JP2015155796A - current sensor - Google Patents

current sensor Download PDF

Info

Publication number
JP2015155796A
JP2015155796A JP2012124096A JP2012124096A JP2015155796A JP 2015155796 A JP2015155796 A JP 2015155796A JP 2012124096 A JP2012124096 A JP 2012124096A JP 2012124096 A JP2012124096 A JP 2012124096A JP 2015155796 A JP2015155796 A JP 2015155796A
Authority
JP
Japan
Prior art keywords
current
magnetic
magnetoresistive element
current path
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012124096A
Other languages
Japanese (ja)
Inventor
正憲 鮫島
Masanori Samejima
正憲 鮫島
澄夫 前川
Sumio Maekawa
澄夫 前川
隆司 梅田
Takashi Umeda
隆司 梅田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2012124096A priority Critical patent/JP2015155796A/en
Priority to PCT/JP2013/003276 priority patent/WO2013179613A1/en
Publication of JP2015155796A publication Critical patent/JP2015155796A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/20Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices
    • G01R15/205Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices using magneto-resistance devices, e.g. field plates

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
  • Measuring Magnetic Variables (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a current sensor capable of precisely measuring a current flowing on a current path in a non-contact manner even when external magnetic field exists while reducing the size.
SOLUTION: The current sensor includes magnetic resistance elements 23 and 25 and magnets 24 and 26 which are disposed symmetrically with respect to a current path 22 and parallel to each other being interposed by the current path 22. The current sensor is arranged so that a direction of the magnet 24 from the N-pole to the S-pole and a direction of the magnet 26 from the S-pole to the N-pole coincide with a flowing direction of the detected current.
COPYRIGHT: (C)2015,JPO&INPIT

Description

本発明は、被測定電流が流れる電流線の周囲に発生する磁界を検出することにより、被測定電流を測定する電流センサに関するものである。   The present invention relates to a current sensor that measures a current to be measured by detecting a magnetic field generated around a current line through which the current to be measured flows.

近年、ハイブリッドカー、EV車等のバッテリーの充放電電流や、電気モーターの駆動電流等の数十Aから数百Aレベルの大電流を高精度に計測するための電流センサが求められている。図7は従来の電流センサの概略構成を示す平面図である。XYZ座標を図のようにとったとき、この電流センサ1はXY平面に平行に置かれた基板2を備えており、その基板2には基板2の表面2aおよび裏面2bを貫通するスリット3が形成されている。スリット3には、被検出電流Iが流れる板状の電流路4が挿通されている。電流路4を流れる被測定電流Iの向きは、Z軸の負方向、すなわち紙面の表面から裏面に垂直に貫通する方向である。また、図8は電流センサに作用する磁束密度ベクトルの説明図である。   In recent years, there has been a demand for a current sensor for accurately measuring a large current on the order of several tens of A to several hundred A, such as a charge / discharge current of a battery of a hybrid car, an EV car, or the like, or a drive current of an electric motor. FIG. 7 is a plan view showing a schematic configuration of a conventional current sensor. When the XYZ coordinates are taken as shown in the figure, the current sensor 1 includes a substrate 2 placed parallel to the XY plane, and the substrate 2 has slits 3 penetrating the front surface 2a and the back surface 2b of the substrate 2. Is formed. A plate-like current path 4 through which the detected current I flows is inserted into the slit 3. The direction of the current I to be measured flowing through the current path 4 is the negative direction of the Z axis, that is, the direction penetrating perpendicularly from the front surface to the back surface of the paper. FIG. 8 is an explanatory diagram of the magnetic flux density vector acting on the current sensor.

基板2の表面2aには磁気抵抗素子5a、6aが取付けられている。磁気抵抗素子5a、6aは電流路4に対して対称な位置に設けられている。基板2の裏面2bには磁気抵抗素子5aにバイアス磁界を印加するバイアス磁石5bと、磁気抵抗素子6aにバイアス磁界を印加するバイアス磁石6bとが取付けられている。磁気抵抗素子5aは基板2を挟んでバイアス磁石5bの真上に配置されており、磁気抵抗素子6aは基板2を挟んでバイアス磁石6bの真上に配置されている。各バイアス磁石5b、6bの横断面の面積は、直上に配置された磁気抵抗素子の横断面の面積よりも大きくしている。また、バイアス磁石5b、6bは、N極同士を相対向させて配置されている。   Magnetoresistive elements 5 a and 6 a are attached to the surface 2 a of the substrate 2. The magnetoresistive elements 5 a and 6 a are provided at symmetrical positions with respect to the current path 4. On the back surface 2b of the substrate 2, a bias magnet 5b for applying a bias magnetic field to the magnetoresistive element 5a and a bias magnet 6b for applying a bias magnetic field to the magnetoresistive element 6a are attached. The magnetoresistive element 5a is disposed directly above the bias magnet 5b with the substrate 2 interposed therebetween, and the magnetoresistive element 6a is disposed directly above the bias magnet 6b with the substrate 2 interposed therebetween. The area of the cross section of each bias magnet 5b, 6b is made larger than the area of the cross section of the magnetoresistive element arranged immediately above. In addition, the bias magnets 5b and 6b are arranged with the N poles facing each other.

磁気抵抗素子5a、6aはハーフブリッジ回路を構成する磁気抵抗Ra、Rbをそれぞれ備えている。各磁気抵抗は同一の基板面に形成されている。また、各磁気抵抗の磁化容易軸(電流の流れる方向)は、各磁気抵抗の形成方向と同一であり、各磁化容易軸はそれぞれ基板面と平行である。また、各磁気抵抗Ra、Rbは、それぞれ磁化容易軸と被検出電流Iの方向とが45°を成すように配置されている。磁気抵抗素子5aにおける磁気抵抗Raと磁気抵抗Rbは接続点7aで接続され、磁気抵抗Raの一端はグランドに接続され、磁気抵抗Rbの一端は電源Vccに接続されている。また、磁気抵抗素子6aにおける磁気抵抗Raと磁気抵抗Rbは接続点7bで接続され、磁気抵抗Raの一端はグランドに接続され、磁気抵抗Rbの一端は電源Vccに接続されている。接続点7a、7bは差動増幅器(図示せず)の入力端子に接続されている。   The magnetoresistive elements 5a and 6a are provided with magnetoresistors Ra and Rb constituting a half bridge circuit, respectively. Each magnetoresistor is formed on the same substrate surface. Further, the easy axis of magnetization (direction of current flow) of each magnetoresistance is the same as the direction of formation of each magnetoresistance, and each easy magnetization axis is parallel to the substrate surface. Further, each of the magnetic resistances Ra and Rb is arranged such that the easy axis of magnetization and the direction of the detected current I form 45 °. The magnetic resistance Ra and the magnetic resistance Rb in the magnetoresistive element 5a are connected at a connection point 7a, one end of the magnetic resistance Ra is connected to the ground, and one end of the magnetic resistance Rb is connected to the power source Vcc. Further, in the magnetoresistive element 6a, the magnetic resistance Ra and the magnetic resistance Rb are connected at a connection point 7b, one end of the magnetic resistance Ra is connected to the ground, and one end of the magnetic resistance Rb is connected to the power source Vcc. The connection points 7a and 7b are connected to input terminals of a differential amplifier (not shown).

図8(a)において、磁気抵抗素子5aにはバイアス磁石5bからの磁束密度ベクトルBm1がY軸の正方向に印加されており、磁気抵抗素子6aにはバイアス磁石6bからの磁束密度ベクトルBm2がY軸の負方向に印加されている。電流路4に被測定電流Iが流れていない時、磁気抵抗Ra、Rbの抵抗値は磁束密度ベクトルBm1、Bm2の作用により一様に減少する。その結果、磁気抵抗素子5a、6aで構成されるフルブリッジ回路は平衡するため、差動増幅器の出力VOUTはたとえばVcc/2のいわゆる0点電位に留まることになる。 In FIG. 8A, a magnetic flux density vector Bm1 from the bias magnet 5b is applied to the magnetoresistive element 5a in the positive direction of the Y axis, and a magnetic flux density vector Bm2 from the bias magnet 6b is applied to the magnetoresistive element 6a. It is applied in the negative direction of the Y axis. When the current I to be measured does not flow through the current path 4, the resistance values of the magnetic resistances Ra and Rb are uniformly reduced by the action of the magnetic flux density vectors Bm1 and Bm2. As a result, the full bridge circuit composed of the magnetoresistive elements 5a and 6a is balanced, so that the output V OUT of the differential amplifier remains at a so-called zero point potential of Vcc / 2, for example.

