JP6905566B2 - Vehicle center of gravity position estimation system - Google Patents

Vehicle center of gravity position estimation system Download PDF

Info

Publication number
JP6905566B2
JP6905566B2 JP2019197016A JP2019197016A JP6905566B2 JP 6905566 B2 JP6905566 B2 JP 6905566B2 JP 2019197016 A JP2019197016 A JP 2019197016A JP 2019197016 A JP2019197016 A JP 2019197016A JP 6905566 B2 JP6905566 B2 JP 6905566B2
Authority
JP
Japan
Prior art keywords
center
vehicle
gravity
estimation system
information acquisition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019197016A
Other languages
Japanese (ja)
Other versions
JP2021070377A (en
Inventor
籾山 冨士男
冨士男 籾山
賢治 江尻
賢治 江尻
▲かつ▼之 張
▲かつ▼之 張
尚亮 畠山
尚亮 畠山
博学 椋本
博学 椋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Advanced Smart Mobility Co Ltd
Original Assignee
Advanced Smart Mobility Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advanced Smart Mobility Co Ltd filed Critical Advanced Smart Mobility Co Ltd
Priority to JP2019197016A priority Critical patent/JP6905566B2/en
Publication of JP2021070377A publication Critical patent/JP2021070377A/en
Application granted granted Critical
Publication of JP6905566B2 publication Critical patent/JP6905566B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、荷物や乗客によって変化する車両の重心位置を、GPSユニット(GNSS受信機を含む)などの位置情報取得手段からの信号を処理することで推定するシステムに関する。 The present invention relates to a system that estimates the position of the center of gravity of a vehicle, which changes depending on luggage and passengers, by processing a signal from a position information acquisition means such as a GPS unit (including a GNSS receiver).

車体の重心位置は、荷物や乗客がない空車状態であれば常に一定位置になるが、実際の走行では荷物の積載量や積載位置により重心位置は変化する。 The position of the center of gravity of the vehicle body is always constant when the vehicle is empty with no luggage or passengers, but in actual driving, the position of the center of gravity changes depending on the load capacity and the loading position of the luggage.

自動運転車両が走行するためには、車両制御装置が目標となる移動軌跡を計算し、前記車両が前記移動軌跡を追従するように制御する必要がある。前記移動軌跡は、前記車両の車両重心位置が辿るべき軌跡として計算される。しかし前記したように、前記車両への旅客の乗車や積載によって、前記車両の車両重量および車両重心位置が変化してしまうため、その変化を把握する手段が重要となる。 In order for the autonomous driving vehicle to travel, it is necessary for the vehicle control device to calculate a target movement locus and control the vehicle to follow the movement locus. The movement locus is calculated as a locus to be followed by the position of the center of gravity of the vehicle. However, as described above, the vehicle weight and the position of the center of gravity of the vehicle change depending on the passenger's boarding and loading on the vehicle, and therefore, a means for grasping the changes is important.

重心位置を検出する方法として、フルエアサスペンション車両であれば各軸の空気ばねの空気圧を検出する方法、各軸の懸架ばね定数から固有振動数を算出して各軸ばね上質量から検出する方法、更に各軸にロードセルを装備する方法が考えられる。しかしながら、フルエアサスペンションによる方法、固有振動数による方法、ロードセルによる方法ともに構造上の制約を伴い。汎用性に欠ける。汎用性があり簡便に装備できる方法が求められる。 As a method of detecting the position of the center of gravity, in the case of a full air suspension vehicle, a method of detecting the air pressure of the air spring of each shaft, a method of calculating the natural frequency from the suspension spring constant of each shaft and detecting it from the mass on the spring of each shaft. Furthermore, a method of equipping each axis with a load cell can be considered. However, the method using the full air suspension, the method using the natural frequency, and the method using the load cell all have structural restrictions. It lacks versatility. There is a need for a versatile and easy-to-equip method.

特許文献1には、アクセル開度と発生する前後加速度から車両重量を推定し、かつ後軸のエアサスペンションの空気圧から後軸荷重を推定し、車両重量から後軸荷重を差し引いて前軸荷重を推定する方法が示されている。 In Patent Document 1, the vehicle weight is estimated from the accelerator opening and the generated front-rear acceleration, the rear axle load is estimated from the air pressure of the rear axle air suspension, and the rear axle load is subtracted from the vehicle weight to obtain the front axle load. The method of estimation is shown.

