JP6906285B2 - Magnetic encoder magnetizing device and magnetizing method - Google Patents

Magnetic encoder magnetizing device and magnetizing method Download PDF

Info

Publication number
JP6906285B2
JP6906285B2 JP2016182956A JP2016182956A JP6906285B2 JP 6906285 B2 JP6906285 B2 JP 6906285B2 JP 2016182956 A JP2016182956 A JP 2016182956A JP 2016182956 A JP2016182956 A JP 2016182956A JP 6906285 B2 JP6906285 B2 JP 6906285B2
Authority
JP
Japan
Prior art keywords
magnetizing
magnetized
yoke
magnetic
conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016182956A
Other languages
Japanese (ja)
Other versions
JP2018049871A (en
Inventor
靖之 福島
靖之 福島
小池 孝誌
孝誌 小池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp filed Critical NTN Corp
Priority to JP2016182956A priority Critical patent/JP6906285B2/en
Priority to PCT/JP2017/033684 priority patent/WO2018056256A1/en
Priority to DE112017004716.1T priority patent/DE112017004716T5/en
Priority to CN201780057207.4A priority patent/CN109716458B/en
Publication of JP2018049871A publication Critical patent/JP2018049871A/en
Application granted granted Critical
Publication of JP6906285B2 publication Critical patent/JP6906285B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F13/00Apparatus or processes for magnetising or demagnetising
    • H01F13/003Methods and devices for magnetising permanent magnets
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/142Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices
    • G01D5/145Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices influenced by the relative movement between the Hall device and magnetic fields
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • G01D5/245Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains using a variable number of pulses in a train
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • G01D5/245Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains using a variable number of pulses in a train
    • G01D5/2451Incremental encoders
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • G01D5/245Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains using a variable number of pulses in a train
    • G01D5/2454Encoders incorporating incremental and absolute signals
    • G01D5/2455Encoders incorporating incremental and absolute signals with incremental and absolute tracks on the same encoder
    • G01D5/2457Incremental encoders having reference marks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F13/00Apparatus or processes for magnetising or demagnetising
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D2205/00Indexing scheme relating to details of means for transferring or converting the output of a sensing member
    • G01D2205/80Manufacturing details of magnetic targets for magnetic encoders

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Description

この発明は、回転速度または回転角度の検出に使用される磁気エンコーダの着磁装置および着磁方法に関する。 The present invention relates to a magnetizing device and a magnetizing method of a magnetic encoder used for detecting a rotation speed or a rotation angle.

特許文献1に、磁気エンコーダの着磁装置および着磁ヘッドが開示されている。ここに開示されている着磁装置の着磁ヘッド(着磁ヨーク)は、被着磁体(磁気エンコーダ)の着磁面に対向して接触または近接する先端面を有するコアと、導電線とを備える。コアは、先端面の内部に、先端面の一端側から他端に貫通する貫通孔を有する。導電線は、コアの先端面を一端側から他端側へ延び、さらに貫通孔を他端側から一端側へ延びる。導電線に交番電流を供給しながら、着磁ヘッドの先端面を被着磁体の着磁面の所定方向に相対的に回転または移動させて、被着磁体の着磁面に着磁する。 Patent Document 1 discloses a magnetizing device and a magnetizing head of a magnetic encoder. The magnetizing head (magnetizing yoke) of the magnetizing device disclosed herein has a core having a tip surface facing or approaching the magnetizing surface of the magnetized body (magnetic encoder), and a conductive wire. Be prepared. The core has a through hole inside the tip surface that penetrates from one end side to the other end of the tip surface. The conductive wire extends the tip surface of the core from one end side to the other end side, and further extends the through hole from the other end side to the one end side. While supplying an alternating current to the conductive wire, the tip surface of the magnetizing head is relatively rotated or moved in a predetermined direction of the magnetizing surface of the magnetized body to magnetize the magnetizing surface of the magnetized body.

特許第4846863号公報Japanese Patent No. 4846863

特許文献1の着磁方法では、導電線に電流を流したときに発生する磁界により、コアの先端面と対峙する被着磁体の着磁面を磁束が通過することで着磁される。また、所定の角度間隔で導電線に流れる電流の向きを変えて交番電流を発生させることにより、多極着磁が可能となる。しかし、この方法で発生する磁界強度は、電流の強さ、コアの材質、コアと被着磁体との距離で決まる。このように磁界強度が各種要因によって決まるため、所望の十分な磁界強度を得ることが難しく、被着磁体への着磁強度に課題がある。 In the magnetizing method of Patent Document 1, the magnetic flux generated when a current is passed through the conductive wire causes the magnetic flux to pass through the magnetizing surface of the magnetized body facing the tip surface of the core to be magnetized. Further, multi-pole magnetization becomes possible by generating an alternating current by changing the direction of the current flowing through the conductive wire at predetermined angular intervals. However, the magnetic field strength generated by this method is determined by the strength of the current, the material of the core, and the distance between the core and the magnetized body. Since the magnetic field strength is determined by various factors in this way, it is difficult to obtain a desired sufficient magnetic field strength, and there is a problem in the magnetizing strength on the magnetized body.

特許文献1では、図15(特許文献1の図4)に示すように、コア102の先端面102aに設けられた溝102cに、導電線103が収容されている。図15(D)の拡大図に示すように、先端面102aにおける導電線103の両側部分は、導電線103よりも突出した凸状の先端面部分102aaになっている。このように導電線103の両側に凸状の先端面部分102aaがあるコア102では、1回の着磁電流で1極対(N極、S極)が着磁される。 In Patent Document 1, as shown in FIG. 15 (FIG. 4 of Patent Document 1), the conductive wire 103 is housed in the groove 102c provided on the tip end surface 102a of the core 102. As shown in the enlarged view of FIG. 15D, both side portions of the conductive wire 103 on the tip surface 102a are convex tip surface portions 102aa protruding from the conductive wire 103. In this way, in the core 102 having convex tip surface portions 102aa on both sides of the conductive wire 103, one pole pair (N pole, S pole) is magnetized by one magnetizing current.

被着磁体がアキシアルタイプである場合、図16(A)のように被着磁体104の着磁領域105が扇形であるのに対し、コア102の凸状の先端面部分102aa(図15(A),(D))は長方形である。このため、被着磁体104の扇形の着磁領域15に、コア102の長方形の先端面部分102aaで着磁すると、図16(B)のように、磁気パターン106が重複して着磁される領域107が広くなって、磁気パターンが乱れるという課題がある。 When the magnetized body is an axial type, the magnetized region 105 of the magnetized body 104 is fan-shaped as shown in FIG. 16 (A), whereas the convex tip surface portion 102aa of the core 102 (FIG. 15 (A)). ), (D)) are rectangular. Therefore, when the fan-shaped magnetizing region 15 of the magnetized body 104 is magnetized by the rectangular tip surface portion 102aa of the core 102, the magnetic patterns 106 are magnetized in an overlapping manner as shown in FIG. 16B. There is a problem that the region 107 becomes wide and the magnetic pattern is disturbed.

また、特許文献1では、図17(特許文献1の図7)に示すように、1本の導電線103がコア102の一端から延び、他端側で折り曲げて一端側に延ばし、さらに一端側でも折り曲げて他端側に延ばすように配置されている。導電線103がこの形状である場合、被着磁体に垂直に通過しない向きの磁束が生じることが想定される。さらに、被着磁体と対峙するコア102の先端領域が広くなるため、交番磁界を発生しながら着磁する際に、すでに着磁された領域への影響も懸念され、着磁ピッチの精度が悪化する恐れがある。 Further, in Patent Document 1, as shown in FIG. 17 (FIG. 7 of Patent Document 1), one conductive wire 103 extends from one end of the core 102, is bent at the other end side and extends to one end side, and further extends to one end side. However, it is arranged so that it is bent and extended to the other end side. When the conductive wire 103 has this shape, it is assumed that a magnetic flux in a direction that does not pass perpendicularly to the magnetized body is generated. Furthermore, since the tip region of the core 102 facing the magnetized body becomes wider, there is concern about the influence on the already magnetized region when magnetizing while generating an alternating magnetic field, and the accuracy of the magnetizing pitch deteriorates. There is a risk of doing.

この発明の目的は、すでに着磁された領域への影響が少なく、高強度かつ高精度で着磁された磁気エンコーダを得ることができる着磁装置および着磁方法を提供することである。 An object of the present invention is to provide a magnetizing device and a magnetizing method capable of obtaining a magnetic encoder magnetized with high strength and high accuracy with little influence on an already magnetized region.

この発明の磁気エンコーダの着磁装置は、被着磁体の未着磁の着磁面に着磁して、N極とS極とが所定の着磁パターンで並ぶ磁気トラックが形成された磁気エンコーダを得る着磁装置であって、
前記被着磁体の前記未着磁の着磁面に対峙する先端面に、前記磁気トラックにおけるN極とS極の境界線に沿う複数の導電体用溝が形成された着磁ヨークと、
両端が着磁電源に接続され、かつ異なる複数の嵌込み部分がそれぞれ前記複数の導電体用溝に嵌め込まれ、前記着磁電源により電流を流した場合に、前記複数の嵌込み部分のうち互いに隣合う2つの嵌込み部分で電流の流れる向きが互いに逆となるように配線された導電体と、
前記着磁ヨークの前記先端面と前記被着磁体の前記着磁面とが前記磁気トラックにおけるN極とS極の並び方向に相対的に移動するように、前記着磁ヨークおよび前記被着磁体の少なくとも一方を回転させる回転手段と、
を備えることを特徴とする。
The magnetizing device of the magnetic encoder of the present invention is a magnetic encoder in which a magnetic track is formed in which the north and south poles are arranged in a predetermined magnetizing pattern by magnetizing the unmagnetized surface of the magnetized body. Is a magnetizer that obtains
A magnetizing yoke in which a plurality of conductor grooves along the boundary between the north and south poles of the magnetic track are formed on the tip surface of the magnetized body facing the unmagnetized magnetized surface.
When both ends are connected to a magnetizing power supply and a plurality of different fitting portions are fitted into the plurality of conductor grooves and a current is passed through the magnetizing power supply, the plurality of fitting portions of the plurality of fitting portions are mutually connected. A conductor wired so that the current flows in opposite directions at the two adjacent fitting parts,
The magnetized yoke and the magnetized body so that the tip surface of the magnetized yoke and the magnetized surface of the magnetized body move relative to each other in the alignment direction of the north and south poles of the magnetic track. A rotating means that rotates at least one of the
It is characterized by having.

この構成の着磁装置は、以下のようにして被着磁体に着磁する。すなわち、着磁ヨークの先端面が被着磁体の未着磁の着磁面に対峙する状態で、回転手段により着磁ヨークの先端面と被着磁体の着磁面とが磁気トラックにおけるN極とS極の並び方向に沿って相対的に移動するように、被着磁体および着磁ヨークの少なくとも一方を回転させながら、着磁電源により導電体に着磁電流を流す。これにより、未着磁の着磁面に1列分の磁気トラックに着磁される。導電体に流す着磁電流の向きを変えることで、N極とS極を交互に着磁する。 The magnetizing device having this configuration magnetizes the magnetized body as follows. That is, with the tip surface of the magnetized yoke facing the unmagnetized magnetized surface of the magnetized body, the tip surface of the magnetized yoke and the magnetized surface of the magnetized body are N poles in the magnetic track by the rotating means. A magnetizing current is passed through the conductor by the magnetizing power source while rotating at least one of the magnetized body and the magnetizing yoke so as to move relatively along the alignment direction of the S pole and the S pole. As a result, one row of magnetic tracks is magnetized on the unmagnetized magnetized surface. By changing the direction of the magnetizing current flowing through the conductor, the north and south poles are alternately magnetized.