電流路4に被測定電流Iが流れると、磁気抵抗素子5aにはX軸の正方向を向く磁束密度ベクトルBc1がさらに印加される。これにより、磁気抵抗素子5aにはバイアス磁石5bからの磁束密度ベクトルBm1と、被測定電流Iによる磁束密度ベクトルBc1の合成磁束密度ベクトルB1が印加される。合成磁束密度ベクトルB1は磁束密度ベクトルBm1と角度θをなす。同様にして、被測定電流Iが流れると、磁気抵抗素子6aにはX軸の負方向に磁束密度ベクトルBc2がさらに印加される。これにより、磁気抵抗素子6aには磁束密度ベクトルBm2およびBc2の合成磁束密度ベクトルB2が印加される。合成磁束密度ベクトルB2は磁束密度ベクトルBm2と角度θをなす。このとき、磁束密度ベクトルBm1の大きさは磁気抵抗素子5a内で略一様であるが、磁束密度ベクトルBc1、Bc2の大きさは電流路4からの距離に略反比例して小さくなる。   When the current I to be measured flows through the current path 4, a magnetic flux density vector Bc1 that is directed in the positive direction of the X axis is further applied to the magnetoresistive element 5a. Thereby, the magnetic flux density vector Bm1 of the magnetic flux density vector Bm1 from the bias magnet 5b and the magnetic flux density vector Bc1 by the measured current I is applied to the magnetoresistive element 5a. The resultant magnetic flux density vector B1 forms an angle θ with the magnetic flux density vector Bm1. Similarly, when the current I to be measured flows, the magnetic flux density vector Bc2 is further applied to the magnetoresistive element 6a in the negative direction of the X axis. Thereby, the combined magnetic flux density vector B2 of the magnetic flux density vectors Bm2 and Bc2 is applied to the magnetoresistive element 6a. The resultant magnetic flux density vector B2 forms an angle θ with the magnetic flux density vector Bm2. At this time, the magnitude of the magnetic flux density vector Bm1 is substantially uniform in the magnetoresistive element 5a, but the magnitudes of the magnetic flux density vectors Bc1 and Bc2 become smaller in inverse proportion to the distance from the current path 4.

磁気抵抗素子5a、6aは磁束密度ベクトルBm1、Bm2の大きさが同一であり、かつ磁気抵抗素子5a、6a内の電流路4に対して対称な位置における磁束密度ベクトルBc1、Bc2の大きさが同一となるように構成されている。このため、磁気抵抗素子5a、6a内の電流路4に対して対称な位置、たとえば磁気抵抗素子5a、6aの中心における合成磁束密度ベクトルB1、B2は、大きさが同一で向きが180度異なるので、両合成磁束密度ベクトルの和は0になる。   The magnetoresistive elements 5a and 6a have the same magnitude of the magnetic flux density vectors Bm1 and Bm2, and the magnitudes of the magnetic flux density vectors Bc1 and Bc2 at positions symmetrical to the current path 4 in the magnetoresistive elements 5a and 6a. It is comprised so that it may become the same. For this reason, the resultant magnetic flux density vectors B1 and B2 at positions symmetrical with respect to the current path 4 in the magnetoresistive elements 5a and 6a, for example, the centers of the magnetoresistive elements 5a and 6a, are the same in size and different in direction by 180 degrees. Therefore, the sum of both composite magnetic flux density vectors becomes zero.

被検出電流Iが増加すると、磁束密度ベクトルBc1、Bc2が増大するため、位相θが増加するとともに、合成磁束密度ベクトルB1、B2が増大する。このため、磁気抵抗素子5aの磁気抵抗Raの抵抗値が増加し、磁気抵抗Rbの抵抗値が減少する。これにより、接続点7aの電位は上昇する。また、磁気抵抗素子6aの磁気抵抗Raの抵抗値が減少し、磁気抵抗Rbの抵抗値が増加する。これにより、接続点7bの電位は低下する。その結果、磁気抵抗素子5a、6aで構成されるフルブリッジ回路の平衡が崩れ、差動増幅器の出力VOUTは、たとえばVcc/2の0点電位より大きいV1となる。 When the detected current I increases, the magnetic flux density vectors Bc1 and Bc2 increase, so that the phase θ increases and the combined magnetic flux density vectors B1 and B2 increase. For this reason, the resistance value of the magnetic resistance Ra of the magnetoresistive element 5a increases, and the resistance value of the magnetic resistance Rb decreases. As a result, the potential at the connection point 7a increases. Further, the resistance value of the magnetoresistor Ra of the magnetoresistive element 6a decreases, and the resistance value of the magnetoresistor Rb increases. As a result, the potential at the connection point 7b decreases. As a result, the full bridge circuit composed of the magnetoresistive elements 5a and 6a is unbalanced, and the output V OUT of the differential amplifier becomes V1, which is larger than the zero point potential of Vcc / 2, for example.

被検出電流Iが減少すると、磁束密度ベクトルBc1、Bc2が減少するため、位相θが減少するとともに、合成磁束密度ベクトルB1、B2が減少する。その結果、差動増幅器の出力VOUTは、たとえばVcc/2の0点電位より大きいV2(V2<V1)となる。こうして、差動増幅器の出力VOUTから電流路4に流れる被測定電流Iを検出することができるものである。 When the detected current I decreases, the magnetic flux density vectors Bc1 and Bc2 decrease, so that the phase θ decreases and the combined magnetic flux density vectors B1 and B2 decrease. As a result, the output V OUT of the differential amplifier becomes V2 (V2 <V1) which is larger than the zero point potential of Vcc / 2, for example. Thus, the measured current I flowing in the current path 4 from the output V OUT of the differential amplifier can be detected.

次に、磁気抵抗素子5a、6aに一様な外部密度ベクトルBexが印加された場合を考える。簡単のために、図8(b)に示すように、電流路4には被測定電流Iが流れておらず、外部磁界密度ベクトルBexはX軸の正方向に印加されているものとする。このとき、合成磁束密度ベクトルB1、B2の大きさは等しいが、合成磁束密度ベクトルB1は磁束密度ベクトルBm1に対して位相αだけ進み、合成磁束密度ベクトルB2は磁束密度ベクトルBm2に対して位相αだけ遅れることになる。このため、磁気抵抗素子5aの磁気抵抗Raの抵抗値が増加し、磁気抵抗Rbの抵抗値が減少する。これにより、接続点7aの電位は上昇する。しかしながら、磁気抵抗素子6aの磁気抵抗Raの抵抗値は増加し、磁気抵抗Rbの抵抗値が減少する。これにより、接続点7bの電位が上昇する。その結果、磁気抵抗素子5a、6aで構成されるフルブリッジ回路は平衡状態を維持するため、差動増幅器の出力VOUTはたとえばVcc/2のいわゆる0点電位に留まることになる。 Next, consider a case where a uniform external density vector Bex is applied to the magnetoresistive elements 5a and 6a. For simplicity, it is assumed that the current I to be measured does not flow in the current path 4 and the external magnetic field density vector Bex is applied in the positive direction of the X axis as shown in FIG. 8B. At this time, although the magnitudes of the combined magnetic flux density vectors B1 and B2 are equal, the combined magnetic flux density vector B1 advances by a phase α with respect to the magnetic flux density vector Bm1, and the combined magnetic flux density vector B2 has a phase α with respect to the magnetic flux density vector Bm2. Will be delayed only. For this reason, the resistance value of the magnetic resistance Ra of the magnetoresistive element 5a increases, and the resistance value of the magnetic resistance Rb decreases. As a result, the potential at the connection point 7a increases. However, the resistance value of the magnetoresistor Ra of the magnetoresistive element 6a increases and the resistance value of the magnetoresistor Rb decreases. As a result, the potential at the connection point 7b increases. As a result, the full bridge circuit composed of the magnetoresistive elements 5a and 6a maintains a balanced state, so that the output V OUT of the differential amplifier remains at a so-called zero point potential of Vcc / 2, for example.

すなわち、この電流センサは外部磁界が存在する場合であっても、被測定電流Iの電流値に誤差が発生することがなく、非接触で電流路に流れる電流を形成することができるものである。   That is, this current sensor is capable of forming a current that flows in the current path without contact without causing an error in the current value of the current I to be measured even when an external magnetic field is present. .

なお、この出願の発明に関連する先行技術文献情報としては、例えば、特許文献1が知られている。   As prior art document information related to the invention of this application, for example, Patent Document 1 is known.

特開2011−242270号公報JP 2011-242270 A

しかしながら、上記従来の電流センサにおいては、磁気検出素子5a、6aが電流路4を流れる被測定電流Iに垂直な面(XY面)内に配置されているために、電流センサのY軸方向の寸法が大きくなってしまうという問題点があった。また、磁気検出素子5a、6aが電流路4を流れる被測定電流Iに垂直な面内に配置されているとともに、磁気抵抗Ra〜Rdをそれぞれ磁化容易軸と被検出電流Iの方向とが45°を成すように配置する必要があるために、磁気検出素子5a、6aを電流路4に近接して配置するには限界がある。そのため、電流路4に流れる被測定電流Iにより発生する磁界を有効に捉えることが困難であり、電流測定のS/Nが低下するという問題点もあった。さらに、電流路4に流れる被測定電流Iにより発生する磁束密度は電流路からの距離に反比例して減少するため、磁気検出素子5a、6a内での磁束密度が一様とはならない。そのため、磁気抵抗Ra〜Rdの位置にばらつきがあると磁気検出素子5a、6aで構成されるブリッジ回路の抵抗変化に誤差が生じ、測定される電流値に誤差が発生するという問題点もあった。   However, in the above-described conventional current sensor, the magnetic detection elements 5a and 6a are arranged in a plane (XY plane) perpendicular to the current I to be measured flowing through the current path 4, so that the Y axis direction of the current sensor is There was a problem that the size would increase. In addition, the magnetic detection elements 5a and 6a are arranged in a plane perpendicular to the current I to be measured flowing through the current path 4, and the magnetic resistances Ra to Rd have 45 axes of easy magnetization and directions of the current I to be detected. Since it is necessary to dispose the magnetic detecting elements 5a and 6a, there is a limit to disposing the magnetic detection elements 5a and 6a close to the current path 4. Therefore, it is difficult to effectively capture the magnetic field generated by the current I to be measured flowing in the current path 4, and there is a problem that the S / N of current measurement is lowered. Furthermore, since the magnetic flux density generated by the measured current I flowing in the current path 4 decreases in inverse proportion to the distance from the current path, the magnetic flux density in the magnetic detection elements 5a and 6a is not uniform. For this reason, if there is variation in the positions of the magnetic resistances Ra to Rd, an error occurs in the resistance change of the bridge circuit composed of the magnetic detection elements 5a and 6a, and an error occurs in the measured current value. .

