric conversion sheet 70. Furthermore, the thermoelectric conversion element 1 is formed by laminating the thermoelectric conversion unit structure 10 in a plurality of stages. At this time, the electromotive layers 40 of the thermoelectric conversion unit structures 10 adjacent to each other in the vertical direction are in contact with each other over a wide area. Therefore, a portion having a high contact resistance as generated in the first example is eliminated. That is, according to the second example, it is possible to further increase the output as compared with the first example.
  • FIG. 16 shows a lamination example in which the lower electromotive layers 40L of the thermoelectric conversion unit structure 10 shown in FIG. 13 are in contact with each other as a modification.
  • the positions of the gaps 15 of the upper and lower thermoelectric conversion unit structures 10 coincide with each other, the current in the X direction is interrupted at that portion. In this case, the effect is not completely lost, but is reduced. Therefore, it is preferable to stack the upper electromotive layer 40U and the lower electromotive layer 40L in contact with each other.
  • the thermoelectric conversion sheet 70 is bent so that the gap 15 is not formed.
  • FIG. 17 shows another modification.
  • the thermoelectric conversion sheet 70 may be bent so as to be wound around the support 80. In this case, breakage of the thermoelectric conversion sheet 70 is suppressed, and the strength of the thermoelectric conversion element 1 as a whole increases.
  • thermoelectric conversion unit 1 It has a plurality of laminated thermoelectric conversion unit structures, Each of the plurality of thermoelectric conversion unit structures is A magnetic layer; An electromotive layer formed on the magnetic layer and formed of a material that exhibits spin-orbit interaction, and Each thermoelectric conversion unit structure is folded so that the electromotive layer is exposed to the outside, A thermoelectric conversion element in which the electromotive layers are in contact with each other between adjacent thermoelectric conversion unit structures.
  • thermoelectric conversion element (Appendix 2) The thermoelectric conversion element according to attachment 1, wherein The electromotive layer of each thermoelectric conversion unit structure is bent at the first side surface conductive portion and the second side surface conductive portion, The thermoelectric conversion element in which the first side surface conductive parts are physically connected to each other between the adjacent thermoelectric conversion unit structures and the second side surface conductive parts are physically connected to each other.
  • thermoelectric conversion element (Appendix 3) The thermoelectric conversion element according to appendix 1 or 2, The first side surface conductive portion and the second side surface conductive portion are opposed to each other in the first in-plane direction, Each of the thermoelectric conversion unit structures is configured such that an electromotive force is generated in the first in-plane direction in the electromotive layer excluding the first side surface conductive portion and the second side surface conductive portion. .
  • thermoelectric conversion element (Appendix 4) The thermoelectric conversion element according to attachment 3, wherein The thermoelectric conversion element, wherein the magnetization of the magnetic layer includes a component in a second in-plane direction orthogonal to the first in-plane direction.
  • thermoelectric conversion unit 5 A laminated structure in which a plurality of thermoelectric conversion unit structures are laminated; A first conductive structure formed on a first side surface of the laminated structure; A second conductive structure formed on the second side surface of the laminated structure, Each of the plurality of thermoelectric conversion unit structures is A magnetic layer; An electromotive layer formed on the magnetic layer and formed of a material that exhibits spin-orbit interaction, and A first end that is an end of the electromotive layer on the first side surface is physically connected to the first conductive structure; The thermoelectric conversion element in which the 2nd edge part which is an edge part of the said 2nd side surface side of the said electromotive layer is physically connected with the said 2nd conductive structure.
  • thermoelectric conversion element according to appendix 5
  • the first side surface and the second side surface are opposed in the first in-plane direction
  • Each of the thermoelectric conversion unit structures is configured to generate an electromotive force in the first in-plane direction in the electromotive layer.
  • thermoelectric conversion element (Appendix 7) The thermoelectric conversion element according to attachment 6, wherein The thermoelectric conversion element, wherein the magnetization of the magnetic layer includes a component in a second in-plane direction orthogonal to the first in-plane direction.
  • thermoelectric conversion element The thermoelectric conversion element according to any one of appendices 5 to 7, Each thermoelectric conversion unit structure further includes: A first side surface conductive portion formed integrally with the electromotive layer so as to extend from the first end of the electromotive layer to the first side surface; A second side surface conductive portion formed integrally with the electromotive layer so as to extend from the second end portion of the electromotive layer to the second side surface; The first conductive structure is formed by physically connecting the first side surface conductive portions between adjacent thermoelectric conversion unit structures, The thermoelectric conversion element in which the second conductive structure is formed by physically connecting the second side-surface conductive portions between adjacent thermoelectric conversion unit structures.
  • thermoelectric conversion element (Appendix 9) The thermoelectric conversion element according to attachment 8, wherein The electromotive layer of each thermoelectric conversion unit structure is: An upper electromotive layer formed on the upper surface side of each thermoelectric conversion unit structure; A lower electromotive layer formed on the lower surface side of each thermoelectric conversion unit structure, The thermoelectric conversion element in which the upper electromotive layer and the lower electromotive layer are in contact between adjacent thermoelectric conversion unit structures.
  • thermoelectric conversion element (Appendix 10) The thermoelectric conversion element according to appendix 8 or 9, Each of the thermoelectric conversion unit structures is a thermoelectric conversion element formed of a flexible material.
  • thermoelectric conversion sheet (A) providing a thermoelectric conversion sheet;
  • the thermoelectric conversion sheet is A magnetic layer;
  • An electromotive layer formed on the magnetic layer and formed of a material that exhibits spin-orbit interaction, and
  • thermoelectric conversion unit structure by folding the thermoelectric conversion sheet so that the electromotive layer is exposed to the outside;
  • C A step of laminating the thermoelectric conversion unit structures in a plurality of stages so that the electromotive layers are in contact with each other.
  • thermoelectric conversion element 12 A method of manufacturing a thermoelectric conversion element according to appendix 11, In the step of creating the thermoelectric conversion unit structure, the electromotive layer is bent at the first side surface conductive portion and the second side surface conductive portion, The method of manufacturing a thermoelectric conversion element, wherein in the step of laminating the thermoelectric conversion unit structures in a plurality of stages, the first side surface conductive parts are physically connected to each other, and the second side surface conductive parts are physically connected to each other.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Hall/Mr Elements (AREA)

Abstract

This thermoelectric conversion element is provided with a plurality of stacked thermoelectric conversion unit structures. Each of the plurality of thermoelectric conversion unit structures is provided with a magnetic material layer, and an electrogenic layer formed on the magnetic material layer, and formed of a material that exhibits spin orbit interaction. The individual thermoelectric conversion unit structures are folded such that the electrogenic layer is exposed to the outside. The electrogenic layers of adjacently situated thermoelectric conversion unit structures contact one another.

