JP6898588B2 - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
JP6898588B2
JP6898588B2 JP2017138969A JP2017138969A JP6898588B2 JP 6898588 B2 JP6898588 B2 JP 6898588B2 JP 2017138969 A JP2017138969 A JP 2017138969A JP 2017138969 A JP2017138969 A JP 2017138969A JP 6898588 B2 JP6898588 B2 JP 6898588B2
Authority
JP
Japan
Prior art keywords
conductive
semiconductor
main
transistors
power module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017138969A
Other languages
Japanese (ja)
Other versions
JP2019022330A (en
Inventor
薫 島野
薫 島野
Original Assignee
株式会社アイシン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アイシン filed Critical 株式会社アイシン
Priority to JP2017138969A priority Critical patent/JP6898588B2/en
Publication of JP2019022330A publication Critical patent/JP2019022330A/en
Application granted granted Critical
Publication of JP6898588B2 publication Critical patent/JP6898588B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、半導体素子を有する半導体装置に関する。 The present invention relates to a semiconductor device having a semiconductor element.
半導体素子を有する半導体装置に通電した場合、半導体素子が発熱する。従って、半導体素子の発熱に起因する半導体素子の誤動作を防止するため、放熱に適した構造を有する半導体装置が従来から提案されている。 When a semiconductor device having a semiconductor element is energized, the semiconductor element generates heat. Therefore, in order to prevent malfunction of the semiconductor element due to heat generation of the semiconductor element, a semiconductor device having a structure suitable for heat dissipation has been conventionally proposed.
特許文献1及び特許文献2は、第一半導体素子と、第二半導体素子と、直流電源(又はコンデンサモジュール)の正極に電気的に接続される導電性の第一の部材と、直流電源(又はコンデンサユニット)の負極に電気的に接続される導電性の第二の部材と、交流電力負荷に接続される出力端子に接続される導電性の第三の部材と、を備える半導体装置を開示する。第一の部材が直流入力経路を構成し、第二の部材が直流出力経路を構成する。また、第三の部材が交流経路を構成する。第一の部材と第二の部材は平行配置され、第三の部材は平行配置された第一の部材と第二の部材との間に配設される。従って、第一の部材の一方の側面と第三の部材の一方の側面が所定の隙間を開けて対面配置され、第二の部材の一方の側面と第三の部材の他方の側面が所定の隙間を開けて対面配置される。第一半導体素子は、互いに対面する第一の部材の一方の側面及び第三の部材の一方の側面の間に接合され、第二半導体素子は、互いに対面する第二の部材の一方の側面及び第三の部材の他方の側面の間に接合される。また、各部材の下面が、絶縁シートを介して冷却装置に接触される。 Patent Document 1 and Patent Document 2 describe a first semiconductor element, a second semiconductor element, a first conductive member electrically connected to the positive electrode of a DC power supply (or a capacitor module), and a DC power supply (or DC power supply). Disclosed is a semiconductor device including a second conductive member electrically connected to the negative electrode of a condenser unit) and a third conductive member connected to an output terminal connected to an AC power load. .. The first member constitutes a DC input path and the second member constitutes a DC output path. In addition, the third member constitutes an AC path. The first member and the second member are arranged in parallel, and the third member is arranged between the first member and the second member arranged in parallel. Therefore, one side surface of the first member and one side surface of the third member are arranged facing each other with a predetermined gap, and one side surface of the second member and the other side surface of the third member are predetermined. Arranged face-to-face with a gap. The first semiconductor element is joined between one side surface of the first member facing each other and one side surface of the third member, and the second semiconductor element is one side surface of the second member facing each other and one side surface of the third member. It is joined between the other sides of the third member. Further, the lower surface of each member is brought into contact with the cooling device via the insulating sheet.
特許文献1及び特許文献2に記載の半導体装置によれば、第一半導体素子及び第二半導体素子が2つの部材の側面に挟まれているので、通電時に生じるこれらの半導体素子の熱は、2つの部材を通じて冷却装置に放熱される。2つの部材に熱を伝達させることにより伝熱面積が拡大されるので、放熱効率が向上する。 According to the semiconductor devices described in Patent Document 1 and Patent Document 2, since the first semiconductor element and the second semiconductor element are sandwiched between the side surfaces of the two members, the heat of these semiconductor elements generated during energization is 2. The heat is dissipated to the cooling device through one member. By transferring heat to the two members, the heat transfer area is expanded, so the heat dissipation efficiency is improved.
特開2013−233042号公報Japanese Unexamined Patent Publication No. 2013-233042 特開2007−067084号公報Japanese Unexamined Patent Publication No. 2007-067084
(発明が解決しようとする課題)
上記特許文献1及び特許文献2に記載の半導体装置によれば、直流入力経路を構成する第一の部材と直流出力経路を構成する第二の部材との間に交流経路である第三の部材が介在するので、直流入力経路と直流出力経路が交流経路を挟む分だけ離間する。このため第一の部材と第二の部材を接近させることができず、それ故に、これらの部材の寄生インダクタンスを低減することができない。また、第一の部材と第三の部材との間、及び、第二の部材と第三の部材との間に、半導体素子が介在しているので、半導体素子を介在させる分だけ、これらの部材間の距離を大きくしなければならず、これによっても、これらの部材の寄生インダクタンスを低減することができない。
(Problems to be solved by the invention)
According to the semiconductor devices described in Patent Document 1 and Patent Document 2, a third member which is an AC path between a first member constituting a DC input path and a second member constituting a DC output path. Is intervened, so that the DC input path and the DC output path are separated by the amount that sandwiches the AC path. Therefore, the first member and the second member cannot be brought close to each other, and therefore the parasitic inductance of these members cannot be reduced. Further, since the semiconductor element is interposed between the first member and the third member and between the second member and the third member, these are as much as the semiconductor element is interposed. The distance between the members must be increased, which also makes it impossible to reduce the parasitic inductance of these members.