本発明は、上記従来の問題点を解決するもので、形状を小形化できるとともに、電流路に流れる被測定電流Iにより発生する磁界を有効に検出してS/N比を高めることができ、さらに前記磁気抵抗素子を構成する磁気検出素子の平面内での位置に対する制約を解消でき、外部磁界が存在する場合であっても、被測定電流Iの電流値に誤差が発生することがなく、非接触で電流路に流れる電流を正確に測定することができる電流センサを提供することを目的とするものである。   The present invention solves the above-mentioned conventional problems, can reduce the shape, and can effectively detect the magnetic field generated by the current I to be measured flowing in the current path to increase the S / N ratio. Furthermore, the restriction on the position in the plane of the magnetic detection element constituting the magnetoresistive element can be eliminated, and even when an external magnetic field exists, no error occurs in the current value of the current I to be measured. An object of the present invention is to provide a current sensor capable of accurately measuring a current flowing in a current path in a non-contact manner.

上記目的を達成するために、本発明は以下の構成を有する。   In order to achieve the above object, the present invention has the following configuration.

請求項1に記載の発明は、電流路を挾んで配置された第1および第2の磁気抵抗素子と、前記第1の磁気抵抗素子にバイアス磁界を与える第1の磁界発生手段と、前記第2の磁気抵抗素子にバイアス磁界を与える第2の磁界発生手段と、を備え、前記第1および第2の磁気抵抗素子の出力信号から前記電流路を流れる電流を検出するように構成された電流センサであって、前記第1の磁界発生手段のN極の中心からS極の中心に向かう方向が前記被検出電流の流れる方向と一致するとともに、前記第2の磁界発生手段のS極の中心からN極の中心に向かう方向が前記被検出電流の流れる方向と一致するように配置されており、前記第1の磁気抵抗素子の磁気抵抗を含む平面および前記第2の磁気抵抗素子の磁気抵抗を含む平面は、前記電流路と平行に配置されるとともに、前記第1の磁気抵抗素子の磁気抵抗を含む平面と前記電流路との距離が、前記第2の磁気抵抗素子の磁気抵抗を含む平面と前記電流路との距離と等しいように構成したもので、この構成によれば、電流センサのY軸方向の寸法を小さくすることができ、さらに磁気抵抗素子を電流路に近接して配置できるため、電流路に流れる被測定電流Iにより発生する磁界を有効に検出してS/N比を高めることができ、さらに電流路に流れる被測定電流Iにより発生する磁束密度が前記磁気抵抗素子内で一定となるため、前記磁気抵抗素子を構成する磁気検出素子の平面内での位置に対する制約を解消できるとともに、外部磁界が存在する場合であっても、被測定電流Iの電流値に誤差が発生することがなく、非接触で電流路に流れる電流を正確に測定できるという作用効果を有するものである。   The invention according to claim 1 is characterized in that the first and second magnetoresistive elements arranged with a current path interposed therebetween, first magnetic field generating means for applying a bias magnetic field to the first magnetoresistive element, and the first A second magnetic field generating means for applying a bias magnetic field to the second magnetoresistive element, and configured to detect a current flowing through the current path from output signals of the first and second magnetoresistive elements. A direction from the center of the N pole of the first magnetic field generating means toward the center of the S pole coincides with the direction in which the current to be detected flows, and the center of the S pole of the second magnetic field generating means Are arranged so that the direction from the first to the center of the N pole coincides with the direction in which the current to be detected flows, and the plane including the magnetoresistance of the first magnetoresistance element and the magnetoresistance of the second magnetoresistance element The plane including the current path The distance between the plane including the magnetoresistance of the first magnetoresistive element and the current path is arranged in parallel, and the distance between the plane including the magnetoresistance of the second magnetoresistive element and the current path is With this configuration, the size of the current sensor in the Y-axis direction can be reduced, and the magnetoresistive element can be placed close to the current path, so that the device under test flowing in the current path The magnetic field generated by the current I can be effectively detected to increase the S / N ratio, and the magnetic flux density generated by the measured current I flowing in the current path is constant in the magnetoresistive element. The restriction on the position in the plane of the magnetic detection element that constitutes the resistance element can be eliminated, and even if an external magnetic field exists, no error occurs in the current value of the current I to be measured, and no contact is made. At And it has a effect that the current flowing through the road can be accurately measured.

請求項2に記載の発明は、特に、前記第1および第2の磁界発生手段を薄膜磁石としたもので、この構成によれば、磁気抵抗素子にさらに一様で高い磁束密度を与えることができるとともに、磁気検出素子上に一体に形成でき、きわめて小形の電流センサが実現できるという作用効果を有するものである。   The invention according to claim 2 is the one in which the first and second magnetic field generating means are in particular thin film magnets, and according to this configuration, a more uniform and high magnetic flux density can be given to the magnetoresistive element. In addition, it can be integrally formed on the magnetic detection element, and has an effect that an extremely small current sensor can be realized.

以上のように本発明は、電流路を挾んで配置された第1および第2の磁気抵抗素子と、前記第1の磁気抵抗素子にバイアス磁界を与える第1の磁界発生手段と、前記第2の磁気抵抗素子にバイアス磁界を与える第2の磁界発生手段と、を備え、前記第1および第2の磁気抵抗素子の出力信号から前記電流路を流れる電流を検出するように構成された電流センサであって、前記第1の磁界発生手段のN極の中心からS極の中心に向かう方向が前記被検出電流の流れる方向と一致するとともに、前記第2の磁界発生手段のS極の中心からN極の中心に向かう方向が前記被検出電流の流れる方向と一致するように配置されており、前記第1の磁気抵抗素子の磁気抵抗を含む平面および前記第2の磁気抵抗素子の磁気抵抗を含む平面は、前記電流路と平行に配置されるとともに、前記第1の磁気抵抗素子の磁気抵抗を含む平面と前記電流路との距離が、前記第2の磁気抵抗素子の磁気抵抗を含む平面と前記電流路との距離と等しいように構成したもので、形状を小形化できるとともに、電流路に流れる被測定電流Iにより発生する磁界を有効に検出してS/N比を高めることができ、さらに前記磁気抵抗素子を構成する磁気検出素子の平面内での位置に対する制約を解消でき、外部磁界が存在する場合であっても、被測定電流Iの電流値に誤差が発生することがなく、非接触で電流路に流れる電流を正確に測定することができる電流センサを提供できるという優れた効果を奏するものである。   As described above, according to the present invention, the first and second magnetoresistive elements arranged with the current path interposed therebetween, the first magnetic field generating means for applying a bias magnetic field to the first magnetoresistive element, and the second And a second magnetic field generating means for applying a bias magnetic field to the magnetoresistive element, and configured to detect a current flowing through the current path from output signals of the first and second magnetoresistive elements. The direction from the center of the N pole to the center of the S pole of the first magnetic field generating means coincides with the direction in which the detected current flows, and from the center of the S pole of the second magnetic field generating means. The direction toward the center of the N pole is arranged so as to coincide with the direction in which the detected current flows, and the plane including the magnetoresistance of the first magnetoresistance element and the magnetoresistance of the second magnetoresistance element are The plane including the current path and And the distance between the current path and the plane including the magnetoresistance of the first magnetoresistive element is equal to the distance between the plane including the magnetoresistance of the second magnetoresistive element and the current path. With the same configuration, the shape can be reduced, the magnetic field generated by the current I to be measured flowing in the current path can be detected effectively, the S / N ratio can be increased, and the magnetoresistive element is further configured The restriction on the position of the magnetic detecting element in the plane can be eliminated, and even if an external magnetic field exists, the current value of the current I to be measured does not generate an error and flows in the current path without contact. This provides an excellent effect that a current sensor capable of accurately measuring current can be provided.