Description

熱電変換素子及びその製造方法Thermoelectric conversion element and manufacturing method thereof
 本発明は、スピンゼーベック効果及び逆スピンホール効果に基づく熱電変換素子、及びその製造方法に関する。 The present invention relates to a thermoelectric conversion element based on a spin Seebeck effect and an inverse spin Hall effect, and a manufacturing method thereof.
 近年、「スピントロニクス(spintronics)」と呼ばれる電子技術が脚光を浴びている。従来のエレクトロニクスは、電子の1つの性質である「電荷」だけを利用してきたが、スピントロニクスは、それに加えて、電子の他の性質である「スピン」をも積極的に利用する。特に、電子のスピン角運動量の流れである「スピン流(spin-current)」は重要な概念である。スピン流のエネルギー散逸は少ないため、スピン流を利用することによって高効率な情報伝達を実現できる可能性がある。従って、スピン流の生成、検出、制御は重要なテーマである。 In recent years, an electronic technology called “spintronics” has been in the spotlight. Conventional electronics have used only “charge”, which is one property of electrons, while spintronics also actively uses “spin”, which is another property of electrons. In particular, the “spin-current”, which is the flow of electron spin angular momentum, is an important concept. Since the energy dissipation of the spin current is small, there is a possibility that highly efficient information transfer can be realized by using the spin current. Therefore, generation, detection and control of spin current are important themes.
 例えば、電流が流れるとスピン流が生成される現象が知られている。これは、「スピンホール効果(spin-Hall
effect)」と呼ばれている。また、その逆の現象として、スピン流が流れると起電力が発生することも知られている。これは、「逆スピンホール効果(inverse spin-Hall effect)」と呼ばれている。逆スピンホール効果を利用することによって、スピン流を検出することができる。尚、スピンホール効果も逆スピンホール効果も、「スピン軌道相互作用(spin orbit coupling)」が大きな物質(例:Pt、Au)において有意に発現する。
For example, a phenomenon is known in which a spin current is generated when a current flows. This is the “spin-Hall effect (spin-Hall
effect) ”. It is also known as an opposite phenomenon that an electromotive force is generated when a spin current flows. This is called the “inverse spin-Hall effect”. By using the inverse spin Hall effect, the spin current can be detected. It should be noted that both the spin Hall effect and the reverse spin Hall effect are significantly expressed in a substance (eg, Pt, Au) having a large “spin orbit coupling”.
 また、最近の研究により、磁性体における「スピンゼーベック効果(spin-Seebeck effect)」の存在も明らかになっている。スピンゼーベック効果とは、磁性体に温度勾配が印加されると、温度勾配と平行方向にスピン流が誘起される現象である(例えば、特許文献1、非特許文献1、非特許文献2を参照)。すなわち、スピンゼーベック効果により、熱がスピン流に変換される(熱スピン流変換)。特許文献1では、強磁性金属であるNiFe膜におけるスピンゼーベック効果が報告されている。非特許文献1、2では、イットリウム鉄ガーネット(YIG、YFe12)といった磁性絶縁体と金属膜との界面におけるスピンゼーベック効果が報告されている。 Recent studies have also revealed the existence of the “spin-Seebeck effect” in magnetic materials. The spin Seebeck effect is a phenomenon in which when a temperature gradient is applied to a magnetic material, a spin current is induced in a direction parallel to the temperature gradient (see, for example, Patent Document 1, Non-Patent Document 1, and Non-Patent Document 2). ). That is, heat is converted into a spin current by the spin Seebeck effect (thermal spin current conversion). In patent document 1, the spin Seebeck effect in the NiFe film | membrane which is a ferromagnetic metal is reported. Non-Patent Documents 1 and 2 report the spin Seebeck effect at the interface between a magnetic insulator such as yttrium iron garnet (YIG, Y 3 Fe 5 O 12 ) and a metal film.
 尚、温度勾配によって誘起されたスピン流は、上述の逆スピンホール効果を利用して電界(電流、電圧)に変換することが可能である。つまり、スピンゼーベック効果と逆スピンホール効果を併せて利用することによって、温度勾配を電気に変換する「熱電変換」が可能となる。 Note that the spin current induced by the temperature gradient can be converted into an electric field (current, voltage) using the above-described inverse spin Hall effect. That is, by using the spin Seebeck effect and the inverse spin Hall effect in combination, “thermoelectric conversion” that converts a temperature gradient into electricity becomes possible.
 図1は、特許文献1に開示されている熱電変換素子の構成を示している。サファイア基板101の上に熱スピン流変換部102が形成されている。熱スピン流変換部102は、Ta膜103、PdPtMn膜104及びNiFe膜105の積層構造を有している。NiFe膜105は、面内方向の磁化を有している。更に、NiFe膜105上にはPt電極106が形成されており、そのPt電極106の両端は端子107-1、107-2にそれぞれ接続されている。 FIG. 1 shows a configuration of a thermoelectric conversion element disclosed in Patent Document 1. A thermal spin current conversion unit 102 is formed on the sapphire substrate 101. The thermal spin current conversion unit 102 has a stacked structure of a Ta film 103, a PdPtMn film 104, and a NiFe film 105. The NiFe film 105 has in-plane magnetization. Further, a Pt electrode 106 is formed on the NiFe film 105, and both ends of the Pt electrode 106 are connected to terminals 107-1 and 107-2, respectively.
 このように構成された熱電変換素子において、NiFe膜105が、スピンゼーベック効果によって温度勾配からスピン流を生成する役割を果たし、Pt電極106が、逆スピンホール効果によってスピン流から起電力を生成する役割を果たす。具体的には、NiFe膜105の面内方向に温度勾配が印加されると、スピンゼーベック効果により、その温度勾配と平行な方向にスピン流が発生する。すると、NiFe膜105からPt電極106にスピン流が流れ込む、あるいは、Pt電極106からNiFe膜105にスピン流が流れ出す。Pt電極106では、逆スピンホール効果により、スピン流方向とNiFe磁化方向とに直交する方向に起電力が生成される。その起電力は、Pt電極106の両端に設けられた端子107-1、107-2から取り出すことができる。 In the thermoelectric conversion element configured as described above, the NiFe film 105 plays a role of generating a spin current from the temperature gradient by the spin Seebeck effect, and the Pt electrode 106 generates an electromotive force from the spin current by the reverse spin Hall effect. Play a role. Specifically, when a temperature gradient is applied in the in-plane direction of the NiFe film 105, a spin current is generated in a direction parallel to the temperature gradient due to the spin Seebeck effect. Then, a spin current flows from the NiFe film 105 to the Pt electrode 106 or a spin current flows from the Pt electrode 106 to the NiFe film 105. In the Pt electrode 106, an electromotive force is generated in a direction orthogonal to the spin current direction and the NiFe magnetization direction by the inverse spin Hall effect. The electromotive force can be taken out from terminals 107-1 and 107-2 provided at both ends of the Pt electrode 106.
特開2009-130070号公報JP 2009-130070 A
 熱電変換素子の更なる高出力化が望まれる。 Higher output of thermoelectric conversion element is desired.
 本発明の1つの観点において、熱電変換素子が提供される。その熱電変換素子は、積層された複数の熱電変換単位構造を備える。複数の熱電変換単位構造の各々は、磁性体層と、磁性体層上に形成されスピン軌道相互作用を発現する材料で形成された起電層と、を備える。各々の熱電変換単位構造は、起電層が外側に露出するように折り畳まれている。また、隣り合う熱電変換単位構造間で、起電層同士が接触している。 In one aspect of the present invention, a thermoelectric conversion element is provided. The thermoelectric conversion element includes a plurality of stacked thermoelectric conversion unit structures. Each of the plurality of thermoelectric conversion unit structures includes a magnetic layer and an electromotive layer formed on the magnetic layer and formed of a material that exhibits spin-orbit interaction. Each thermoelectric conversion unit structure is folded so that the electromotive layer is exposed to the outside. Moreover, the electromotive layers are in contact between adjacent thermoelectric conversion unit structures.
 本発明の他の観点において、熱電変換素子の製造方法が提供される。その製造方法は、(A)熱電変換シートを提供するステップを含む。ここで、熱電変換シートは、磁性体層と、磁性体層上に形成されスピン軌道相互作用を発現する材料で形成された起電層と、を備える。製造方法は、更に、(B)起電層が外側に露出するように熱電変換シートを折り畳むことによって、熱電変換単位構造を作成するステップと、(C)起電層同士が接触するように、熱電変換単位構造を複数段積層するステップと、を含む。 In another aspect of the present invention, a method for manufacturing a thermoelectric conversion element is provided. The manufacturing method includes the step of (A) providing a thermoelectric conversion sheet. Here, the thermoelectric conversion sheet includes a magnetic layer and an electromotive layer formed on the magnetic layer and formed of a material that exhibits spin-orbit interaction. The manufacturing method further includes (B) a step of creating a thermoelectric conversion unit structure by folding the thermoelectric conversion sheet so that the electromotive layer is exposed to the outside, and (C) so that the electromotive layers are in contact with each other. Laminating a plurality of thermoelectric conversion unit structures.
 本発明によれば、熱電変換素子の更なる高出力化が実現される。 According to the present invention, further increase in output of the thermoelectric conversion element is realized.
図1は、特許文献1に記載されている熱電変換素子を概略的に示す斜視図である。FIG. 1 is a perspective view schematically showing a thermoelectric conversion element described in Patent Document 1. As shown in FIG. 図2は、本発明の実施の形態に係る熱電変換素子を概略的に示す斜視図である。FIG. 2 is a perspective view schematically showing the thermoelectric conversion element according to the embodiment of the present invention. 図3は、本発明の実施の形態における熱電変換単位構造を概略的に示す斜視図である。FIG. 3 is a perspective view schematically showing a thermoelectric conversion unit structure in the embodiment of the present invention. 図4は、第1の例における熱電変換素子の製造方法を示す断面図である。FIG. 4 is a cross-sectional view showing a method for manufacturing a thermoelectric conversion element in the first example. 図5は、第1の例における熱電変換素子の製造方法を示す断面図である。FIG. 5 is a cross-sectional view showing a method for manufacturing a thermoelectric conversion element in the first example. 図6は、第1の例における熱電変換素子の製造方法を示す断面図である。FIG. 6 is a cross-sectional view showing a method for manufacturing a thermoelectric conversion element in the first example. 図7は、第1の例における熱電変換素子の構造を示す断面図である。FIG. 7 is a cross-sectional view showing the structure of the thermoelectric conversion element in the first example. 図8は、第1の例における熱電変換素子の他の構造を示す断面図である。FIG. 8 is a cross-sectional view showing another structure of the thermoelectric conversion element in the first example. 図9は、第1の例における熱電変換素子の更に他の構造を示す断面図である。FIG. 9 is a cross-sectional view showing still another structure of the thermoelectric conversion element in the first example. 図10は、第1の例における熱電変換素子の更に他の構造を示す断面図である。FIG. 10 is a cross-sectional view showing still another structure of the thermoelectric conversion element in the first example. 図11は、第2の例における熱電変換素子の製造方法を示す断面図である。FIG. 11 is a cross-sectional view illustrating a method for manufacturing a thermoelectric conversion element in the second example. 図12は、第2の例における熱電変換素子の製造方法を示す断面図である。FIG. 12 is a cross-sectional view showing a method for manufacturing a thermoelectric conversion element in the second example. 図13は、第2の例における熱電変換素子の製造方法を示す断面図である。FIG. 13 is a cross-sectional view showing a method for manufacturing a thermoelectric conversion element in the second example. 図14は、第2の例における熱電変換素子の製造方法を示す断面図である。FIG. 14 is a cross-sectional view showing a method for manufacturing a thermoelectric conversion element in the second example. 図15は、第2の例における熱電変換素子の構造を示す断面図である。FIG. 15 is a cross-sectional view showing the structure of the thermoelectric conversion element in the second example. 図16は、第2の例における熱電変換素子の他の構造を示す断面図である。FIG. 16 is a cross-sectional view showing another structure of the thermoelectric conversion element in the second example. 図17は、第2の例における熱電変換素子の更に他の構造を示す断面図である。FIG. 17 is a cross-sectional view showing still another structure of the thermoelectric conversion element in the second example.