導電体に着磁電流を流したときの磁束は、導電体を中心にして円状に流れる。この構成の着磁装置の場合、複数の導電体用溝にそれぞれ嵌め込まれた導電体の複数の嵌込み部分のうち互いに隣合う2つの嵌込み部分に流れる電流の向きが互いに逆向きであるため、これら2つの嵌込み部分をそれぞれ中心にして逆方向の磁束が発生する。磁束が重なり合う場合、ベクトルの合成と考えることができる。よって、着磁ヨークの先端面における導電体の前記2つの嵌込み部分に挟まれた中央の先端面部分では、2つの磁束が合成された強い磁束が発生する。これに対し、前記2つの嵌込み部分の両側の先端面部分では、2つの磁束が互いに干渉し合って弱い磁束となる。 The magnetic flux when a magnetizing current is passed through the conductor flows in a circle around the conductor. In the case of the magnetizing device having this configuration, the directions of the currents flowing in the two fitting portions adjacent to each other among the plurality of fitting portions of the conductors fitted in the plurality of conductor grooves are opposite to each other. , Magnetic fluxes in opposite directions are generated around these two fitting portions. When the magnetic fluxes overlap, it can be considered as a combination of vectors. Therefore, a strong magnetic flux in which the two magnetic fluxes are combined is generated at the central tip surface portion sandwiched between the two fitting portions of the conductor on the tip surface of the magnetizing yoke. On the other hand, in the tip surface portions on both sides of the two fitting portions, the two magnetic fluxes interfere with each other to become a weak magnetic flux.

着磁ヨークの先端面が被着磁体の未着磁の着磁面に対峙した状態では、中央の先端面部分から被着磁体の着磁面を貫通し、着磁面の奥側の部分(芯金)を経由して両側の先端面部分に磁束が流れて、着磁面を着磁する。または、上記と逆向きに磁束が流れて、着磁面を着磁する。中央の先端面部分と対峙する被着磁体の着磁面の着磁強度が強く、両側の先端面部分と対峙する被着磁体の着磁面の着磁強度が比較的に弱くなるため、結果的に中央の先端面部分によって高い磁束密度で1極ずつ着磁される。 When the tip surface of the magnetizing yoke faces the unmagnetized magnetized surface of the magnetized body, the magnetized surface of the magnetized body penetrates from the central tip surface portion, and the inner part of the magnetized surface ( Magnetic flux flows through the tip surfaces on both sides via the core metal) to magnetize the magnetized surface. Alternatively, a magnetic flux flows in the opposite direction to the above to magnetize the magnetized surface. The result is that the magnetizing strength of the magnetizing surface of the magnetized body facing the central tip surface portion is strong, and the magnetizing strength of the magnetizing surface of the magnetized body facing the tip surface portions on both sides is relatively weak. It is magnetized one pole at a time with a high magnetic flux density by the central tip surface portion.

また、両側の先端面部分と対峙する磁気エンコーダの着磁面の着磁強度が弱いため、多極着磁する場合に、すでに着磁した領域への影響を小さくすることができる。このため、着磁ピッチの精度劣化を抑えて、高精度な着磁が可能である。特に、アキシアルエンコーダの着磁の場合に有利である。 Further, since the magnetizing strength of the magnetizing surface of the magnetic encoder facing the tip surface portions on both sides is weak, it is possible to reduce the influence on the already magnetized region when multi-pole magnetizing. Therefore, it is possible to suppress the deterioration of the accuracy of the magnetizing pitch and perform high-precision magnetizing. This is particularly advantageous in the case of magnetizing an axial encoder.

この着磁装置において、前記着磁ヨークの先端面が前記被着磁体の前記未着磁の着磁面に対峙する状態で、前記着磁ヨークにおける前記2つの嵌込み部分に挟まれた中央の先端面部分が、前記2つの嵌込み部分を挟む両側の先端面部分よりも前記被着磁体の前記着磁面に近づく位置にあると良い。
これにより、着磁ヨークの先端面における導電体の互いに隣合う2つの嵌込み部分に挟まれた中央の先端面部分と被着磁体の着磁面とを近づけることができ、磁束密度の高い着磁が可能となる。
In this magnetizer, in a state where the top surface of the magnetization yaw click to face the magnetized surfaces of said unpolarized of the object to be magnetized body, sandwiched between the two mating narrowing portion in the magnetization yoke center It is preferable that the tip surface portion of the magnetized body is closer to the magnetized surface of the magnetized body than the tip surface portions on both sides sandwiching the two fitting portions .
As a result, the central tip surface portion sandwiched between the two fitting portions of the conductors adjacent to each other on the tip surface of the magnetizing yoke can be brought close to each other, and the magnetizing surface of the magnetized body can be brought close to each other, resulting in high magnetic flux density. Magnetism is possible.

記着磁ヨークに、前記先端面に対して略直角となる延長溝が形成され、前記導電体は、前記嵌込み部分の端部から前記着磁電源に続く部分が前記延長溝に嵌め込まれている。
この場合、着磁ヨークの先端面の導電体用溝長さ方向の全域が着磁可能範囲となる。このため、着磁ヨークの先端面と対峙する被着磁体の着磁面に一様な着磁強度および着磁精度で着磁を行うことができる。
Before SL magnetized yoke, the front end surface extending groove to be substantially perpendicular formed for the conductor, the portion following the deposition electromagnetic source from the end of the inlaid part is fitted to the extension groove Is.
In this case, the entire area of the tip surface of the magnetizing yoke in the length direction of the conductor groove is the magnetizable range. Therefore, it is possible to magnetize the magnetized surface of the magnetized body facing the tip surface of the magnetizing yoke with uniform magnetizing strength and magnetizing accuracy.

この発明の磁気エンコーダの着磁方法は、被着磁体の未着磁の着磁面に着磁して、N極とS極とが所定の着磁パターンで並ぶ磁気トラックが形成された磁気エンコーダを得る着磁方法であって、
前記被着磁体の前記未着磁の着磁面に対峙する先端面に互いに平行な複数の導電体用溝が形成された着磁ヨークと、両端が着磁電源に接続され、かつ異なる複数の嵌込み部分がそれぞれ前記複数の導電体用溝に嵌め込まれ、前記着磁電源により電流を流した場合に、前記複数の嵌込み部分のうち互いに隣合う2つの嵌込み部分で電流の流れる向きが互いに逆となるように配線された導電体と、前記着磁ヨークおよび前記被着磁体の少なくとも一方を回転させる回転手段とを用い
記着磁ヨークの先端面が前記被着磁体の前記未着磁の着磁面に対峙する状態で、前記着磁ヨークにおける前記2つの嵌込み部分に挟まれた中央の先端面部分が、前記2つの嵌込み部分を挟む両側の先端面部分よりも前記被着磁体の前記着磁面に近づく位置にあり、前記着磁ヨークの前記先端面と前記被着磁体の前記着磁面とを前記磁気トラックにおけるN極とS極の並び方向に沿って相対的に移動させながら、着磁電流を前記導電体に流すことにより、前記未着磁の着磁面に1列分の前記磁気トラックに着磁する一連の着磁動作を行うことを特徴とする。
The magnetizing method of the magnetic encoder of the present invention is a magnetic encoder in which a magnetic track is formed in which the north and south poles are arranged in a predetermined magnetizing pattern by magnetizing the unmagnetized surface of the magnetized body. Is a magnetizing method to obtain
A magnetizing yoke having a plurality of conductor grooves parallel to each other on the tip surface of the magnetized body facing the unmagnetized magnetizing surface, and a plurality of different magnetizing yokes having both ends connected to a magnetizing power supply. When each of the fitting portions is fitted into the plurality of conductor grooves and a current is passed through the magnetizing power supply, the direction in which the current flows in the two fitting portions adjacent to each other among the plurality of fitting portions is determined. Using a conductor wired so as to be opposite to each other, and a rotating means for rotating at least one of the magnetizing yoke and the magnetized body .
Wherein in a state facing the unpolarized magnetized surface, the distal end surface portion of the central sandwiched between the two inlaid part in the magnetization yoke before Symbol magnetized yoke of the front end surface is the object to be magnetized body is, in a position closer to the attachment magnetized surface of the object to be magnetized body than the tip surface portions of both sides of the part inlaid in the two, and the adhesive magnetized surface of the front end surface and the object to be magnetized body before Symbol magnetized yoke Is relatively moved along the alignment direction of the N pole and the S pole in the magnetic track, and a magnetizing current is passed through the conductor to allow one row of magnetism on the unmagnetized magnetized surface. It is characterized by performing a series of magnetizing operations for magnetizing a track.

この着磁方法によると、着磁装置についての説明で示した作用により、すでに着磁された領域への影響が少なく、高強度かつ高精度で着磁された磁気エンコーダを得ることができる。 According to this magnetizing method, it is possible to obtain a magnetic encoder that is magnetized with high strength and high accuracy with little influence on the already magnetized region by the action shown in the description of the magnetizing device.

この着磁方法において、前記一連の着磁動作を行った後、同様の一連の着磁動作を、前記着磁ヨークの前記先端面と着磁された前記磁気トラックとの前記磁気トラック並び方向の位置が重ならないように前記着磁ヨークを配置した状態で行うことにより、前記未着磁の着磁面に複列の前記磁気トラックに着磁することで、被着磁体の未着磁の着磁面に複列の磁気トラックで着磁することができる。 In this magnetizing method, after performing the series of magnetizing operations, the same series of magnetizing operations is performed in the direction in which the magnetic tracks are aligned with the tip surface of the magnetizing yoke and the magnetized magnetic tracks. By arranging the magnetizing yokes so that the positions do not overlap, the unmagnetized magnetic tracks are magnetized on the unmagnetized magnetized surface in multiple rows, so that the magnetized body is unmagnetized. It can be magnetized on the magnetic surface with multiple rows of magnetic tracks.

