JP2010188801A - Center of gravity position estimating device for vehicle - Google Patents

Center of gravity position estimating device for vehicle Download PDF

Info

Publication number
JP2010188801A
JP2010188801A JP2009033764A JP2009033764A JP2010188801A JP 2010188801 A JP2010188801 A JP 2010188801A JP 2009033764 A JP2009033764 A JP 2009033764A JP 2009033764 A JP2009033764 A JP 2009033764A JP 2010188801 A JP2010188801 A JP 2010188801A
Authority
JP
Japan
Prior art keywords
vehicle
center
gravity
wheel
braking force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009033764A
Other languages
Japanese (ja)
Inventor
Katsuyuki Yamaguchi
克之 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2009033764A priority Critical patent/JP2010188801A/en
Publication of JP2010188801A publication Critical patent/JP2010188801A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Regulating Braking Force (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a center of gravity position estimating device for a vehicle capable of estimating the longitudinal position (center of gravity-distance between axles of front and rear wheels of a vehicle) of the center of gravity of the vehicle even during traveling of the vehicle without requiring a particular sensor for detecting axle loads. <P>SOLUTION: The center of gravity position estimating device for the vehicle presumes the center of gravity in a longitudinal direction of the vehicle based on braking force of the front wheel, braking force of the rear wheel and deceleration degree of the vehicle when size of difference of a wheel speed of the front wheel of the vehicle and a wheel speed of the rear wheel becomes a predetermined size during braking of the vehicle or when EBD control is executed. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、自動車等の車両の重心位置を推定する装置に係り、より詳細には、車両の走行中に車両の重心の前後方向位置を推定する装置に係る。   The present invention relates to an apparatus for estimating the position of the center of gravity of a vehicle such as an automobile, and more particularly to an apparatus for estimating the position in the front-rear direction of the center of gravity of the vehicle while the vehicle is traveling.

近年の自動車等の車両に於いて、車両の走行中の運動を安定化させるために種々の挙動制御、運動制御又は走行制御が実行されるようになってきている。これらの制御では、車体運動或いはタイヤのモデルを用いて、車両の運動状態(ヨーイング・ローリング等)が安定化されるよう車両の各輪の制駆動力或いは舵角の制御が行われる。例えば、VSC(Vehicle Stability Control)の場合には、車両のヨー方向の運動を安定化させるために、車両の左右輪の制駆動力差或いは舵角が制御され、これにより、車両の重心周りのヨーモーメント制御が達成される。   2. Description of the Related Art In recent vehicles such as automobiles, various behavior control, motion control, or travel control has been executed in order to stabilize motion during travel of the vehicle. In these controls, the braking / driving force or steering angle of each wheel of the vehicle is controlled using a vehicle body motion or tire model so that the vehicle motion state (yawing / rolling, etc.) is stabilized. For example, in the case of VSC (Vehicle Stability Control), in order to stabilize the movement of the vehicle in the yaw direction, the braking / driving force difference or the steering angle of the left and right wheels of the vehicle is controlled. Yaw moment control is achieved.

上記の如き車両の挙動、運動又は走行制御の実行に際して、しばしば、かかる制御のためのパラメータとして、車両の重心位置、即ち、車両の重心から前後輪の車軸までの距離が必要となる場合がある。かかる車両の重心位置は、典型的な自家用自動車の場合には、車両の乗員数や積載量の変動が少ないので、近似的に定数として与えられる。しかしながら、トラックやバスといった中型〜大型の車両など、車両の積載物の量及び位置の変動が大きい車両の場合、車両の重心位置は、車両の積載物の量と配置(積載状態)に依存して変動してしまい、そうなると、運動制御装置で設定されている車両の運動モデルの特性と実際の車両の運動特性との差が大きくなってしまう。従って、車両の積載物の量及び位置の変動が大きい車両に於いて、制御をより正確に実行できるようにするためには、車両の重心位置を車両の使用中又は走行中に検出又は推定し、挙動、運動又は走行制御に於いて利用できるようになっていることが好ましい。そこで、従来の技術に於いては、例えば、特許文献1では、車両の前後車軸近傍にそれぞれ軸重計を設け、かかる軸重計の計測値による軸重分布から重心位置を検出し、その検出値を車両の制動制御に利用することが提案されている。また、特許文献2では、前後輪のスリップ比から車両の重心位置を推定し(スリップ率の小さい側に重心が偏っていると推定される。)、推定結果を4WS車両の後輪操舵制御に反映させることなどが提案されている。   In executing the vehicle behavior, motion or travel control as described above, the position of the center of gravity of the vehicle, that is, the distance from the center of gravity of the vehicle to the axles of the front and rear wheels is often required as a parameter for such control. . The position of the center of gravity of such a vehicle is given approximately as a constant because there is little variation in the number of passengers and the load capacity of a typical private automobile. However, in the case of a vehicle having a large variation in the amount and position of the load on the vehicle, such as a medium to large vehicle such as a truck or bus, the position of the center of gravity of the vehicle depends on the amount and arrangement (loading state) of the load on the vehicle. If this happens, the difference between the characteristics of the vehicle motion model set by the motion control device and the actual motion characteristics of the vehicle will increase. Therefore, in order to perform control more accurately in a vehicle in which the amount and position of the load on the vehicle are large, the position of the center of gravity of the vehicle is detected or estimated during use or traveling of the vehicle. It is preferable that it can be used in behavior, motion or running control. Therefore, in the prior art, for example, in Patent Document 1, axle weight meters are provided in the vicinity of the front and rear axles of the vehicle, and the position of the center of gravity is detected from the axle weight distribution based on the measured value of the axle weight meter. It has been proposed to use the values for vehicle braking control. Further, in Patent Document 2, the position of the center of gravity of the vehicle is estimated from the slip ratio of the front and rear wheels (it is estimated that the center of gravity is biased to the side where the slip ratio is small), and the estimation result is used for the rear wheel steering control of the 4WS vehicle. It has been proposed to reflect this.

特開2007−223365JP2007-223365

特開平5−229446号公報JP-A-5-229446

上記の特許文献1に記載されている如く、車両の前後輪の車軸に軸重計の如き特別なセンサを取り付け、各車軸に掛かる荷重を直接に検出すれば、車両の積載状態に依存して変動する車両重心の前後方向位置を推定することが可能となる。しかしながら、その場合、車軸の近傍に特別なセンサを取り付けるための設計及び組立が必要となる。従って、もしそのような特別なセンサを要することなく、VSC等の運動制御装置で通常用いられるセンサの検出値から車両重心の前後方向位置を推定することが可能となれば、特別なセンサ取り付けのための労力と費用が必要なくなり有利である。   As described in Patent Document 1 above, if a special sensor such as an axle weight meter is attached to the axles of the front and rear wheels of the vehicle and the load applied to each axle is detected directly, it depends on the loading state of the vehicle. It is possible to estimate the position in the front-rear direction of the changing vehicle center of gravity. In that case, however, a design and assembly for attaching a special sensor in the vicinity of the axle is required. Therefore, if it is possible to estimate the longitudinal position of the center of gravity of the vehicle from the detection value of a sensor normally used in a motion control device such as a VSC without requiring such a special sensor, the installation of a special sensor is not possible. This eliminates the need for labor and cost.

かくして、本発明の一つの課題は、VSC等の運動制御装置又はABSに於いて用いられている既存のセンサの検出値だけから、車両の走行中でも、車両重心の前後方向位置(車両の重心−前後輪の車軸間距離)を推定することのできる車両の重心位置推定装置を提供することである。   Thus, one object of the present invention is to determine the position of the vehicle center of gravity in the longitudinal direction (vehicle center of gravity − even when the vehicle is running, based only on the detection values of existing sensors used in motion control devices such as VSC or ABS. An object of the present invention is to provide a vehicle center-of-gravity position estimation device capable of estimating the distance between the front and rear wheels.