 添付図面を参照して、本発明の実施の形態を説明する。 Embodiments of the present invention will be described with reference to the accompanying drawings.
 1.基本構造
 図2は、本実施の形態に係る熱電変換素子1を概略的に示す斜視図である。熱電変換素子1は、複数の熱電変換単位構造10が積層された積層構造を備えている。その積層方向はZ方向であり、Z方向に直交する面内方向はX方向とY方向である。X方向とY方向は互いに直交している。
1. Basic Structure FIG. 2 is a perspective view schematically showing a thermoelectric conversion element 1 according to the present embodiment. The thermoelectric conversion element 1 has a laminated structure in which a plurality of thermoelectric conversion unit structures 10 are laminated. The stacking direction is the Z direction, and the in-plane directions orthogonal to the Z direction are the X direction and the Y direction. The X direction and the Y direction are orthogonal to each other.
 積層構造の第1側面11には第1導電構造51が形成されている。また、積層構造の第2側面12には第2導電構造52が形成されている。第1導電構造51及び第2導電構造52は共に導電体である。第1側面11と第2側面12とは、X方向において対向している。つまり、第1導電構造51と第2導電構造52とは、X方向において対向している。 A first conductive structure 51 is formed on the first side surface 11 of the laminated structure. A second conductive structure 52 is formed on the second side surface 12 of the laminated structure. Both the first conductive structure 51 and the second conductive structure 52 are conductors. The first side surface 11 and the second side surface 12 face each other in the X direction. That is, the first conductive structure 51 and the second conductive structure 52 face each other in the X direction.
 図3は、単一の熱電変換単位構造10を概略的に示している。熱電変換単位構造10は、磁性体層30と起電層(導電層)40を備えている。起電層40は、磁性体層30上に形成されている。典型的には、起電層40は、磁性体層30に接触している。 FIG. 3 schematically shows a single thermoelectric conversion unit structure 10. The thermoelectric conversion unit structure 10 includes a magnetic layer 30 and an electromotive layer (conductive layer) 40. The electromotive layer 40 is formed on the magnetic layer 30. Typically, the electromotive layer 40 is in contact with the magnetic layer 30.
 磁性体層30は、スピンゼーベック効果を発現する材料で形成される。磁性体層30の材料は、強磁性金属であってもよいし、磁性絶縁体であってもよい。強磁性金属としては、NiFe、CoFe、CoFeBなどが挙げられる。磁性絶縁体としては、イットリウム鉄ガーネット(YIG,YFe12)、ビスマス(Bi)をドープしたYIG(Bi:YIG)、ランタン(La)を添加したYIG(LaYFe12)、イットリウムガリウム鉄ガーネット(YFe5-xGa12)などが挙げられる。尚、電子による熱伝導を抑えるという観点から言えば、磁性絶縁体を用いることが望ましい。 The magnetic layer 30 is formed of a material that exhibits a spin Seebeck effect. The material of the magnetic layer 30 may be a ferromagnetic metal or a magnetic insulator. Examples of the ferromagnetic metal include NiFe, CoFe, and CoFeB. Examples of magnetic insulators include yttrium iron garnet (YIG, Y 3 Fe 5 O 12 ), YIG doped with bismuth (Bi) (Bi: YIG), and YIG added with lanthanum (La) (LaY 2 Fe 5 O 12 ). And yttrium gallium iron garnet (Y 3 Fe 5-x Ga x O 12 ). From the viewpoint of suppressing heat conduction by electrons, it is desirable to use a magnetic insulator.
 起電層(導電層)40は、逆スピンホール効果(スピン軌道相互作用)を発現する材料で形成される。より詳細には、起電層40の材料は、スピン軌道相互作用の大きな金属材料を含有する。例えば、スピン軌道相互作用の比較的大きなAuやPt、Pd、Ir、その他f軌道を有する金属材料、またはそれらを含有する合金材料を用いる。また、Cuなどの一般的な金属膜材料に、Au、Pt、Pd、Irなどの材料を0.5~10%程度ドープするだけでも、同様の効果を得ることができる。あるいは、起電層40は、ITOなどの酸化物であってもよい。 The electromotive layer (conductive layer) 40 is formed of a material that exhibits a reverse spin Hall effect (spin orbit interaction). More specifically, the material of the electromotive layer 40 contains a metal material having a large spin orbit interaction. For example, Au, Pt, Pd, Ir, other metal materials having f orbitals having a relatively large spin-orbit interaction, or alloy materials containing them are used. Further, the same effect can be obtained by simply doping a general metal film material such as Cu with a material such as Au, Pt, Pd, or Ir by about 0.5 to 10%. Alternatively, the electromotive layer 40 may be an oxide such as ITO.
 これら磁性体層30と起電層40の積層により、熱電変換単位構造10は、スピンゼーベック効果と逆スピンホール効果を利用した「熱電変換部」としての機能を有することになる。より詳細には、磁性体30は、スピンゼーベック効果によって温度勾配∇Tからスピン流を生成(駆動)する。スピン流の方向は、温度勾配∇Tの方向と平行あるいは反平行である。そして、起電層40は、逆スピンホール効果によって上記スピン流から起電力を発生する。ここで、発生する起電力の方向は、磁性体層30の磁化Mの方向と温度勾配∇Tの方向との外積で与えられる(E,J//M×∇T)。 By the lamination of the magnetic layer 30 and the electromotive layer 40, the thermoelectric conversion unit structure 10 has a function as a “thermoelectric conversion portion” using the spin Seebeck effect and the inverse spin Hall effect. More specifically, the magnetic body 30 generates (drives) a spin current from the temperature gradient ∇T by the spin Seebeck effect. The direction of the spin current is parallel or antiparallel to the direction of the temperature gradient ∇T. The electromotive layer 40 generates an electromotive force from the spin current by the reverse spin Hall effect. Here, the direction of the generated electromotive force is given by the outer product of the direction of the magnetization M of the magnetic layer 30 and the direction of the temperature gradient ∇T (E, J // M × ∇T).
 本実施の形態では、効率的な電力生成のため、起電層40における起電力の方向が面内方向となるように熱電変換単位構造10が構成されている。例えば、図3に示されるように、磁性体層30の磁化Mの方向は-Y方向であり、温度勾配∇Tの方向は-Z方向であり、起電力の方向は+X方向である。尚、磁性体層30の磁化Mは、少なくともY方向成分を含んでいればよく、それにより、少なくともX方向の起電力が発生する。 In the present embodiment, the thermoelectric conversion unit structure 10 is configured such that the direction of the electromotive force in the electromotive layer 40 is the in-plane direction for efficient power generation. For example, as shown in FIG. 3, the direction of the magnetization M of the magnetic layer 30 is the −Y direction, the direction of the temperature gradient ∇T is the −Z direction, and the direction of the electromotive force is the + X direction. Note that the magnetization M of the magnetic layer 30 only needs to include at least a Y-direction component, thereby generating at least an electromotive force in the X direction.
 ここで、起電層40の第1側面11側(-X方向側)の端部は、第1端部41である。一方、起電層40の第2側面12側(+X方向側)の端部は、第2端部42である。第1端部41と第2端部42とは、X方向において対向している。また、起電層40の第1端部41は、図2で示された第1導電構造51と物理的につながっている。一方、起電層40の第2端部42は、図2で示された第2導電構造52と物理的につながっている。尚、“物理的につながっている”とは、起電層40と第1導電構造51あるいは第2導電構造52とが一体的に形成されている場合も含む。すなわち、起電層40と第1導電構造51あるいは第2導電構造52とは、別々に形成されていてもよいし、一体的に形成されていてもよい。 Here, the end portion of the electromotive layer 40 on the first side surface 11 side (−X direction side) is a first end portion 41. On the other hand, an end portion of the electromotive layer 40 on the second side surface 12 side (+ X direction side) is a second end portion 42. The first end portion 41 and the second end portion 42 face each other in the X direction. The first end 41 of the electromotive layer 40 is physically connected to the first conductive structure 51 shown in FIG. On the other hand, the second end portion 42 of the electromotive layer 40 is physically connected to the second conductive structure 52 shown in FIG. Note that “physically connected” includes the case where the electromotive layer 40 and the first conductive structure 51 or the second conductive structure 52 are integrally formed. That is, the electromotive layer 40 and the first conductive structure 51 or the second conductive structure 52 may be formed separately or integrally.
 各熱電変換単位構造10の起電層40の第1端部41(第2端部42)が第1導電構造51(第2導電構造52)と物理的につながることにより、積層された複数の熱電変換単位構造10のそれぞれの起電層40同士が電気的に接続される。 When the first end 41 (second end 42) of the electromotive layer 40 of each thermoelectric conversion unit structure 10 is physically connected to the first conductive structure 51 (second conductive structure 52), a plurality of stacked layers The electromotive layers 40 of the thermoelectric conversion unit structure 10 are electrically connected to each other.
 第1導電構造51及び第2導電構造52は、低抵抗材料で形成されることが望ましい。例えば、第1導電構造51及び第2導電構造52の材料はPtである。また、低抵抗化のため、第1導電構造51及び第2導電構造52のX方向の厚さは、起電層40のZ方向の厚さよりも大きいことが望ましい。 The first conductive structure 51 and the second conductive structure 52 are preferably formed of a low resistance material. For example, the material of the first conductive structure 51 and the second conductive structure 52 is Pt. In order to reduce the resistance, it is desirable that the thickness of the first conductive structure 51 and the second conductive structure 52 in the X direction is larger than the thickness of the electromotive layer 40 in the Z direction.