半導体装置内の寄生インダクタンスが大きい場合、ノイズの発生が懸念されるとともに、大きなサージ電圧により半導体素子が破損する虞がある。そこで、本発明は、放熱効率が高く、且つ、寄生インダクタンスがより低減された、半導体装置を提供することを、目的とする。 When the parasitic inductance in the semiconductor device is large, there is a concern that noise may be generated, and the semiconductor element may be damaged by a large surge voltage. Therefore, an object of the present invention is to provide a semiconductor device having high heat dissipation efficiency and further reduced parasitic inductance.
本発明に係る半導体装置(1)は、第一半導体素子(36)及び第二半導体素子(37)と、第一導電部材(31)と、第二導電部材(32)と、第三導電部材(33)と、第四導電部材(34)と、冷却装置(4)と、を備える。 The semiconductor device (1) according to the present invention includes a first semiconductor element (36), a second semiconductor element (37), a first conductive member (31), a second conductive member (32), and a third conductive member. (33), a fourth conductive member (34), and a cooling device (4) are provided.
第一半導体素子及び第二半導体素子は、第一の電極(D)が形成された一方の主面及び一方の主面とは反対側の面であって第二の電極(S)が形成された他方の主面を有する。第一導電部材は、電気伝導性及び熱伝導性を有する金属により形成され、第一半導体素子の一方の主面が接合される第一半導体接合面(313a)と、第一半導体接合面と同一方向を向いた接触面(313b)と、第一半導体接合面とは異なる方向を向いた第一放熱面(316)とを有する。第二導電部材は、電気伝導性及び熱伝導性を有する金属により形成され、第一導電部材の第一半導体接合面に接合された第一半導体素子の他方の主面に接合される第一接合部(323)と、第一放熱面と同一方向を向いた第二放熱面(322a)とを有する。第三導電部材は、電気伝導性及び熱伝導性を有する金属により形成され、第一半導体接合面と同一方向を向くとともに第二半導体素子の一方の主面が接合される第二半導体接合面(333)と、第二半導体接合面とは反対方向を向いた面であってシート状の絶縁部材(8)を介して接触面に対面接触する対向面(334)と、第一放熱面と同一方向を向いた第三放熱面(336)とを有し、絶縁部材を介して第一導電部材に隣接して配置される。第四導電部材は、電気伝導性及び熱伝導性を有する金属により形成され、第二導電部材の第二半導体接合面に接合された第二半導体素子の他方の主面に接合される第二接合部(343)と、第一放熱面と同一方向を向いた第四放熱面(342a)と、を有する。冷却装置は、第一放熱面、前記第二放熱面、前記第三放熱面、及び前記第四放熱面に面接触する冷却面(41)を有する。 The first semiconductor element and the second semiconductor element are one main surface on which the first electrode (D) is formed and a surface opposite to the one main surface on which the second electrode (S) is formed. It has the other main surface. The first conductive member is formed of a metal having electrical conductivity and thermal conductivity, and is the same as the first semiconductor bonding surface (313a) to which one main surface of the first semiconductor element is bonded and the first semiconductor bonding surface. It has a contact surface (313b) that faces in a direction and a first heat dissipation surface (316) that faces in a direction different from that of the first semiconductor junction surface. The second conductive member is formed of a metal having electrical conductivity and thermal conductivity, and is joined to the other main surface of the first semiconductor element joined to the first semiconductor joint surface of the first conductive member. It has a portion (323) and a second heat radiating surface (322a) facing the same direction as the first heat radiating surface. The third conductive member is formed of a metal having electrical conductivity and thermal conductivity, faces the same direction as the first semiconductor bonding surface, and is bonded to one main surface of the second semiconductor element (second semiconductor bonding surface). 333) and the facing surface (334) which is a surface facing in the direction opposite to the second semiconductor bonding surface and which is in face-to-face contact with the contact surface via the sheet-shaped insulating member (8) are the same as the first heat radiation surface. It has a third heat radiation surface (336) facing in the direction, and is arranged adjacent to the first conductive member via an insulating member. The fourth conductive member is formed of a metal having electrical conductivity and thermal conductivity, and is joined to the other main surface of the second semiconductor element joined to the second semiconductor joint surface of the second conductive member. It has a portion (343) and a fourth heat radiating surface (342a) facing the same direction as the first heat radiating surface. The cooling device has a cooling surface (41) that comes into surface contact with the first heat radiation surface, the second heat radiation surface, the third heat radiation surface, and the fourth heat radiation surface.