本発明の発明者の開発研究によれば、車両重心の前後方向位置は、走行中の車両に於いて、制動時に車両に作用する力の関係(特に、力モーメントの釣り合い)に基づいて推定できることが見出された。かくして、一つの態様に於いて、本発明の車両の重心位置を推定する装置は、車両の制動中に車両の前輪の車輪速度と後輪の車輪速度との差の大きさが所定の大きさとなった時に前輪の制動力と後輪の制動力と車両の減速度とに基づいて車両の前後方向に於ける重心位置を推定することを特徴とする。後述の実施形態の欄に於いて、より詳細に説明される如く、車両の制動中に於いて前輪側に荷重移動が生じ、一般的に、路面の摩擦係数が十分高い場合には、後輪の車輪速度が前輪の車輪速度よりも早く低減する。その場合、前輪の車輪速度と後輪の車輪速度との差の大きさが所定の大きさとなった時には、前輪の制動力、後輪の制動力及び車両の減速度、即ち、通常のVSC又はABS等に於いて用いられるセンサから検出可能な値から、車両に作用する力の関係に基づいて車両重心の前後方向位置が推定することが可能である。かかる知見を利用して、本発明によれば、積載状態が大幅に変動する車両に於いて、車軸荷重を直接に検出するための特別なセンサを要することなく、車両重心の前後方向位置を推定することが可能となる。   According to the research and development by the inventors of the present invention, the longitudinal position of the center of gravity of the vehicle can be estimated based on the relationship of forces acting on the vehicle during braking (particularly, balance of force moments) in the running vehicle. Was found. Thus, in one aspect, the apparatus for estimating the position of the center of gravity of the vehicle according to the present invention is such that the difference between the wheel speed of the front wheel and the wheel speed of the rear wheel during braking of the vehicle is a predetermined magnitude. The center of gravity position in the longitudinal direction of the vehicle is estimated based on the braking force of the front wheels, the braking force of the rear wheels, and the deceleration of the vehicle. As will be described in more detail later in the section of the embodiment, load movement occurs on the front wheel side during braking of the vehicle, and in general, when the friction coefficient of the road surface is sufficiently high, the rear wheel The wheel speed of the wheel is reduced faster than the wheel speed of the front wheel. In this case, when the difference between the wheel speed of the front wheel and the wheel speed of the rear wheel reaches a predetermined value, the braking force of the front wheel, the braking force of the rear wheel and the deceleration of the vehicle, that is, normal VSC or The position in the front-rear direction of the center of gravity of the vehicle can be estimated based on the relationship between forces acting on the vehicle, from values that can be detected by sensors used in ABS or the like. Utilizing such knowledge, according to the present invention, in the vehicle in which the loading state varies greatly, the longitudinal position of the center of gravity of the vehicle is estimated without requiring a special sensor for directly detecting the axle load. It becomes possible to do.

上記の本発明の装置の構成に於いて、より詳細には、前輪の制動力と後輪の制動力と車両の減速度とに基づいて算出される車両の制動中の荷重中心位置と車両の前後方向に於ける重心位置が車両に積載物が積載された状態に於いて想定される重心高とに基づいて推定されるようになっていてよい。一般的に、車両に於いて、積載物又は乗員が載せられる位置の高さは、車両の荷台又は座席の構造から或る程度の範囲内に限定されることが期待される。また、後述の実施形態の欄に於いて説明されるように、前輪の制動力、後輪の制動力及び車両の減速度を用いると、荷重中心位置、即ち、路面上に於ける車両荷重の作用する中心点、を決定することが可能となり、これにより、車両重心の前後方向の存在域が画定されることとなる。かくして、車体に作用する力の関係に於いて、かかる車両の荷台又は座席の構造等から想定される重心高を考慮することにより、現在の積載状態又は乗車状態に於ける車両の重心位置の存在位置が前後方向と鉛直方向とに於いて推定されることとなる。   In the configuration of the device of the present invention described above, more specifically, the load center position during braking of the vehicle calculated based on the braking force of the front wheels, the braking force of the rear wheels, and the deceleration of the vehicle, and the vehicle The center-of-gravity position in the front-rear direction may be estimated based on the center-of-gravity height that is assumed when a load is loaded on the vehicle. In general, in a vehicle, the height of a position on which a load or an occupant is placed is expected to be limited to a certain extent due to the structure of a loading platform or a seat of the vehicle. Further, as will be described later in the section of the embodiment, when the braking force of the front wheels, the braking force of the rear wheels, and the deceleration of the vehicle are used, the load center position, that is, the vehicle load on the road surface is determined. It is possible to determine the center point that acts, thereby demarcating the existence area in the front-rear direction of the vehicle center of gravity. Thus, the presence of the center of gravity position of the vehicle in the current loading state or riding state is considered by considering the height of the center of gravity assumed from the structure of the loading platform or seat of the vehicle in relation to the force acting on the vehicle body. The position is estimated in the front-rear direction and the vertical direction.

より具体的には、路面の摩擦係数μが十分に大きく、μ〜1.0と近似できる場合には、車両の重心と前輪軸との前後方向距離Lfが、減速度Gx、前輪の制動力Fxf、後輪の制動力Fxr、重心高H、重力加速度G及びホイールベースLを用いて、
Lf=L・{Fxr/(Fxf+Fxr)}(Gx/G)+H(Gx/G) …(1)
により算出されるようになっていてよい。なお、前輪の制動力Fxfと後輪の制動力Fxrとは、各輪の制動装置に与えられる制動力に対応する制御量から算出されるものであってよい。例えば、液圧式又は空圧式の制動装置の場合には、各輪の制動力は、各輪ホイールシリンダへ供給されるブレーキ圧に各輪のブレーキ係数を乗じて得られる値であり、そのようなブレーキ圧等の制御量を変数として用いた式(1)と同様の式が用いられてよく、そのような場合も本発明の範囲に属することは理解されるべきである。
More specifically, when the road surface friction coefficient μ is sufficiently large and can be approximated to μ to 1.0, the longitudinal distance Lf between the center of gravity of the vehicle and the front wheel shaft is the deceleration Gx and the braking force of the front wheels. Using Fxf, rear wheel braking force Fxr, center of gravity height H, gravity acceleration G and wheelbase L,
Lf = L · {Fxr / (Fxf + Fxr)} (Gx / G) + H (Gx / G) (1)
May be calculated as follows. The front wheel braking force Fxf and the rear wheel braking force Fxr may be calculated from control amounts corresponding to the braking force applied to the braking device of each wheel. For example, in the case of a hydraulic or pneumatic brake device, the braking force of each wheel is a value obtained by multiplying the brake pressure supplied to each wheel wheel cylinder by the brake coefficient of each wheel. It should be understood that an expression similar to the expression (1) using a control amount such as a brake pressure as a variable may be used, and such a case also belongs to the scope of the present invention.

また、上記の装置の構成に於いて、路面の摩擦係数μが十分に大きく、μ〜1.0と近似できる場合とは、端的に述べれば、(通常時、前輪の制動力が後輪の制動力よりも高くなるよう設定されている状態で)前輪がスリップ状態に達する前に後輪がスリップ状態となるか、車両に所謂電子制動力配分制御装置(EBD)が搭載されている場合には、後輪の制動力の増大の制限を開始する状態であることが分かっている。従って、上記の本発明の装置に於いては、前輪がスリップ状態に達していないとき(車両にABS装置が搭載されている場合には、前輪に対するABS制御が実行されていないとき)、或いは、電子制動力配分制御装置が前記後輪の制動力の増大の制限を実行したときに、車両の重心位置の推定が実行されるようになっていてよい。   In addition, in the configuration of the above-described device, the case where the friction coefficient μ of the road surface is sufficiently large and can be approximated to μ to 1.0 can be simply described as follows. When the rear wheels are in a slip state before the front wheels reach the slip state (with the brake force set to be higher than the braking force) or when the vehicle is equipped with a so-called electronic braking force distribution control device (EBD) Is known to be in a state of starting to limit the increase in the braking force of the rear wheels. Therefore, in the above-described device of the present invention, when the front wheel does not reach the slip state (when the ABS device is mounted on the vehicle, when the ABS control for the front wheel is not executed), or When the electronic braking force distribution control device executes the restriction on the increase in the braking force of the rear wheel, the estimation of the center of gravity position of the vehicle may be executed.