 以上に説明されたように、本実施の形態に係る熱電変換素子1では、複数の熱電変換単位構造10が積層されている。そして、それぞれの熱電変換単位構造10の起電層40が、第1導電構造51及び第2導電構造52に共通に接続されている。従って、それら第1導電構造51及び第2導電構造52を用いることによって、複数の熱電変換単位構造10で発生した起電力を同時に取り出すことが可能となる。これにより、素子面積を増大させることなく、発電量すなわち出力電力を増加させることが可能となる。 As described above, in the thermoelectric conversion element 1 according to the present embodiment, a plurality of thermoelectric conversion unit structures 10 are laminated. The electromotive layer 40 of each thermoelectric conversion unit structure 10 is commonly connected to the first conductive structure 51 and the second conductive structure 52. Therefore, by using the first conductive structure 51 and the second conductive structure 52, it is possible to simultaneously extract the electromotive force generated in the plurality of thermoelectric conversion unit structures 10. Thereby, it is possible to increase the power generation amount, that is, the output power without increasing the element area.
 尚、単一の起電層40の第1端部41と第2端部42との間の抵抗値を“R1”とし、第1導電構造51(第2導電構造52)全体のZ方向の抵抗値を“R2”としたとき、“R1>R2”という条件が満たされることが好ましい。 Note that the resistance value between the first end 41 and the second end 42 of the single electromotive layer 40 is “R1”, and the entire first conductive structure 51 (second conductive structure 52) in the Z direction. When the resistance value is “R2”, the condition “R1> R2” is preferably satisfied.
 2.第1の例
 次に、本実施の形態に係る熱電変換素子1の製造方法の第1の例を説明する。
2. 1st example Next, the 1st example of the manufacturing method of the thermoelectric conversion element 1 which concerns on this Embodiment is demonstrated.
 まず、図4に示されるように、基板20上に磁性体層30が形成され、その磁性体層30上に起電層40が形成される。更に、これら基板20、磁性体層30及び起電層40の積層を1単位として、その積層が複数回繰り返される。 First, as shown in FIG. 4, the magnetic layer 30 is formed on the substrate 20, and the electromotive layer 40 is formed on the magnetic layer 30. Further, the lamination of the substrate 20, the magnetic layer 30 and the electromotive layer 40 is taken as one unit, and the lamination is repeated a plurality of times.
 次に、図4で示された積層構造から、所望の素子サイズに応じた部分が切り出される。その結果、図5に示される積層構造が得られる。その積層構造の-X方向側の側面が第1側面11であり、+X方向側の側面が第2側面12である。ここで、基板20、磁性体層30及び起電層40の積層構造が、単一の熱電変換単位構造10に相当する。また、起電層40の第1側面11側(-X方向側)の端部が第1端部41であり、起電層40の第2側面12側(+X方向側)の端部が第2端部42である。 Next, a portion corresponding to a desired element size is cut out from the laminated structure shown in FIG. As a result, the laminated structure shown in FIG. 5 is obtained. The side surface on the −X direction side of the stacked structure is the first side surface 11, and the side surface on the + X direction side is the second side surface 12. Here, the laminated structure of the substrate 20, the magnetic layer 30 and the electromotive layer 40 corresponds to a single thermoelectric conversion unit structure 10. The end of the electromotive layer 40 on the first side surface 11 side (−X direction side) is the first end portion 41, and the end of the electromotive layer 40 on the second side surface 12 side (+ X direction side) is the first end portion 41. Two end portions 42.
 次に、図6に示されるように、横方向から導電膜が成膜される。その結果、第1側面11の上に接触するように第1導電構造51が形成され、また、第2側面12の上に接触するように第2導電構造52が形成される。 Next, as shown in FIG. 6, a conductive film is formed from the lateral direction. As a result, the first conductive structure 51 is formed so as to be in contact with the first side surface 11, and the second conductive structure 52 is formed so as to be in contact with the second side surface 12.
 更に、図7に示されるように、第1導電構造51及び第2導電構造52のそれぞれに、第1外部端子61及び第2外部端子62が取り付けられる。これら第1外部端子61及び第2外部端子62は、電力の取り出しに用いられる。 Further, as shown in FIG. 7, a first external terminal 61 and a second external terminal 62 are attached to the first conductive structure 51 and the second conductive structure 52, respectively. The first external terminal 61 and the second external terminal 62 are used for taking out electric power.
 以上に説明された方法により、図2及び図3で示された構造が得られる。尚、磁性体層30の磁化処理は、どのタイミングで実施されてもよい。 By the method described above, the structure shown in FIGS. 2 and 3 is obtained. The magnetization process of the magnetic layer 30 may be performed at any timing.
 このように、起電層40と第1導電構造51(第2導電構造52)とが物理的に接触することで電気的に接続される。従って、複数の熱電変換単位構造10で発生した起電力を同時に取り出すことが可能となる。これにより、素子面積を増大させることなく、発電量すなわち出力電力を増加させることが可能となる。 Thus, the electromotive layer 40 and the first conductive structure 51 (second conductive structure 52) are electrically connected by being in physical contact. Therefore, it is possible to simultaneously extract the electromotive force generated in the plurality of thermoelectric conversion unit structures 10. Thereby, it is possible to increase the power generation amount, that is, the output power without increasing the element area.
 尚、図8に示されるように、単一の熱電変換単位構造10において、磁性体層30の上下に起電層40が形成されてもよい。 As shown in FIG. 8, in the single thermoelectric conversion unit structure 10, electromotive layers 40 may be formed above and below the magnetic layer 30.
 また、起電層40と第1導電構造51(第2導電構造52)との間の接触面積を大きくする(つまり、接触抵抗を低減する)ために、図9に示されるように、第1側面11(第2側面12)が斜面状に形成されてもよい。 Further, in order to increase the contact area between the electromotive layer 40 and the first conductive structure 51 (second conductive structure 52) (that is, to reduce the contact resistance), as shown in FIG. The side surface 11 (second side surface 12) may be formed in a slope shape.
 あるいは、図10に示されるように、起電層40の両端上に第1電極45及び第2電極46が形成されていてもよい。第1電極45及び第2電極46は、低抵抗材料(例:Cu)で形成されており、Y方向に延在している。第1電極45の側面は、起電層40の第1端部41と共に、第1導電構造51に接触している。一方、第2電極46の側面は、起電層40の第2端部42と共に、第2導電構造52に接触している。このような構造によっても、第1導電構造51や第2導電構造52との接触面積が大きくなる(つまり、接触抵抗が低減される)。 Alternatively, as shown in FIG. 10, the first electrode 45 and the second electrode 46 may be formed on both ends of the electromotive layer 40. The first electrode 45 and the second electrode 46 are made of a low resistance material (eg, Cu) and extend in the Y direction. The side surface of the first electrode 45 is in contact with the first conductive structure 51 together with the first end 41 of the electromotive layer 40. On the other hand, the side surface of the second electrode 46 is in contact with the second conductive structure 52 together with the second end portion 42 of the electromotive layer 40. Such a structure also increases the contact area with the first conductive structure 51 and the second conductive structure 52 (that is, the contact resistance is reduced).
 尚、図10に示されるような熱電変換単位構造10が積層された際、第1電極45と第2電極46との間に空間が残ったままだと、その空間において熱伝導が鈍り、発電効率が悪くなる。よって、図10に示されるように、第1電極45と第2電極46との間の空間を埋めるように起電層40上に絶縁膜47が形成されてもよい。絶縁膜47は、熱伝導度が高い(熱抵抗が低い)材料、例えばポリイミドで形成される。このような絶縁膜47により、積層構造中の空間の発生が防止され、発電効率が向上する。 When the thermoelectric conversion unit structure 10 as shown in FIG. 10 is stacked, if a space remains between the first electrode 45 and the second electrode 46, the heat conduction is reduced in the space, and the power generation efficiency is reduced. Becomes worse. Therefore, as shown in FIG. 10, the insulating film 47 may be formed on the electromotive layer 40 so as to fill the space between the first electrode 45 and the second electrode 46. The insulating film 47 is made of a material having high thermal conductivity (low thermal resistance), for example, polyimide. Such an insulating film 47 prevents generation of spaces in the laminated structure and improves power generation efficiency.
 3.第2の例
 次に、本実施の形態に係る熱電変換素子1の製造方法の第2の例を説明する。
3. Second Example Next, a second example of the manufacturing method of the thermoelectric conversion element 1 according to the present embodiment will be described.
 効率の観点から言えば、起電層40の厚さを、材料に依存する「スピン拡散長(スピン緩和長)」程度に設定することが望ましい。例えば、起電層40がPt膜である場合、その膜厚を10~30nm程度に設定することが好ましい。しかしながら、上記の第1の例では、起電層40と第1導電構造51(第2導電構造52)とが別プロセスで形成される。この場合、薄い起電層40の第1導電構造51(第2導電構造52)との間の接触抵抗が、どうしても高くなってしまう。つまり、薄い起電層40に対するコンタクト部分(第1端部41、第2端部42)が高抵抗化してしまう。第2の例は、このような問題を解決するためのものである。 From the viewpoint of efficiency, it is desirable to set the thickness of the electromotive layer 40 to about the “spin diffusion length (spin relaxation length)” depending on the material. For example, when the electromotive layer 40 is a Pt film, the film thickness is preferably set to about 10 to 30 nm. However, in the above first example, the electromotive layer 40 and the first conductive structure 51 (second conductive structure 52) are formed by separate processes. In this case, the contact resistance between the thin electromotive layer 40 and the first conductive structure 51 (second conductive structure 52) is inevitably increased. That is, the contact portions (the first end portion 41 and the second end portion 42) with respect to the thin electromotive layer 40 are increased in resistance. The second example is for solving such a problem.
 まず、図11に示されるような熱電変換シート70が提供される。この熱電変換シート70も、基板20、磁性体層30及び起電層40の積層構造を有している。但し、熱電変換シート70は、可とう性(flexibility)を有している。ここで、可とう性とは、可塑性(plasticity)と弾性(elasticity)の両方の概念を含む。すなわち、熱電変換シート70は曲げることが可能である。 First, a thermoelectric conversion sheet 70 as shown in FIG. 11 is provided. This thermoelectric conversion sheet 70 also has a laminated structure of the substrate 20, the magnetic layer 30 and the electromotive layer 40. However, the thermoelectric conversion sheet 70 has flexibility. Here, flexibility includes the concepts of both plasticity and elasticity. That is, the thermoelectric conversion sheet 70 can be bent.
 例えば、基板20はポリイミド基板(厚さ:25μm)であり、磁性体層30はフェライト磁性体(厚さ:3μm)であり、起電層40はPt膜(厚さ:10nm)である。フェライト磁性体は、例えばフェライトめっき法により形成される。Pt膜は、例えばスパッタリングにより形成される。このような基板20、磁性体層30及び起電層40により、可とう性を有する熱電変換シート70が実現される。 For example, the substrate 20 is a polyimide substrate (thickness: 25 μm), the magnetic layer 30 is a ferrite magnetic body (thickness: 3 μm), and the electromotive layer 40 is a Pt film (thickness: 10 nm). The ferrite magnetic body is formed by, for example, a ferrite plating method. The Pt film is formed by sputtering, for example. Such a substrate 20, the magnetic layer 30 and the electromotive layer 40 realize a flexible thermoelectric conversion sheet 70.