この発明の磁気エンコーダの着磁装置は、被着磁体の未着磁の着磁面に着磁して、N極とS極とが所定の着磁パターンで並ぶ磁気トラックが形成された磁気エンコーダを得る着磁装置であって、前記被着磁体の前記未着磁の着磁面に対峙する先端面に、前記磁気トラックにおけるN極とS極の境界線に沿う複数の導電体用溝が形成された着磁ヨークと、両端が着磁電源に接続され、かつ異なる複数の嵌込み部分がそれぞれ前記複数の導電体用溝に嵌め込まれ、前記着磁電源により電流を流した場合に、前記複数の嵌込み部分のうち互いに隣合う2つの嵌込み部分で電流の流れる向きが互いに逆となるように配線された導電体と、前記着磁ヨークの前記先端面と前記被着磁体の前記着磁面とが前記磁気トラックにおけるN極とS極の並び方向に相対的に移動するように、前記着磁ヨークおよび前記被着磁体の少なくとも一方を回転させる回転手段とを備え、前記着磁ヨークに、前記先端面に対して略直角となる延長溝が形成され、前記導電体は、前記嵌込み部分の端部から前記着磁電源に続く部分が前記延長溝に嵌め込まれているため、すでに着磁された領域への影響が少なく、高強度かつ高精度で着磁された磁気エンコーダを得ることができる。 The magnetizing device of the magnetic encoder of the present invention is a magnetic encoder in which a magnetic track is formed in which the north and south poles are arranged in a predetermined magnetizing pattern by magnetizing the unmagnetized surface of the magnetized body. A plurality of conductor grooves along the boundary between the north and south poles of the magnetic track are formed on the tip surface of the magnetized body facing the unmagnetized surface of the magnetized body. When the formed magnetizing yoke and both ends are connected to a magnetizing power supply, and a plurality of different fitting portions are fitted into the plurality of conductor grooves, and a current is passed through the magnetizing power supply, the above-mentioned A conductor wired so that the directions of current flow are opposite to each other in two fitting portions adjacent to each other among the plurality of fitting portions, and the tip surface of the magnetizing yoke and the engagement of the magnetized body. as the magnetized surface is relatively moved in the direction of arrangement of the N and S poles in the magnetic track, Bei example a rotating means for rotating at least one of the magnetizing yoke and the object to be magnetized body, the magnetizing An extension groove is formed in the yoke so as to be substantially perpendicular to the tip surface, and the conductor is fitted in the extension groove from the end portion of the fitting portion to the magnetizing power source . It is possible to obtain a magnetic encoder that is magnetized with high strength and high accuracy with little influence on the already magnetized region.

この発明の磁気エンコーダの着磁方法は、被着磁体の未着磁の着磁面に着磁して、N極とS極とが所定の着磁パターンで並ぶ磁気トラックが形成された磁気エンコーダを得る着磁方法であって、
前記被着磁体の前記未着磁の着磁面に対峙する先端面に互いに平行な複数の導電体用溝が形成された着磁ヨークと、両端が着磁電源に接続され、かつ異なる複数の嵌込み部分がそれぞれ前記複数の導電体用溝に嵌め込まれ、前記着磁電源により電流を流した場合に、前記複数の嵌込み部分のうち互いに隣合う2つの嵌込み部分で電流の流れる向きが互いに逆となるように配線された導電体と、前記着磁ヨークおよび前記被着磁体の少なくとも一方を回転させる回転手段とを用い
記着磁ヨークの先端面が前記被着磁体の前記未着磁の着磁面に対峙する状態で、前記着磁ヨークにおける前記2つの嵌込み部分に挟まれた中央の先端面部分が、前記2つの嵌込み部分を挟む両側の先端面部分よりも前記被着磁体の前記着磁面に近づく位置にあり、前記着磁ヨークの前記先端面と前記被着磁体の前記着磁面とを前記磁気トラックにおけるN極とS極の並び方向に沿って相対的に移動させながら、着磁電流を前記導電体に流すことにより、前記未着磁の着磁面に1列分の前記磁気トラックに着磁する一連の着磁動作を行うため、すでに着磁された領域への影響が少なく、高強度かつ高精度で着磁された磁気エンコーダを得ることができる。
The magnetizing method of the magnetic encoder of the present invention is a magnetic encoder in which a magnetic track is formed in which the north and south poles are arranged in a predetermined magnetizing pattern by magnetizing the unmagnetized surface of the magnetized body. Is a magnetizing method to obtain
A magnetizing yoke having a plurality of conductor grooves parallel to each other on the tip surface of the magnetized body facing the unmagnetized magnetizing surface, and a plurality of different magnetizing yokes having both ends connected to a magnetizing power supply. When each of the fitting portions is fitted into the plurality of conductor grooves and a current is passed through the magnetizing power supply, the direction in which the current flows in the two fitting portions adjacent to each other among the plurality of fitting portions is determined. Using a conductor wired so as to be opposite to each other, and a rotating means for rotating at least one of the magnetizing yoke and the magnetized body .
Wherein in a state facing the unpolarized magnetized surface, the distal end surface portion of the central sandwiched between the two inlaid part in the magnetization yoke before Symbol magnetized yoke of the front end surface is the object to be magnetized body is, in a position closer to the attachment magnetized surface of the object to be magnetized body than the tip surface portions of both sides of the part inlaid in the two, and the adhesive magnetized surface of the front end surface and the object to be magnetized body before Symbol magnetized yoke Is relatively moved along the alignment direction of the N pole and the S pole in the magnetic track, and a magnetizing current is passed through the conductor to allow one row of magnetism on the unmagnetized magnetized surface. Since a series of magnetizing operations for magnetizing the track are performed, it is possible to obtain a magnetic encoder that is magnetized with high strength and high accuracy with little influence on the already magnetized region.

この発明の実施形態にかかる磁気エンコーダの着磁装置の概略構成を示す図である。It is a figure which shows the schematic structure of the magnetizing apparatus of the magnetic encoder which concerns on embodiment of this invention. 同着磁装置で着磁される被着磁体の(A)平面図、(B)IIB−IIB断面図である。It is (A) plan view and (B) IIB-IIB sectional view of the magnetized body magnetized by the magnetizing apparatus. 同着磁装置の着磁ヨークおよび導電体の一例の(A)平面図、(B)IIIB−IIIB断面図、(C)IIIC矢視図である。It is (A) plan view, (B) IIIB-IIIB sectional view, (C) IIIC arrow view of an example of a magnetizing yoke and a conductor of the magnetizing apparatus. 同着磁ヨークの一部を拡大した平面断面図である。It is an enlarged plan sectional view of a part of the magnetized yoke. 図3の着磁ヨークによってラジアルタイプの被着磁体に対して着磁を行うときの着磁ヨークと被着磁体とを示す(A)平面図、および(B)VB−VB断面図である。It is (A) plan view and (B) VB-VB cross-sectional view which shows the magnetizing yoke and the magnetized body when magnetizing a radial type magnetized body by the magnetizing yoke of FIG. 着磁トラックが着磁された被着磁体を示す図である。It is a figure which shows the magnetized body which magnetized the magnetizing track. 導電体に電流を流したときに発生する磁束の概念図である。It is a conceptual diagram of the magnetic flux generated when an electric current is passed through a conductor. 図5(A)の部分拡大図である。It is a partially enlarged view of FIG. 5A. 同着磁ヨークを用いてラジアルタイプの被着磁体の着磁面に着磁したときの着磁状態をイメージした図である。It is the figure which imaged the magnetizing state when magnetizing on the magnetizing surface of the radial type magnetized body using the same magnetizing yoke. 着磁ヨークおよび導電体の異なる例の(A)平面図、(B)XB−XB断面図、(C)下面図、および(D)XD矢視図である。(A) plan view, (B) XB-XB sectional view, (C) bottom view, and (D) XD arrow view of different examples of the magnetizing yoke and the conductor. 図10の着磁ヨークによってラジアルタイプの被着磁体に対して着磁を行うときの着磁ヨークと被着磁体とを示す断面図で、(A),(B)は互いに異なる状態を示す。FIG. 10A and (B) are cross-sectional views showing a magnetized yoke and a magnetized body when magnetizing a radial type magnetized body with the magnetizing yoke of FIG. 10, and (A) and (B) show different states. 複列に着磁された磁気トラックを有する他の被着磁体を示す図である。It is a figure which shows the other magnetized body which has a magnetic track magnetized in a double row. 図10の着磁ヨークによってアキシアルタイプの被着磁体に対して着磁を行うときの着磁ヨークと被着磁体とを示す(A)平面図、(B)一部を断面で表した側面図である。A plan view showing the magnetized yoke and the magnetized body when magnetizing an axial type magnetized body with the magnetizing yoke of FIG. 10, and a side view showing a part of the magnetized body in cross section. Is. アキシアルタイプの被着磁体に着磁するときの途中の過程における着磁面の状態を示す図である。It is a figure which shows the state of the magnetized surface in the process in the process of magnetizing an axial type magnetized body. 従来の着磁装置における着磁ヘッドの一例を示す図であって、(A)はコアの先端面である底面を示し、(B)はA−A線の断面図、(C)はB−B線の断面図、(D)は図15(B)の一部を拡大した図である。It is a figure which shows an example of the magnetizing head in the conventional magnetizing apparatus, (A) shows the bottom surface which is the tip surface of a core, (B) is a cross-sectional view of line AA, (C) is B- A cross-sectional view of line B, (D) is an enlarged view of a part of FIG. 15 (B). (A)はアキシアルタイプの被着磁体の着磁領域の形状を示す図、(B)は同被着磁体の磁気パターンを示す図である。(A) is a diagram showing the shape of the magnetized region of the axial type magnetized body, and (B) is a diagram showing the magnetic pattern of the magnetized body of the axial type. 従来の他の着磁装置における導電体の配置パターンを示す図である。It is a figure which shows the arrangement pattern of the conductor in another conventional magnetizing apparatus.

[着磁装置の実施形態1]
この発明の一実施形態を図面と共に説明する。
図1はこの発明の実施形態にかかる磁気エンコーダの着磁装置の全体構成を示す図である。この着磁装置1は、着磁後に磁気エンコーダとなる被着磁体2を回転させながら、その着磁面にN極とS極とが所定の着磁パターンで並ぶ磁気トラック13が形成されるように着磁するインデック着磁装置である。
[Embodiment 1 of Magnetizing Device]
An embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a diagram showing an overall configuration of a magnetizing device for a magnetic encoder according to an embodiment of the present invention. In this magnetizing device 1, while rotating the magnetized body 2 which becomes a magnetic encoder after magnetization, a magnetic track 13 in which N poles and S poles are arranged in a predetermined magnetizing pattern is formed on the magnetizing surface. It is an index magnetizing device that magnetizes the magnet.

図2に示すように、この着磁装置1で着磁される被着磁体2はラジアルタイプであって、円環状の芯金3の周りに磁性層4が形成されている。磁性層4の外周面が着磁面5になる。磁性層4は、芯金3に磁性粉を含むゴムを加硫接着して形成される。磁性層4はゴム系に限定されず、プラスチック系などでも構わない。このような磁性層4を着磁することによって磁石となる。磁石の種類としては、フェライト磁石、ネオジム磁石、ボンド磁石等である。 As shown in FIG. 2, the magnetized body 2 magnetized by the magnetizing device 1 is a radial type, and a magnetic layer 4 is formed around an annular core metal 3. The outer peripheral surface of the magnetic layer 4 becomes the magnetized surface 5. The magnetic layer 4 is formed by vulcanizing and adhering rubber containing magnetic powder to the core metal 3. The magnetic layer 4 is not limited to the rubber type, and may be a plastic type or the like. By magnetizing such a magnetic layer 4, it becomes a magnet. Types of magnets include ferrite magnets, neodymium magnets, bond magnets, and the like.