特許文献2には、後輪軸重に応じて後輪ブレーキ圧を変更する後輪ブレーキ圧変更手段と、前輪のブレーキ圧を検出する前輪ブレーキ圧検出手段と、前記後輪ブレーキ圧変更手段よりも下流側における前記後輪のブレーキ圧を検出する後輪ブレーキ圧検出手段と、制動時における検出された前後のブレーキ圧の関係と、前記後輪ブレーキ圧変更手段の後輪軸重特性とに基づいて後輪軸重を推定する後輪軸重推定手段とを備え、前記推定された後輪軸重に基づいて車両幅方向における車両重心状態を判定することが開示されている。 Patent Document 2 describes the rear wheel brake pressure changing means for changing the rear wheel brake pressure according to the rear wheel axle weight, the front wheel brake pressure detecting means for detecting the front wheel brake pressure, and the rear wheel brake pressure changing means. Based on the relationship between the rear wheel brake pressure detecting means for detecting the brake pressure of the rear wheels on the downstream side, the detected front and rear brake pressures during braking, and the rear wheel axle weight characteristics of the rear wheel brake pressure changing means. It is disclosed that a rear wheel shaft weight estimating means for estimating the rear wheel shaft weight is provided, and the vehicle center of gravity state in the vehicle width direction is determined based on the estimated rear wheel shaft weight.

非特許文献1には、バウンシングとピッチングの固有振動数が計測され乗心地モデルの固有振動数に照して積載量が判定され、更にばね上質量,慣性モーメント,重心位置及び各軸重も乗心地モデル式によって推定されることが記載されている。 In Non-Patent Document 1, the natural frequencies of bouncing and pitching are measured, the load capacity is determined in accordance with the natural frequencies of the riding comfort model, and the sprung mass, moment of inertia, center of gravity position and each axial weight are also multiplied. It is stated that it is estimated by the comfort model formula.

特許第6202700号公報Japanese Patent No. 6202700 WO2014/122786WO2014 / 122786

”自動運転大型トラックのための横運動モデルの積載状態推定,” 籾山冨士男ほか, 自動車技術開論文集, Vol.44, No.6, November 2013, No.2020134847, pp.1377-1382"Estimating the loading state of a lateral motion model for autonomous driving heavy trucks," Fujio Paddyyama et al., Automobile Technology Open Papers, Vol.44, No.6, November 2013, No.2020134847, pp.1377-1382

特許文献1によれば、前軸荷重と後軸荷重の比をホイールベースに乗算することで、車両重心位置を推定することができる。しかしながら、車両がエアサスペンションを装備していることを前提とするため、適用できる車両構造が限定されてしまうという課題を残している。 According to Patent Document 1, the position of the center of gravity of the vehicle can be estimated by multiplying the wheelbase by the ratio of the front axle load and the rear axle load. However, since it is assumed that the vehicle is equipped with an air suspension, there remains a problem that the applicable vehicle structure is limited.

特許文献2に開示される方法にあっては、ブレーキ圧を検出することが前提条件となるので、適用範囲が極めて狭い問題がある。また、非特許文献1ではバウンシングとピッチングの固有振動数を算出するための制御ECUの負担が大きくなる。 In the method disclosed in Patent Document 2, since it is a prerequisite to detect the brake pressure, there is a problem that the applicable range is extremely narrow. Further, in Non-Patent Document 1, the burden on the control ECU for calculating the natural frequencies of bouncing and pitching becomes large.

諸元の全てが把握されている「空車時横運動のつり合い式」と、乗員ないし積荷が変化した「積載時横運動のつり合い式」との連立方程式から導出される「重心位置変化の式」を用意して、この式に含まれる未知数である前軸横すべり角と後軸横すべり角を、前軸位置に装備したGPSおよび後軸位置に装備したGPSによって実測して、「重心位置変化長」を求める。求めた「重心位置変化長」を「空車時重心位置」に加えて、積車時重心位置を求めるようにした。 "Equation of change in the position of the center of gravity" derived from the simultaneous equation of "balanced equation of lateral motion when empty" and "balanced equation of lateral motion when loaded" where all the specifications are grasped The unknown numbers included in this equation, the front axis lateral slip angle and the rear axis lateral slip angle, were measured by the GPS equipped at the front axis position and the GPS installed at the rear axis position, and the "center of gravity position change length" was measured. Ask for. The obtained "center of gravity position change length" is added to the "center of gravity position when the vehicle is empty" to obtain the position of the center of gravity when the vehicle is loaded.