 次に、図12に示されるように、起電層40が外側に露出するように熱電変換シート70が折り畳まれる。このとき、熱電変換シート70は、2箇所において折り曲げられる。起電層40のうちそれら2箇所に相当する折り曲げ部分は、「第1側面導電部40S1」と「第2側面導電部40S2」である。第1側面導電部40S1と第2側面導電部40S2は、X方向において対向している。このうち第1側面導電部40S1が-X方向側に位置し、第2側面導電部40S2が+X方向側に位置している。 Next, as shown in FIG. 12, the thermoelectric conversion sheet 70 is folded so that the electromotive layer 40 is exposed to the outside. At this time, the thermoelectric conversion sheet 70 is bent at two locations. The bent portions corresponding to these two locations in the electromotive layer 40 are the “first side surface conductive portion 40S1” and the “second side surface conductive portion 40S2”. The first side surface conductive portion 40S1 and the second side surface conductive portion 40S2 face each other in the X direction. Among these, the first side surface conductive portion 40S1 is located on the −X direction side, and the second side surface conductive portion 40S2 is located on the + X direction side.
 また、起電層40のうち上方向(+Z方向)に露出している部分は、以下、「上部起電層40U」と参照される。一方、起電層40のうち下方向(-Z方向)に露出している部分は、以下、「下部起電層40L」と参照される。つまり、上部起電層40Uは上面側に形成されており、下部起電層40Lは下面側に形成されている。尚、上部起電層40Uと下部起電層40Lの各々が、図3で示された単一の起電層40に相当する。 Further, the portion of the electromotive layer 40 exposed in the upward direction (+ Z direction) is hereinafter referred to as “upper electromotive layer 40U”. On the other hand, the portion of the electromotive layer 40 that is exposed in the downward direction (−Z direction) is hereinafter referred to as a “lower electromotive layer 40L”. That is, the upper electromotive layer 40U is formed on the upper surface side, and the lower electromotive layer 40L is formed on the lower surface side. Each of the upper electromotive layer 40U and the lower electromotive layer 40L corresponds to the single electromotive layer 40 shown in FIG.
 上部起電層40U(下部起電層40L)と第1側面導電部40S1とは、一体的に形成されている。そして、上部起電層40U(下部起電層40L)から第1側面導電部40S1への遷移部分が、図3で示された第1端部41に相当する。つまり、第1側面導電部40S1は、上部起電層40U(下部起電層40L)の第1端部41から延在するように、上部起電層40U(下部起電層40L)と一体的に形成されている。尚、上部起電層40U(下部起電層40L)から第1側面導電部40S1への遷移部分は、ある程度の曲率半径を有している。 The upper electromotive layer 40U (lower electromotive layer 40L) and the first side surface conductive portion 40S1 are integrally formed. A transition portion from the upper electromotive layer 40U (lower electromotive layer 40L) to the first side surface conductive portion 40S1 corresponds to the first end portion 41 shown in FIG. That is, the first side conductive portion 40S1 is integrated with the upper electromotive layer 40U (lower electromotive layer 40L) so as to extend from the first end 41 of the upper electromotive layer 40U (lower electromotive layer 40L). Is formed. The transition portion from the upper electromotive layer 40U (lower electromotive layer 40L) to the first side surface conductive portion 40S1 has a certain radius of curvature.
 同様に、上部起電層40U(下部起電層40L)と第2側面導電部40S2とは、一体的に形成されている。そして、上部起電層40U(下部起電層40L)から第2側面導電部40S2への遷移部分が、図3で示された第2端部42に相当する。つまり、第2側面導電部40S2は、第2端部42から延在するように、上部起電層40U(下部起電層40L)と一体的に形成されている。尚、上部起電層40U(下部起電層40L)から第2側面導電部40S2への遷移部分は、ある程度の曲率半径を有している。 Similarly, the upper electromotive layer 40U (lower electromotive layer 40L) and the second side surface conductive portion 40S2 are integrally formed. A transition portion from the upper electromotive layer 40U (lower electromotive layer 40L) to the second side surface conductive portion 40S2 corresponds to the second end portion 42 shown in FIG. That is, the second side conductive portion 40S2 is formed integrally with the upper electromotive layer 40U (lower electromotive layer 40L) so as to extend from the second end portion 42. The transition portion from the upper electromotive layer 40U (lower electromotive layer 40L) to the second side surface conductive portion 40S2 has a certain radius of curvature.
 このような図12に示される構造が、本実施の形態に係る熱電変換単位構造10に相当する。図12に示される熱電変換単位構造10の場合、第1側面導電部40S1と第2側面導電部40S2を除く起電層40(つまり、上部起電層40Uと下部起電層40L)において、X方向の起電力が発生する。 Such a structure shown in FIG. 12 corresponds to the thermoelectric conversion unit structure 10 according to the present embodiment. In the case of the thermoelectric conversion unit structure 10 shown in FIG. 12, in the electromotive layer 40 excluding the first side surface conductive portion 40S1 and the second side surface conductive portion 40S2 (that is, the upper electromotive layer 40U and the lower electromotive layer 40L), An electromotive force in the direction is generated.
 尚、図13に示されるように、折り曲げの結果、熱電変換単位構造10の下面側に隙間15が存在していてもよい。 As shown in FIG. 13, as a result of bending, a gap 15 may exist on the lower surface side of the thermoelectric conversion unit structure 10.
 次に、図14に示されるように、図12(あるいは図13)で示された熱電変換単位構造10が複数段積層される。このとき、上下に隣り合う熱電変換単位構造10間で、起電層40同士が広い面積で接触する。より詳細には、上側の熱電変換単位構造10の下部起電層40Lと、下側の熱電変換単位構造10の上部起電層40Uとが、互いに接触する。 Next, as shown in FIG. 14, the thermoelectric conversion unit structure 10 shown in FIG. 12 (or FIG. 13) is laminated in a plurality of stages. At this time, the electromotive layers 40 are in contact with each other over a wide area between the thermoelectric conversion unit structures 10 that are vertically adjacent to each other. More specifically, the lower electromotive layer 40L of the upper thermoelectric conversion unit structure 10 and the upper electromotive layer 40U of the lower thermoelectric conversion unit structure 10 are in contact with each other.
 また、上下に隣り合う熱電変換単位構造10間で、第1側面導電部40S1同士が物理的につながると好適である。この場合、積層されている複数の熱電変換単位構造10のそれぞれの第1側面導電部40S1がつながることによって、図2で示された「第1導電構造51」が形成される。 Further, it is preferable that the first side surface conductive portions 40S1 are physically connected to each other between the thermoelectric conversion unit structures 10 adjacent to each other in the vertical direction. In this case, the “first conductive structure 51” shown in FIG. 2 is formed by connecting the first side surface conductive portions 40S1 of the plurality of thermoelectric conversion unit structures 10 stacked.
 同様に、上下に隣り合う熱電変換単位構造10間で、第2側面導電部40S2同士が物理的につながると好適である。この場合、積層されている複数の熱電変換単位構造10のそれぞれの第2側面導電部40S2がつながることによって、図2で示された「第2導電構造52」が形成される。 Similarly, it is preferable that the second side surface conductive portions 40S2 are physically connected to each other between the thermoelectric conversion unit structures 10 that are vertically adjacent to each other. In this case, the second side conductive portions 40S2 of the plurality of laminated thermoelectric conversion unit structures 10 are connected to form the “second conductive structure 52” shown in FIG.
 更に、図15に示されるように、第1導電構造51及び第2導電構造52のそれぞれに、第1外部端子61及び第2外部端子62が取り付けられる。これら第1外部端子61及び第2外部端子62は、電力の取り出しに用いられる。 Further, as shown in FIG. 15, a first external terminal 61 and a second external terminal 62 are attached to the first conductive structure 51 and the second conductive structure 52, respectively. The first external terminal 61 and the second external terminal 62 are used for taking out electric power.
 以上に説明された方法により、図2及び図3で示された構造が得られる。尚、磁性体層30の磁化処理は、どのタイミングで実施されてもよい。 By the method described above, the structure shown in FIGS. 2 and 3 is obtained. The magnetization process of the magnetic layer 30 may be performed at any timing.
 このようにして、積層された複数の熱電変換単位構造10のそれぞれの起電層40同士が電気的に接続される。従って、複数の熱電変換単位構造10で発生した起電力を同時に取り出すことが可能となる。これにより、素子面積を増大させることなく、発電量すなわち出力電力を増加させることが可能となる。 In this way, the electromotive layers 40 of the plurality of laminated thermoelectric conversion unit structures 10 are electrically connected to each other. Therefore, it is possible to simultaneously extract the electromotive force generated in the plurality of thermoelectric conversion unit structures 10. Thereby, it is possible to increase the power generation amount, that is, the output power without increasing the element area.
 また、第2の例によれば、熱電変換シート70の折り曲げにより熱電変換単位構造10が形成される。更に、その熱電変換単位構造10を複数段積層することにより、熱電変換素子1が形成される。このとき、上下に隣り合う熱電変換単位構造10の起電層40同士は、広い面積で接触する。従って、上記の第1の例で発生したような接触抵抗の高い部分が排除される。すなわち、第2の例によれば、第1の例と比較して、更なる高出力化が可能である。 Further, according to the second example, the thermoelectric conversion unit structure 10 is formed by bending the thermoelectric conversion sheet 70. Furthermore, the thermoelectric conversion element 1 is formed by laminating the thermoelectric conversion unit structure 10 in a plurality of stages. At this time, the electromotive layers 40 of the thermoelectric conversion unit structures 10 adjacent to each other in the vertical direction are in contact with each other over a wide area. Therefore, a portion having a high contact resistance as generated in the first example is eliminated. That is, according to the second example, it is possible to further increase the output as compared with the first example.
 図16は、一変形例として、図13で示された熱電変換単位構造10の下部起電層40L同士が接触するような積層例を示している。上下の熱電変換単位構造10のそれぞれの隙間15の位置が一致した場合、その部分でX方向の電流が途切れてしまう。この場合、効果が全く無くなるわけではないが、少なくなる。よって、上部起電層40Uと下部起電層40Lが接触するような積層の方が好ましい。あるいは、図12で示されたように、隙間15が出来ないように熱電変換シート70が折り曲げられることが好ましい。 FIG. 16 shows a lamination example in which the lower electromotive layers 40L of the thermoelectric conversion unit structure 10 shown in FIG. 13 are in contact with each other as a modification. When the positions of the gaps 15 of the upper and lower thermoelectric conversion unit structures 10 coincide with each other, the current in the X direction is interrupted at that portion. In this case, the effect is not completely lost, but is reduced. Therefore, it is preferable to stack the upper electromotive layer 40U and the lower electromotive layer 40L in contact with each other. Alternatively, as shown in FIG. 12, it is preferable that the thermoelectric conversion sheet 70 is bent so that the gap 15 is not formed.