図1において、着磁装置1は、被着磁体2の着磁面5(図2)を着磁する着磁ヨーク8と、この着磁ヨーク8に設けられた導電体19と、この導電体19に着磁電流を供給する着磁電源16と、着磁ヨーク8をXYZ方向に位置決めする着磁ヨーク用ステージ12と、被着磁体2を固定保持するチャック6と、チャック6を回転するモータ7と、被着磁体2の着磁面5を着磁した後で着磁精度を測定する測定装置14と、測定装置14をXYZ方向に位置決めする測定装置用ステージ15と、これら全体を制御する制御装置17とからなる。 In FIG. 1, the magnetizing device 1 includes a magnetizing yoke 8 for magnetizing the magnetizing surface 5 (FIG. 2) of the magnetized body 2, a conductor 19 provided on the magnetizing yoke 8, and the conductor. A magnetizing power supply 16 that supplies a magnetizing current to 19, a magnetizing yoke stage 12 that positions the magnetizing yoke 8 in the XYZ direction, a chuck 6 that holds the magnetized body 2 fixedly, and a motor that rotates the chuck 6. 7 and the measuring device 14 for measuring the magnetizing accuracy after magnetizing the magnetizing surface 5 of the magnetized body 2, and the measuring device stage 15 for positioning the measuring device 14 in the XYZ direction, and all of them are controlled. It includes a control device 17.

着磁ヨーク8は磁性体からなり、図3に示すように、四角柱状の本体部30と、この本体部30の一方端から本体部30の長手方向に突出した凸部9とでなる。凸部9は、本体部30と比べて高さは同じで、幅が狭い形状である。凸部9の先端面10には、先端面10の上端から下端に亘って上下方向に延びる直線状の導電体用溝11A,11Bが2本並列に形成されている。よって、凸部9の先端面からなる着磁ヨーク8の先端面10は、図4に示すように、2本の導電体用溝11A,11Bによって分断された3つの先端面部分10a,10b,10cからなる。なお、この実施形態では、図3(C)および図4の上下方向が磁気トラック並び方向である。 The magnetizing yoke 8 is made of a magnetic material, and as shown in FIG. 3, includes a square columnar main body 30 and a convex portion 9 protruding from one end of the main body 30 in the longitudinal direction of the main body 30. The convex portion 9 has the same height as the main body portion 30 and has a narrower width. On the tip surface 10 of the convex portion 9, two linear conductor grooves 11A and 11B extending in the vertical direction from the upper end to the lower end of the tip surface 10 are formed in parallel. Therefore, as shown in FIG. 4, the tip surface 10 of the magnetizing yoke 8 formed of the tip surface of the convex portion 9 has three tip surface portions 10a, 10b, which are divided by the two conductor grooves 11A, 11B. It consists of 10c. In this embodiment, the vertical direction of FIGS. 3 (C) and 4 is the magnetic track arrangement direction.

導電体19としては、導電性の金属線の周囲が絶縁被膜で被覆された電線、例えばモータの巻線などに用いる絶縁被膜付きのマグネットワイヤが用いられる。導電体19を上記電線とすると、市販のものを使用することができる。導電体19の太さは、1極の着磁幅にもよるが、例えば0.5mmから1mm程度とされる。 As the conductor 19, an electric wire in which the periphery of a conductive metal wire is coated with an insulating coating, for example, a magnet wire with an insulating coating used for winding a motor or the like is used. When the conductor 19 is the above-mentioned electric wire, a commercially available one can be used. The thickness of the conductor 19 depends on the magnetizing width of one pole, but is, for example, about 0.5 mm to 1 mm.

前記導電体用溝11A,11Bの幅W1は、導電体19の径よりも多少大きく設定される。導電体用溝11A,11Bの深さは、導電体19が先端面10から突出しない程度、例えば1mm前後に設定される。先端面10の幅W2は、例えば着磁幅の3倍未満に設定される。 The width W1 of the conductor grooves 11A and 11B is set to be slightly larger than the diameter of the conductor 19. The depths of the conductor grooves 11A and 11B are set to such that the conductor 19 does not protrude from the tip surface 10, for example, about 1 mm. The width W2 of the tip surface 10 is set to, for example, less than three times the magnetizing width.

導電体19は、一部分を前記導電体用溝11A,11Bに嵌め込むことで、着磁ヨーク8に設けられる。具体的には、導電体用溝11A,11Bのどちらか一方(例えば導電体用溝11A)に導電体19の任意の一部分である嵌込み部分19aを嵌め込み、導電体用溝11Aから下方(または上方)に突出した部分を先端面10から離れる側に略直角に折り曲げる。そして、折り曲げた導電体19を先端面10の側に折り返し、さらに略直角に折り曲げて、他の一部分である嵌込み部分19bを他方の導電体用溝11Bに嵌め込む。導電体用溝11A,11Bからそれぞれ上方(または下方)に突出した導電体19の部分は、先端面10から離れる側に略直角に折り曲げる。そして、折り曲げた先を着磁ヨーク8の本体部30の上面(または下面)に沿って延ばして、導電体19の両端を着磁電源16(図1)に接続する。 The conductor 19 is provided on the magnetizing yoke 8 by fitting a part of the conductor 19 into the conductor grooves 11A and 11B. Specifically, the fitting portion 19a, which is an arbitrary part of the conductor 19, is fitted into either one of the conductor grooves 11A and 11B (for example, the conductor groove 11A), and is downward (or below) from the conductor groove 11A. The portion protruding upward) is bent at a substantially right angle to the side away from the tip surface 10. Then, the bent conductor 19 is folded back toward the tip surface 10 and further bent at a substantially right angle to fit the other part, the fitting portion 19b, into the other conductor groove 11B. The portion of the conductor 19 protruding upward (or downward) from the conductor grooves 11A and 11B is bent at a substantially right angle to the side away from the tip surface 10. Then, the bent end is extended along the upper surface (or lower surface) of the main body 30 of the magnetizing yoke 8, and both ends of the conductor 19 are connected to the magnetizing power supply 16 (FIG. 1).

上記のように着磁ヨーク8に導電体19を設けることにより、導電体19は、嵌込み部分19a,19b以外の部分が先端面10に対して略直角となる。このため、着磁ヨーク8の先端面10を被着磁体2の着磁面5に対峙させて導電体19に着磁電流を流した場合に、嵌込み部分19a,19b以外の部分から発生する磁束は、被着磁体2の着磁面5と略平行になるため、着磁面5には影響しない。つまり、導電体19の嵌込み部分19a,19bのみが、着磁面5の着磁に関与する着磁領域部20Aであり、導電体19の他の部分は、着磁面5の着磁に関与しない非着磁領域部20Bである。正確には、着磁領域部20Aは、着磁ヨーク8の高さHと導電体19の径とを含めた高さH1の範囲である(図3(C)参照)。なお、図3では、非着磁領域部20Bの途中で導電体19の図示が省略されている。 By providing the conductor 19 on the magnetizing yoke 8 as described above, the conductor 19 has a portion other than the fitting portions 19a and 19b substantially perpendicular to the tip surface 10. Therefore, when the tip surface 10 of the magnetizing yoke 8 faces the magnetizing surface 5 of the magnetized body 2 and a magnetizing current is passed through the conductor 19, it is generated from a portion other than the fitting portions 19a and 19b. Since the magnetic flux is substantially parallel to the magnetizing surface 5 of the magnetized body 2, it does not affect the magnetizing surface 5. That is, only the fitting portions 19a and 19b of the conductor 19 are the magnetizing region portions 20A involved in the magnetizing of the magnetizing surface 5, and the other portions of the conductor 19 are magnetized by the magnetizing surface 5. The non-magnetized region portion 20B is not involved. To be precise, the magnetized region portion 20A is in the range of the height H1 including the height H of the magnetizing yoke 8 and the diameter of the conductor 19 (see FIG. 3C). In FIG. 3, the conductor 19 is not shown in the middle of the non-magnetized region portion 20B.

図3(B)に示すように、導電体用溝11A,11Bの表面および着磁ヨーク8の先端面10は、それぞれ樹脂層24,25で被覆されているのが好ましい。樹脂層24,25は、例えば10μmから30μm程度の厚さの樹脂コーティング(例えばフッ素樹脂コーティング)とする。導電体用溝11A,11Bに樹脂層24が形成されていると、導電体19の絶縁性が向上する。また、着磁ヨーク8の先端面10に低摩擦、低摩耗の樹脂層25が形成されていると、導電体19の絶縁性が向上することに加えて、着磁動作時に着磁ヨーク8の先端面10が被着磁体2の着磁面5に接触したとしても、着磁面5が損傷し難い。 As shown in FIG. 3B, it is preferable that the surfaces of the conductor grooves 11A and 11B and the tip surface 10 of the magnetizing yoke 8 are covered with the resin layers 24 and 25, respectively. The resin layers 24 and 25 are, for example, a resin coating having a thickness of about 10 μm to 30 μm (for example, a fluororesin coating). When the resin layer 24 is formed in the conductor grooves 11A and 11B, the insulating property of the conductor 19 is improved. Further, when the resin layer 25 having low friction and low wear is formed on the tip surface 10 of the magnetizing yoke 8, in addition to improving the insulating property of the conductor 19, the magnetizing yoke 8 is subjected to the magnetizing operation. Even if the tip surface 10 comes into contact with the magnetizing surface 5 of the magnetized body 2, the magnetizing surface 5 is unlikely to be damaged.

図3、図4に示す例では、着磁ヨーク8の先端面10に2本の導電体用溝11A,11Bが形成されているが、3本以上(通常は偶数)の導電体用溝が形成されていてもよい。その場合も、導電体19に電流を流したとき、複数の導電体用溝にそれぞれ嵌まり込んでいる導電体19の複数の嵌込み部分のうち互いに隣合う2つの嵌込み部分で、電流の流れる向きが互いに逆となるよう導電体19を配線する。 In the examples shown in FIGS. 3 and 4, two conductor grooves 11A and 11B are formed on the tip surface 10 of the magnetizing yoke 8, but three or more (usually even) conductor grooves are formed. It may be formed. In that case as well, when a current is passed through the conductor 19, the current is applied to two fitting portions adjacent to each other among the plurality of fitting portions of the conductor 19 that are fitted into the plurality of conductor grooves. The conductor 19 is wired so that the flow directions are opposite to each other.

図1において、着磁電源16は、電流の向きが交互に切り替わる交番電流からなる着磁電流を出力する。着磁電源16が着磁電流を出力するタイミングは、制御装置17によって制御される。 In FIG. 1, the magnetizing power supply 16 outputs a magnetizing current composed of alternating currents in which the directions of the currents are alternately switched. The timing at which the magnetizing power supply 16 outputs the magnetizing current is controlled by the control device 17.