本発明に係る半導体装置によれば、第一半導体素子の一方の主面が第一導電部材に接合され他方の主面が第二導電部材に接合される。また、第二半導体素子の一方の主面が第三導電部材に接合され他方の主面が第四導電部材に接合される。従って、各半導体素子の作動により生じた熱が、各半導体素子の両主面からそれぞれ異なる部材を経由して冷却装置の冷却面に伝達される。このため、伝熱面積が大きく、それ故に、放熱効率が向上する。 According to the semiconductor device according to the present invention, one main surface of the first semiconductor element is bonded to the first conductive member and the other main surface is bonded to the second conductive member. Further, one main surface of the second semiconductor element is bonded to the third conductive member, and the other main surface is bonded to the fourth conductive member. Therefore, the heat generated by the operation of each semiconductor element is transferred from both main surfaces of each semiconductor element to the cooling surface of the cooling device via different members. Therefore, the heat transfer area is large, and therefore the heat dissipation efficiency is improved.
また、第一半導体素子が接合された第一導電部材と第二半導体素子が接合された第三導電部材がシート状の絶縁部材を介して隣接配置している。そのため、第一導電部材を流れて第一半導体素子に至る電流の経路と、第三導電部材を流れて第二半導体素子に至る電流の経路とを隣接させることができる。よって、例えば第一導電部材を流れる電流を直流入力経路に設定し、第三導電部材を流れる電流を直流出力経路に設定して、第一導電部材を流れる電流の向きと第三導電部材を流れる電流の向きとを反対向きに設定することにより、これらの部材の寄生インダクタンスを低減することができる。 Further, the first conductive member to which the first semiconductor element is bonded and the third conductive member to which the second semiconductor element is bonded are arranged adjacent to each other via a sheet-shaped insulating member. Therefore, the path of the current flowing through the first conductive member and reaching the first semiconductor element and the path of the current flowing through the third conductive member and reaching the second semiconductor element can be adjacent to each other. Therefore, for example, the current flowing through the first conductive member is set in the DC input path, the current flowing through the third conductive member is set in the DC output path, and the direction of the current flowing through the first conductive member and the current flowing through the third conductive member are set. By setting the direction of the current in the opposite direction, the parasitic inductance of these members can be reduced.
このように、本発明によれば、放熱効率が高く、且つ、寄生インダクタンスがより低減された、半導体装置を提供することができる。 As described above, according to the present invention, it is possible to provide a semiconductor device having high heat dissipation efficiency and further reduced parasitic inductance.
さらに、本発明によれば、第一半導体素子の一方の主面が接合される第一導電部材の第一半導体接合面と、第二半導体素子の一方の主面が接合される第三導電部材の第二半導体接合面が同じ方向を向いている。また、第三導電部材の対向面が絶縁部材を介して対面接触する第一導電部材の接触面は、上記第一半導体接合面及び第二半導体接合面と同じ方向を向いている。従って、第一導電部材への第一半導体素子の接合、第三導電部材への第二半導体素子の接合、第一半導体素子への第二導電部材の接合、第二半導体素子への第四導電部材の接合、及び、第一導電部材に対する第三導電部材の組付けを、全て、同一方向から実施することができる。これにより、半導体装置の一方向組付けが実現される。こうした一方向組付けの実現により、半導体装置の生産性を向上させることができる。 Further, according to the present invention, the first semiconductor bonding surface of the first conductive member to which one main surface of the first semiconductor element is bonded and the third conductive member to which one main surface of the second semiconductor element is bonded. The second semiconductor junction surface of is facing the same direction. Further, the contact surface of the first conductive member, in which the facing surfaces of the third conductive member are in face-to-face contact with each other via the insulating member, faces the same direction as the first semiconductor joint surface and the second semiconductor joint surface. Therefore, the joining of the first semiconductor element to the first conductive member, the joining of the second semiconductor element to the third conductive member, the joining of the second conductive member to the first semiconductor element, and the fourth conductivity to the second semiconductor element. The joining of the members and the assembly of the third conductive member with respect to the first conductive member can all be carried out from the same direction. As a result, unidirectional assembly of the semiconductor device is realized. By realizing such one-way assembly, the productivity of the semiconductor device can be improved.
本発明において、第一導電部材、第二導電部材、第三導電部材、第四導電部材は、いずれも、電気伝導性(電気を流す性質)及び熱伝導性(熱を伝導させる性質)を有する金属により形成される。好ましくは、上記各部材は、電気伝導性及び熱伝導性に優れる金属により形成される。上記各部材は、電気伝導性及び熱伝導性に優れる金属である銅により形成されるのがよい。 In the present invention, the first conductive member, the second conductive member, the third conductive member, and the fourth conductive member all have electrical conductivity (property to conduct electricity) and thermal conductivity (property to conduct heat). Formed of metal. Preferably, each of the above members is made of a metal having excellent electrical conductivity and thermal conductivity. Each of the above members is preferably formed of copper, which is a metal having excellent electrical and thermal conductivity.