 図17は、他の変形例を示している。図17に示されるように、熱電変換シート70は、支持体80の周りに巻き付けられるように折り曲げられてもよい。この場合、熱電変換シート70の破断が抑制されるとともに、熱電変換素子1全体としての強度が増す。 FIG. 17 shows another modification. As shown in FIG. 17, the thermoelectric conversion sheet 70 may be bent so as to be wound around the support 80. In this case, breakage of the thermoelectric conversion sheet 70 is suppressed, and the strength of the thermoelectric conversion element 1 as a whole increases.
 以上、本発明の実施の形態が添付の図面を参照することにより説明された。但し、本発明は、上述の実施の形態に限定されず、要旨を逸脱しない範囲で当業者により適宜変更され得る。 The embodiments of the present invention have been described above with reference to the accompanying drawings. However, the present invention is not limited to the above-described embodiments, and can be appropriately changed by those skilled in the art without departing from the scope of the invention.
 上記の実施形態の一部又は全部は、以下の付記のようにも記載されうるが、以下には限られない。 Some or all of the above embodiments can be described as in the following supplementary notes, but are not limited thereto.
 (付記1)
 積層された複数の熱電変換単位構造を備え、
 前記複数の熱電変換単位構造の各々は、
  磁性体層と、
  前記磁性体層上に形成され、スピン軌道相互作用を発現する材料で形成された起電層と
 を備え、
 前記各々の熱電変換単位構造は、前記起電層が外側に露出するように折り畳まれており、
 隣り合う熱電変換単位構造間で、前記起電層同士が接触している
 熱電変換素子。
(Appendix 1)
It has a plurality of laminated thermoelectric conversion unit structures,
Each of the plurality of thermoelectric conversion unit structures is
A magnetic layer;
An electromotive layer formed on the magnetic layer and formed of a material that exhibits spin-orbit interaction, and
Each thermoelectric conversion unit structure is folded so that the electromotive layer is exposed to the outside,
A thermoelectric conversion element in which the electromotive layers are in contact with each other between adjacent thermoelectric conversion unit structures.
 (付記2)
 付記1に記載の熱電変換素子であって、
 前記各々の熱電変換単位構造の前記起電層は、第1側面導電部と第2側面導電部において折れ曲がっており、
 隣り合う熱電変換単位構造間で、前記第1側面導電部同士が物理的につながっており、且つ、前記第2側面導電部同士が物理的につながっている
 熱電変換素子。
(Appendix 2)
The thermoelectric conversion element according to attachment 1, wherein
The electromotive layer of each thermoelectric conversion unit structure is bent at the first side surface conductive portion and the second side surface conductive portion,
The thermoelectric conversion element in which the first side surface conductive parts are physically connected to each other between the adjacent thermoelectric conversion unit structures and the second side surface conductive parts are physically connected to each other.
 (付記3)
 付記1又は2に記載の熱電変換素子であって、
 前記第1側面導電部と前記第2側面導電部とは、第1面内方向において対向しており、
 前記各々の熱電変換単位構造は、前記第1側面導電部及び前記第2側面導電部を除く前記起電層において前記第1面内方向に起電力が発生するように構成されている
 熱電変換素子。
(Appendix 3)
The thermoelectric conversion element according to appendix 1 or 2,
The first side surface conductive portion and the second side surface conductive portion are opposed to each other in the first in-plane direction,
Each of the thermoelectric conversion unit structures is configured such that an electromotive force is generated in the first in-plane direction in the electromotive layer excluding the first side surface conductive portion and the second side surface conductive portion. .
 (付記4)
 付記3に記載の熱電変換素子であって、
 前記磁性体層の磁化は、前記第1面内方向と直交する第2面内方向の成分を含んでいる
 熱電変換素子。
(Appendix 4)
The thermoelectric conversion element according to attachment 3, wherein
The thermoelectric conversion element, wherein the magnetization of the magnetic layer includes a component in a second in-plane direction orthogonal to the first in-plane direction.
 (付記5)
 複数の熱電変換単位構造が積層された積層構造と、
 前記積層構造の第1側面に形成された第1導電構造と、
 前記積層構造の第2側面に形成された第2導電構造と
 を備え、
 前記複数の熱電変換単位構造の各々は、
  磁性体層と、
  前記磁性体層上に形成され、スピン軌道相互作用を発現する材料で形成された起電層と
 を備え、
 前記起電層の前記第1側面側の端部である第1端部は、前記第1導電構造と物理的につながっており、
 前記起電層の前記第2側面側の端部である第2端部は、前記第2導電構造と物理的につながっている
 熱電変換素子。
(Appendix 5)
A laminated structure in which a plurality of thermoelectric conversion unit structures are laminated;
A first conductive structure formed on a first side surface of the laminated structure;
A second conductive structure formed on the second side surface of the laminated structure,
Each of the plurality of thermoelectric conversion unit structures is
A magnetic layer;
An electromotive layer formed on the magnetic layer and formed of a material that exhibits spin-orbit interaction, and
A first end that is an end of the electromotive layer on the first side surface is physically connected to the first conductive structure;
The thermoelectric conversion element in which the 2nd edge part which is an edge part of the said 2nd side surface side of the said electromotive layer is physically connected with the said 2nd conductive structure.
 (付記6)
 付記5に記載の熱電変換素子であって、
 前記第1側面と前記第2側面とは、第1面内方向において対向しており、
 前記各々の熱電変換単位構造は、前記起電層において前記第1面内方向に起電力が発生するように構成されている
 熱電変換素子。
(Appendix 6)
The thermoelectric conversion element according to appendix 5,
The first side surface and the second side surface are opposed in the first in-plane direction,
Each of the thermoelectric conversion unit structures is configured to generate an electromotive force in the first in-plane direction in the electromotive layer.
 (付記7)
 付記6に記載の熱電変換素子であって、
 前記磁性体層の磁化は、前記第1面内方向と直交する第2面内方向の成分を含んでいる
 熱電変換素子。
(Appendix 7)
The thermoelectric conversion element according to attachment 6, wherein
The thermoelectric conversion element, wherein the magnetization of the magnetic layer includes a component in a second in-plane direction orthogonal to the first in-plane direction.
 (付記8)
 付記5乃至7のいずれか一項に記載の熱電変換素子であって、
 前記各々の熱電変換単位構造は、更に、
  前記起電層の前記第1端部から前記第1側面に延在するように、前記起電層と一体的に形成された第1側面導電部と、
  前記起電層の前記第2端部から前記第2側面に延在するように、前記起電層と一体的に形成された第2側面導電部と
 を備え、
 隣り合う熱電変換単位構造間で前記第1側面導電部同士が物理的につながることによって、前記第1導電構造が形成されており、
 隣り合う熱電変換単位構造間で前記第2側面導電部同士が物理的につながることによって、前記第2導電構造が形成されている
 熱電変換素子。
(Appendix 8)
The thermoelectric conversion element according to any one of appendices 5 to 7,
Each thermoelectric conversion unit structure further includes:
A first side surface conductive portion formed integrally with the electromotive layer so as to extend from the first end of the electromotive layer to the first side surface;
A second side surface conductive portion formed integrally with the electromotive layer so as to extend from the second end portion of the electromotive layer to the second side surface;
The first conductive structure is formed by physically connecting the first side surface conductive portions between adjacent thermoelectric conversion unit structures,
The thermoelectric conversion element in which the second conductive structure is formed by physically connecting the second side-surface conductive portions between adjacent thermoelectric conversion unit structures.
 (付記9)
 付記8に記載の熱電変換素子であって、
 前記各々の熱電変換単位構造の前記起電層は、
  前記各々の熱電変換単位構造の上面側に形成された上部起電層と、
  前記各々の熱電変換単位構造の下面側に形成された下部起電層と
 を含み、
 隣り合う熱電変換単位構造間で、前記上部起電層と前記下部起電層とが接触している
 熱電変換素子。
(Appendix 9)
The thermoelectric conversion element according to attachment 8, wherein
The electromotive layer of each thermoelectric conversion unit structure is:
An upper electromotive layer formed on the upper surface side of each thermoelectric conversion unit structure;
A lower electromotive layer formed on the lower surface side of each thermoelectric conversion unit structure,
The thermoelectric conversion element in which the upper electromotive layer and the lower electromotive layer are in contact between adjacent thermoelectric conversion unit structures.
 (付記10)
 付記8又は9に記載の熱電変換素子であって、
 前記各々の熱電変換単位構造は、可とう性を有する材料で形成されている
 熱電変換素子。
(Appendix 10)
The thermoelectric conversion element according to appendix 8 or 9,
Each of the thermoelectric conversion unit structures is a thermoelectric conversion element formed of a flexible material.
 (付記11)
 (A)熱電変換シートを提供するステップと、
  ここで、前記熱電変換シートは、
   磁性体層と、
   前記磁性体層上に形成され、スピン軌道相互作用を発現する材料で形成された起電層と
  を備え、
 (B)前記起電層が外側に露出するように前記熱電変換シートを折り畳むことによって、熱電変換単位構造を作成するステップと、
 (C)前記起電層同士が接触するように、前記熱電変換単位構造を複数段積層するステップと
 を含む
 熱電変換素子の製造方法。
(Appendix 11)
(A) providing a thermoelectric conversion sheet;
Here, the thermoelectric conversion sheet is
A magnetic layer;
An electromotive layer formed on the magnetic layer and formed of a material that exhibits spin-orbit interaction, and
(B) creating a thermoelectric conversion unit structure by folding the thermoelectric conversion sheet so that the electromotive layer is exposed to the outside;
(C) A step of laminating the thermoelectric conversion unit structures in a plurality of stages so that the electromotive layers are in contact with each other.
 (付記12)
 付記11に記載の熱電変換素子の製造方法であって、
 前記熱電変換単位構造を作成するステップにおいて、前記起電層は、第1側面導電部と第2側面導電部において折り曲げられ、
 前記熱電変換単位構造を複数段積層するステップにおいて、前記第1側面導電部同士が物理的につなげられ、且つ、前記第2側面導電部同士が物理的につなげられる
 熱電変換素子の製造方法。
(Appendix 12)
A method of manufacturing a thermoelectric conversion element according to appendix 11,
In the step of creating the thermoelectric conversion unit structure, the electromotive layer is bent at the first side surface conductive portion and the second side surface conductive portion,
The method of manufacturing a thermoelectric conversion element, wherein in the step of laminating the thermoelectric conversion unit structures in a plurality of stages, the first side surface conductive parts are physically connected to each other, and the second side surface conductive parts are physically connected to each other.
 本出願は、2012年7月9日に出願された日本国特許出願2012-153414を基礎とする優先権を主張し、その開示の全てをここに取り込む。
 