ところで、車両に於いて、積載物が車両の荷台の後方に、より多く載せられている場合には、後輪の荷重が増大し、その結果、車両の前輪の車輪速度と後輪の車輪速度との差の大きさが所定の大きさとならずに、即ち、後輪がロック状態に陥ることなく、車両の減速度が相当に大きくなる場合がある。その場合には、車両の重心の存在位置は、相当に車両の後方へ“移動”していると考えられる。そこで、上記の本発明の装置に於いて、車両の制動中に車両の前輪の車輪速度と後輪の車輪速度との差の大きさが所定の大きさに達していないときに車両の減速度が所定値に達したときには、重心位置がその存在が想定される前後方向範囲の最後方の位置にあると推定されるようになっていてよい。重心位置の存在が想定される前後方向範囲は、車両の構造から予め決定されてよい。   By the way, in the vehicle, when more loads are placed behind the loading platform of the vehicle, the load on the rear wheel increases, and as a result, the front wheel speed and the rear wheel speed of the vehicle increase. In some cases, the deceleration of the vehicle becomes considerably large without the magnitude of the difference between the vehicle and the vehicle being a predetermined size, that is, without the rear wheels being locked. In that case, the position of the center of gravity of the vehicle is considered to have “moved” considerably to the rear of the vehicle. Therefore, in the apparatus of the present invention described above, the vehicle deceleration is performed when the magnitude of the difference between the front wheel speed and the rear wheel speed of the vehicle does not reach a predetermined value during braking of the vehicle. When the value reaches a predetermined value, it may be estimated that the position of the center of gravity is located at the rearmost position of the range in the front-rear direction in which the presence of the center of gravity is assumed. The front-rear direction range in which the presence of the center of gravity position is assumed may be determined in advance from the structure of the vehicle.

従って、上記の本発明の装置によれば、積載状態が大幅に変動する車両に於いて、その使用中又は走行中に、車軸荷重を検出するためのセンサを要せずに、車両の前後方向の重心位置が推定可能となる。重心位置の推定に用いるパラメータは、各輪の車輪速度、各輪の制動力(又はブレーキ圧)、車両の減速度といった車両の運動制御装置に用いられるパラメータと同様であるので、そういった運動制御装置が搭載された車両に於いては、既存のセンサだけを使って、現在の車両の前後方向の重心位置が推定され、その推定結果を運動制御に反映させることが可能となり、従って、従前に比してより良い運動制御が提供できることが期待される。   Therefore, according to the apparatus of the present invention described above, in a vehicle in which the loading state greatly fluctuates, a sensor for detecting the axle load is not required during its use or traveling, and the vehicle longitudinal direction is determined. Can be estimated. The parameters used for estimating the position of the center of gravity are the same as those used for the vehicle motion control device such as the wheel speed of each wheel, the braking force (or brake pressure) of each wheel, and the vehicle deceleration. For vehicles equipped with, it is possible to estimate the position of the center of gravity in the front-rear direction of the current vehicle using only existing sensors, and to reflect the estimation result in motion control. It is expected that better motion control can be provided.

本発明のその他の目的及び利点は、以下の本発明の好ましい実施形態の説明により明らかになるであろう。   Other objects and advantages of the present invention will become apparent from the following description of preferred embodiments of the present invention.

図1(A)は、本発明の好ましい実施形態である車両重心位置推定装置が搭載される車両の模式図である。図1(B)は、車両の制動系装置の構成を模式的に表した図である。図1(C)は、本発明の好ましい実施形態である車両重心位置推定装置をブロック図の形式で表したものである。FIG. 1A is a schematic diagram of a vehicle on which a vehicle center-of-gravity position estimation apparatus that is a preferred embodiment of the present invention is mounted. FIG. 1B is a diagram schematically showing the configuration of the vehicle braking system. FIG. 1C shows a vehicle center-of-gravity position estimation apparatus, which is a preferred embodiment of the present invention, in the form of a block diagram. 図2(A)は、本発明の車両重心位置推定の原理を説明する図であり、制動中に車両に作用する力が示されている。図2(B)は、前後輪の制動力配分を示すグラフ図であり、図2(C)は、車両の重心位置の想定範囲(斜線領域)を示す車両の模式図である。図2(B)に於ける一点鎖線(a)、(b)、(c)は、それぞれ、重心が図2(C)に於ける破線にて示された重心位置推定線(a)、(b)、(c)上に在る場合の理想制動力配分線であり、図2(B)に於ける実線は、実際の通常制動時の前後輪の制動力配分線である。実線上の白丸は、それぞれ、重心が重心位置推定線(a)又は(b)上に在るときのEBD制御作動が開始する制動力配分を示している。なお、図2(B)、(C)に於いて、(a)は、車両が空積状態であるときの理想制動力配分線及び重心位置推定線を示している。FIG. 2A is a diagram illustrating the principle of estimating the center of gravity of the vehicle according to the present invention, and shows the force acting on the vehicle during braking. 2B is a graph showing the braking force distribution of the front and rear wheels, and FIG. 2C is a schematic diagram of the vehicle showing an assumed range (shaded area) of the center of gravity position of the vehicle. 2B, the alternate long and short dash lines (a), (b), and (c) indicate the center-of-gravity position estimation lines (a) and (b) in which the center of gravity is indicated by the broken line in FIG. b) and (c) are ideal braking force distribution lines in the case of being on, and the solid line in FIG. 2B is the braking force distribution lines of the front and rear wheels during actual normal braking. The white circles on the solid line indicate the braking force distribution at which the EBD control operation starts when the center of gravity is on the center of gravity position estimation line (a) or (b). 2 (B) and 2 (C), (a) shows an ideal braking force distribution line and a center-of-gravity position estimation line when the vehicle is in an idle state. 図3は、本発明の車両重心位置推定装置の処理の流れをフローチャートの形式で表したものである。FIG. 3 shows the processing flow of the vehicle center-of-gravity position estimation apparatus of the present invention in the form of a flowchart.

以下に添付の図を参照しつつ、本発明を幾つかの好ましい実施形態について詳細に説明する。図中、同一の符号は、同一の部位を示す。   The present invention will now be described in detail with reference to a few preferred embodiments with reference to the accompanying drawings. In the figure, the same reference numerals indicate the same parts.

装置の構成
図1(A)は、自動車等の車両の前後方向の重心位置を推定する本発明による車両重心位置推定装置の好ましい実施形態が搭載される車両10を概略的に示している。車両10は、公知の任意の形式の車両であってよく、一対の前輪12f及び一対の後輪12rと、任意の積載物Sが載置される荷台14とを有している。なお、図示の例では、簡単のため、車両後方部に上部が開放された荷台を有するトラックとして描かれているが、本発明の車両重心位置推定装置の搭載される車両は、箱型荷台を後方に有するトラック、前方にも荷台を有する車両、バス、その他の任意の積載物が積載可能な車両であってよい。
Configuration of Device FIG. 1 (A) shows a vehicle 10 in which the preferred embodiment of a vehicle center-of-gravity position estimation apparatus according to the present invention for estimating the center of gravity of the longitudinal direction of the vehicle such as an automobile is mounted schematically. The vehicle 10 may be any known type of vehicle, and includes a pair of front wheels 12f and a pair of rear wheels 12r, and a loading platform 14 on which an arbitrary load S is placed. In the illustrated example, for the sake of simplicity, it is depicted as a truck having a cargo bed with an open upper part at the rear of the vehicle. However, the vehicle on which the vehicle center-of-gravity position estimation device of the present invention is mounted has a box-type cargo bed. It may be a vehicle having a truck on the rear, a vehicle having a loading platform in the front, a bus, or any other load.