(a)本発明の実施の形態1における電流センサの構成を示す断面図、(b)同電流センサの構成を示す側面図(A) Sectional drawing which shows the structure of the current sensor in Embodiment 1 of this invention, (b) Side view which shows the structure of the same current sensor (a)第1の磁気抵抗素子の平面図、(b)第2の磁気抵抗素子の平面図(A) Plan view of the first magnetoresistive element, (b) Plan view of the second magnetoresistive element (a)本発明の効果を確認するための実験装置の構成を示す断面図、(b)同実験装置の構成を示す側面図(A) Sectional view showing the configuration of an experimental apparatus for confirming the effect of the present invention, (b) Side view showing the configuration of the experimental apparatus (a)第1の磁気抵抗素子の上面図、(b)同磁気抵抗素子の断面図(A) Top view of the first magnetoresistive element, (b) Cross section of the magnetoresistive element (a)X軸方向の外部磁界の磁束密度を印加したときの加算器の出力変化率を示す測定データを示す図、(b)Z軸方向の外部磁界の磁束密度を印加したときの加算器の出力変化率を示す測定データを示す図(A) The figure which shows the measurement data which show the output change rate of the adder when the magnetic flux density of the external magnetic field of X-axis direction is applied, (b) The adder when the magnetic flux density of the external magnetic field of Z-axis direction is applied Of measured data showing the rate of change in output (a)本発明の実施の形態2における電流センサにおける磁気抵抗素子の平面図、(b)同磁気抵抗素子の断面図(A) The top view of the magnetoresistive element in the current sensor in Embodiment 2 of this invention, (b) Sectional drawing of the same magnetoresistive element 従来の電流センサの概略構成を示す平面図The top view which shows schematic structure of the conventional current sensor (a)、(b)同電流センサに作用する磁束密度ベクトルの説明図(A), (b) Explanatory drawing of the magnetic flux density vector which acts on the same current sensor

(実施の形態1)
以下、実施の形態1を用いて、本発明の請求項1に記載の発明について、図面を参照しながら説明する。図1(a)は本発明の実施の形態1における電流センサ21の構成を示す断面図であり、図1(b)は同電流センサ21の構成を示す側面図である。図1(a)(b)において、XYZ座標を図のようにとったとき、22はZ軸方向に延びる電流路であり、銅等の良導電体からなる。この電流路22にはZ軸の負方向に被検出電流Iが流れている。この電流路22の上方、すなわちY軸の正方向には第1の磁気抵抗素子23と、この第1の磁気抵抗素子23にバイアス磁界を与える第1の磁石24が第1の磁気抵抗素子23の直上に配置されている。また電流路22の下方、すなわちY軸の負方向には第2の磁気抵抗素子25と、この第2の磁気抵抗素子25にバイアス磁界を与える第2の磁石26が第2の磁気抵抗素子25の直下に配置されている。第1の磁石24のN極の中心からS極の中心に向かう方向は被検出電流Iの流れる方向と一致するとともに、第2の磁石のS極の中心からN極の中心に向かう方向が前記被検出電流の流れる方向と一致するように配置されている。27は電流路22に流れる被測定電流Iによって電流路22の周りに発生する磁界である。さらに、28、29は各々第1、第2の磁石24、26の周りに発生する磁界である。
(Embodiment 1)
Hereinafter, the first aspect of the present invention will be described with reference to the drawings using the first embodiment. FIG. 1A is a cross-sectional view showing the configuration of the current sensor 21 according to Embodiment 1 of the present invention, and FIG. 1B is a side view showing the configuration of the current sensor 21. In FIGS. 1A and 1B, when XYZ coordinates are taken as shown in the figure, 22 is a current path extending in the Z-axis direction, and is made of a good conductor such as copper. A detected current I flows in the current path 22 in the negative direction of the Z axis. A first magnetoresistive element 23 and a first magnet 24 for applying a bias magnetic field to the first magnetoresistive element 23 are provided above the current path 22, that is, in the positive direction of the Y axis. It is arranged right above. A second magnetoresistive element 25 and a second magnet 26 for applying a bias magnetic field to the second magnetoresistive element 25 are provided below the current path 22, that is, in the negative direction of the Y axis. It is arranged immediately below. The direction from the center of the N pole of the first magnet 24 to the center of the S pole coincides with the direction in which the detected current I flows, and the direction from the center of the S pole of the second magnet to the center of the N pole It arrange | positions so that it may correspond with the direction through which to-be-detected current flows. A magnetic field 27 is generated around the current path 22 by the measured current I flowing in the current path 22. Further, 28 and 29 are magnetic fields generated around the first and second magnets 24 and 26, respectively.

図2(a)(b)は各々第1および第2の磁気抵抗素子23、25の平面図である。第1および第2の磁気抵抗素子23、25はフルブリッジ回路を構成する磁気抵抗30a、30b、30c、30dをそれぞれ備えている。31はセラミック等の絶縁基板であり、磁気抵抗30a、30b、30c、30dは同一の基板面に形成されている。磁気抵抗30a、30b、30c、30dはNi−Co等の強磁性体からなる厚み約0.1μmの磁気抵抗薄膜である。そして、前記磁気抵抗30a、30bおよび磁気抵抗30c、30dは各々直列に接続され、感磁方向に垂直な方向であるパターンの長手方向は互いに直交するとともに、被検出電流Iの方向と45°を成すように配置されている。第1の磁気抵抗素子23における磁気抵抗30aと磁気抵抗30bは接続点32で接続され、磁気抵抗30cと磁気抵抗30dは接続点33で接続されている。磁気抵抗30aと磁気抵抗30dの他端は電源Vccに接続され、磁気抵抗30bと磁気抵抗30cの他端はグランドに接続されている。同様に、第2の磁気抵抗素子25における磁気抵抗30aと磁気抵抗30bは接続点34で接続され、磁気抵抗30cと磁気抵抗30dは接続点35で接続されている。磁気抵抗30aと磁気抵抗30dの他端は電源Vccに接続され、磁気抵抗30bと磁気抵抗30cの他端はグランドに接続されている。また、接続点32、33は第1の差動増幅器(図示せず)の入力端子に接続されている。さらに、接続点34、35は第2の差動増幅器(図示せず)の入力端子に接続されている。さらに、第1の差動増幅器と第2の差動増幅器との出力は加算器(図示せず)に入力されている。   2A and 2B are plan views of the first and second magnetoresistive elements 23 and 25, respectively. The first and second magnetoresistive elements 23 and 25 include magnetic resistors 30a, 30b, 30c, and 30d that constitute a full bridge circuit, respectively. Reference numeral 31 denotes an insulating substrate such as ceramic, and the magnetic resistors 30a, 30b, 30c, and 30d are formed on the same substrate surface. The magnetic resistors 30a, 30b, 30c, and 30d are magnetoresistive thin films having a thickness of about 0.1 μm made of a ferromagnetic material such as Ni—Co. The magnetoresistors 30a and 30b and the magnetoresistors 30c and 30d are connected in series, and the longitudinal directions of the patterns, which are perpendicular to the magnetosensitive direction, are orthogonal to each other and 45 ° with respect to the direction of the detected current I. It is arranged to make. In the first magnetoresistive element 23, the magnetic resistance 30 a and the magnetic resistance 30 b are connected at a connection point 32, and the magnetic resistance 30 c and the magnetic resistance 30 d are connected at a connection point 33. The other ends of the magnetic resistance 30a and the magnetic resistance 30d are connected to the power supply Vcc, and the other ends of the magnetic resistance 30b and the magnetic resistance 30c are connected to the ground. Similarly, in the second magnetoresistive element 25, the magnetic resistance 30a and the magnetic resistance 30b are connected at the connection point 34, and the magnetic resistance 30c and the magnetic resistance 30d are connected at the connection point 35. The other ends of the magnetic resistance 30a and the magnetic resistance 30d are connected to the power supply Vcc, and the other ends of the magnetic resistance 30b and the magnetic resistance 30c are connected to the ground. The connection points 32 and 33 are connected to an input terminal of a first differential amplifier (not shown). Further, the connection points 34 and 35 are connected to an input terminal of a second differential amplifier (not shown). Further, the outputs of the first differential amplifier and the second differential amplifier are input to an adder (not shown).

第1の磁気抵抗素子23の磁気抵抗30a、30b、30c、30dを含む平面、すなわち基板面および第2の磁気抵抗素子25の磁気抵抗30a、30b、30c、30dを含む平面、すなわち基板面は電流路22に対して平行に配置されるとともに、第1の磁気抵抗素子23の磁気抵抗30a、30b、30c、30dを含む平面と電流路22との距離が、第2の磁気抵抗素子25の磁気抵抗30a、30b、30c、30dを含む平面と電流路22との距離と等しくなるように配置されている。   The plane including the magnetic resistances 30a, 30b, 30c, and 30d of the first magnetoresistance element 23, that is, the substrate surface, and the plane including the magnetic resistances 30a, 30b, 30c, and 30d of the second magnetoresistance element 25, that is, the substrate surface, are The distance between the current path 22 and the plane including the magnetic resistances 30 a, 30 b, 30 c, 30 d of the first magnetoresistive element 23 and the current path 22 is arranged in parallel to the current path 22. It arrange | positions so that it may become equal to the distance of the plane containing the magnetoresistors 30a, 30b, 30c, and 30d, and the electric current path 22. FIG.

このとき、前記第1の磁気抵抗素子23の中心と前記第1の磁石24の中心とが同軸であって互いに近接するように配置するとともに、前記第2の磁気抵抗素子25の中心と前記第2の磁石26の中心とが同軸であって互いに近接するように配置することが望ましい。このように構成することにより、前記第1および第2の磁気抵抗素子23、25に一様で高い磁束密度を与えることができ、電流路に流れる電流をさらに高精度で測定できる。   At this time, the center of the first magnetoresistive element 23 and the center of the first magnet 24 are arranged coaxially and close to each other, and the center of the second magnetoresistive element 25 and the first magnet It is desirable to arrange the two magnets 26 so that the centers of the two magnets 26 are coaxial and close to each other. By comprising in this way, the said 1st and 2nd magnetoresistive elements 23 and 25 can be given uniform and high magnetic flux density, and the electric current which flows into an electric current path can be measured with a further high precision.