また、第一導電部材、第二導電部材、第三導電部材、第四導電部材は、伝熱面積が大きくなるような形状を有するとよい。例えば、これらの各部材は、線状ではなく、塊状、或いは、ブロック状に形成されている部分を有するとよい。これによれば、半導体素子の放熱効率がより一層高められるとともに、寄生インダクタンスの低減に寄与する。 Further, the first conductive member, the second conductive member, the third conductive member, and the fourth conductive member may have a shape so as to have a large heat transfer area. For example, each of these members may have a portion formed in a lump shape or a block shape instead of a linear shape. According to this, the heat dissipation efficiency of the semiconductor element is further improved, and it contributes to the reduction of the parasitic inductance.
また、本発明において、第一導電部材の第一放熱面、第二導電部材の第二放熱面、第三導電部材の第三放熱面、第四導電部材の第四放熱面は、同一平面上に形成されるとよい。また、第一放熱面、第二放熱面、第三放熱面、第四放熱面は、シート状の絶縁部材(9)を介して、冷却装置の冷却面に面接触しているとよい。これによれば、冷却面が導電性金属の表面である場合に、冷却面を介した各導電部材間の短絡を防止することができる。また、一枚のシート状の絶縁部材を介して各導電部材を冷却装置の冷却面に接触させることにより、複数枚の絶縁シートを介して各導電部材を冷却装置の冷却面に接触させる場合と比較して、放熱効率をより向上させることができる。 Further, in the present invention, the first heat radiation surface of the first conductive member, the second heat radiation surface of the second conductive member, the third heat radiation surface of the third conductive member, and the fourth heat radiation surface of the fourth conductive member are on the same plane. It should be formed in. Further, the first heat radiation surface, the second heat radiation surface, the third heat radiation surface, and the fourth heat radiation surface may be in surface contact with the cooling surface of the cooling device via the sheet-shaped insulating member (9). According to this, when the cooling surface is the surface of the conductive metal, it is possible to prevent a short circuit between the conductive members via the cooling surface. Further, when each conductive member is brought into contact with the cooling surface of the cooling device via one sheet-shaped insulating member, each conductive member is brought into contact with the cooling surface of the cooling device via a plurality of insulating sheets. In comparison, the heat dissipation efficiency can be further improved.
また、本発明に係る半導体装置は、電気伝導性及び熱伝導性を有する金属により形成され、第二導電部材と第三導電部材を電気的に接続する導電性接続部材(35)を備えるとよい。そして、第一導電部材は、電源(V)の正極及び負極のいずれか一方に電気的に接続され、第四導電部材は、電源の正極及び負極のいずれか他方に電気的に接続され、導電性接続部材は、電力負荷(M)に電気的に接続されるとよい。 Further, the semiconductor device according to the present invention may be formed of a metal having electrical conductivity and thermal conductivity, and may include a conductive connecting member (35) that electrically connects the second conductive member and the third conductive member. .. Then, the first conductive member is electrically connected to either the positive electrode or the negative electrode of the power supply (V), and the fourth conductive member is electrically connected to either the positive electrode or the negative electrode of the power supply to be conductive. The sex connecting member may be electrically connected to the power load (M).
これによれば、例えば直流電源の正極が第一導電部材に電気的に接続され、直流電源の負極が第四導電部材に電気的に接続されている場合、直流電源の正極から第一導電部材に電流が流れ、さらに第一半導体素子を経由して第二導電部材に電流が流れる。第二導電部材を流れた電流は、導電性接続部材に流れ、導電性接続部材か電力負荷に電流が入力される。つまり、第一導電部材及び第二導電部材が直流入力経路を構成する。また、電力負荷から出力された電流は、導電性接続部材を流れ、さらに導電性接続部材から第三導電部材に流れる。第三導電部材に流れた電流は、第二半導体素子を経由して第四導電部材に流れ、第四導電部材から電源の負極に電流が帰還する。つまり、第三導電部材及び第四導電部材が直流出力経路を構成する。従って、直流入力経路である第一導電部材を流れる電流の向きと直流出力経路である第三導電部材を流れる電流の向きを反対向きに設定することができ、これにより、寄生インダクタンスを低減することができる。 According to this, for example, when the positive electrode of the DC power supply is electrically connected to the first conductive member and the negative electrode of the DC power supply is electrically connected to the fourth conductive member, the positive electrode of the DC power supply to the first conductive member A current flows through the second conductive member, and a current flows through the second conductive member via the first semiconductor element. The current flowing through the second conductive member flows to the conductive connecting member, and the current is input to the conductive connecting member or the power load. That is, the first conductive member and the second conductive member form a DC input path. Further, the current output from the electric power load flows through the conductive connecting member, and further flows from the conductive connecting member to the third conductive member. The current flowing through the third conductive member flows to the fourth conductive member via the second semiconductor element, and the current returns from the fourth conductive member to the negative electrode of the power supply. That is, the third conductive member and the fourth conductive member form a DC output path. Therefore, the direction of the current flowing through the first conductive member, which is the DC input path, and the direction of the current flowing through the third conductive member, which is the DC output path, can be set to be opposite to each other, thereby reducing the parasitic inductance. Can be done.