車両10の前輪及び後輪の制動は、図1(B)に模式的に示されている如き通常の態様の制動系装置40により行われる。端的に述べれば、制動系装置40は、所謂電子制御式の空気・油圧式制動装置、空気圧式制動装置又は油圧式制動装置であってよく、運転者によるブレーキペダル44の踏込みに応答して作動されるブレーキバルブ(又はマスタシリンダ)45に連通した流体圧回路(空気圧回路及び/又は油圧回路)46によって、各輪に装備をされたホイールシリンダ42i(i=fl、fr、rl、rr 以下同様。)内のブレーキ圧、即ち、各輪に於ける制動力、が調節される。流体圧回路46には、通常の態様にて、各輪のホイールシリンダを、選択的に、エアコンプレッサ、エアタンク、制動力倍力装置、オイルポンプ、オイルリザーバ等(図示せず)へ連通する種々の弁(モジュレータ、流体圧保持弁、減圧弁等)が設けられており、通常の作動に於いては、ブレーキペダル44の踏込みに応答して、制動倍力装置、エアタンク又はマスタシリンダの圧力がそれぞれのホイールシリンダ42iへ供給される。しかしながら、ABS制御、VSC等の運動制御又はその他の任意の制動力配分制御を実行するべく、各輪の制動力を個別に又は独立に調節する場合には、電子制御装置50の指令に基づいて、前記の種々の弁が作動され、各輪のホイールシリンダ内のブレーキ圧が、対応する圧力センサの検出値に基づいて、それぞれの目標圧に合致するよう制御される。電子制御装置50は、通常の形式の、双方向コモン・バスにより相互に連結されたCPU、ROM、RAM及び入出力ポート装置を有するマイクロコンピュータ及び駆動回路を含んでいてよく、ブレーキペダル44に設けられた踏込量センサ(図示せず)からのブレーキペダル踏込量θb、各輪に設けられた車輪速センサ(図示せず)からの車輪速度Vwi、ホイールシリンダ圧力センサからの各輪のホイールシリンダ内の圧力Pbi、前後Gセンサ62からの加減速度Gx等の検出値が入力される(図示されているものの他、横加速度、ヨーレート等の本実施形態の車両に於いて実行されるべき各種制御に必要な種々のパラメータの値を表す各種検出信号が入力されてよい。)。   The braking of the front wheels and the rear wheels of the vehicle 10 is performed by a braking system device 40 in a normal mode as schematically shown in FIG. In short, the braking system device 40 may be a so-called electronically controlled pneumatic / hydraulic braking device, pneumatic braking device, or hydraulic braking device, and operates in response to the depression of the brake pedal 44 by the driver. Wheel cylinders 42i (i = fl, fr, rl, rr, etc.) equipped to each wheel by a fluid pressure circuit (pneumatic circuit and / or hydraulic circuit) 46 communicating with a brake valve (or master cylinder) 45 to be operated .)), Ie the braking force on each wheel. In the fluid pressure circuit 46, various types of wheel cylinders for each wheel selectively communicate with an air compressor, an air tank, a braking force booster, an oil pump, an oil reservoir, etc. (not shown) in a normal manner. In normal operation, in response to depression of the brake pedal 44, the pressure of the brake booster, the air tank or the master cylinder is reduced. It is supplied to each wheel cylinder 42i. However, when adjusting the braking force of each wheel individually or independently to execute ABS control, motion control such as VSC, or other arbitrary braking force distribution control, it is based on a command of the electronic control unit 50. The various valves are operated, and the brake pressure in the wheel cylinder of each wheel is controlled to match the target pressure based on the detection value of the corresponding pressure sensor. The electronic control unit 50 may include a microcomputer having a CPU, a ROM, a RAM, and an input / output port unit connected to each other by a bidirectional common bus and a driving circuit. Brake pedal depression amount θb from a given depression amount sensor (not shown), wheel speed Vwi from a wheel speed sensor (not shown) provided for each wheel, and in the wheel cylinder of each wheel from a wheel cylinder pressure sensor The detected values such as the pressure Pbi and the acceleration / deceleration Gx from the front / rear G sensor 62 are input (in addition to those shown in the figure, various control such as lateral acceleration and yaw rate to be executed in the vehicle of the present embodiment). Various detection signals representing the values of various parameters required may be input).

なお、上記の制動系装置40は、電子制御装置50の制御下、特に、前後輪制動力配分制御(EBD)が実行可能であるよう構成される。この分野に於いてよく知られている如く、車両の制動時には車両の運動の慣性力より、前輪側へ荷重移動が生ずるため、後輪の垂直荷重が低減し、その分、後輪の制動力の限界が低減される。そこで、制動系装置40は、一般的には、通常の作動時(即ち、前後輪のブレーキ圧が等圧の状態)に於いても、前輪側への荷重移動による前後輪の間に於ける動的な荷重配分の変化に対応すべく、前輪の制動力が、所定の割合にて、後輪の制動力よりも大きくなるように調整される。しかしながら、前後輪の制動力の割合が一定であると、後輪の制動力がその限界に達すること(後輪がロックすること)を完全に防止することはできない。そこで、後輪の制動力がその限界に近くなったとき、具体的には、後輪車輪速度が前輪車輪速度よりも下回り、それらの差の大きさが所定値を超えたとき、後輪がロック状態に陥ることを防止するべく、後輪の制動力の増大を制限するよう前後輪制動力配分(EBD)制御が実行される。   Note that the braking system device 40 described above is particularly configured to be able to execute front and rear wheel braking force distribution control (EBD) under the control of the electronic control device 50. As is well known in this field, when a vehicle is braked, the load shifts to the front wheel side due to the inertial force of the vehicle motion, so the vertical load on the rear wheel is reduced, and the braking force on the rear wheel is reduced accordingly. The limit of is reduced. Therefore, the braking system device 40 is generally located between the front and rear wheels by a load movement to the front wheel side even during normal operation (that is, when the brake pressure of the front and rear wheels is equal). In order to cope with a dynamic change in load distribution, the braking force of the front wheels is adjusted to be larger than the braking force of the rear wheels at a predetermined rate. However, if the ratio of the braking force of the front and rear wheels is constant, it cannot be completely prevented that the braking force of the rear wheel reaches its limit (the rear wheel locks). Therefore, when the braking force of the rear wheel is close to its limit, specifically, when the rear wheel speed is lower than the front wheel speed and the magnitude of the difference exceeds a predetermined value, the rear wheel Front and rear wheel braking force distribution (EBD) control is executed so as to limit the increase in the braking force of the rear wheels in order to prevent the locked state.

図1(C)は、電子制御装置50に組み込まれる本発明の車両重心位置推定装置をブロック図の形式にて表したものである。車両重心位置推定装置50aは、ブレーキペダル踏込量θb、加減速度Gx、各輪ブレーキ圧Pbi、車輪速度Vwi若しくはEBD作動情報、各輪のABS作動情報を読み込み、後により詳細に説明されるプログラムに従った処理作動により、重心位置として、前輪軸−重心間の前後方向距離Lf又は後輪軸−重心間距離Lrを推定算出し、その算出結果が、VSC等の運動制御装置50bに於いて利用できるようにする。   FIG. 1C shows the vehicle center-of-gravity position estimation apparatus of the present invention incorporated in the electronic control unit 50 in the form of a block diagram. The vehicle center-of-gravity position estimation device 50a reads the brake pedal depression amount θb, the acceleration / deceleration Gx, the wheel brake pressure Pbi, the wheel speed Vwi or EBD operation information, and the ABS operation information of each wheel, into a program described in detail later. By the processing operation according to this, the front-rear axis distance Lf between the front wheel axis and the center of gravity or the rear wheel axis-center-of-gravity distance Lr is estimated and calculated as the center of gravity position, and the calculation result can be used in the motion control device 50b such as VSC. Like that.