着磁ヨーク用ステージ12は、被着磁体2の着磁面5(図2)の位置に応じて、着磁ヨーク8を左右方向(X軸方向)、上下方向(Y軸方向)、および前後方向(Z軸方向)に適宜移動させる。これにより、着磁ヨーク8の先端面10を、被着磁体2の未着磁の着磁面5に適正な位置関係で対峙させる。また、着磁ヨーク用ステージ12は、被着磁体2の着磁面5が着磁により複列の磁気トラックを形成することが可能な上下方向の幅を有する場合、着磁ヨーク8を上下方向に移動させることで、複列の未着磁の磁気トラックのうちの任意の磁気トラックを着磁ヨーク8の先端面10に対峙させる。 The magnetizing yoke stage 12 moves the magnetizing yoke 8 in the horizontal direction (X-axis direction), the vertical direction (Y-axis direction), and the front-rear direction according to the position of the magnetizing surface 5 (FIG. 2) of the magnetized body 2. It is appropriately moved in the direction (Z-axis direction). As a result, the tip surface 10 of the magnetizing yoke 8 is made to face the unmagnetized magnetized surface 5 of the magnetized body 2 in an appropriate positional relationship. Further, when the magnetizing surface 5 of the magnetized body 2 has a width in the vertical direction capable of forming a double-row magnetic track by magnetizing, the magnetizing yoke stage 12 moves the magnetizing yoke 8 in the vertical direction. By moving to, any magnetic track among the double-row unmagnetized magnetic tracks is confronted with the tip surface 10 of the magnetizing yoke 8.

チャック6は、例えば爪式構造のクランプ機構(図示せず)を有し、このクランプ機構の爪を被着磁体2の内周面に押し当てることで、被着磁体2を把持する。チャック6は、これ以外の構造のものであっても良い。 The chuck 6 has, for example, a clamp mechanism (not shown) having a claw-type structure, and grips the object 2 by pressing the claw of the clamp mechanism against the inner peripheral surface of the object 2. The chuck 6 may have a structure other than this.

モータ7は、被着磁体2を固定保持したチャック6を回転中心O回りに回転させることで、着磁ヨーク8の先端面10と被着磁体2の着磁面5とを、着磁面5に着磁されるN極とS極の並び方向、すなわち周方向に相対的に移動させる。モータ7の内部には高分解能のエンコーダ18が内蔵されており、このエンコーダ18の回転信号を元に、制御装置17によって着磁ヨーク8の導電体19に流す電流のオン、オフを制御しながら、被着磁体2の着磁面5を着磁する。 The motor 7 rotates the chuck 6 that holds the magnetized body 2 fixedly around the center of rotation O, so that the tip surface 10 of the magnetizing yoke 8 and the magnetizing surface 5 of the magnetizing body 2 are brought into contact with the magnetizing surface 5. The north and south poles magnetized in the magnet are moved relatively in the alignment direction, that is, in the circumferential direction. A high-resolution encoder 18 is built in the motor 7, and the control device 17 controls on / off of the current flowing through the conductor 19 of the magnetizing yoke 8 based on the rotation signal of the encoder 18. , The magnetizing surface 5 of the magnetized body 2 is magnetized.

チャック6とモータ7とで、着磁ヨーク8の先端面10と被着磁体2の着磁面5とが磁気トラック13におけるN極とS極の並び方向に相対的に移動するように、着磁ヨーク8に対して被着磁体2を回転させる回転手段23を構成する。 With the chuck 6 and the motor 7, the tip surface 10 of the magnetizing yoke 8 and the magnetizing surface 5 of the magnetized body 2 are magnetized so as to move relatively in the alignment direction of the north and south poles of the magnetic track 13. A rotating means 23 for rotating the adherend magnetic body 2 with respect to the magnetic yoke 8 is configured.

測定装置14は、被着磁体2の着磁面5を着磁した後で、着磁精度を測定する装置である。測定装置14としては、例えばホールプローブが使用される。 The measuring device 14 is a device that measures the magnetizing accuracy after magnetizing the magnetizing surface 5 of the magnetized body 2. As the measuring device 14, for example, a hole probe is used.

測定装置用ステージ15は、着磁ヨーク用ステージ12と同様に、被着磁体2の着磁面5(図2)の位置に応じて、測定装置14を左右方向、上下方向、および前後方向に適宜移動させる。これにより、測定装置14の先端を、被着磁体2の着磁後の着磁面5に適正な位置関係で対峙させる。 Similar to the magnetizing yoke stage 12, the measuring device stage 15 moves the measuring device 14 in the horizontal direction, the vertical direction, and the front-rear direction according to the position of the magnetized surface 5 (FIG. 2) of the magnetized body 2. Move as appropriate. As a result, the tip of the measuring device 14 is made to face the magnetized surface 5 of the magnetized body 2 after being magnetized in an appropriate positional relationship.

[着磁方法1;ラジアルタイプの被着磁体への着磁]
着磁装置1を用いて、ラジアルタイプの被着磁体2の着磁面5(磁性層4)を着磁する方法について説明する。
[Magnetization method 1; Magnetization of radial type magnetized body]
A method of magnetizing the magnetizing surface 5 (magnetic layer 4) of the radial type magnetized body 2 by using the magnetizing device 1 will be described.

図1のように、チャック6に未着磁の被着磁体2を固定保持する。そして、着磁ヨーク用ステージ12により着磁ヨーク8を適宜移動させて、図5に示すように、着磁ヨーク8の先端面10を被着磁体2の着磁面5に対峙させる。このとき、導電体19の嵌込み部分19a,19bは、被着磁体2の着磁面5と略平行で、かつ着磁後の被着磁体2の磁気トラックにおけるN極とS極間の直線状の境界線26(図6参照)に沿う方向となる。この状態で、モータ7で被着磁体2を回転中心O回りに回転させながら、着磁電源16(図1)により着磁電流を導電体19に流して、被着磁体2の未着磁の着磁面5に着磁する。 As shown in FIG. 1, the unmagnetized magnetized body 2 is fixedly held on the chuck 6. Then, the magnetizing yoke 8 is appropriately moved by the magnetizing yoke stage 12, and as shown in FIG. 5, the tip surface 10 of the magnetizing yoke 8 faces the magnetizing surface 5 of the magnetized body 2. At this time, the fitting portions 19a and 19b of the conductor 19 are substantially parallel to the magnetizing surface 5 of the magnetized body 2 and are a straight line between the north and south poles in the magnetic track of the magnetized body 2 after magnetization. The direction is along the boundary line 26 (see FIG. 6). In this state, while the magnetized body 2 is rotated around the center of rotation O by the motor 7, a magnetizing current is passed through the conductor 19 by the magnetizing power supply 16 (FIG. 1), so that the magnetized body 2 is unmagnetized. The magnetizing surface 5 is magnetized.

着磁ヨーク8の先端面10を被着磁体2の着磁面5に対峙させた状態で、被着磁体2の回転中心Oは、着磁ヨーク8の2本の導電体用溝11A,11Bの並び方向の位置が、これら2本の導電体用溝11A,11B間の中心Cに位置するのが望ましい。これにより、着磁ヨーク8の先端面10における導電体19の2つの嵌込み部分19a,19bに挟まれた中央の先端面部分10bと被着磁体2の着磁面5とを近づけることができ、磁束密度の高い着磁が可能となる。 With the tip surface 10 of the magnetizing yoke 8 facing the magnetizing surface 5 of the magnetized body 2, the rotation center O of the magnetized body 2 is the two conductor grooves 11A and 11B of the magnetizing yoke 8. It is desirable that the position in the alignment direction of the two conductors is located at the center C between the two conductor grooves 11A and 11B. As a result, the central tip surface portion 10b sandwiched between the two fitting portions 19a and 19b of the conductor 19 on the tip surface 10 of the magnetizing yoke 8 and the magnetizing surface 5 of the magnetized body 2 can be brought close to each other. , Magnetization with high magnetic flux density becomes possible.

モータ7でチャック6および被着磁体2を回転させると、着磁ヨーク8の先端面10と被着磁体2の着磁面5との対峙部では両者が前後方向(Z軸方向)に相対移動する。被着磁体2の回転速度と着磁電源16が出力する着磁電流のタイミングを適正に同調させることで、図6に示すように、着磁面5にN極とS極の円周方向に沿って交互に並ぶ磁気トラック13が形成されて、被着磁体2が磁気エンコーダとなる。 When the chuck 6 and the magnetized body 2 are rotated by the motor 7, they move relative to each other in the front-rear direction (Z-axis direction) at the confrontation portion between the tip surface 10 of the magnetizing yoke 8 and the magnetizing surface 5 of the magnetized body 2. do. By properly synchronizing the rotation speed of the magnetized body 2 with the timing of the magnetizing current output by the magnetizing power supply 16, as shown in FIG. 6, the magnetizing surface 5 is oriented in the circumferential direction of the north and south poles. Magnetic tracks 13 that are alternately arranged along the line are formed, and the adherend magnetic body 2 becomes a magnetic encoder.

先に説明したように、着磁ヨーク8の着磁可能領域は、着磁ヨーク8の高さH(図3(C)と導電体19の径とを含めた高さH1程度に限定される。そのため、図5に示すように、被着磁体2の磁性層4の高さが、着磁ヨーク8の着磁可能領域の高さH1よりも高い場合には、図6のように、磁気エンコーダとなった被着磁体2の磁気トラック13の上下両側に着磁されない領域27が形成される。 As described above, the magnetizable region of the magnetizing yoke 8 is limited to the height H1 including the height H of the magnetizing yoke 8 (FIG. 3C and the diameter of the conductor 19). Therefore, as shown in FIG. 5, when the height of the magnetic layer 4 of the magnetized body 2 is higher than the height H1 of the magnetizable region of the magnetizing yoke 8, the magnetism is as shown in FIG. Non-magnetized regions 27 are formed on both the upper and lower sides of the magnetic track 13 of the magnetized body 2 that has become an encoder.

図7は、導電体19に電流を流したときに発生する磁束の概念図である。導電体19を電流が流れるときの磁束は、導電体19を中心にして円状に流れる。この着磁装置1の場合、導電体19における導電体用溝11A,11Bに嵌め込まれた嵌込み部分19a,19bに流れる電流の向きが互いに逆向きであるため、前記各嵌込み部分19a,19bを中心にして逆方向の磁束MFA、MFBが発生する。磁束が重なり合う場合、ベクトルの合成と考えることができる。よって、着磁ヨーク8の先端面10における導電体用溝11A,11B間の先端面部分10bでは、2つの磁束MFA、MFBが合成された強い磁束が発生する。導電体用溝11A,11Bの外側の先端面部分10a,10cでは、2つの磁束MFA、MFBが互いに干渉し合って弱い磁束となる。 FIG. 7 is a conceptual diagram of the magnetic flux generated when an electric current is passed through the conductor 19. The magnetic flux when the current flows through the conductor 19 flows in a circle around the conductor 19. In the case of this magnetizing device 1, since the directions of the currents flowing through the fitting portions 19a and 19b fitted in the conductor grooves 11A and 11B in the conductor 19 are opposite to each other, the respective fitting portions 19a and 19b The magnetic fluxes MFA and MFB in the opposite directions are generated around the center. When the magnetic fluxes overlap, it can be considered as a combination of vectors. Therefore, in the tip surface portion 10b between the conductor grooves 11A and 11B on the tip surface 10 of the magnetizing yoke 8, a strong magnetic flux in which two magnetic fluxes MFA and MFB are combined is generated. In the outer tip surface portions 10a and 10c of the conductor grooves 11A and 11B, the two magnetic fluxes MFA and MFB interfere with each other to form a weak magnetic flux.