この場合、第二導電部材は、第二放熱面及び第二放熱面とは反対方向を向いた載置面(322b)を有する放熱部(322)を有し、導電性接続部材は、載置面に載置された状態で放熱部に接続された本体部(351)と、本体部から延設されて第三導電部材に接続される接続片部(352)とを有するのがよい。 In this case, the second conductive member has a second heat radiation surface and a heat radiation portion (322) having a mounting surface (322b) facing in the direction opposite to the second heat radiation surface, and the conductive connecting member is mounted. It is preferable to have a main body portion (351) which is mounted on the surface and connected to the heat radiating portion, and a connecting piece portion (352) which extends from the main body portion and is connected to the third conductive member.
また、第一導電部材が有する第一半導体接合面及び接触面は、所定の第一方向における後方から前方に向かって、接触面、第一半導体接合面、の順に形成されているとよい。そして、導電性接続部材が第三導電部材に接続される位置は、第二半導体素子の一方の主面が第三導電部材の第二半導体接合面に接合される位置よりも第一方向における前方であるとよい。この場合、第一導電部材内を電流が上記第一方向における前方に流れるように、電源の正負極のいずれか一方が第一導電部材に接続されているとよい。 Further, the first semiconductor bonding surface and the contact surface of the first conductive member may be formed in the order of the contact surface and the first semiconductor bonding surface from the rear to the front in a predetermined first direction. The position where the conductive connecting member is connected to the third conductive member is forward in the first direction from the position where one main surface of the second semiconductor element is joined to the second semiconductor joint surface of the third conductive member. It is good to be. In this case, it is preferable that either the positive electrode or the negative electrode of the power supply is connected to the first conductive member so that the current flows forward in the first conductive member in the first direction.
これによれば、第一半導体素子が導通状態であり且つ第二半導体素子が非導通状態であるときに、第一導電部材内を電流が例えば上記第一方向における前方に流れて第一半導体素子に至り、さらに第一半導体素子から第二導電部材及び導電性接続部材に電流が流れて電力負荷に電流が入力される。一方、第二半導体素子が導通状態であり第一半導体素子が非導通状態であるときに、電力負荷側から出力されて導電性接続部材に流れた電流は、導電性接続部材から第三導電部材に流れ、さらに第二半導体素子を経由して第四導電部材に流れる。ここで、導電性接続部材が第三導電部材に接続している位置は、第二半導体素子の一方の主面が第三導電部材の第二半導体接合面に接合される位置よりも第一方向における前方である。従って、導電性接続部材から第三導電部材に流れた電流は、第三導電部材内にて上記第一方向における後方に流れて第二半導体素子に至る。このように、第一導電部材を流れる電流の方向(前方)と、第三導電部材に流れる電流の方向(後方)が、反対方向である。電流が反対方向に流れる第一導電部材と第三導電部材が絶縁部材を介して隣接配置しているため、これらの部材の寄生インダクタンスを低減することができる。 According to this, when the first semiconductor element is in the conductive state and the second semiconductor element is in the non-conducting state, a current flows forward in the first conductive member, for example, in the first direction, and the first semiconductor element. Further, a current flows from the first semiconductor element to the second conductive member and the conductive connecting member, and the current is input to the power load. On the other hand, when the second semiconductor element is in the conductive state and the first semiconductor element is in the non-conducting state, the current output from the power load side and flowing to the conductive connecting member is from the conductive connecting member to the third conductive member. And then flows to the fourth conductive member via the second semiconductor element. Here, the position where the conductive connecting member is connected to the third conductive member is in the first direction from the position where one main surface of the second semiconductor element is joined to the second semiconductor joint surface of the third conductive member. Is ahead in. Therefore, the current flowing from the conductive connecting member to the third conductive member flows rearward in the first direction in the third conductive member and reaches the second semiconductor element. As described above, the direction of the current flowing through the first conductive member (front) and the direction of the current flowing through the third conductive member (rear) are opposite directions. Since the first conductive member and the third conductive member in which the current flows in opposite directions are arranged adjacent to each other via the insulating member, the parasitic inductance of these members can be reduced.
また、本発明に係る半導体装置は、電源に接続されるとともに第一接続端子(223,225,227)および第二接続端子(224,226,228)を有する第三半導体素子(2)をさらに備え、第一導電部材は、第一接続端子が載置される第一取付面(315)を有し、第四導電部材は、第二接続端子が載置される第二取付面(342b)を有し、第一取付面に第一接続端子が溶接され、第二取付面に前記第二接続端子が溶接されるとよい。これによれば、半導体装置に第三半導体素子を組み込む際に、第一接続端子が第一導電部材に例えばレーザー溶接により接合され、第二接続端子が第四導電部材に例えばレーザー溶接により接合される。このように第三半導体素子を各導電部材に溶接接合することで、例えばネジにより接合する場合と比較して、接合位置の寸法公差を大きくすることができる。そのため、半導体装置の設計工数及び半導体装置の生産性を向上することができるとともに、締結部材を必要としないことから、コスト低減を図ることもできる。 Further, the semiconductor device according to the present invention further includes a third semiconductor element (2) which is connected to a power source and has a first connection terminal (223, 225, 227) and a second connection terminal (224, 226, 228). The first conductive member has a first mounting surface (315) on which the first connection terminal is mounted, and the fourth conductive member has a second mounting surface (342b) on which the second connection terminal is mounted. The first connection terminal is welded to the first mounting surface, and the second connection terminal is welded to the second mounting surface. According to this, when incorporating the third semiconductor element into the semiconductor device, the first connection terminal is joined to the first conductive member by, for example, laser welding, and the second connection terminal is joined to the fourth conductive member by, for example, laser welding. Laser. By welding and joining the third semiconductor element to each conductive member in this way, it is possible to increase the dimensional tolerance of the joining position as compared with the case of joining with screws, for example. Therefore, the design man-hours of the semiconductor device and the productivity of the semiconductor device can be improved, and the cost can be reduced because the fastening member is not required.