既知の値として、荷物の積載や人が乗っていない空車で且つ静止状態における重心位置を基準とし、GPSユニットからの信号により当該既知の空車重心位置からの距離を算出し、この算出した値を既知の空車重心位置に加えることで走行時の重心位置を推定する。 As a known value, the distance from the known center of gravity position of the empty vehicle is calculated from the signal from the GPS unit based on the position of the center of gravity of the empty vehicle with no passengers and no passengers on it, and the calculated value is used as the known value. The position of the center of gravity during running is estimated by adding it to the known position of the center of gravity of the empty vehicle.

具体的には、前輪位置を検出する第1GPSユニットと、後輪位置を検出する第2GPSユニットと、これらGPSユニットからの信号に基づいて車両の重心位置を計算するコンピュータとを備え、このコンピュータは、前記各GPSユニットによる前輪位置横すべり角、後輪位置横すべり角、車両重量、車速およびヨーレイトに基づいて空車時の重心位置からの走行時の重心位置の変化量を算出し、この変化量を既知の空車時の重心位置に足すようにした。
ここで、位置横すべり角は各GPSユニット内で計算して出力されるものに限らず、GPSユニットなどの位置情報取得手段からの信号に基づいてコンピュータで計算するものも含まれる。
Specifically, the computer includes a first GPS unit that detects the front wheel position, a second GPS unit that detects the rear wheel position, and a computer that calculates the position of the center of gravity of the vehicle based on signals from these GPS units. , The amount of change in the position of the center of gravity during running from the position of the center of gravity when the vehicle is empty is calculated based on the front wheel position side slip angle, the rear wheel position side slip angle, the vehicle weight, the vehicle speed, and the yaw rate by each of the GPS units, and the amount of change is known. I added it to the position of the center of gravity when the car was empty.
Here, the position side slip angle is not limited to the one calculated and output in each GPS unit, but also includes the one calculated by a computer based on a signal from a position information acquisition means such as a GPS unit.

本発明によれば、車両前軸と車両後軸に設置した二つのGPSユニット(GNSS受信機を含む)を用いることで、特定の車両構造に依存せず、容易に、重心位置の変化を推定することができる。 According to the present invention, by using two GPS units (including a GNSS receiver) installed on the front axle and the rear axle of the vehicle, the change in the position of the center of gravity can be easily estimated without depending on a specific vehicle structure. can do.

自動運転車両の開発が盛んに行われており、GPSユニットの需要が増していることから、GPSユニットの価格は逓減することが予期され、また制御装置の冗長性の観点からも、将来的にはGPSユニットの一台の自動運転車両に対して複数のGNSS受信機を搭載されることが予想される。本発明は、GPSユニットの配置を特に前軸と後軸の鉛直上方とすることで、容易に車両重心位置を推定することを可能とする。 With the active development of self-driving vehicles and the increasing demand for GPS units, the price of GPS units is expected to decline gradually, and from the perspective of control device redundancy, in the future. Is expected to be equipped with multiple GNSS receivers for one self-driving vehicle of the GPS unit. The present invention makes it possible to easily estimate the position of the center of gravity of the vehicle by arranging the GPS unit vertically above the front and rear axles.

旋回時の車両状態量の説明図である。It is explanatory drawing of the vehicle state quantity at the time of turning. 前軸の実舵角を推定する方法の説明図である。It is explanatory drawing of the method of estimating the actual rudder angle of the front axle.

本発明に係る車両の重心位置推定システムは2つのGPSユニットとコンピュータを必須の構成要素とする。車体中心線上の前軸位置車屋上と後軸位置車屋上に第1GPSユニット及び第2GPSユニットを備えて、各GPS位置での車体中心線に対する速度ベクトルの大きさと方向角、遍揺角速度(ヨーレイト)を把握できる形態を備える。
またコンピュータは本システム専用のコンピュータを搭載してもよいが、運転制御用に既に搭載しているコンピュータやGPS内に内蔵しているコンピュータを利用することで足りる。
The vehicle center of gravity position estimation system according to the present invention includes two GPS units and a computer as essential components. The front axis position on the vehicle body center line and the rear axis position The first GPS unit and the second GPS unit are provided on the vehicle roof, and the magnitude, azimuth, and eccentric angular velocity of the speed vector with respect to the vehicle body center line at each GPS position. It has a form that can grasp.
Further, the computer may be equipped with a computer dedicated to this system, but it is sufficient to use a computer already installed for operation control or a computer built in the GPS.