図2(a)(b)を参照して、本発明の実施の形態1における電流センサ21の動作を説明する。図2において、第1の磁気抵抗素子23には第1の磁石24からの磁束密度ベクトルBm1がZ軸の正方向に印加され、第2の磁気抵抗素子25には第2の磁石26からの磁束密度ベクトルBm2がZ軸の負方向に印加されている。   With reference to FIG. 2 (a) (b), operation | movement of the current sensor 21 in Embodiment 1 of this invention is demonstrated. In FIG. 2, the magnetic flux density vector Bm1 from the first magnet 24 is applied to the first magnetoresistive element 23 in the positive direction of the Z axis, and the second magnetoresistive element 25 is applied from the second magnet 26. A magnetic flux density vector Bm2 is applied in the negative direction of the Z axis.

電流路22に被測定電流Iが流れていない時、磁気抵抗30a、30b、30c、30dの抵抗値は磁束密度ベクトルBm1、Bm2の作用により一様に減少する。このとき、磁気抵抗30a、30cの抵抗値の積と、磁気抵抗30b、30dの抵抗値の積が等しくなるように設定していると、磁気抵抗30a、30b、30c、30dで構成されるフルブリッジ回路は平衡するため、第1および第2の差動増幅器の出力VOUT1、VOUT2は0となる。そして、これら第1および第2の差動増幅器の出力VOUT1、VOUT2の出力を加算する加算器の出力はたとえばVcc/2のいわゆる0点電位に留まることになる。 When the current I to be measured is not flowing through the current path 22, the resistance values of the magnetic resistors 30a, 30b, 30c, and 30d are uniformly reduced by the action of the magnetic flux density vectors Bm1 and Bm2. At this time, if the product of the resistance values of the magnetic resistances 30a and 30c and the product of the resistance values of the magnetic resistances 30b and 30d are set to be equal to each other, the full configuration of the magnetic resistances 30a, 30b, 30c, and 30d is established. Since the bridge circuit is balanced, the outputs V OUT1 and V OUT2 of the first and second differential amplifiers are zero. The output of the adder that adds the outputs V OUT1 and V OUT2 of the first and second differential amplifiers remains at the so-called zero point potential of Vcc / 2, for example.

電流路22に被測定電流Iが流れると、第1の磁気抵抗素子23にはX軸の正方向を向く磁束密度ベクトルBc1がさらに印加される。これにより、第1の磁気抵抗素子23には第1の磁石24からの磁束密度ベクトルBm1と、被測定電流Iによる磁束密度ベクトルBc1の合成磁束密度ベクトルB1が印加される。合成磁束密度ベクトルB1は磁束密度ベクトルBm1と角度θ1をなす。同様にして、被測定電流Iが流れると、第2の磁気抵抗素子25にはX軸の負方向に磁束密度ベクトルBc2がさらに印加される。これにより、第2の磁気抵抗素子25には磁束密度ベクトルBm2およびBc2の合成磁束密度ベクトルB2が印加される。合成磁束密度ベクトルB2は磁束密度ベクトルBm2と角度θ2をなす。ここで、磁束密度ベクトルBm1の大きさは磁束密度ベクトルBm2の大きさと一致するように第1の磁石24の強さ、第2の磁石26の強さ、第1の磁石24と第1の磁気抵抗素子23との距離、第2の磁石26と第2の磁気抵抗素子25との距離が調整されている。また、前記のように、第1の磁気抵抗素子23の磁気抵抗30a、30b、30c、30dを含む平面および第2の磁気抵抗素子25の磁気抵抗30a、30b、30c、30dを含む平面は電流路22と平行に配置されるとともに、第1の磁気抵抗素子23の磁気抵抗30a、30b、30c、30dを含む平面と電流路22との距離が、第2の磁気抵抗素子25の磁気抵抗30a、30b、30c、30dを含む平面と電流路22との距離と等しくなるように配置しているために、磁束密度ベクトルBc1、Bc2の大きさは各々第1および第2の磁気抵抗素子23、25の面内で一定であるとともに、互いに等しくなる。このため、第1および第2の磁気抵抗素子23、25の面内の合成磁束密度ベクトルB1、B2は、大きさが同一で向きが180度異なることになる。   When the current to be measured I flows through the current path 22, a magnetic flux density vector Bc1 that is directed in the positive direction of the X axis is further applied to the first magnetoresistive element. As a result, the magnetic flux density vector Bm1 from the first magnet 24 and the combined magnetic flux density vector B1 of the magnetic flux density vector Bc1 due to the measured current I are applied to the first magnetoresistive element 23. The resultant magnetic flux density vector B1 forms an angle θ1 with the magnetic flux density vector Bm1. Similarly, when the measured current I flows, the magnetic flux density vector Bc2 is further applied to the second magnetoresistive element 25 in the negative direction of the X axis. Thereby, the combined magnetic flux density vector B2 of the magnetic flux density vectors Bm2 and Bc2 is applied to the second magnetoresistive element 25. The resultant magnetic flux density vector B2 forms an angle θ2 with the magnetic flux density vector Bm2. Here, the strength of the first magnet 24, the strength of the second magnet 26, the first magnet 24 and the first magnet so that the magnitude of the magnetic flux density vector Bm1 matches the magnitude of the magnetic flux density vector Bm2. The distance between the resistance element 23 and the distance between the second magnet 26 and the second magnetoresistance element 25 are adjusted. Further, as described above, the plane including the magnetoresistances 30a, 30b, 30c, and 30d of the first magnetoresistance element 23 and the plane including the magnetoresistances 30a, 30b, 30c, and 30d of the second magnetoresistance element 25 are currents. The distance between the current path 22 and the plane including the magnetic resistances 30 a, 30 b, 30 c, 30 d of the first magnetoresistive element 23 and the current path 22 is arranged in parallel with the path 22. , 30b, 30c, and 30d are arranged so as to be equal to the distance between the current path 22 and the plane including the current path 22, the magnitudes of the magnetic flux density vectors Bc1 and Bc2 are respectively the first and second magnetoresistive elements 23, It is constant in the plane of 25 and is equal to each other. For this reason, the resultant magnetic flux density vectors B1 and B2 in the planes of the first and second magnetoresistive elements 23 and 25 have the same magnitude and different directions by 180 degrees.

被検出電流Iが増加すると、磁束密度ベクトルBc1、Bc2が増大するため、第1の磁気抵抗素子23の磁気抵抗30a、30cの抵抗値が減少し、磁気抵抗30b、30dの抵抗値が増加する。これにより、接続点32の電位は上昇し、接続点33の電位は低下する。その結果、フルブリッジ回路の平衡が崩れ、第1の差動増幅器の出力VOUT1が発生する。同様にして、第2の磁気抵抗素子25の磁気抵抗30a、30cの抵抗値が減少し、磁気抵抗30b、30dの抵抗値が増加する。これにより、接続点34の電位は上昇し、接続点35の電位は低下する。その結果、フルブリッジ回路の平衡が崩れ、第2の差動増幅器の出力には第1の差動増幅器の出力VOUT1と同符号の出力VOUT2が発生する。そして、これら第1および第2の差動増幅器の出力VOUT1、VOUT2の出力を加算する加算器の出力はたとえばVcc/2のいわゆる0点電位より大きいV1となる。 When the detected current I increases, the magnetic flux density vectors Bc1 and Bc2 increase, so that the resistance values of the magnetic resistances 30a and 30c of the first magnetoresistive element 23 decrease and the resistance values of the magnetic resistances 30b and 30d increase. . As a result, the potential at the connection point 32 increases and the potential at the connection point 33 decreases. As a result, the balance of the full bridge circuit is lost, and the output V OUT1 of the first differential amplifier is generated. Similarly, the resistance values of the magnetic resistors 30a and 30c of the second magnetoresistive element 25 are decreased, and the resistance values of the magnetic resistors 30b and 30d are increased. As a result, the potential at the connection point 34 increases and the potential at the connection point 35 decreases. As a result, the balance of the full bridge circuit is lost, and an output V OUT2 having the same sign as the output V OUT1 of the first differential amplifier is generated at the output of the second differential amplifier. The output of the adder that adds the outputs V OUT1 and V OUT2 of the first and second differential amplifiers becomes V1, which is larger than the so-called zero point potential of Vcc / 2, for example.

被検出電流Iが減少すると、磁束密度ベクトルBc1、Bc2が減少するため、合成磁束密度ベクトルB1、B2が減少する。これにより、第1の差動増幅器の出力VOUT1および第2の差動増幅器の出力VOUT2は小さくなる。そして、これら第1および第2の差動増幅器の出力VOUT1、VOUT2の出力を加算する加算器の出力は、たとえばVcc/2の0点電位より大きいV2(V2<V1)となる。こうして、加算器の出力から電流路22に流れる被測定電流Iを検出することができるものである。 When the detected current I decreases, the magnetic flux density vectors Bc1 and Bc2 decrease, so that the combined magnetic flux density vectors B1 and B2 decrease. As a result, the output V OUT1 of the first differential amplifier and the output V OUT2 of the second differential amplifier are reduced. The output of the adder that adds the outputs V OUT1 and V OUT2 of the first and second differential amplifiers becomes V2 (V2 <V1), which is larger than the zero point potential of Vcc / 2, for example. Thus, the measured current I flowing in the current path 22 from the output of the adder can be detected.