上記第三半導体素子は、コンデンサであるのがよい。また、上記第一半導体素子及び上記第二半導体素子は、トランジスタであるのがよい。これによれば、本発明に係る半導体装置を、コンデンサ及びトランジスタを用いたインバータに適用することができる。 The third semiconductor element is preferably a capacitor. Further, the first semiconductor element and the second semiconductor element are preferably transistors. According to this, the semiconductor device according to the present invention can be applied to an inverter using a capacitor and a transistor.
実施形態に係る半導体装置の斜視図である。It is a perspective view of the semiconductor device which concerns on embodiment. 実施形態に係る半導体装置の平面図である。It is a top view of the semiconductor device which concerns on embodiment. パワーモジュールの斜視図である。It is a perspective view of a power module. パワーモジュールの右側面図である。It is a right side view of a power module. パワーモジュールの正面図である。It is a front view of a power module. 第一導電ブロック部材を示す斜視図である。It is a perspective view which shows the 1st conductive block member. 第一組付け構造体の斜視図である。It is a perspective view of the first assembly structure. 第一組付け構造体の正面図である。It is a front view of the first assembly structure. 第三導電部材及び導電性接続部材の組み付け構造体の斜視図である。It is a perspective view of the assembly structure of the 3rd conductive member and the conductive connection member. 第三導電部材及び導電性接続部材の組み付け構造体の右側面図である。It is a right side view of the assembly structure of the 3rd conductive member and the conductive connection member. 第二組付け構造体の斜視図である。It is a perspective view of the 2nd assembly structure. 第二組付け構造体の正面図である。It is a front view of the 2nd assembly structure. 実施形態に係る半導体装置により構成されるインバータ回路を示す回路図である。It is a circuit diagram which shows the inverter circuit which comprises the semiconductor device which concerns on embodiment. パワーモジュール内の直流入力経路を示す図である。It is a figure which shows the DC input path in a power module. パワーモジュール内の直流出力経路を示す図である。It is a figure which shows the DC output path in a power module.
以下、本発明の実施形態に係る半導体装置について、図面を参照して説明する。本実施形態では、三相DCブラシレスモータのインバータ回路として用いられる半導体装置について説明する。図1は、本実施形態に係る半導体装置1の斜視図であり、図2は、半導体装置1の平面図である。なお、方向を用いて半導体装置1の構造を説明する場合、互いに直交する長さ方向、幅方向、高さ方向が、図1及び図2に示すように定義される。また、長さ方向における一方を前方、他方を後方と定義し、幅方向における一方を右方、他方を左方と定義し、高さ方向における一方を上方、他方を下方と定義する。各図における長さ方向、幅方向、高さ方向は、同一方向である。長さ方向が本発明の第一方向に相当する。 Hereinafter, the semiconductor device according to the embodiment of the present invention will be described with reference to the drawings. In this embodiment, a semiconductor device used as an inverter circuit of a three-phase DC brushless motor will be described. FIG. 1 is a perspective view of the semiconductor device 1 according to the present embodiment, and FIG. 2 is a plan view of the semiconductor device 1. When the structure of the semiconductor device 1 is described using the directions, the length direction, the width direction, and the height direction orthogonal to each other are defined as shown in FIGS. 1 and 2. Further, one in the length direction is defined as front, the other is defined as rear, one in the width direction is defined as right, the other is defined as left, one in the height direction is defined as upward, and the other is defined as downward. The length direction, width direction, and height direction in each figure are the same direction. The length direction corresponds to the first direction of the present invention.
図1及び図2に示すように、半導体装置1は、コンデンサモジュール2と、第一パワーモジュール3Aと、第二パワーモジュール3Bと、第三パワーモジュール3Cと、冷却装置4とを備える。 As shown in FIGS. 1 and 2, the semiconductor device 1 includes a capacitor module 2, a first power module 3A, a second power module 3B, a third power module 3C, and a cooling device 4.
冷却装置4は、長さ方向及び幅方向に長い平板状に形成される。この冷却装置4の内部に冷却水通路が形成されており、冷却水通路内を冷却水が流通する。冷却通路内の冷却水に熱が伝達されることにより、半導体装置1が冷却される。 The cooling device 4 is formed in a flat plate shape that is long in the length direction and the width direction. A cooling water passage is formed inside the cooling device 4, and the cooling water flows through the cooling water passage. The semiconductor device 1 is cooled by transferring heat to the cooling water in the cooling passage.