重心位置推定の原理
図2(A)に模式的に示されている如く、質量Mの車両が減速度Gxにて制動されているとき、車両の前輪及び後輪の路面との接地部位に於いて、それぞれ、制動力Fxf、Fxrが路面に平行に作用し、車軸荷重の抗力Fzf、Fzrが路面に対して垂直上向きに作用する。そして、車両の重心Cに於いては、慣性力M・Gxと重力M・G(Gは、重力加速度)とが図示の如く作用する。従って、前輪の接地部位周りの力のモーメントの釣り合いは、
M・G・Lf=M・Gx・H+Fzr・L …(2)
により表される。ここで、Lfは、前輪軸−重心間の前後方向距離であり、Hは、重心高である。即ち、前輪軸−重心間距離Lfは、
Lf=Fzr・L/(M・G)+H(Gx/G) …(3)
により与えられる。この式(3)に於いて、車両質量Mは、
M=(Fxf+Fxr)/Gx …(4)
により与えられ、後輪の軸荷重の抗力Fzrは、路面の摩擦係数μを用いて、
Fzr=Fxr/μ …(5)
により与えられる。かくして、前輪軸−重心間距離Lfは、
Lf=L・Fxr/{(Fxf+Fxr)μ}(Gx/G)+H(Gx/G) …(6)
により与えられることとなる。この式(6)に於いて、減速度Gxは、前後加減速度センサの検出値から取得され、制動力Fxf、Fxrは、前輪ブレーキ圧Pbf、後輪ブレーキ圧Pbrを用いて、
Fxf=Kf・Pbf;Fxr=Kr・Pbr …(7)
により取得される。従って、式(6)によれば、路面の摩擦係数μと重心高Hとが与えられれば、前後輪の制動力と車両の減速度から前輪軸−重心間距離Lfが算出できる、即ち、重心位置の推定ができることとなる。なお、式(6)の第一項は、図2(A)に於いて、重力と慣性力との合力に沿って路面に向かって降ろした直線と路面との交点C’と前輪の接地部位との距離Lf’に相当し、かかる距離Lf’の地点C’は、制動中の車両から路面に作用する荷重の中心位置(荷重中心位置)である(即ち、Fzf・Lf’=Fzr・(L−Lf’)が成立するLf’を与える位置である。)。また、重心高Hを一つの変数と考えると、図2(A)中、破線にて示されている式(6)により表される直線は、重心位置が存在し得る線状領域を表していることとなる(重心位置推定線)。
Principle of center-of-gravity position estimation As schematically shown in FIG. 2A, when a vehicle having a mass M is being braked at a deceleration Gx, the vehicle is in contact with the road surface of the front and rear wheels of the vehicle. The braking forces Fxf and Fxr act in parallel with the road surface, respectively, and the axle load drag forces Fzf and Fzr act vertically upward with respect to the road surface. At the center of gravity C of the vehicle, inertial force M · Gx and gravity M · G (G is gravitational acceleration) act as shown in the figure. Therefore, the balance of the moment of force around the ground contact area of the front wheel is
M · G · Lf = M · Gx · H + Fzr · L (2)
It is represented by Here, Lf is the front-rear direction distance between the front wheel axis and the center of gravity, and H is the height of the center of gravity. That is, the distance between the front wheel shaft and the center of gravity Lf is
Lf = Fzr · L / (M · G) + H (Gx / G) (3)
Given by. In this equation (3), the vehicle mass M is
M = (Fxf + Fxr) / Gx (4)
The drag Fzr of the axial load of the rear wheel is given by the friction coefficient μ of the road surface,
Fzr = Fxr / μ (5)
Given by. Thus, the distance Lf between the front wheel shaft and the center of gravity is
Lf = L · Fxr / {(Fxf + Fxr) μ} (Gx / G) + H (Gx / G) (6)
It will be given by. In this equation (6), the deceleration Gx is acquired from the detected value of the front / rear acceleration / deceleration sensor, and the braking forces Fxf and Fxr are calculated using the front wheel brake pressure Pbf and the rear wheel brake pressure Pbr,
Fxf = Kf · Pbf; Fxr = Kr · Pbr (7)
Obtained by Therefore, according to the equation (6), if the road surface friction coefficient μ and the center of gravity H are given, the front wheel shaft-center of gravity distance Lf can be calculated from the braking force of the front and rear wheels and the deceleration of the vehicle. The position can be estimated. The first term of equation (6) is the intersection C ′ between the straight line descending toward the road surface along the resultant force of gravity and inertial force in FIG. The point C ′ of the distance Lf ′ is the center position (load center position) of the load acting on the road surface from the vehicle being braked (ie, Fzf · Lf ′ = Fzr · ( L-Lf ′) is a position where Lf ′ is established. When the center of gravity height H is considered as one variable, the straight line represented by the equation (6) indicated by the broken line in FIG. 2A represents a linear region where the center of gravity position can exist. (Center of gravity position estimation line).

上記の式(6)の路面の摩擦係数μは、もし車両に路面摩擦係数を推定又は検出する装置が装備されていれば、その推定値又は検出値が用いられてもよい。しかしながら、前輪の制動力が飽和していない状態で、後輪の制動力が飽和したとき又はEBD制御が作動したとき若しくは(前輪車輪速度−後輪車輪速度)の値が所定値より大きくなったときには、近似的に
μ〜1.0 …(8)
と設定することができる。その理由は、端的に述べれば、以下の通りである。
If the vehicle is equipped with a device for estimating or detecting the road surface friction coefficient, the estimated value or the detected value of the road surface friction coefficient μ in the above formula (6) may be used. However, when the braking force of the rear wheel is saturated or when the EBD control is activated or the value of (front wheel speed-rear wheel speed) is larger than a predetermined value when the braking force of the front wheel is not saturated. Sometimes approximately μ-1.0 (8)
Can be set. The reason for this is as follows.

既に述べた如く、制動中の車両に於いては、慣性力によって前輪側への荷重移動が生じ、前輪の接地荷重の配分が増大する。かかる前輪側への荷重移動による前後輪間の動的荷重配分の変化に理想的に対応した前後輪の制動力配分(前後輪の接地荷重配分に比例した制動力の配分)は、図2(B)の一点鎖線(a)〜(c)にて例示されている如き「理想制動力配分曲線」で与えられる。かかる理想制動力配分曲線は、重心位置が車両の後方にあるほど後輪側へシフトする、即ち、図2(C)中の重心位置推定線(a)→(b)→(c)の存在位置の変化に対応して、理想制動力配分曲線は、(a)→(b)→(c)の如く変化する。また、理想制動力配分曲線の各々に於いて、図中、曲線より上側は、後輪の制動力が前輪の制動力よりも先に飽和しやすい領域であり、曲線より下側は、前輪の制動力が後輪の制動力よりも先に飽和しやすい領域である。   As already described, in a vehicle that is being braked, the load shifts to the front wheels due to the inertial force, and the distribution of the ground load on the front wheels increases. The braking force distribution of the front and rear wheels (distribution of the braking force proportional to the ground load distribution of the front and rear wheels) ideally corresponding to the change in the dynamic load distribution between the front and rear wheels due to the load movement to the front wheel side is shown in FIG. B) is given by an “ideal braking force distribution curve” as exemplified by the one-dot chain lines (a) to (c). The ideal braking force distribution curve shifts toward the rear wheel as the center of gravity position is behind the vehicle, that is, the presence of the center of gravity position estimation line (a) → (b) → (c) in FIG. Corresponding to the change in position, the ideal braking force distribution curve changes as (a) → (b) → (c). Further, in each of the ideal braking force distribution curves, the upper side of the curve in the figure is a region where the braking force of the rear wheel tends to be saturated before the braking force of the front wheel, and the lower side of the curve is the front wheel. This is an area where the braking force tends to be saturated before the braking force of the rear wheels.