This application claims the priority on the basis of the Japan patent application 2012-153414 for which it applied on July 9, 2012, and takes in those the indications of all here.

Claims (6)

  1.  積層された複数の熱電変換単位構造を備え、
     前記複数の熱電変換単位構造の各々は、
      磁性体層と、
      前記磁性体層上に形成され、スピン軌道相互作用を発現する材料で形成された起電層と
     を備え、
     前記各々の熱電変換単位構造は、前記起電層が外側に露出するように折り畳まれており、
     隣り合う熱電変換単位構造間で、前記起電層同士が接触している
     熱電変換素子。
    It has a plurality of laminated thermoelectric conversion unit structures,
    Each of the plurality of thermoelectric conversion unit structures is
    A magnetic layer;
    An electromotive layer formed on the magnetic layer and formed of a material that exhibits spin-orbit interaction, and
    Each thermoelectric conversion unit structure is folded so that the electromotive layer is exposed to the outside,
    A thermoelectric conversion element in which the electromotive layers are in contact with each other between adjacent thermoelectric conversion unit structures.
  2.  請求項1に記載の熱電変換素子であって、
     前記各々の熱電変換単位構造の前記起電層は、第1側面導電部と第2側面導電部において折れ曲がっており、
     隣り合う熱電変換単位構造間で、前記第1側面導電部同士が物理的につながっており、且つ、前記第2側面導電部同士が物理的につながっている
     熱電変換素子。
    The thermoelectric conversion element according to claim 1,
    The electromotive layer of each thermoelectric conversion unit structure is bent at the first side surface conductive portion and the second side surface conductive portion,
    The thermoelectric conversion element in which the first side surface conductive parts are physically connected to each other between the adjacent thermoelectric conversion unit structures and the second side surface conductive parts are physically connected to each other.
  3.  請求項1又は2に記載の熱電変換素子であって、
     前記第1側面導電部と前記第2側面導電部とは、第1面内方向において対向しており、
     前記各々の熱電変換単位構造は、前記第1側面導電部及び前記第2側面導電部を除く前記起電層において前記第1面内方向に起電力が発生するように構成されている
     熱電変換素子。
    The thermoelectric conversion element according to claim 1 or 2,
    The first side surface conductive portion and the second side surface conductive portion are opposed to each other in the first in-plane direction,
    Each of the thermoelectric conversion unit structures is configured such that an electromotive force is generated in the first in-plane direction in the electromotive layer excluding the first side surface conductive portion and the second side surface conductive portion. .
  4.  請求項3に記載の熱電変換素子であって、
     前記磁性体層の磁化は、前記第1面内方向と直交する第2面内方向の成分を含んでいる
     熱電変換素子。
    The thermoelectric conversion element according to claim 3,
    The thermoelectric conversion element, wherein the magnetization of the magnetic layer includes a component in a second in-plane direction orthogonal to the first in-plane direction.
  5.  (A)熱電変換シートを提供するステップと、
      ここで、前記熱電変換シートは、
       磁性体層と、
       前記磁性体層上に形成され、スピン軌道相互作用を発現する材料で形成された起電層と
      を備え、
     (B)前記起電層が外側に露出するように前記熱電変換シートを折り畳むことによって、熱電変換単位構造を作成するステップと、
     (C)前記起電層同士が接触するように、前記熱電変換単位構造を複数段積層するステップと
     を含む
     熱電変換素子の製造方法。
    (A) providing a thermoelectric conversion sheet;
    Here, the thermoelectric conversion sheet is
    A magnetic layer;
    An electromotive layer formed on the magnetic layer and formed of a material that exhibits spin-orbit interaction, and
    (B) creating a thermoelectric conversion unit structure by folding the thermoelectric conversion sheet so that the electromotive layer is exposed to the outside;
    (C) A step of laminating the thermoelectric conversion unit structures in a plurality of stages so that the electromotive layers are in contact with each other.
  6.  請求項5に記載の熱電変換素子の製造方法であって、
     前記熱電変換単位構造を作成するステップにおいて、前記起電層は、第1側面導電部と第2側面導電部において折り曲げられ、
     前記熱電変換単位構造を複数段積層するステップにおいて、前記第1側面導電部同士が物理的につなげられ、且つ、前記第2側面導電部同士が物理的につなげられる
     熱電変換素子の製造方法。
     