冷却装置4の高さ方向における上方を向いた面である上面41に、コンデンサモジュール2及び各パワーモジュール3A,3B,3Cが配設される。上面41が、本発明の冷却面に相当する。各パワーモジュール3A,3B,3Cは、幅方向に沿って整列配置される。コンデンサモジュール2は、各パワーモジュール3A,3B,3Cの長さ方向における後方位置に配設される。 The condenser module 2 and the power modules 3A, 3B, and 3C are arranged on the upper surface 41, which is a surface facing upward in the height direction of the cooling device 4. The upper surface 41 corresponds to the cooling surface of the present invention. The power modules 3A, 3B, and 3C are aligned and arranged along the width direction. The capacitor module 2 is arranged at a rear position in the length direction of each of the power modules 3A, 3B, and 3C.
コンデンサモジュール2は、ケース本体21と、ケース本体21の内部に配設されたコンデンサ(図示せず)と、ケース本体21に取り付けられた複数の接続端子(正極端子221、負極端子222、第一接続端子223,225,227、第二接続端子224,226,228)を備える。正極端子221及び負極端子222は、ケース本体21の後方端から後方に向かって延設され、第一接続端子及び第二接続端子(223〜228)は、ケース本体21の前方端から前方に向かって延設される。 The capacitor module 2 includes a case main body 21, a capacitor (not shown) arranged inside the case main body 21, and a plurality of connection terminals (positive electrode terminal 221 and negative electrode terminal 222, first) attached to the case main body 21. Connection terminals 223, 225, 227 and second connection terminals 224, 226, 228) are provided. The positive electrode terminal 221 and the negative electrode terminal 222 extend rearward from the rear end of the case body 21, and the first connection terminal and the second connection terminal (223 to 228) face forward from the front end of the case body 21. Will be extended.
第一パワーモジュール3A,第二パワーモジュール3B,第三パワーモジュール3Cは、同一の構造を有する。以下の説明においては、必要に応じて、これらのパワーモジュール3A,3B,3Cを総称して、パワーモジュール3と呼ぶ。 The first power module 3A, the second power module 3B, and the third power module 3C have the same structure. In the following description, these power modules 3A, 3B, and 3C are collectively referred to as a power module 3 as necessary.
図3は、パワーモジュール3の斜視図であり、図4は、パワーモジュール3を右方から見た右側面図であり、図5は、パワーモジュール3を前方から見た正面図である。図3乃至図5に示すように、パワーモジュール3は、第一導電部材31と、第二導電部材32と、第三導電部材33と、第四導電部材34と、導電性接続部材35と、一対の第一トランジスタ36,36と、一対の第二トランジスタ37,37とを備える。 FIG. 3 is a perspective view of the power module 3, FIG. 4 is a right side view of the power module 3 as viewed from the right side, and FIG. 5 is a front view of the power module 3 as viewed from the front. As shown in FIGS. 3 to 5, the power module 3 includes a first conductive member 31, a second conductive member 32, a third conductive member 33, a fourth conductive member 34, a conductive connecting member 35, and the like. It includes a pair of first transistors 36, 36 and a pair of second transistors 37, 37.
図6は、パワーモジュール3が備える第一導電部材31を示す斜視図である。図6に示すように、第一導電部材31は、概して略直方体形状(ブロック形状)に形成される。第一導電部材31は、電気伝導性及び熱伝導性に優れる金属、例えば銅により構成される。 FIG. 6 is a perspective view showing the first conductive member 31 included in the power module 3. As shown in FIG. 6, the first conductive member 31 is generally formed in a substantially rectangular parallelepiped shape (block shape). The first conductive member 31 is made of a metal having excellent electrical conductivity and thermal conductivity, for example, copper.
第一導電部材31は、前方を向いた前面311、後方を向いた後面312、右方を向いた右面313、左方を向いた左面314、上方を向いた上面315、及び下方を向いた下面316を有する。また、右面313と後面312との境界部分には、面取り面317が、高さ方向に沿って連続的に形成される。ここで、第一導電部材31の右面313は、前方側に形成された右前方面313a及び後方側に形成された右後方面313bに区分けされる。右前方面313a及び右後方面313bは、共に同一方向(右方)を向く面であり、且つ同一平面上に位置する。右前方面313aが、本発明の第一半導体接合面に相当し、右後方面313bが、本発明の接触面に相当する。図6からわかるように、右後方面313b(接触面)及び右前方面313aは、長さ方向における前方に向かって、この順に形成される。また、下面316は、第一半導体接合面である右前方面313aとは異なる方向を向いた面である。下面316が、本発明の第一放熱面に相当する。 The first conductive member 31 includes a front surface 311 facing forward, a rear surface 312 facing backward, a right surface 313 facing right, a left surface 314 facing left, an upper surface 315 facing upward, and a lower surface facing downward. It has 316. Further, a chamfered surface 317 is continuously formed along the height direction at the boundary portion between the right surface 313 and the rear surface 312. Here, the right surface 313 of the first conductive member 31 is divided into a right front surface 313a formed on the front side and a right rear surface 313b formed on the rear side. The right front surface 313a and the right rear surface 313b are both surfaces facing the same direction (to the right) and are located on the same plane. The right front surface 313a corresponds to the first semiconductor bonding surface of the present invention, and the right rear surface 313b corresponds to the contact surface of the present invention. As can be seen from FIG. 6, the right rear surface 313b (contact surface) and the right front surface 313a are formed in this order toward the front in the length direction. Further, the lower surface 316 is a surface facing a direction different from the right front surface 313a, which is the first semiconductor bonding surface. The lower surface 316 corresponds to the first heat radiation surface of the present invention.