上記の如き前後輪の垂直荷重の動的配分を考慮した理想的な制動力配分を参照して、実際の制動力の配分(図2(B)の実線)は、通常の制動時(ABSや運動制御が実行されていないとき)に於いては、理想制動力配分曲線にできるだけ沿うように且つ通常の乾いた路面、即ち、式(8)の条件が近似的に成立する路面、に於いて後輪の制動力ができるだけ飽和領域に到達しないように、図2(B)に例示の如く、制動力が大きくない領域では、理想制動力配分曲線より下回るように設定されるのが一般的である。その場合、結局、図2(B)の一点鎖線(a)又は(b)と実線との関係に示されている如く、制動力が小さい領域(図中左下方)、つまり、摩擦係数が小さい路面上、では前輪が先にロック状態になりやすく(実線が、理想制動力配分曲線を下回る)、制動力が大きい領域(図中右上方)、つまり、摩擦係数が大きい路面上、では、後輪が先にロック状態になりやすくなる(実線が、理想制動力配分曲線を上回る)。換言すれば、前輪の制動力が飽和していない状態で、後輪の制動力が飽和した場合には、制動力が大きい領域、即ち、路面の摩擦係数が十分に大きく、式(8)の条件が近似的に成立しているとみなせると考えられる。ただし、実際には、前輪の制動力が飽和しそうになると、ABSが作動し、後輪の制動力が(前輪の制動力より先に)飽和する状況になりそうになると(図2(B)中の実線上の白丸にて示された状態)、EBD制御(又はABS)が作動し、後輪のロックは回避されるが、前輪のABSが作動していない状態で、EBDが作動するときには、後輪の制動力は、ほぼ飽和した状態にあり、路面の摩擦係数について式(8)が近似的に成立していると想定される。かくして、上記の如く、EBD制御が作動したとき若しくは(前輪車輪速度−後輪車輪速度)の値が所定値より大きくなったときときには、式(6)の摩擦係数μを直接に検出しなくても、式(8)の条件を用いることが可能となる。   With reference to the ideal braking force distribution in consideration of the dynamic distribution of the vertical load of the front and rear wheels as described above, the actual braking force distribution (solid line in FIG. 2B) is normal braking (ABS and When the motion control is not executed), the normal dry road surface that follows the ideal braking force distribution curve as much as possible, that is, the road surface on which the condition of the equation (8) is approximately satisfied. In order to prevent the braking force of the rear wheel from reaching the saturation region as much as possible, as shown in FIG. 2B, in a region where the braking force is not large, it is generally set to be lower than the ideal braking force distribution curve. is there. In that case, as shown in the relationship between the one-dot chain line (a) or (b) in FIG. 2B and the solid line, the region where the braking force is small (lower left in the figure), that is, the friction coefficient is small. On the road surface, the front wheels tend to be locked first (the solid line is below the ideal braking force distribution curve) and the braking force is large (upper right in the figure), that is, on the road surface with a large friction coefficient, The wheel tends to be locked first (the solid line exceeds the ideal braking force distribution curve). In other words, when the braking force of the rear wheels is saturated while the braking force of the front wheels is not saturated, the region where the braking force is large, that is, the friction coefficient of the road surface is sufficiently large. It can be considered that the condition is approximately satisfied. However, in reality, when the braking force of the front wheels is likely to be saturated, the ABS is activated, and when the braking force of the rear wheels is likely to be saturated (before the braking force of the front wheels) (FIG. 2B). When the EBD is activated when the EBD control (or ABS) is activated and the rear wheel lock is avoided, but the front wheel ABS is not activated. The braking force of the rear wheels is almost saturated, and it is assumed that Equation (8) is approximately established with respect to the friction coefficient of the road surface. Thus, as described above, when the EBD control is activated or when the value of (front wheel speed−rear wheel speed) becomes larger than a predetermined value, the friction coefficient μ in the equation (6) is not directly detected. In addition, the condition of equation (8) can be used.

上記の式(6)の重心高Hについては、車両の荷台の位置は、予め分かっているので、車両の構造から予め推定可能である。即ち、空積状態から定積状態(最大許容積載状態)に於ける重心は、予め、図2(C)中の斜線にて示された領域に存在することが想定される。従って、その想定される重心の存在想定域の高さを重心高Hとして式(6)に用いることが可能である。   Regarding the center of gravity height H of the above formula (6), the position of the vehicle carrier is known in advance, and can be estimated in advance from the structure of the vehicle. That is, it is assumed that the center of gravity from the empty product state to the fixed product state (maximum allowable load state) exists in advance in the area indicated by the oblique lines in FIG. Therefore, it is possible to use the height of the assumed center-of-existence area of the assumed center of gravity as the center of gravity height H in Equation (6).

かくして、式(6)は、式(8)の条件を利用して、
Lf=L・Fxr/(Fxf+Fxr)・(Gx/G)+H(Gx/G) …(9)
と表すことができる。また、式(7)を用いれば、
Lf=L・Kr・Pbr/(Kf・Pbf+Kr・Pbr)・(Gx/G)+H(Gx/G) …(9a)
と表すことできる。
Thus, equation (6) uses the condition of equation (8)
Lf = L.Fxr / (Fxf + Fxr). (Gx / G) + H (Gx / G) (9)
It can be expressed as. Moreover, if Formula (7) is used,
Lf = L.Kr.Pbr / (Kf.Pbf + Kr.Pbr). (Gx / G) + H (Gx / G) (9a)
Can be expressed as

ところで、図2(C)の重心位置推定線(c)にて例示されている如く、車両の重心が車両の相当に後方に位置する場合には、車両の垂直荷重の配分が後輪側へ相当に偏っており、その結果、図2(B)の曲線(c)の如く、前後輪の制動力が相当に大きくなっても、即ち、車両の減速度が相当に大きくなっても、後輪制動力が飽和領域に到達せず、EBD制御が実行されない場合が有り得る。従って、前後輪とも制動力が飽和領域に到達することなく、車両の減速度が相当に大きくなった場合には、重心位置は、その想定範囲の最後方、即ち、重心位置推定線(c)の線上にあると推定することができる。   By the way, as illustrated in the center of gravity position estimation line (c) of FIG. 2 (C), when the center of gravity of the vehicle is located considerably rearward of the vehicle, the distribution of the vertical load of the vehicle is directed to the rear wheel side. As a result, as shown in the curve (c) of FIG. 2B, even if the braking force of the front and rear wheels is considerably increased, that is, the vehicle deceleration is significantly increased, There may be a case where the wheel braking force does not reach the saturation region and the EBD control is not executed. Therefore, when the deceleration of the vehicle becomes considerably large without the braking force reaching the saturation region for both the front and rear wheels, the center of gravity position is the end of the assumed range, that is, the center of gravity position estimation line (c). Can be estimated to be on the line.

装置の作動
本実施形態の重心位置推定装置は、上記の重心位置の推定原理に基づいて、図3にフローチャートの形式にて示された処理に従って作動されてよい。なお、図示の処理は、車両の走行中、所定のサイクル時間にて反復して実行されてよい。
Operation of Apparatus The center-of-gravity position estimation apparatus according to the present embodiment may be operated according to the process shown in the form of a flowchart in FIG. The illustrated process may be repeatedly executed at a predetermined cycle time while the vehicle is traveling.