図5(A),(B)のように、ラジアルタイプの被着磁体2の未着磁の着磁面5に着磁ヨーク8の先端面10が対峙した着磁状態では、図5(A)の部分拡大図である図8に示すように磁束が流れる。すなわち、導電体19の各嵌込み部分19a,19bを流れる電流によって発生した磁束MFA,MABが、導電体用溝11A,11B間の中央の先端面部分10bから、この先端面部分10bに対向する磁性層4の部分、芯金3、両側の先端面部分10a,10cにそれぞれ対向する磁性層4の部分を順に経由して、先端面部分10a,10cに流れる。または、上記と逆向きに、磁束MFA,MFBが流れる。これにより、着磁面5(着磁層4)が着磁される。導電体19に流す着磁電流の向きを変えることで、N極とS極とが交互に着磁される。 As shown in FIGS. 5A and 5B, in a magnetized state in which the tip surface 10 of the magnetizing yoke 8 faces the unmagnetized magnetized surface 5 of the radial type magnetized body 2, FIG. 5 (A). ) Is a partially enlarged view, as shown in FIG. 8, a magnetic flux flows. That is, the magnetic fluxes MFA and MAB generated by the currents flowing through the fitting portions 19a and 19b of the conductor 19 face the tip surface portion 10b from the central tip surface portion 10b between the conductor grooves 11A and 11B. It flows to the tip surface portions 10a and 10c via the portion of the magnetic layer 4, the core metal 3, and the portions of the magnetic layer 4 facing the tip surface portions 10a and 10c on both sides in order. Alternatively, the magnetic fluxes MFA and MFB flow in the opposite direction to the above. As a result, the magnetized surface 5 (magnetized layer 4) is magnetized. By changing the direction of the magnetizing current flowing through the conductor 19, the north and south poles are alternately magnetized.

なお、中央の先端面部分10bは2つの磁束MFA、MFBが合成された強い磁束が発生するため、中央の先端面部分10bと対峙する着磁面5の部分を貫通する磁束は強い。これに対し、両側の先端面部分10a,10cに流れる磁束は弱められるため、先端面部分10a,10cと対峙する着磁面5の部分を貫通する磁束は弱くなる。 Since the central tip surface portion 10b generates a strong magnetic flux in which two magnetic fluxes MFA and MFB are combined, the magnetic flux penetrating the portion of the magnetized surface 5 facing the central tip surface portion 10b is strong. On the other hand, since the magnetic flux flowing through the tip surface portions 10a and 10c on both sides is weakened, the magnetic flux penetrating the magnetized surface 5 facing the tip surface portions 10a and 10c is weakened.

図9は、着磁ヨーク8を用いてラジアルタイプの被着磁体2の着磁面5に着磁したときの着磁状態をイメージした図である。着磁面5における中央の着磁領域31は、強められた磁束によって高強度の着磁が可能となる。両側の着磁領域32,32は、弱められた磁束によって低強度の着磁面が生じる。また、多極着磁するとき、低強度の着磁領域32がすでに着磁されている領域への影響を少なくできるため、着磁ピッチの精度劣化を抑えることができる。言い換えると、中央の先端面部分10bでのみ1極ずつ着磁されると見做すことができる。 FIG. 9 is an image of a magnetized state when the magnetized surface 5 of the radial type magnetized body 2 is magnetized using the magnetized yoke 8. The central magnetizing region 31 on the magnetizing surface 5 can be magnetized with high strength due to the increased magnetic flux. In the magnetized regions 32 and 32 on both sides, a low-strength magnetized surface is generated by the weakened magnetic flux. Further, when multi-pole magnetizing, the influence of the low-strength magnetizing region 32 on the already magnetized region can be reduced, so that the accuracy deterioration of the magnetizing pitch can be suppressed. In other words, it can be considered that magnetism is performed one pole at a time only at the central tip surface portion 10b.

図1において、着磁が完了すると、着磁ヨーク用ステージ12を駆動して着磁ヨーク8を退避させる。その後、測定装置用ステージ15を駆動して測定装置14を磁気トラック13に対峙させて測定を行う。測定が終了すると、測定装置用ステージ15を駆動して測定装置14を退避させた後、チャック6を開放して、磁気エンコーダとなった被着磁体2を外す。これにて一連の着磁動作が完了する。 In FIG. 1, when magnetization is completed, the magnetizing yoke stage 12 is driven to retract the magnetizing yoke 8. After that, the stage 15 for the measuring device is driven so that the measuring device 14 faces the magnetic track 13 to perform measurement. When the measurement is completed, the stage 15 for the measuring device is driven to retract the measuring device 14, and then the chuck 6 is opened to remove the magnetized body 2 serving as the magnetic encoder. This completes a series of magnetizing operations.

[着磁装置の実施形態2]
図10は着磁ヨークの異なる例を示す。この着磁ヨーク8は、先端面10と交差する上面および下面に、先端面10の導電体用溝11A,11Bの上下端にそれぞれ続いて先端面10に対して略直角の方向に延びる延長溝21A,21B,22が形成されている。上面の延長溝21A,21Bは、図10(A)に示すように互いに平行に延びている。下面の延長溝22は、図10(C)に示すように、先端面10に近い部分は、互いに平行な2本の分離部22a,22bからなり、先端面10から一定距離だけ離れた先の部分は、前記分離部22a,22bの間の部分が除去されて1本の幅広い形状とされている。
[Embodiment 2 of Magnetizing Device]
FIG. 10 shows a different example of the magnetizing yoke. The magnetizing yoke 8 has an extension groove extending in a direction substantially perpendicular to the tip surface 10 on the upper surface and the lower surface intersecting the tip surface 10, following the upper and lower ends of the conductor grooves 11A and 11B of the tip surface 10, respectively. 21A, 21B, 22 are formed. The extension grooves 21A and 21B on the upper surface extend in parallel with each other as shown in FIG. 10 (A). As shown in FIG. 10C, the extension groove 22 on the lower surface is composed of two separating portions 22a and 22b parallel to each other in a portion close to the tip surface 10, and is separated from the tip surface 10 by a certain distance. The portion between the separated portions 22a and 22b is removed to form one wide portion.

導電体19は、実施形態1の場合と同様に折り曲げて、先端面20の導電体用溝11Aに嵌込み部分19aが嵌め込まれ、かつ導電体用溝11Bに嵌込み部分19bが嵌め込まれる。導電体用溝11A,11Bから上に突出した非着磁領域部20Bとなる導電体19の部分は、上面の延長溝21A,21Bにそれぞれ嵌め込まれる。また、導電体用溝11A,11Bから下に突出した非着磁領域部20Bとなる導電体19の部分は、下面の延長溝22に嵌め込まれる。 The conductor 19 is bent in the same manner as in the first embodiment, and the fitting portion 19a is fitted into the conductor groove 11A on the tip surface 20, and the fitting portion 19b is fitted into the conductor groove 11B. The portion of the conductor 19 that becomes the non-magnetized region portion 20B protruding upward from the conductor grooves 11A and 11B is fitted into the extension grooves 21A and 21B on the upper surface, respectively. Further, the portion of the conductor 19 that becomes the non-magnetized region portion 20B protruding downward from the conductor grooves 11A and 11B is fitted into the extension groove 22 on the lower surface.

このように、導電体19の非着磁領域部20Bを延長溝21A,21B,22に嵌め込むことにより、着磁ヨーク8の先端面10の高さHの全域が着磁可能範囲となる。つまり、着磁可能範囲が、着磁ヨーク8と同じ高さになる。これにより、着磁ヨーク8の先端面10がラジアルタイプ被着磁体2の着磁面5と対峙する場合、着磁面5に対して一様な着磁強度および着磁精度で着磁を行うことができる。 By fitting the non-magnetizing region portion 20B of the conductor 19 into the extension grooves 21A, 21B, 22 in this way, the entire height H of the tip surface 10 of the magnetizing yoke 8 becomes a magnetizable range. That is, the magnetizable range is the same height as the magnetizing yoke 8. As a result, when the tip surface 10 of the magnetizing yoke 8 faces the magnetizing surface 5 of the radial type magnetized body 2, magnetization is performed on the magnetizing surface 5 with uniform magnetizing strength and magnetizing accuracy. be able to.

[着磁方法2;ラジアルタイプの被着磁体への着磁]
被着磁体2の着磁面5に上下複列に磁気トラックを形成する場合は、次のように着磁を行う。すなわち、前記同様の一連の着磁動作で、図11(A)に示すように、先端面10の上側の領域を着磁面5の下側部分(高さ範囲L)に対峙させた状態で着磁し、下側の磁気トラック13aを形成する。また、図11(B)に示すように、先端面10の下側の領域を着磁面5の上側部分(高さ範囲L)に対峙させた状態で着磁し、上側の磁気トラック13bを形成する。なお、図11は、図10に示す着磁ヨーク8を用いて着磁を行う状態を示している。
[Magnetization method 2; Magnetization of radial type magnetized body]
When forming magnetic tracks in upper and lower double rows on the magnetizing surface 5 of the magnetized body 2, magnetization is performed as follows. That is, in the same series of magnetizing operations as described above, as shown in FIG. 11A, the upper region of the tip surface 10 is confronted with the lower portion (height range L) of the magnetizing surface 5. It is magnetized to form the lower magnetic track 13a. Further, as shown in FIG. 11B, the lower region of the tip surface 10 is magnetized while facing the upper portion (height range L) of the magnetized surface 5, and the upper magnetic track 13b is placed. Form. Note that FIG. 11 shows a state in which magnetism is performed using the magnetizing yoke 8 shown in FIG.

具体的には、着磁ヨーク用ステージ12(図1)を用いて、一方の磁気トラック13aに着磁ヨーク8の先端面10を対峙させた状態で着磁を行い、その後、着磁ヨーク用ステージ12を駆動して着磁ヨーク8の先端面10を他方の磁気トラック13bに移動して対峙させ、着磁を行う。その際、着磁ヨーク8の先端面10と着磁対象でない磁気トラック13a(13b)との磁気トラック並び方向の位置が重ならないように、着磁ヨーク8の先端面10と未着磁の磁気トラック13b(13a)とを対峙させる。 Specifically, the magnetizing yoke stage 12 (FIG. 1) is used to magnetize one of the magnetic tracks 13a with the tip surface 10 of the magnetizing yoke 8 facing each other, and then for the magnetizing yoke. The stage 12 is driven to move the tip surface 10 of the magnetizing yoke 8 to the other magnetic track 13b to face each other, and magnetization is performed. At that time, the tip surface 10 of the magnetized yoke 8 and the unmagnetized magnetism are prevented so that the positions of the magnetic track 13a (13b), which is not the object of magnetization, and the tip surface 10 of the magnetized yoke 8 overlap in the alignment direction of the magnetic tracks. Confront the track 13b (13a).