また、上記の他に前軸に車輪速センサを備えて「前軸車輪回転方向の移動距離及び速度」を検出可能にし、後軸に車輪速センサを備えて「後軸車輪回転方向の移動距離及び速度」を検出可能にして、その両者の余弦から前輪実舵角を把握できる様にしている。 In addition to the above, a wheel speed sensor is provided on the front axle to enable detection of "movement distance and speed in the front axle wheel rotation direction", and a wheel speed sensor is provided on the rear axle to enable "movement distance in the rear axle wheel rotation direction". And speed ”can be detected so that the actual steering angle of the front wheels can be grasped from the cosine of both.

以下図1により装備の形態と状態量から、課題とする重心位置検出について説明する。
図1は左右二つのタイヤを中央にまとめて簡略化した力学モデルである。モデル諸元の符号の説明は図中に示す通りである。添字の無い符号は空車の諸元を示し、添字L付の符号は積車の諸元を示す。
Hereinafter, the problem of detecting the position of the center of gravity will be described with reference to FIG.
FIG. 1 is a simplified mechanical model in which two tires on the left and right are grouped in the center. The description of the symbols of the model specifications is as shown in the figure. A code without a subscript indicates the specifications of an empty vehicle, and a code with a subscript L indicates the specifications of a loaded vehicle.

諸元の全てが把握されている「空車時旋回運動の式」と、その車両総重量変化が把握されている「積載時旋回運動の式」を連立させることで、積載に伴う重心位置の変化(Δl)を計算できる。 By combining the "formula of turning motion when empty" and the "formula of turning motion when loading" where all the specifications are grasped, the position of the center of gravity changes due to loading. (Δl) can be calculated.

空車時旋回運動の式は以下の式(1)、式(2)及び式(3)で表される。 The equation of the turning motion when the vehicle is empty is expressed by the following equations (1), (2) and (3).

Figure 0006905566
Figure 0006905566

積車時旋回運動の式は以下の式(4)、式(5)、式(6)で表される。 The equation of the turning motion at the time of loading is expressed by the following equations (4), (5), and (6).

Figure 0006905566
Figure 0006905566

mは車両質量、vは重心位置の速度、γは遍揺角速度(ヨーレイト)、βは車両横すべり角、βf,βrは前軸及び後軸タイヤの横すべり角、Ccf、Ccrは前軸及び後軸タイヤのコーナリング係数(摩擦係数の概念)、Nf,Nrは前軸及び後軸荷重、gは重力の加速度、lf,lrは前軸及び後軸から車両重心までの距離、Δlは、積載に伴う重心位置の変化距離である。 m is the vehicle mass, v is the speed at the center of gravity, γ is the eccentric angular velocity (yorate), β is the vehicle lateral slip angle, βf and βr are the lateral slip angles of the front and rear axle tires, and Ccf and Ccr are the front and rear axles. Tire cornering coefficient (concept of friction coefficient), Nf, Nr are front axle and rear axle loads, g is gravity acceleration, lf, lr are distances from front axle and rear axle to vehicle center of gravity, Δl is associated with loading The change distance of the position of the center of gravity.

式(4)に式(5)、式(6)を代入することで式(7)、式(8)が導かれる。尚、式(8)〜(9)は式(8)の説明のために記載した。 By substituting the equations (5) and (6) into the equation (4), the equations (7) and (8) are derived. The equations (8) to (9) are described for the purpose of explaining the equation (8).

Figure 0006905566
Figure 0006905566

上記においてβfGPSrGPSは、前軸及び後軸位置に設置したGPSによって検出される横すべり角、δは前輪実舵角、vxは後軸タイヤの回転センサから求められる前後速度、
fwheelは前軸タイヤの回転センサから求められる前輪速度である。
In the above, β fGPS and β rGPS are the lateral slip angles detected by GPS installed at the front and rear axle positions, δ is the actual steering angle of the front wheels, and v x is the front-rear speed obtained from the rotation sensor of the rear axle tires.
v f wheel is the front wheel speed obtained from the rotation sensor of the front axle tire.

尚、上記の式(9)は、前輪の位置横すべり角の以下の式(13)と後輪の位置横すべり角の式(14)から次の様にして導かれる。 The above equation (9) is derived from the following equation (13) for the position side slip angle of the front wheels and the equation (14) for the position side slip angle of the rear wheels as follows.