次に、第1および第2の磁気抵抗素子23、25に一様な外部密度ベクトルBexが印加された場合を考える。このとき、外部密度ベクトルBexの作用により、第1の磁気抵抗素子23のフルブリッジ回路の平衡が崩れ、第1の差動増幅器の出力VOUT1に△V1の増分が発生する。同様にして、外部密度ベクトルBexの作用により、第2の磁気抵抗素子25のフルブリッジ回路の平衡が崩れ、第2の差動増幅器の出力VOUT2に△V2の増分が発生する。しかしながら、増分△V1の符号と増分△V2の符号は異なるため、加算器の出力はたとえばVcc/2のいわゆる0点電位に留まることになる。 Next, a case where a uniform external density vector Bex is applied to the first and second magnetoresistive elements 23 and 25 will be considered. At this time, due to the action of the external density vector Bex, the balance of the full bridge circuit of the first magnetoresistive element 23 is lost, and an increase of ΔV1 occurs in the output V OUT1 of the first differential amplifier. Similarly, due to the action of the external density vector Bex, the balance of the full bridge circuit of the second magnetoresistive element 25 is lost, and an increment of ΔV2 occurs in the output V OUT2 of the second differential amplifier. However, since the sign of the increment ΔV1 and the sign of the increment ΔV2 are different, the output of the adder remains at a so-called zero point potential of Vcc / 2, for example.

すなわち、この電流センサは外部磁界が存在する場合であっても、被測定電流Iの電流値に誤差が発生することがなく、非接触で電流路に流れる電流を形成することができるものである。   That is, this current sensor is capable of forming a current that flows in the current path without contact without causing an error in the current value of the current I to be measured even when an external magnetic field is present. .

図3(a)は本発明の効果を確認するための実験装置の構成を示す断面図であり、図3(b)は同実験装置の構成を示す側面図である。   FIG. 3A is a sectional view showing the configuration of an experimental apparatus for confirming the effect of the present invention, and FIG. 3B is a side view showing the configuration of the experimental apparatus.

図3(a)(b)において、XYZ座標を図のようにとったとき、40はZ軸方向に延びる電流路であり、直径3mmの銅製丸棒である。この電流路40にはZ軸方向に被検出電流Iが流れている。この電流路40の上方、すなわちY軸の正方向には第1の磁気抵抗素子41と、この第1の磁気抵抗素子41にバイアス磁界を与える第1の磁石42が第1の磁気抵抗素子41の直上に配置されている。また電流路40の下方、すなわちY軸の負方向には第2の磁気抵抗素子43と、この第2の磁気抵抗素子43にバイアス磁界を与える第2の磁石44が第2の磁気抵抗素子43の直下に配置されている。45は電流路40に流れる被測定電流Iによって電流路40の周りに発生する磁界である。さらに、46、47は各々第1、第2の磁石42、44の周りに発生する磁界である。   3A and 3B, when the XYZ coordinates are taken as shown in the figure, reference numeral 40 denotes a current path extending in the Z-axis direction, which is a copper round bar having a diameter of 3 mm. A detected current I flows in the current path 40 in the Z-axis direction. A first magnetoresistive element 41 and a first magnet 42 for applying a bias magnetic field to the first magnetoresistive element 41 are provided above the current path 40, that is, in the positive direction of the Y axis. It is arranged right above. A second magnetoresistive element 43 and a second magnet 44 for applying a bias magnetic field to the second magnetoresistive element 43 are provided below the current path 40, that is, in the negative direction of the Y axis. It is arranged immediately below. Reference numeral 45 denotes a magnetic field generated around the current path 40 by the measured current I flowing in the current path 40. Further, 46 and 47 are magnetic fields generated around the first and second magnets 42 and 44, respectively.

第1の磁石42のN極の中心からS極の中心に向かう方向はZ軸の負方向と一致するとともに、第2の磁石のS極の中心からN極の中心に向かう方向がZ軸の負方向と一致するように配置されている。第1および第2の磁石42、44は3mm□、厚み0.4mmでゴム中にフェライト粉を混練・成形されたいわゆるゴム磁石であり、表面磁束密度は200ガウスのものを使用した。   The direction from the center of the N pole of the first magnet 42 to the center of the S pole coincides with the negative direction of the Z axis, and the direction from the center of the S pole of the second magnet to the center of the N pole is the Z axis. Arranged to match the negative direction. The first and second magnets 42 and 44 are so-called rubber magnets in which ferrite powder is kneaded and molded in rubber having a thickness of 3 mm □ and a thickness of 0.4 mm, and those having a surface magnetic flux density of 200 gauss are used.

この実験で用いた第1の磁気抵抗素子41の構成を図4を用いて説明する。図4(a)は、第1の磁気抵抗素子41の上面図であり、図4(b)は図4(a)の縦断面図である。ここで、第1の磁気抵抗素子41のX軸、Y軸、Z軸方向の長さは各々3mm、0.8mm、3mmである。図4において、セラミック絶縁基板50上に電源印加電極51、第1の出力電極52、第2の出力電極53およびグランド電極54の4個の電極が形成されている。また電源印加電極51と第1の出力電極52との間には磁気抵抗体からなり蛇行形状の磁気抵抗55aが形成されている。同様に第1の出力電極52とグランド電極54との間、電源印加電極51と第2の出力電極53との間、第2の出力電極53とグランド電極54との間には各々蛇行形状の磁気抵抗55b、55c、55dが形成されている。このような電気的な接続を行なうことで、磁気抵抗55a、55b、55c、55dはブリッジ回路を構成する。磁気抵抗55a、55b、55c、55dはNi−Co等の強磁性体からなる厚さ約0.1μmの磁気抵抗薄膜である。また、図4において、磁気抵抗55aは、紙面で右斜め上に傾いた45°の方向に蛇行パターンの長手方向が位置しているが、これと隣接する磁気抵抗55bは、紙面で左斜め上に傾いた45°の方向に蛇行パターンの長手方向が位置しており、両者の角度は直角である。磁気抵抗55cと磁気抵抗55dとの位置関係も同様である。さらに、磁気抵抗55aと磁気抵抗55cとの位置関係も同様である。ここで、磁気抵抗55a、55b、55c、55dの感磁方向はセラミック絶縁基板50面内で各々の蛇行パターンの長手方向に直角な方向である。60は厚さが約1μmのSiO2薄膜からなる絶縁層であり、磁気抵抗55a、55b、55c、55dを覆うことにより磁気抵抗55a、55b、55c、55dを保護するものである。第2の磁気抵抗素子43の構成は第1の磁気抵抗素子41の構成と同様であるため、説明を省略する。第1の磁気抵抗素子41の第1および第2の出力電極52、53は第1の差動増幅器(図示せず)に接続され、第2の磁気抵抗素子43の第1および第2の出力電極は第2の差動増幅器(図示せず)に接続されている。そして、第1および第2の差動増幅器の出力は加算器(図示せず)に接続されている。 The configuration of the first magnetoresistive element 41 used in this experiment will be described with reference to FIG. 4A is a top view of the first magnetoresistive element 41, and FIG. 4B is a longitudinal sectional view of FIG. 4A. Here, the lengths of the first magnetoresistive element 41 in the X-axis, Y-axis, and Z-axis directions are 3 mm, 0.8 mm, and 3 mm, respectively. In FIG. 4, four electrodes including a power application electrode 51, a first output electrode 52, a second output electrode 53, and a ground electrode 54 are formed on a ceramic insulating substrate 50. A meandering magnetoresistor 55 a made of a magnetoresistor is formed between the power application electrode 51 and the first output electrode 52. Similarly, between the first output electrode 52 and the ground electrode 54, between the power application electrode 51 and the second output electrode 53, and between the second output electrode 53 and the ground electrode 54, meandering shapes are respectively formed. Magnetic resistors 55b, 55c, and 55d are formed. By making such an electrical connection, the magnetic resistors 55a, 55b, 55c, and 55d constitute a bridge circuit. The magnetic resistors 55a, 55b, 55c, and 55d are magnetoresistive thin films having a thickness of about 0.1 μm made of a ferromagnetic material such as Ni—Co. In FIG. 4, the magnetoresistive 55a is located in the longitudinal direction of the meander pattern in the direction of 45 ° inclined obliquely to the right on the paper surface. The longitudinal direction of the meandering pattern is located in the direction of 45 ° inclined, and the angle between them is a right angle. The positional relationship between the magnetic resistance 55c and the magnetic resistance 55d is the same. Further, the positional relationship between the magnetic resistance 55a and the magnetic resistance 55c is the same. Here, the magnetosensitive directions of the magnetic resistors 55a, 55b, 55c, and 55d are directions perpendicular to the longitudinal direction of each meander pattern in the surface of the ceramic insulating substrate 50. Reference numeral 60 denotes an insulating layer made of a SiO 2 thin film having a thickness of about 1 μm, and protects the magnetic resistances 55a, 55b, 55c, and 55d by covering the magnetic resistances 55a, 55b, 55c, and 55d. Since the configuration of the second magnetoresistive element 43 is the same as the configuration of the first magnetoresistive element 41, the description thereof is omitted. The first and second output electrodes 52 and 53 of the first magnetoresistive element 41 are connected to a first differential amplifier (not shown), and the first and second outputs of the second magnetoresistive element 43 are connected. The electrodes are connected to a second differential amplifier (not shown). The outputs of the first and second differential amplifiers are connected to an adder (not shown).