両磁気トラック13a,13bの着磁が完了した時点で、着磁ヨーク用ステージ12を駆動して着磁ヨーク8を退避させ、その後、測定装置用ステージ15を駆動して測定装置14を一方の磁気トラック13aに対峙させて測定を行う。同様に、測定装置用ステージ15を駆動して他方の磁気トラック13bに測定装置14を移動させて測定を行う。測定が終了すると、測定装置用ステージ15を駆動して測定装置14を退避させた後、チャック6を解除して、磁気エンコーダとなった被着磁体2を外す。これにて一連の着磁動作が完了する。 When the magnetizing of both magnetic tracks 13a and 13b is completed, the magnetizing yoke stage 12 is driven to retract the magnetizing yoke 8, and then the measuring device stage 15 is driven to move the measuring device 14 to one side. The measurement is performed by facing the magnetic track 13a. Similarly, the measuring device stage 15 is driven to move the measuring device 14 to the other magnetic track 13b to perform measurement. When the measurement is completed, the stage 15 for the measuring device is driven to retract the measuring device 14, and then the chuck 6 is released to remove the magnetized body 2 serving as the magnetic encoder. This completes a series of magnetizing operations.

上記のように着磁動作を行うことにより、図12に示す磁気エンコーダが得られる。この磁気エンコーダとなった被磁性体7は、2列の磁気トラック13a,13bが上下に並ぶ複列磁気トラック13を有する。 By performing the magnetizing operation as described above, the magnetic encoder shown in FIG. 12 can be obtained. The magnetized body 7 serving as the magnetic encoder has a double-row magnetic track 13 in which two rows of magnetic tracks 13a and 13b are arranged one above the other.

ラジアルタイプの被着磁体2の着磁面5に着磁される領域は、着磁ヨーク8の先端面10の導電体用溝11A,11Bに嵌め込まれた導電体19の嵌込み部19a,19bの高さ範囲に限定されるため、着磁面5を複列の磁気トラック13a,13bに分けて着磁する場合でも、それぞれの磁気トラック13a,13bに影響しない着磁が可能となる。このとき、前述のように、着磁ヨーク8の着磁可能範囲H2が重ならないように各磁気トラック13a,13bを着磁するとよい。 The region magnetized on the magnetizing surface 5 of the radial type magnetized body 2 is the fitting portion 19a, 19b of the conductor 19 fitted in the conductor grooves 11A, 11B of the tip surface 10 of the magnetizing yoke 8. Since the height range is limited to, even when the magnetizing surface 5 is divided into a plurality of rows of magnetic tracks 13a and 13b and magnetized, magnetization that does not affect the respective magnetic tracks 13a and 13b is possible. At this time, as described above, the magnetic tracks 13a and 13b may be magnetized so that the magnetizable ranges H2 of the magnetizing yoke 8 do not overlap.

着磁ヨーク8の先端面10の上下高さH2と、設計上の磁気トラック13a,13bの上下高さLが同じ場合には、被着磁体2の未着磁の着磁面5に形成する複列の磁気トラック位置に着磁ヨーク8の先端面10を位置合わせして対峙させ、それから着磁を行う。 When the vertical height H2 of the tip surface 10 of the magnetizing yoke 8 and the vertical height L of the designed magnetic tracks 13a and 13b are the same, they are formed on the unmagnetized magnetized surface 5 of the magnetized body 2. The tip surface 10 of the magnetizing yoke 8 is aligned with the position of the magnetic track in the double row to face each other, and then magnetization is performed.

[アキシアルタイプの被着磁体への着磁]
図13は、図10の着磁ヨーク8を用いてアキシアルタイプの被着磁体2に着磁を行う状態を示す。アキシアルタイプの被着磁体2は、円板状の芯金3の片面に磁性層4が形成されている。芯金3および磁性層4の材質は前記と同様である。図13に示す芯金3は、中央部に貫通孔3aを有し、磁性層4が形成されていない面における前記貫通孔3aの周縁に環状の凸部3bが形成されている。但し、アキシアルタイプの被着磁体2はこの形状に限定されない。
[Magnetization on axial type magnetized body]
FIG. 13 shows a state in which the axial type magnetized body 2 is magnetized using the magnetizing yoke 8 of FIG. In the axial type adherend magnetic body 2, a magnetic layer 4 is formed on one side of a disk-shaped core metal 3. The materials of the core metal 3 and the magnetic layer 4 are the same as described above. The core metal 3 shown in FIG. 13 has a through hole 3a in the central portion, and an annular convex portion 3b is formed on the peripheral edge of the through hole 3a on a surface on which the magnetic layer 4 is not formed. However, the axial type adherend 2 is not limited to this shape.

アキシアルタイプの被着磁体2に着磁を行う場合、着磁ヨーク8の中央の先端面部分10bの中心線Cが被着磁体2の回転中心Oを通るように、着磁ヨーク8の先端面10を被着磁体2の着磁面5に対峙させる。その状態で、被着磁体2を回転中心O回りに回転させながら、導電体19に電流を流して、着磁面5を着磁する。電流の向きを変えることで、ほぼ1極ずつN極とS極とが交互に着磁される。 When magnetizing the axial type magnetized body 2, the tip surface of the magnetized yoke 8 so that the center line C of the central tip surface portion 10b of the magnetized yoke 8 passes through the rotation center O of the magnetized body 2. 10 is made to face the magnetizing surface 5 of the magnetized body 2. In this state, while rotating the magnetized body 2 around the center of rotation O, a current is passed through the conductor 19 to magnetize the magnetized surface 5. By changing the direction of the electric current, the north pole and the south pole are magnetized alternately one by one.

図14は、アキシアルタイプの被着磁体2に着磁するときの途中の過程における着磁面5の状態を示す図である。被着磁体2を回転させながら着磁しても、着磁パターン33が重なる領域が少ないので、着磁済みの着磁パターン33をあまりつぶすことなく着磁できる。 FIG. 14 is a diagram showing the state of the magnetized surface 5 in the process of magnetizing the axial type magnetized body 2. Even if the magnetized body 2 is magnetized while rotating, the magnetized pattern 33 can be magnetized without being crushed so much because the area where the magnetized patterns 33 overlap is small.

なお、着磁パターンの形状に合わせて着磁ヨークの先端面の形状を円弧状にすれば、着磁ヨークまたは被着磁体を回転させる回転手段を設けずに、被着磁体に着磁することができる。しかし、その場合、被着磁体の径が変わるごとに、その径に合った着磁ヨークを用意する必要がある。この発明の着磁装置1は、1種類の着磁ヨーク8で径が異なる被着磁体2に対して着磁を行うことができる。このため、磁気トラックが複列ある被着磁体にも容易に着磁することができる。 If the shape of the tip surface of the magnetizing yoke is made arcuate according to the shape of the magnetizing pattern, the magnetizing yoke or the magnetized body can be magnetized without providing a rotating means for rotating the magnetized body. Can be done. However, in that case, every time the diameter of the magnetized body changes, it is necessary to prepare a magnetizing yoke suitable for the diameter. The magnetizing device 1 of the present invention can magnetize a magnetized body 2 having a different diameter with one type of magnetizing yoke 8. Therefore, it is possible to easily magnetize an object to be magnetized in which magnetic tracks are arranged in a plurality of rows.

上記実施形態は、着磁ヨーク8は固定で、回転手段23によって被着磁体2を回転させながら着磁を行う例を示したが、逆に被着磁体2は固定で着磁ヨーク8を回転させながら着磁を行ってもよく、また着磁ヨーク8および被着磁体2の両方を回転させながら着磁を行ってもよい。 In the above embodiment, the magnetizing yoke 8 is fixed and magnetizing is performed while rotating the magnetized body 2 by the rotating means 23. On the contrary, the magnetized yoke 8 is fixed and the magnetizing yoke 8 is rotated. Magnetization may be performed while rotating the magnetizing yoke 8 and the magnetized body 2 while rotating the magnetizing yoke 8.

また、上記実施形態では、着磁ヨーク用ステージ12によって着磁ヨーク8を上下に移動させることで、着磁対象の未着磁の磁気トラック13a,13bを着磁ヨーク8の先端面10に対峙させるが、被着磁体2を上下に移動させて着磁対象の未着磁の磁気トラック13a,13bを着磁ヨーク8の先端面10に対峙させてもよい。 Further, in the above embodiment, the magnetizing yoke 8 is moved up and down by the magnetizing yoke stage 12, so that the unmagnetized magnetic tracks 13a and 13b to be magnetized face the tip surface 10 of the magnetizing yoke 8. However, the magnetized body 2 may be moved up and down so that the unmagnetized magnetic tracks 13a and 13b to be magnetized face the tip surface 10 of the magnetizing yoke 8.

以上、実施例に基づいて本発明を実施するための形態を説明したが、ここで開示した実施の形態はすべての点で例示であって制限的なものではない。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 Although the embodiments for carrying out the present invention have been described above based on the examples, the embodiments disclosed here are examples in all respects and are not limiting. The scope of the present invention is shown by the scope of claims rather than the above description, and it is intended to include all modifications within the meaning and scope equivalent to the scope of claims.

1…着磁装置
2…被着磁体
5…着磁面
8…着磁ヨーク
10…先端面
11A…導電体用溝
11B…導電体用溝
12…磁気トラック
12a…下側の磁気トラック
12b…上側の磁気トラック
16…着磁電源
19…導電体
19a…嵌込み部分
19b…嵌込み部分
21A…延長溝
21B…延長溝
22…延長溝
23…回転手段
26…境界線
O…回転中心
1 ... Magnetizing device 2 ... Magnetized body 5 ... Magnetizing surface 8 ... Magnetizing yoke 10 ... Tip surface 11A ... Conductor groove 11B ... Conductor groove 12 ... Magnetic track 12a ... Lower magnetic track 12b ... Upper side Magnetic track 16 ... Magnetizing power supply 19 ... Conductor 19a ... Fitting portion 19b ... Fitting portion 21A ... Extension groove 21B ... Extension groove 22 ... Extension groove 23 ... Rotating means 26 ... Boundary line O ... Rotation center

Claims (4)