同図を参照して、処理に於いては、まず、車両が制動中であるか否かが判定される(ステップ10)。かかる判定は、ブレーキペダルの踏込量θbが所定値を超えたか否か、ストップランプスイッチ(図示せず)がONであるか否か又は減速度Gxが所定値を超えたか否か、或いは、その他の任意の方法により判定されてよい。車両が制動中であると判定されたときには、次いで、前輪に於いてABSが作動しているか否か、又は、前輪制動力が飽和領域に到達しているか否かが判定される(ステップ20)。ここで、前輪に於いてABSが作動していると判定されるか、前輪制動力が飽和領域に到達していると判定された場合には、EBD制御が実行されているか否かが判定される(ステップ30)。なお、EBD制御は、一般的には、後輪車輪速度が前輪車輪速度よりも所定速度下回ったとき、即ち、(前輪車輪速度−後輪車輪速度)の値の大きさが所定の大きさを超えたときに作動開始される。従って、EBD制御が実行されているか否かの判定に代えて、
(前輪車輪速度−後輪車輪速度)>所定速度値 …(10)
が成立しているか否かが直接に判定されてもよい。
Referring to the figure, in the process, it is first determined whether or not the vehicle is being braked (step 10). Such a determination is made whether the brake pedal depression amount θb exceeds a predetermined value, whether a stop lamp switch (not shown) is ON, whether the deceleration Gx exceeds a predetermined value, or other It may be determined by any method. When it is determined that the vehicle is braking, it is then determined whether the ABS is operating on the front wheels or whether the front wheel braking force has reached the saturation region (step 20). . Here, if it is determined that the ABS is operating on the front wheels, or if it is determined that the front wheel braking force has reached the saturation region, it is determined whether EBD control is being executed. (Step 30). In general, the EBD control is performed when the rear wheel speed is lower than the front wheel speed by a predetermined speed, that is, the value of (front wheel speed−rear wheel speed) is a predetermined value. It starts when it exceeds. Therefore, instead of determining whether or not the EBD control is being executed,
(Front wheel speed-rear wheel speed)> predetermined speed value (10)
It may be directly determined whether or not is established.

ステップ30で、EBD制御が作動しているか、或いは、条件(10)が成立したときには、式(6)、(9)又は(9a)を用いて前輪軸−重心間距離Lfの推定演算が実行され、前輪軸−重心間距離Lfが算出される(ステップ40)。   When the EBD control is activated or the condition (10) is satisfied in step 30, the estimation calculation of the distance Lf between the front wheel shaft and the center of gravity is executed using the equation (6), (9) or (9a). Then, a distance Lf between the front wheel shaft and the center of gravity is calculated (step 40).

一方、ステップ30で、EBD制御が作動していない、或いは、条件(10)が成立していないと判定されたときには、現在の減速度Gxが所定閾値を越えているか否かが判定される(ステップ60)。ここで、EBD制御が作動していないにもかかわらず、即ち、前輪も後輪も制動力が飽和領域に達していないにもかかわらず、減速度が相当に大きくなっているときには、前記の如く、車両の重心は、想定される存在範囲の最後方にあると推定される。そこで、前輪軸−重心間距離Lfは、前輪軸と重心の想定される存在範囲の最後方との間の距離Lfmaxに設定される(ステップ70)。   On the other hand, when it is determined in step 30 that the EBD control is not operating or the condition (10) is not satisfied, it is determined whether or not the current deceleration Gx exceeds a predetermined threshold ( Step 60). Here, as described above, when the EBD control is not operated, that is, when the deceleration is considerably large although the braking force has not reached the saturation region in both the front wheels and the rear wheels. The center of gravity of the vehicle is estimated to be at the end of the assumed existence range. Therefore, the distance Lf between the front wheel axis and the center of gravity is set to a distance Lfmax between the front wheel axis and the end of the assumed range of the center of gravity (step 70).

車両が制動中でないとき、前輪に於いてABSが作動しているとき、或いは、EBD制御が非作動で且つ減速度も所定閾値を超えていないときには、前輪軸−重心間距離Lfの推定演算は実行されず、それまで、装置に於いて予め保持している前輪軸−重心間距離Lfの値又は前回の推定演算の算出値(Lf(前回値))が前輪軸−重心間距離Lfとして用いられる。   When the vehicle is not braking, when the ABS is operating on the front wheels, or when the EBD control is not operating and the deceleration does not exceed a predetermined threshold, the estimation calculation of the distance Lf between the front wheel shaft and the center of gravity is Until then, the value of the distance Lf between the front wheel shaft and the center of gravity previously held in the apparatus or the calculated value (Lf (previous value)) of the previous estimation calculation is used as the distance Lf between the front wheel shaft and the center of gravity. It is done.

上記の如く得られ又は設定された前輪軸−重心間距離Lfの値は、任意のメモリ等に格納され、例えばVSC等の運動制御に於いて適宜利用できるようになっていてよい。また、後輪軸−重心間距離Lrは、Lr=L−Lfにより与えられてよい。   The value of the distance Lf between the front wheel shaft and the center of gravity obtained or set as described above may be stored in an arbitrary memory or the like, and may be appropriately used in motion control such as VSC. Further, the distance Lr between the rear wheel shaft and the center of gravity may be given by Lr = L−Lf.

かくして、上記の構成によれば、車軸荷重を検出するセンサを利用することなく、車両の減速度、各輪の制動力又はブレーキ圧に基づいて、車両の重心位置が推定できることとなる。   Thus, according to the above configuration, the position of the center of gravity of the vehicle can be estimated based on the deceleration of the vehicle, the braking force of each wheel, or the brake pressure without using a sensor that detects the axle load.

以上の説明は、本発明の実施の形態に関連してなされているが、当業者にとつて多くの修正及び変更が容易に可能であり、本発明は、上記に例示された実施形態のみに限定されるものではなく、本発明の概念から逸脱することなく種々の装置に適用されることは明らかであろう。   Although the above description has been made in relation to the embodiment of the present invention, many modifications and changes can be easily made by those skilled in the art, and the present invention is limited to the embodiment exemplified above. It will be apparent that the invention is not limited and applies to various devices without departing from the inventive concept.

例えば、後輪軸−重心間距離Lrが最初に直接算出されるようになっていてもよい。また、車両の制動系装置が電磁式の制動装置の場合には、各輪の制動力の値は、電磁アクチュエータに与えられる電流値又は電力値から算出されるようになっていてもよい。   For example, the rear wheel axis-center-of-gravity distance Lr may be directly calculated first. When the vehicle braking system is an electromagnetic braking device, the braking force value of each wheel may be calculated from a current value or a power value applied to the electromagnetic actuator.

なお、上記の実施形態では、前後輪に於いて、ABS、EBD制御が実行される構成として説明されているが、本発明の原理は、前輪の制動力よりも先に後輪の制動力が飽和領域に達した場合に車両の重心位置が推定算出できるというものであり、前後輪の車輪速度から、前後輪の制動力の飽和の有無が判定できれば、本発明の装置は、達成可能であり、ABS装置又はEBD制御装置は、本発明の装置が搭載される車両に於いて必須の構成ではないことは理解されるべきである。   In the above embodiment, the front and rear wheels are described as performing ABS and EBD control. However, the principle of the present invention is that the rear wheel braking force is applied before the front wheel braking force. When the saturation region is reached, the center of gravity position of the vehicle can be estimated and calculated, and if the presence or absence of saturation of the braking force of the front and rear wheels can be determined from the wheel speeds of the front and rear wheels, the device of the present invention can be achieved. It should be understood that the ABS device or the EBD control device is not an essential component in a vehicle in which the device of the present invention is mounted.