第1の磁気抵抗素子41の磁気抵抗55a、55b、55c、55dを含む平面、すなわち基板50表面および第2の磁気抵抗素子43の磁気抵抗を含む平面、すなわち基板表面は電流路40と平行に配置されるとともに、第1の磁気抵抗素子41の基板表面と電流路40との距離および、第2の磁気抵抗素子43の基板表面と電流路40との距離はともに1.76mmである。   The plane including the magnetic resistances 55 a, 55 b, 55 c and 55 d of the first magnetoresistive element 41, that is, the plane including the surface of the substrate 50 and the magnetic resistance of the second magnetoresistive element 43, that is, the substrate surface is parallel to the current path 40. In addition, the distance between the substrate surface of the first magnetoresistive element 41 and the current path 40 and the distance between the substrate surface of the second magnetoresistive element 43 and the current path 40 are both 1.76 mm.

上記実験装置全体をヘルムホルツコイル内の軸上中心部に配置した。最初に、このヘルムホルツコイルに電流を印加せず、電流路40に10アンペアの電流を流したとき、加算器の出力は2.77ボルトであった。このとき第1、第2の磁気抵抗素子41、43に印加される電流磁界の磁束密度は約0.2mTである。次に、ヘルムホルツコイルの軸方向と電流路40の電流方向を直交させ、電流路40に10アンペアの電流を流した状態で、ヘルムホルツコイルに電流を流すことにより、図3のX軸方向、すなわち電流路40に流れる被測定電流Iによって第1、第2の磁気抵抗素子41、43に印加される電流磁界と同じ方向を向く外部磁界を印加した。   The entire experimental apparatus was placed at the axial center in the Helmholtz coil. Initially, when no current was applied to the Helmholtz coil and a 10 ampere current was passed through the current path 40, the output of the adder was 2.77 volts. At this time, the magnetic flux density of the current magnetic field applied to the first and second magnetoresistive elements 41 and 43 is about 0.2 mT. Next, the axial direction of the Helmholtz coil and the current direction of the current path 40 are orthogonal to each other, and a current of 10 amperes is passed through the current path 40, so that a current flows through the Helmholtz coil, that is, the X-axis direction of FIG. An external magnetic field directed in the same direction as the current magnetic field applied to the first and second magnetoresistive elements 41 and 43 was applied by the measured current I flowing in the current path 40.

図5(a)はヘルムホルツコイルに流す電流を調整して、図3のX軸方向を向く外部磁界の磁束密度を0mT(テスラ)から2mTまで変化させたときの加算器の出力変化率を示す測定データである。   FIG. 5A shows the output change rate of the adder when the current flowing through the Helmholtz coil is adjusted to change the magnetic flux density of the external magnetic field facing the X-axis direction in FIG. 3 from 0 mT (Tesla) to 2 mT. Measurement data.

次に、ヘルムホルツコイルの軸方向と電流路40の電流方向を一致させ、電流路40に10アンペアの電流を流した状態で、ヘルムホルツコイルに電流を流すことにより、図3のZ軸方向、すなわち電流路40に流れる被測定電流Iによって第1、第2の磁気抵抗素子41、43に印加される電流磁界45と直交する外部磁界を印加した。   Next, by making the axial direction of the Helmholtz coil coincide with the current direction of the current path 40 and flowing a current of 10 amperes through the current path 40, a current is passed through the Helmholtz coil, so that the Z-axis direction of FIG. An external magnetic field orthogonal to the current magnetic field 45 applied to the first and second magnetoresistive elements 41 and 43 was applied by the measured current I flowing in the current path 40.

図5(b)はヘルムホルツコイルに流す電流を調整して、図3のZ軸方向を向く外部磁界の磁束密度を0mT(テスラ)から2mTまで変化させたときの加算器の出力変化率を示す測定データである。   FIG. 5B shows the output change rate of the adder when the current flowing through the Helmholtz coil is adjusted to change the magnetic flux density of the external magnetic field facing the Z-axis direction in FIG. 3 from 0 mT (Tesla) to 2 mT. Measurement data.

図5(a)(b)によれば、電流路40に流れる被測定電流I=10アンペアによって第1、第2の磁気抵抗素子41、43に印加される電流磁界45の磁束密度、約0.2mTの2.5倍に当る0.5mTの外部磁界が印加されたときに発生する誤差電圧は0.05%以下であり、電流磁界の磁束密度の10倍に当る2mTの外部磁界が印加された際であっても、発生する誤差電圧は0.15%以下であり、外部磁界が存在する場合であっても、被測定電流Iの電流値に発生する誤差はきわめて小さく、非接触で電流路に流れる電流を正確に測定できることが確認できた。   5A and 5B, the magnetic flux density of the current magnetic field 45 applied to the first and second magnetoresistive elements 41 and 43 by the measured current I = 10 amperes flowing in the current path 40 is about 0. The error voltage generated when an external magnetic field of 0.5 mT corresponding to 2.5 times 2 mT is applied is 0.05% or less, and an external magnetic field of 2 mT corresponding to 10 times the magnetic flux density of the current magnetic field is applied. Even when the measurement is performed, the error voltage generated is 0.15% or less, and even in the presence of an external magnetic field, the error generated in the current value of the current I to be measured is extremely small and non-contact. It was confirmed that the current flowing in the current path can be measured accurately.

本発明の実施の形態1における電流センサにおいては、第1の磁気抵抗素子41の磁気抵抗を含む平面および第2の磁気抵抗素子43の磁気抵抗を含む平面は、電流路40と平行に配置されているため、Y軸方向の寸法を小さくすることができる。また、磁気抵抗素子を電流路40に近接して配置できるため、電流路に流れる被測定電流Iにより発生する磁界を有効に検出してS/N比を高めることができる。第1の磁石42と第2の磁石44とを接近させて、第1の磁石42のN極と第2の磁石44のS極、および第1の磁石42のS極と第2の磁石44のN極との間に働く吸引力を利用すれば、第1の磁気抵抗素子41と第2の磁気抵抗素子43を電流路40に簡便に取付けることもできる。さらに電流路に流れる被測定電流Iにより発生する磁束密度が前記磁気抵抗素子内で一定となるため、前記磁気抵抗素子を構成する磁気検出素子の平面内での位置に対する制約を解消できるという効果が得られるものである。さらにまた、前記第1の磁気抵抗素子41の磁気抵抗を含む平面と前記電流路40との距離が、前記第2の磁気抵抗素子43の磁気抵抗を含む平面と前記電流路40との距離と等しいように構成しているため、外部磁界が存在する場合であっても、被測定電流Iの電流値に誤差が発生することがなく、非接触で電流路に流れる電流を正確に測定することができるという効果が得られるものである。   In the current sensor according to the first embodiment of the present invention, the plane including the magnetoresistance of the first magnetoresistance element 41 and the plane including the magnetoresistance of the second magnetoresistance element 43 are arranged in parallel with the current path 40. Therefore, the dimension in the Y-axis direction can be reduced. Further, since the magnetoresistive element can be disposed close to the current path 40, the S / N ratio can be increased by effectively detecting the magnetic field generated by the measured current I flowing in the current path. The first magnet 42 and the second magnet 44 are brought close to each other so that the north pole of the first magnet 42 and the south pole of the second magnet 44, and the south pole of the first magnet 42 and the second magnet 44. The first magnetoresistive element 41 and the second magnetoresistive element 43 can be easily attached to the current path 40 by utilizing the attractive force acting between the N poles. Furthermore, since the magnetic flux density generated by the current I to be measured flowing in the current path is constant in the magnetoresistive element, the effect of eliminating the restriction on the position of the magnetic sensing element constituting the magnetoresistive element in the plane is achieved. It is obtained. Furthermore, the distance between the plane including the magnetic resistance of the first magnetoresistive element 41 and the current path 40 is equal to the distance between the plane including the magnetic resistance of the second magnetoresistive element 43 and the current path 40. Even if an external magnetic field is present, the current value of the current I to be measured does not cause an error, and the current flowing in the current path can be accurately measured in a non-contact manner. The effect of being able to be obtained is obtained.

なお、上記実施の形態1の電流センサにおいては、第1および第2の磁気抵抗素子23、25の磁気抵抗30a、30b、30c、30dをフルブリッジ接続しているが、第1および第2の磁気抵抗素子23、25の磁気抵抗を各々ハーフブリッジに接続しても同様の効果が得られるものである。   In the current sensor of the first embodiment, the magnetic resistances 30a, 30b, 30c and 30d of the first and second magnetoresistive elements 23 and 25 are full-bridge connected. The same effect can be obtained by connecting the magnetic resistances of the magnetoresistive elements 23 and 25 to the half bridges.