被着磁体の未着磁の着磁面に着磁して、N極とS極とが所定の着磁パターンで並ぶ磁気トラックが形成された磁気エンコーダを得る着磁装置であって、
前記被着磁体の前記未着磁の着磁面に対峙する先端面に、前記磁気トラックにおけるN極とS極の境界線に沿う複数の導電体用溝が形成された着磁ヨークと、
両端が着磁電源に接続され、かつ異なる複数の嵌込み部分がそれぞれ前記複数の導電体用溝に嵌め込まれ、前記着磁電源により電流を流した場合に、前記複数の嵌込み部分のうち互いに隣合う2つの嵌込み部分で電流の流れる向きが互いに逆となるように配線された導電体と、
前記着磁ヨークの前記先端面と前記被着磁体の前記着磁面とが前記磁気トラックにおけるN極とS極の並び方向に相対的に移動するように、前記着磁ヨークおよび前記被着磁体の少なくとも一方を回転させる回転手段と、
を備え、前記着磁ヨークに、前記先端面に対して略直角となる延長溝が形成され、前記導電体は、前記嵌込み部分の端部から前記着磁電源に続く部分が前記延長溝に嵌め込まれていることを特徴とする磁気エンコーダの着磁装置。
A magnetizing device that magnetizes an unmagnetized magnetized surface of a magnetized body to obtain a magnetic encoder in which a magnetic track in which N poles and S poles are arranged in a predetermined magnetizing pattern is formed.
A magnetizing yoke in which a plurality of conductor grooves along the boundary between the north and south poles of the magnetic track are formed on the tip surface of the magnetized body facing the unmagnetized magnetized surface.
When both ends are connected to a magnetizing power supply and a plurality of different fitting portions are fitted into the plurality of conductor grooves and a current is passed through the magnetizing power supply, the plurality of fitting portions of the plurality of fitting portions are mutually connected. A conductor wired so that the current flows in opposite directions at the two adjacent fitting parts,
The magnetized yoke and the magnetized body so that the tip surface of the magnetized yoke and the magnetized surface of the magnetized body move relative to each other in the alignment direction of the north and south poles of the magnetic track. A rotating means that rotates at least one of the
Bei give a, the magnetization yoke, an extension groove to be substantially perpendicular formed with respect to said tip surface, the conductor, the portions following the deposition electromagnetic source from the end extending groove of the inlaid part A magnetizing device for a magnetic encoder, which is characterized by being fitted in.
請求項1に記載の磁気エンコーダの着磁装置において、前記着磁ヨークの先端面が前記被着磁体の前記未着磁の着磁面に対峙する状態で、前記着磁ヨークにおける前記2つの嵌込み部分に挟まれた中央の先端面部分が、前記2つの嵌込み部分を挟む両側の先端面部分よりも前記被着磁体の前記着磁面に近づく位置にある磁気エンコーダの着磁装置。 In magnetizer magnetic encoder according to claim 1, wherein the adhesive in a state where the top surface of the magnetic yaw click to face the magnetized surfaces of said unpolarized of the object to be magnetized body, of the two in the magnetization yoke the distal end surface portion of the sandwiched portion the fitting center, magnetizing apparatus of magnetic encoder in the position closer to the attachment magnetized surface of the object to be magnetized body than the tip surface portions of both sides of the part inlaid in the two .. 被着磁体の未着磁の着磁面に着磁して、N極とS極とが所定の着磁パターンで並ぶ磁気トラックが形成された磁気エンコーダを得る着磁方法であって、
前記被着磁体の前記未着磁の着磁面に対峙する先端面に互いに平行な複数の導電体用溝が形成された着磁ヨークと、両端が着磁電源に接続され、かつ異なる複数の嵌込み部分がそれぞれ前記複数の導電体用溝に嵌め込まれ、前記着磁電源により電流を流した場合に、前記複数の嵌込み部分のうち互いに隣合う2つの嵌込み部分で電流の流れる向きが互いに逆となるように配線された導電体と、前記着磁ヨークおよび前記被着磁体の少なくとも一方を回転させる回転手段とを用い、
前記着磁ヨークは、前記先端面に対して略直角となる延長溝が形成され、前記導電体は、前記嵌込み部分の端部から前記着磁電源に続く部分が前記延長溝に嵌め込まれており、
前記着磁ヨークの先端面が前記被着磁体の前記未着磁の着磁面に対峙する状態で、前記着磁ヨークにおける前記2つの嵌込み部分に挟まれた中央の先端面部分が、前記2つの嵌込み部分を挟む両側の先端面部分よりも前記被着磁体の前記着磁面に近づく位置にあり、前記着磁ヨークの前記先端面と前記被着磁体の前記着磁面とを前記磁気トラックにおけるN極とS極の並び方向に沿って相対的に移動させながら、着磁電流を前記導電体に流すことにより、前記未着磁の着磁面に1列分の前記磁気トラックに着磁する一連の着磁動作を行うことを特徴とする磁気エンコーダの着磁方法。
A magnetizing method for obtaining a magnetic encoder in which a magnetic track in which N poles and S poles are arranged in a predetermined magnetizing pattern is formed by magnetizing an unmagnetized magnetized surface of a magnetized body.
A magnetizing yoke having a plurality of conductor grooves parallel to each other on the tip surface of the magnetized body facing the unmagnetized magnetizing surface, and a plurality of different magnetizing yokes having both ends connected to a magnetizing power supply. When each of the fitting portions is fitted into the plurality of conductor grooves and a current is passed through the magnetizing power supply, the direction in which the current flows in the two fitting portions adjacent to each other among the plurality of fitting portions is determined. Using a conductor wired so as to be opposite to each other, and a rotating means for rotating at least one of the magnetizing yoke and the magnetized body.
The magnetizing yoke is formed with an extension groove substantially perpendicular to the tip surface, and the conductor is fitted into the extension groove from an end portion of the fitting portion to a portion following the magnetizing power supply. Ori,
In a state where the tip surface of the magnetized yoke faces the unmagnetized magnetized surface of the magnetized body, the central tip surface portion sandwiched between the two fitting portions in the magnetized yoke is the said. The tip surface of the magnetized yoke and the magnetized surface of the magnetized body are located closer to the magnetized surface of the magnetized body than the tip surface portions on both sides of the two fitting portions. By passing a magnetizing current through the conductor while relatively moving along the alignment direction of the N pole and the S pole in the magnetic track, one row of the magnetic track is formed on the unmagnetized magnetized surface. A method for magnetizing a magnetic encoder, which comprises performing a series of magnetizing operations for magnetizing.
請求項に記載の磁気エンコーダの着磁方法において、前記一連の着磁動作を行った後、同様の一連の着磁動作を、前記着磁ヨークの前記先端面と着磁された前記磁気トラックとの前記磁気トラック並び方向の位置が重ならないように前記着磁ヨークを配置した状態で行うことにより、前記未着磁の着磁面に複列の前記磁気トラックに着磁する磁気エンコーダの着磁方法。 In the magnetizing method of the magnetic encoder according to claim 3 , after performing the series of magnetizing operations, the same series of magnetizing operations is performed on the magnetic track magnetized with the tip surface of the magnetizing yoke. By arranging the magnetizing yokes so that the positions of the magnetic tracks in the alignment direction do not overlap with each other, the magnetic encoders that magnetize the magnetic tracks in a double row on the unmagnetized magnetized surface are magnetized. Magnetic method.
JP2016182956A 2016-09-20 2016-09-20 Magnetic encoder magnetizing device and magnetizing method Active JP6906285B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2016182956A JP6906285B2 (en) 2016-09-20 2016-09-20 Magnetic encoder magnetizing device and magnetizing method
PCT/JP2017/033684 WO2018056256A1 (en) 2016-09-20 2017-09-19 Magnetic encoder magnetizing device and magnetizing method
DE112017004716.1T DE112017004716T5 (en) 2016-09-20 2017-09-19 Magnetizing device and magnetizing method for a magnetic encoder
CN201780057207.4A CN109716458B (en) 2016-09-20 2017-09-19 Magnetizing device and magnetizing method for magnetic encoder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016182956A JP6906285B2 (en) 2016-09-20 2016-09-20 Magnetic encoder magnetizing device and magnetizing method

Publications (2)

Publication Number Publication Date
JP2018049871A JP2018049871A (en) 2018-03-29
JP6906285B2 true JP6906285B2 (en) 2021-07-21

Family

ID=61689971

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016182956A Active JP6906285B2 (en) 2016-09-20 2016-09-20 Magnetic encoder magnetizing device and magnetizing method

Country Status (4)

Country Link
JP (1) JP6906285B2 (en)
CN (1) CN109716458B (en)
DE (1) DE112017004716T5 (en)
WO (1) WO2018056256A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111403139B (en) * 2020-04-02 2022-06-10 武汉船用机械有限责任公司 Ring cylinder type steel part demagnetizer

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2151603C3 (en) 1971-10-16 1975-12-04 W.C. Heraeus Gmbh, 6450 Hanau Process for the production of a primary material for electrical contacts
JP3474152B2 (en) * 2000-08-10 2003-12-08 三菱電機株式会社 Permanent magnet rotor magnetizing device
EP1612813A3 (en) * 2001-09-11 2009-12-09 JTEKT Corporation Magnetizing device with pole array, and magnetizing method
JP2011119621A (en) * 2009-12-07 2011-06-16 Nippon Denji Sokki Kk Magnetizer and magnetizing head
JP4846863B2 (en) * 2010-05-27 2011-12-28 磁化発電ラボ株式会社 Magnetizing apparatus and magnetizing head
JP5615892B2 (en) * 2012-12-17 2014-10-29 磁化発電ラボ株式会社 Magnetization method and apparatus
KR102113048B1 (en) * 2013-11-13 2020-05-20 현대모비스 주식회사 Magnetic Encoder Structure
US9898942B2 (en) 2014-03-13 2018-02-20 Mitsubishi Electric Corporation Hanging-strap information display device
JP6476700B2 (en) * 2014-09-30 2019-03-06 日立金属株式会社 Permanent magnet, position sensor, permanent magnet manufacturing method and magnetizing apparatus
JP2017168707A (en) * 2016-03-17 2017-09-21 Ntn株式会社 Magnetization device and magnetization method of magnetic encoder

Also Published As

Publication number Publication date
CN109716458B (en) 2021-01-15
WO2018056256A1 (en) 2018-03-29
JP2018049871A (en) 2018-03-29
DE112017004716T5 (en) 2019-06-13
CN109716458A (en) 2019-05-03

Similar Documents

Publication Publication Date Title
EP2397821B1 (en) Method of magnetizing magnetic encoder and magnetizing apparatus
WO2014027584A1 (en) Magnetization device for magnetic encoder
JP6449090B2 (en) Magnetic encoder magnetizer
US10209096B2 (en) Rotation detecting device
JP6906285B2 (en) Magnetic encoder magnetizing device and magnetizing method
KR20190112750A (en) Magnetic encoder, method for manufacturing same, and apparatus for manufacturing same
JP2017059618A (en) Magnetization device and method for magnetic encoder
WO2018143142A1 (en) Magnetic encoder and production method therefor
US7719395B2 (en) Magnetizer and magnetizing method
JP5006671B2 (en) Magnetic encoder
JP2010040914A (en) Magnetization method of multi-pole magnet, and multi-pole magnet and magnetic encoder using the same
JP6771901B2 (en) Magnetizing device and manufacturing method for magnetic linear encoder
JP6442253B2 (en) Magnetic encoder magnetizer
JP7203485B2 (en) Detection device and manufacturing method thereof
JP4846863B2 (en) Magnetizing apparatus and magnetizing head
JP2017168707A (en) Magnetization device and magnetization method of magnetic encoder
JP2006049794A (en) Method and equipment for polarizing tone wheel
JP2019062120A (en) Magnetization device and magnetization method of magnetic encoder
JP6517011B2 (en) Magnetizer for magnetic encoder
JP2018133453A (en) Magnetization method, magnetization device and magnet for magnetic encoder
WO2023281952A1 (en) Method for magnetizing magnetic encoder
JP5615892B2 (en) Magnetization method and apparatus
JP2005147971A (en) Rotation detector
JP2015155796A (en) current sensor
JP2006126024A (en) Manufacturing method of encoder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200901

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20201014

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201204

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20210106

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20210121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210608

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210629

R150 Certificate of patent or registration of utility model

Ref document number: 6906285

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250