    It is a manufacturing method of the thermoelectric conversion element according to claim 5,
    In the step of creating the thermoelectric conversion unit structure, the electromotive layer is bent at the first side surface conductive portion and the second side surface conductive portion,
    The method of manufacturing a thermoelectric conversion element, wherein in the step of laminating the thermoelectric conversion unit structures in a plurality of stages, the first side surface conductive parts are physically connected to each other, and the second side surface conductive parts are physically connected to each other.
PCT/JP2013/061213 2012-07-09 2013-04-15 Thermoelectric conversion element, and method for producing same WO2014010286A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014524669A JPWO2014010286A1 (en) 2012-07-09 2013-04-15 Thermoelectric conversion element and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012153414 2012-07-09
JP2012-153414 2012-07-09

Publications (1)

Publication Number Publication Date
WO2014010286A1 true WO2014010286A1 (en) 2014-01-16

Family

ID=49915762

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/061213 WO2014010286A1 (en) 2012-07-09 2013-04-15 Thermoelectric conversion element, and method for producing same

Country Status (2)

Country Link
JP (1) JPWO2014010286A1 (en)
WO (1) WO2014010286A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015142048A (en) * 2014-01-29 2015-08-03 日本電気株式会社 Thermoelectric conversion element and method for manufacturing the same
WO2015115056A1 (en) * 2014-01-29 2015-08-06 日本電気株式会社 Thermoelectric transducer, thermoelectric transducer module, and manufacturing method for thermoelectric transducer
JP2016009838A (en) * 2014-06-26 2016-01-18 日本電気株式会社 Thermoelectric conversion structure and method for manufacturing the same
WO2016039022A1 (en) * 2014-09-08 2016-03-17 富士フイルム株式会社 Thermoelectric conversion element and thermoelectric conversion module

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01110457U (en) * 1988-01-20 1989-07-26
JP2006127920A (en) * 2004-10-29 2006-05-18 Sanyo Electric Co Ltd Power supply device
JP2008205129A (en) * 2007-02-19 2008-09-04 Tokai Rika Co Ltd Circuit block and manufacturing method thereof
WO2009151000A1 (en) * 2008-06-12 2009-12-17 学校法人 慶應義塾 Thermoelectric conversion element
JP2011249746A (en) * 2010-04-30 2011-12-08 Keio Gijuku Thermoelectric element and thermoelectric conversion device
JP2012038929A (en) * 2010-08-06 2012-02-23 Hitachi Ltd Thermoelectric transducer, magnetic head using the same, and magnetic recording and reproducing device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01110457U (en) * 1988-01-20 1989-07-26
JP2006127920A (en) * 2004-10-29 2006-05-18 Sanyo Electric Co Ltd Power supply device
JP2008205129A (en) * 2007-02-19 2008-09-04 Tokai Rika Co Ltd Circuit block and manufacturing method thereof
WO2009151000A1 (en) * 2008-06-12 2009-12-17 学校法人 慶應義塾 Thermoelectric conversion element
JP2011249746A (en) * 2010-04-30 2011-12-08 Keio Gijuku Thermoelectric element and thermoelectric conversion device
JP2012038929A (en) * 2010-08-06 2012-02-23 Hitachi Ltd Thermoelectric transducer, magnetic head using the same, and magnetic recording and reproducing device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015142048A (en) * 2014-01-29 2015-08-03 日本電気株式会社 Thermoelectric conversion element and method for manufacturing the same
WO2015115056A1 (en) * 2014-01-29 2015-08-06 日本電気株式会社 Thermoelectric transducer, thermoelectric transducer module, and manufacturing method for thermoelectric transducer
JPWO2015115056A1 (en) * 2014-01-29 2017-03-23 日本電気株式会社 Thermoelectric conversion element, thermoelectric conversion element module, and method of manufacturing thermoelectric conversion element
JP2016009838A (en) * 2014-06-26 2016-01-18 日本電気株式会社 Thermoelectric conversion structure and method for manufacturing the same
US10461238B2 (en) 2014-06-26 2019-10-29 Nec Corporation Thermoelectric conversion structure and method for making the same
WO2016039022A1 (en) * 2014-09-08 2016-03-17 富士フイルム株式会社 Thermoelectric conversion element and thermoelectric conversion module
JPWO2016039022A1 (en) * 2014-09-08 2017-06-01 富士フイルム株式会社 Thermoelectric conversion element and thermoelectric conversion module
US10243128B2 (en) 2014-09-08 2019-03-26 Fujifilm Corporation Thermoelectric conversion element and thermoelectric conversion module

Also Published As

Publication number Publication date
JPWO2014010286A1 (en) 2016-06-20

Similar Documents

Publication Publication Date Title
JP6164217B2 (en) Thermoelectric conversion element and manufacturing method thereof
JP5987835B2 (en) Thermoelectric conversion element
JP6233320B2 (en) Thermoelectric conversion element and manufacturing method thereof
WO2014010286A1 (en) Thermoelectric conversion element, and method for producing same
JP6066091B2 (en) Thermoelectric conversion element and manufacturing method thereof
US20130148262A1 (en) Electrical energy storage device
KR20140085376A (en) Electronic component and process for fabricating and using graphene in an electronic component
JP2018078147A (en) Magnetic thermoelectric element and power generation method
JP6241618B2 (en) Thermoelectric conversion element, thermoelectric conversion system, and method of manufacturing thermoelectric conversion element
CN107004762B (en) Magnetic tunnel junction
JP6565689B2 (en) Thermoelectric conversion element, thermoelectric conversion element module, and method of manufacturing thermoelectric conversion element
WO2013035148A1 (en) Thermoelectric conversion element and thermoelectric conversion module using same
JP6299237B2 (en) Thermoelectric conversion element and manufacturing method thereof
US20230389429A1 (en) Thermoelectric conversion module and method of producing thermoelectric conversion module
WO2018146713A1 (en) Thermoelectric conversion element and method for manufacturing same
JP2015065254A (en) Thermoelectric conversion element and method for manufacturing the same
US20180331273A1 (en) Electromotive film for thermoelectric conversion element, and thermoelectric conversion element
WO2013161615A1 (en) Thermoelectric conversion element
JP6980318B2 (en) Spin accumulator
JP2015185778A (en) Thermoelectric conversion element and method for manufacturing the same
JP6172439B2 (en) Spin current thermoelectric transducer
WO2023054583A1 (en) Thermoelectric body, thermoelectric generation element, multilayer thermoelectric body, multilayer thermoelectric generation element, thermoelectric generator, and heat flow sensor
JP2020009794A (en) Thermoelectric element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13817358

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014524669

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13817358

Country of ref document: EP

Kind code of ref document: A1