(実施の形態2)
以下、実施の形態2を用いて、本発明の請求項2に記載の発明について、図面を参照しながら説明する。図6(a)は本発明の実施の形態2における電流センサで使用する磁気抵抗素子71の平面図である。なお、この本発明の実施の形態2における磁気抵抗素子71においては、上記した本発明の実施の形態1における磁気抵抗素子の構成と同様の構成を有するものについては、同一符号を付しており、その説明は省略する。図6(a)(b)において、本発明の実施の形態2における磁気抵抗素子71が上記した本発明の実施の形態1における磁気抵抗素子41と相違する点は、絶縁層60上に薄膜磁石61を配置した点である。図6(b)は実施の形態2における電流センサで使用する磁気抵抗素子71の断面図である。
(Embodiment 2)
Hereinafter, the second aspect of the present invention will be described with reference to the drawings. FIG. 6A is a plan view of a magnetoresistive element 71 used in the current sensor according to Embodiment 2 of the present invention. In addition, in this magnetoresistive element 71 in Embodiment 2 of this invention, what has the structure similar to the structure of the magnetoresistive element in Embodiment 1 of this invention mentioned above is attached | subjected the same code | symbol. The description is omitted. 6 (a) and 6 (b), the magnetoresistive element 71 in the second embodiment of the present invention is different from the magnetoresistive element 41 in the first embodiment of the present invention described above on the insulating layer 60 on the thin film magnet. This is the point where 61 is arranged. FIG. 6B is a cross-sectional view of the magnetoresistive element 71 used in the current sensor in the second embodiment.

図6において、この薄膜磁石61は厚みが約0.6μmのCoPt等からなり、前記絶縁層60の上に蒸着、スパッタ法等により形成した後、露光、エッチングによりパターニングすることにより、前記磁気抵抗素子55a、55b、55c、55dの感磁方向と45度をなす方向に長手方向を有する複数の略長方体に分割されているものである。そして、この複数の略長方体形状の薄膜の幅方向に大きな磁界を印加することにより、略長方体形状の薄膜が幅方向に磁化されて、薄膜磁石61を得ることができる。62は第2の絶縁層で、この第2の絶縁層62は厚みが約1μmのSiO2薄膜からなり、前記薄膜磁石61を覆うことにより薄膜磁石61を保護するものである。この構成によれば、磁気抵抗素子71にさらに一様で高い磁束密度を与えることができるとともに、磁気検出素子71上に一体に形成でき、きわめて小形の電流センサが実現できるという効果が得られるものである。 In FIG. 6, the thin film magnet 61 is made of CoPt or the like having a thickness of about 0.6 μm. The thin film magnet 61 is formed on the insulating layer 60 by vapor deposition, sputtering, or the like, and then patterned by exposure and etching, thereby forming the magnetoresistive element. The elements 55a, 55b, 55c, and 55d are divided into a plurality of substantially rectangular parallelepipeds having a longitudinal direction in a direction that forms 45 degrees with the direction of magnetic sensing. Then, by applying a large magnetic field in the width direction of the plurality of substantially rectangular thin films, the substantially rectangular thin film is magnetized in the width direction, and the thin film magnet 61 can be obtained. Reference numeral 62 denotes a second insulating layer. The second insulating layer 62 is made of a SiO 2 thin film having a thickness of about 1 μm, and protects the thin film magnet 61 by covering the thin film magnet 61. According to this configuration, the magnetoresistive element 71 can be given a more uniform and high magnetic flux density, and can be formed integrally on the magnetic detection element 71, so that an extremely small current sensor can be realized. It is.

本発明に係る電流センサは、形状を小形化できるとともに、電流路に流れる被測定電流Iにより発生する磁界を有効に検出してS/N比を高めることができ、さらに前記磁気抵抗素子を構成する磁気検出素子の平面内での位置に対する制約を解消できるとともに、外部磁界が存在する場合であっても、被測定電流Iの電流値に誤差が発生することがなく、非接触で電流路に流れる電流を正確に測定することができるという効果を有するものであり、特に、車両、産業機器等内における電流を検出する電流検出装置として有用なものである。   The current sensor according to the present invention can be reduced in size, can effectively detect the magnetic field generated by the current I to be measured flowing in the current path, and can increase the S / N ratio, and further configure the magnetoresistive element. In addition to eliminating restrictions on the position of the magnetic sensing element in the plane, there is no error in the current value of the current I to be measured even in the presence of an external magnetic field, and there is no contact with the current path. It has an effect that the flowing current can be accurately measured, and is particularly useful as a current detection device that detects a current in a vehicle, industrial equipment, or the like.

21 電流センサ
22 電流路
23 第1の磁気抵抗素子
24 第1の磁石
25 第2の磁気抵抗素子
26 第2の磁石
61 薄膜磁石
DESCRIPTION OF SYMBOLS 21 Current sensor 22 Current path 23 1st magnetoresistive element 24 1st magnet 25 2nd magnetoresistive element 26 2nd magnet 61 Thin film magnet

Claims (2)

電流路を挾んで配置された第1および第2の磁気抵抗素子と、
前記第1の磁気抵抗素子にバイアス磁界を与える第1の磁界発生手段と、
前記第2の磁気抵抗素子にバイアス磁界を与える第2の磁界発生手段と、を備え、
前記第1および第2の磁気抵抗素子の出力信号から前記電流路を流れる電流を検出するように構成された電流センサであって、
前記第1の磁界発生手段のN極の中心からS極の中心に向かう方向が前記被検出電流の流れる方向と一致するとともに、
前記第2の磁界発生手段のS極の中心からN極の中心に向かう方向が前記被検出電流の流れる方向と一致するように配置されており、
前記第1の磁気抵抗素子の磁気抵抗を含む平面および前記第2の磁気抵抗素子の磁気抵抗を含む平面は、前記電流路と平行に配置されるとともに、
前記第1の磁気抵抗素子の磁気抵抗を含む平面と前記電流路との距離が、前記第2の磁気抵抗素子の磁気抵抗を含む平面と前記電流路との距離と等しいことを特徴とする電流センサ。
First and second magnetoresistive elements arranged across the current path;
First magnetic field generating means for applying a bias magnetic field to the first magnetoresistive element;
Second magnetic field generating means for applying a bias magnetic field to the second magnetoresistive element,
A current sensor configured to detect a current flowing through the current path from output signals of the first and second magnetoresistive elements,
The direction from the center of the N pole to the center of the S pole of the first magnetic field generating means coincides with the direction in which the detected current flows;
The direction from the center of the S pole to the center of the N pole of the second magnetic field generating means is arranged so as to coincide with the flowing direction of the detected current.
The plane including the magnetoresistance of the first magnetoresistance element and the plane including the magnetoresistance of the second magnetoresistance element are arranged in parallel to the current path,
The distance between the plane including the magnetoresistance of the first magnetoresistive element and the current path is equal to the distance between the plane including the magnetoresistance of the second magnetoresistive element and the current path. Sensor.
前記第1および第2の磁界発生手段は薄膜磁石であることを特徴とする請求項1に記載の電流センサ。 The current sensor according to claim 1, wherein the first and second magnetic field generating means are thin film magnets.
JP2012124096A 2012-05-31 2012-05-31 current sensor Pending JP2015155796A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012124096A JP2015155796A (en) 2012-05-31 2012-05-31 current sensor
PCT/JP2013/003276 WO2013179613A1 (en) 2012-05-31 2013-05-23 Current sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012124096A JP2015155796A (en) 2012-05-31 2012-05-31 current sensor

Publications (1)

Publication Number Publication Date
JP2015155796A true JP2015155796A (en) 2015-08-27

Family

ID=49672840

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012124096A Pending JP2015155796A (en) 2012-05-31 2012-05-31 current sensor

Country Status (2)

Country Link
JP (1) JP2015155796A (en)
WO (1) WO2013179613A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018092580A1 (en) * 2016-11-16 2018-05-24 株式会社村田製作所 Current sensor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4105147B2 (en) * 2004-12-06 2008-06-25 Tdk株式会社 Current sensor
JP4415923B2 (en) * 2005-09-30 2010-02-17 Tdk株式会社 Current sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018092580A1 (en) * 2016-11-16 2018-05-24 株式会社村田製作所 Current sensor

Also Published As

Publication number Publication date
WO2013179613A1 (en) 2013-12-05

Similar Documents

Publication Publication Date Title
US10184959B2 (en) Magnetic current sensor and current measurement method
US8193805B2 (en) Magnetic sensor
KR101595681B1 (en) Magnetic sensor and magnetic detection method thereof
US10989769B2 (en) Magneto-resistive structured device having spontaneously generated in-plane closed flux magnetization pattern
JP5867235B2 (en) Magnetic sensor device
EP2520945B1 (en) Magnetic field detecting apparatus and current sensor
EP3524991B1 (en) Bipolar chopping for i/f noise and offset reduction in magnetic field sensors
US8896294B2 (en) Magnetic position detector
KR101638234B1 (en) Current sensor
JP5532166B1 (en) Magnetic sensor and magnetic sensor system
JP5439595B2 (en) Magnetic angle measuring device and rotation angle measuring device using the same
JP2014209089A (en) Magnetic sensor and magnetic sensor system
JP2000035343A (en) Encoder provided with gigantic magnetic resistance effect element
US20230026816A1 (en) Position detection device
JP2015230211A (en) Magnetic sensor, manufacturing method therefor, and measurement device having the same
JP2012063203A (en) Magnetic sensor
JP2014089088A (en) Magnetoresistive effect element
JP2012063232A (en) Method for manufacturing magnetic field detection apparatus, and magnetic field detection apparatus
JP2015155796A (en) current sensor
JP2013047610A (en) Magnetic balance type current sensor
JP6699638B2 (en) Magnetic sensor
WO2013105489A1 (en) Current sensor
JP6222897B2 (en) Multi-axis magnetic sensor and manufacturing method thereof
JP2012159309A (en) Magnetic sensor and magnetic sensor apparatus
JP2015031647A (en) Current sensor and manufacturing method therefor