10…車両
12f…前輪
12r…後輪
14…荷台
40…制動系装置
44…ブレーキペダル
42fl,fr,rl,rr…ホイールシリンダ
45…ブレーキバルブ
50…電子制御装置(重心位置推定装置を含む)
S…積載物
DESCRIPTION OF SYMBOLS 10 ... Vehicle 12f ... Front wheel 12r ... Rear wheel 14 ... Loading platform 40 ... Braking system device 44 ... Brake pedal 42fl, fr, rl, rr ... Wheel cylinder 45 ... Brake valve 50 ... Electronic control device (including center of gravity position estimating device)
S: Load

Claims (7)

車両の重心位置を推定する装置であって、前記車両の制動中に前記車両の前輪の車輪速度と後輪の車輪速度との差の大きさが所定の大きさとなった時に前記前輪の制動力と前記後輪の制動力と前記車両の減速度とに基づいて前記車両の前後方向に於ける重心位置を推定することを特徴とする装置。   An apparatus for estimating the position of the center of gravity of a vehicle, wherein the braking force of the front wheel when the difference between the wheel speed of the front wheel of the vehicle and the wheel speed of the rear wheel reaches a predetermined value during braking of the vehicle. And a center of gravity position in the front-rear direction of the vehicle based on a braking force of the rear wheel and a deceleration of the vehicle. 請求項1の装置であって、前記車両の前後方向に於ける重心位置が前記前輪の制動力と前記後輪の制動力と前記車両の減速度とに基づいて算出される前記車両の制動中の荷重中心位置と前記車両に積載物が積載された状態に於いて想定される重心高とに基づいて推定されることを特徴とする装置。   2. The apparatus according to claim 1, wherein the position of the center of gravity in the front-rear direction of the vehicle is calculated based on the braking force of the front wheel, the braking force of the rear wheel, and the deceleration of the vehicle. Is estimated on the basis of the center of load and the height of the center of gravity assumed when the load is loaded on the vehicle. 請求項1又は2の装置であって、前記前輪がスリップ状態に達していないときに前記重心位置を推定することを特徴とする装置。   The apparatus according to claim 1, wherein the center-of-gravity position is estimated when the front wheel does not reach a slip state. 請求項1乃至3のいずれかの装置であって、前記車両に電子制動力配分制御装置が搭載され、該電子制動力配分制御装置が前記後輪の制動力の増大の制限を実行したときに前記重心位置を推定することを特徴とする装置。   4. The device according to claim 1, wherein an electronic braking force distribution control device is mounted on the vehicle, and the electronic braking force distribution control device executes a restriction on an increase in the braking force of the rear wheel. 5. An apparatus for estimating the position of the center of gravity. 請求項1乃至4のいずれかの装置であって、前記車両にABS装置が搭載され、前記前輪に対するABS制御が実行されていないときに前記重心位置を推定することを特徴とする装置。   5. The apparatus according to claim 1, wherein an ABS apparatus is mounted on the vehicle, and the center-of-gravity position is estimated when the ABS control for the front wheels is not executed. 請求項2又は請求項2を引用する請求項3乃至5のいずれかの装置であって、前記重心と前記前輪の車軸間の前後方向の距離Lfが、前記減速度Gx、前記前輪の制動力Fxf、前記後輪の制動力Fxr、前記重心高H、重力加速度G及びホイールベースLを用いて、
Lf=L・{Fxr/(Fxf+Fxr)}(Gx/G)+H(Gx/G)
により算出されることを特徴とする装置。
6. The apparatus according to claim 2, wherein the distance Lf in the front-rear direction between the center of gravity and the axle of the front wheel is determined by the deceleration Gx and the braking force of the front wheel. Using Fxf, the braking force Fxr of the rear wheel, the center of gravity height H, the gravitational acceleration G, and the wheel base L,
Lf = L · {Fxr / (Fxf + Fxr)} (Gx / G) + H (Gx / G)
A device characterized by being calculated by:
請求項1乃至6のいずれかの装置であって、前記車両の制動中に前記車両の前輪の車輪速度と後輪の車輪速度との差の大きさが所定の大きさに達していないときに前記車両の減速度が所定値に達したときには、前記重心位置がその存在が想定される前後方向範囲の最後方の位置にあると推定されることを特徴とする装置。
7. The apparatus according to claim 1, wherein a difference between a wheel speed of a front wheel and a rear wheel of the vehicle does not reach a predetermined size during braking of the vehicle. When the deceleration of the vehicle reaches a predetermined value, it is estimated that the position of the center of gravity is located at the rearmost position in the front-rear direction range where the vehicle is assumed to exist.
JP2009033764A 2009-02-17 2009-02-17 Center of gravity position estimating device for vehicle Pending JP2010188801A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009033764A JP2010188801A (en) 2009-02-17 2009-02-17 Center of gravity position estimating device for vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009033764A JP2010188801A (en) 2009-02-17 2009-02-17 Center of gravity position estimating device for vehicle

Publications (1)

Publication Number Publication Date
JP2010188801A true JP2010188801A (en) 2010-09-02

Family

ID=42815346

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009033764A Pending JP2010188801A (en) 2009-02-17 2009-02-17 Center of gravity position estimating device for vehicle

Country Status (1)

Country Link
JP (1) JP2010188801A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013063751A (en) * 2011-09-20 2013-04-11 Fuji Heavy Ind Ltd Braking force controller for vehicle
US9221469B2 (en) 2012-02-16 2015-12-29 Toyota Jidosha Kabushiki Kaisha Vehicle height estimation device and vehicle height estimation method
US20200391709A1 (en) * 2019-06-13 2020-12-17 Wabco Europe Bvba Device and method for decelerating a vehicle having a front-loading device
CN112393845A (en) * 2020-11-30 2021-02-23 奇瑞汽车股份有限公司 Vehicle gravity center height obtaining method and device
JP2021070377A (en) * 2019-10-30 2021-05-06 先進モビリティ株式会社 Gravity center position estimation system of vehicle
JP2022025697A (en) * 2020-07-29 2022-02-10 先進モビリティ株式会社 Gravity center position estimation method for vehicle

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013063751A (en) * 2011-09-20 2013-04-11 Fuji Heavy Ind Ltd Braking force controller for vehicle
US9221469B2 (en) 2012-02-16 2015-12-29 Toyota Jidosha Kabushiki Kaisha Vehicle height estimation device and vehicle height estimation method
US20200391709A1 (en) * 2019-06-13 2020-12-17 Wabco Europe Bvba Device and method for decelerating a vehicle having a front-loading device
US11577702B2 (en) * 2019-06-13 2023-02-14 Zf Cv Systems Global Gmbh Device and method for decelerating a vehicle having a front-loading device
JP2021070377A (en) * 2019-10-30 2021-05-06 先進モビリティ株式会社 Gravity center position estimation system of vehicle
JP2022025697A (en) * 2020-07-29 2022-02-10 先進モビリティ株式会社 Gravity center position estimation method for vehicle
CN112393845A (en) * 2020-11-30 2021-02-23 奇瑞汽车股份有限公司 Vehicle gravity center height obtaining method and device
CN112393845B (en) * 2020-11-30 2021-12-28 奇瑞汽车股份有限公司 Vehicle gravity center height obtaining method and device

Similar Documents

Publication Publication Date Title
JP4285902B2 (en) Vehicle stabilization method and apparatus for avoiding rollover
JP5850186B2 (en) Vehicle center-of-gravity state determination device and vehicle behavior control system
CN101795908B (en) Vehicle behavior control apparatus
US8483911B2 (en) Method and system for controlling vehicle stability
US8504273B2 (en) Coefficient of friction based limitation of the torque of a vehicle control loop
US6980900B2 (en) Method for determining an estimate of the mass of a motor vehicle
JP2007131301A (en) Method for stabilizing vehicle subject to rollover
JP2005271822A (en) Vehicular automatic deceleration control device
JP2004530598A (en) How to Modify Vehicle Stability Control
JP2004123094A (en) Anti-lock braking system controller for adjusting slip thresholds on inclines
KR101732832B1 (en) Vehicle movement dynamics control method
JP2009536127A (en) Brake pressure control method and apparatus for motorcycle with motor
JP2010188801A (en) Center of gravity position estimating device for vehicle
JP5958643B2 (en) Calculation method of vehicle reference motion state quantity
US9539991B2 (en) Brake apparatus of vehicle and method thereof
JP2002053058A (en) Device and method for determining operation of vehicle and dynamic parameter
JP4390051B2 (en) Vehicle braking / driving force control device
JP5083357B2 (en) Vehicle motion control device
US9707967B2 (en) Method of traction control for a motor vehicle
JP2009241742A (en) Lateral acceleration deriving method and deriving device, and bar handle vehicle brake controller
JP5971186B2 (en) Wheel control device, vehicle
JP2010284990A (en) Braking force control device of vehicle
JP2004224262A (en) Automatic brake controller
JP5797573B2 (en) Vehicle control device
JP2011102048A (en) Brake hydraulic control device for vehicle