Figure 0006905566
Figure 0006905566

図2は前軸実舵角の検出方法の説明図である。実舵角の検出に併せて検出される前輪横すべり角と後輪横すべり角についても説明する。図1と同じく、左右二つのタイヤを中央にまとめて簡略化した力学モデルである。vfwheelは、前軸車輪の回転方向速度である。vxは後輪の回転方向速度且つ車両x軸の前後移動速度であるから、vfwheel/vxの余弦は、前軸車輪の実舵角δに等しくなる。即ち、以下の式(12)になる。 FIG. 2 is an explanatory diagram of a method for detecting the actual steering angle of the front axle. The front wheel side slip angle and the rear wheel side slip angle that are detected together with the detection of the actual steering angle will also be described. Similar to FIG. 1, this is a simplified mechanical model in which two tires on the left and right are grouped in the center. v fwheel is the rotational speed of the front axle wheel. Since v x is the rotational speed of the rear wheels and the forward / backward movement speed of the vehicle x-axis, the cosine of v fwheel / v x is equal to the actual steering angle δ of the front axle wheels. That is, the following equation (12) is obtained.

Figure 0006905566
Figure 0006905566

併せて、前軸位置に装備したGPSから出力されるvと前軸車輪回転センサから出力されるvfwheelから、前輪位置横すべり角式(19)が検出できる。同様に、後輪の横すべり角式(20)が検出できる。 In addition, the v Fwheel output from v f and the front shaft a wheel rotation sensor output from GPS equipped prior-axis position, the front wheel position side slip angle (19) can be detected. Similarly, the side slip angle type (20) of the rear wheel can be detected.

Figure 0006905566
Figure 0006905566

Claims (4)

前輪位置を検出するGPSユニットなどの第1位置情報取得手段と、後輪位置を検出するGPSユニットなどの第2位置情報取得手段と、これら位置情報取得手段からの信号に基づいて車両の重心位置を計算するコンピュータとからなる車両の重心位置推定システムであって、
前記コンピュータは、前記第1位置情報取得手段による前輪位置横すべり角、前記第2位置情報取得手段による後輪位置横すべり角、車両重量、車速、ヨーレイトに基づいて空車時の重心位置からの走行時の重心位置の変化量を算出し、この変化量を既知の空車時の重心位置に足すことで走行時の重心位置を推定する事を特徴とする車両の重心位置推定システム。
A first position information acquisition means such as a GPS unit that detects the front wheel position, a second position information acquisition means such as a GPS unit that detects the rear wheel position, and a position of the center of gravity of the vehicle based on signals from these position information acquisition means. It is a vehicle center of gravity position estimation system consisting of a computer that calculates
The computer is based on the front wheel position side slip angle by the first position information acquisition means, the rear wheel position side slip angle by the second position information acquisition means, the vehicle weight, the vehicle speed, and the yaw rate when traveling from the center of gravity position when the vehicle is empty. A vehicle center of gravity position estimation system characterized in that the amount of change in the position of the center of gravity is calculated and the amount of change is added to the known position of the center of gravity when the vehicle is empty to estimate the position of the center of gravity during traveling.
請求項1に記載の車両の重心位置推定システムにおいて、前記第1位置情報取得手段としてのGPSユニットは前軸鉛直上方に設置され、前記第2位置情報取得手段としてのGPSユニットは後軸鉛直上方に設置されることを特徴とする車両の重心位置推定システム。 In the vehicle center of gravity position estimation system according to claim 1, the GPS unit as the first position information acquisition means is installed vertically above the front axis, and the GPS unit as the second position information acquisition means is vertically above the rear axis. A vehicle center of gravity position estimation system characterized by being installed in. 請求項1または2に記載の車両の重心位置推定システムにおいて、空車時の重心位置からの走行時の重心位置の変化量(Δl)は以下の式を用いて算出することを特徴とする車両の重心位置推定システム。
Figure 0006905566
In the vehicle center of gravity position estimation system according to claim 1 or 2, the amount of change (Δl) in the center of gravity position during traveling from the center of gravity position when the vehicle is empty is calculated by using the following formula. Center of gravity position estimation system.
Figure 0006905566
請求項1乃至3の何れかに記載の車両の重心位置推定システムにおいて、前記前輪位置横すべり角は、第1位置情報取得手段としてのGPSユニットから出力される前軸位置速度ベクトルと前軸車輪センサから検出される車輪速から算出し、前記後輪位置横すべり角は、第2位置情報取得手段としてのGPSユニットから出力される後軸位置速度ベクトルと後軸車輪センサから検出される車輪速から算出することを特徴とする車両の重心位置推定システム。 In the vehicle center of gravity position estimation system according to any one of claims 1 to 3, the front wheel position lateral slip angle is a front shaft position speed vector and a front wheel sensor output from a GPS unit as a first position information acquisition means. Calculated from the wheel speed detected from, the rear wheel position side slip angle is calculated from the rear shaft position speed vector output from the GPS unit as the second position information acquisition means and the wheel speed detected from the rear shaft wheel sensor. A vehicle center of gravity position estimation system characterized by
JP2019197016A 2019-10-30 2019-10-30 Vehicle center of gravity position estimation system Active JP6905566B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019197016A JP6905566B2 (en) 2019-10-30 2019-10-30 Vehicle center of gravity position estimation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019197016A JP6905566B2 (en) 2019-10-30 2019-10-30 Vehicle center of gravity position estimation system

Publications (2)

Publication Number Publication Date
JP2021070377A JP2021070377A (en) 2021-05-06
JP6905566B2 true JP6905566B2 (en) 2021-07-21

Family

ID=75714167

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019197016A Active JP6905566B2 (en) 2019-10-30 2019-10-30 Vehicle center of gravity position estimation system

Country Status (1)

Country Link
JP (1) JP6905566B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6154374A (en) * 1984-08-24 1986-03-18 Nippon Denso Co Ltd Gravity-center correcting apparatus for car
CN102282052B (en) * 2009-01-13 2014-11-26 丰田自动车株式会社 Vehicle condition estimating device
JP2010188801A (en) * 2009-02-17 2010-09-02 Toyota Motor Corp Center of gravity position estimating device for vehicle
JP2010253978A (en) * 2009-04-21 2010-11-11 Toyota Motor Corp Vehicle control device
JP6866744B2 (en) * 2017-04-17 2021-04-28 いすゞ自動車株式会社 Center of gravity height estimation device

Also Published As

Publication number Publication date
JP2021070377A (en) 2021-05-06

Similar Documents

Publication Publication Date Title
JP6653396B2 (en) Vehicle motion state estimation device
CN103407451B (en) A kind of road longitudinal and additional forces method of estimation
CN102112354B (en) Road surface friction coefficient estimating device and road surface friction coefficient estimating method
US8322728B2 (en) Suspension control apparatus
CN107933563B (en) Method and system for determining friction between ground and vehicle tires
CN102556075B (en) Vehicle operating state estimation method based on improved extended Kalman filter
JP3369467B2 (en) Estimation arithmetic unit for height of center of gravity of vehicle
JP4048176B2 (en) Method for calculating the mass of a motor vehicle taking into account different driving situations
CN102165300B (en) Method and device for determining center of gravity of motor vehicle
US20140371990A1 (en) Sensor system comprising a vehicle model unit
JP2003127806A (en) Deciding method for sideway slide angle and/or cornering force in braked vehicle
JP4169082B1 (en) Vehicle rollover prevention device
US20050080542A1 (en) Reference signal generator for an integrated sensing system
US20180105181A1 (en) Method and system for computing a road friction estimate
CN102076543A (en) Road surface friction coefficient estimating device and road surface friction coefficient estimating method
CN108819950B (en) Vehicle speed estimation method and system of vehicle stability control system
CN102282052A (en) Vehicle condition estimating device
CN105691403A (en) Road adhesion coefficient estimation method for four-wheel all-drive electric automobile
JP2008265545A (en) Center of gravity position estimating device of vehicle and center of gravity position/yaw inertia moment estimating device
Doumiati et al. An estimation process for vehicle wheel-ground contact normal forces
JP3345346B2 (en) Estimation arithmetic unit for height of center of gravity of vehicle
JP4992443B2 (en) Vehicle rollover prevention device
Park et al. An integrated observer for real-time estimation of vehicle center of gravity height
JP3619388B2 (en) Estimating and calculating device for height of center of gravity of vehicle
GB2368918A (en) A system for determining the centre-of-gravity height of a vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200507

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210624

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210625

R150 Certificate of patent or registration of utility model

Ref document number: 6905566

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150