第一導電部材31の右前方面313aに、一対の第一トランジスタ36,36が接合される。一対の第一トランジスタ36,36は、例えばMOSFETであり、一方の主面及びその反対側の他方の主面を有する。一方の主面には、第一の電極としてのドレイン電極が形成され、他方の主面には第二の電極としてのソース電極、及び、制御電極としてのゲート電極が形成される。そして、一対の第一トランジスタ36,36のドレイン電極が形成されている一方の主面が、はんだ等の導電性金属を介して、第一導電部材31の右前方面313aに接合される。 A pair of first transistors 36, 36 are joined to the right front surface 313a of the first conductive member 31. The pair of first transistors 36, 36 is, for example, a MOSFET, and has one main surface and the other main surface on the opposite side. A drain electrode as a first electrode is formed on one main surface, a source electrode as a second electrode, and a gate electrode as a control electrode are formed on the other main surface. Then, one of the main surfaces on which the drain electrodes of the pair of first transistors 36, 36 are formed is joined to the right front surface 313a of the first conductive member 31 via a conductive metal such as solder.
第一導電部材31の右前方面313aに接合された一対の第一トランジスタ36,36の他方の主面に、第二導電部材32が取り付けられる。従って、第二導電部材32は、一対の第一トランジスタ36,36を介して第一導電部材31に組み付けられることになる。第二導電部材32は、電気伝導性及び熱伝導性に優れた金属、例えば銅により構成される。 The second conductive member 32 is attached to the other main surface of the pair of first transistors 36, 36 joined to the right front surface 313a of the first conductive member 31. Therefore, the second conductive member 32 is assembled to the first conductive member 31 via the pair of first transistors 36, 36. The second conductive member 32 is made of a metal having excellent electrical conductivity and thermal conductivity, for example, copper.
図7は、第一導電部材31と第二導電部材32との組付け構造体(以下、第一組付け構造体と言う場合もある)を示す斜視図である。また、図8は、前方から見た第一組付け構造体の正面図である。図7及び図8に示すように、第二導電部材32は、本体部321と、放熱部322と、一対の第一接合部323,323を備える。 FIG. 7 is a perspective view showing an assembled structure of the first conductive member 31 and the second conductive member 32 (hereinafter, may be referred to as a first assembled structure). Further, FIG. 8 is a front view of the first assembled structure viewed from the front. As shown in FIGS. 7 and 8, the second conductive member 32 includes a main body portion 321 and a heat radiating portion 322, and a pair of first joint portions 323 and 323.
本体部321は、長さ方向及び高さ方向に長い板状に形成され、第一導電部材31の右前方面313aの右方に所定の間隔を開けて配設される。この本体部321の上方端部に一対の第一接合部323,323が設けられ、下方端部に放熱部322が設けられる。一対の第一接合部323,323は、本体部321の上方端部から左方に延び、その先端面にて、一対の第一トランジスタ36,36の他方の主面にはんだ等の導電性金属を介して接合される。また、本体部321の下方端部に設けられた放熱部322は、本体部321の下方端部から右方に向かって延設される。放熱部322は、幅方向及び長さ方向に長い板状に形成される。また、図8からわかるように、放熱部322は、下方を向いた下面322a及び下面322aとは反対方向(上方)を向いた上面322bを有する。放熱部322の下面322aは、第一導電部材31の下面316と同じ方向を向き、且つ、その高さ方向位置が、第一導電部材31の下面316の高さ方向位置と一致する。放熱部322の下面322aが、本発明の第二放熱面に相当する。放熱部322の上面322bが、本発明の載置面に相当する。 The main body portion 321 is formed in a plate shape long in the length direction and the height direction, and is arranged on the right side of the right front surface 313a of the first conductive member 31 at a predetermined interval. A pair of first joint portions 323 and 323 are provided at the upper end portion of the main body portion 321 and a heat radiating portion 322 is provided at the lower end portion. The pair of first junctions 323 and 323 extend to the left from the upper end of the main body 321 and have a conductive metal such as solder on the other main surface of the pair of first transistors 36, 36 at the tip surface thereof. It is joined via. Further, the heat radiating portion 322 provided at the lower end portion of the main body portion 321 extends from the lower end portion of the main body portion 321 toward the right. The heat radiating portion 322 is formed in a plate shape that is long in the width direction and the length direction. Further, as can be seen from FIG. 8, the heat radiating portion 322 has a lower surface 322a facing downward and an upper surface 322b facing in the opposite direction (upward) to the lower surface 322a. The lower surface 322a of the heat radiating portion 322 faces the same direction as the lower surface 316 of the first conductive member 31, and its height direction coincides with the height direction position of the lower surface 316 of the first conductive member 31. The lower surface 322a of the heat radiating portion 322 corresponds to the second heat radiating surface of the present invention. The upper surface 322b of the heat radiating portion 322 corresponds to the mounting surface of the present invention.
図9は、パワーモジュール3が備える第三導電部材33及び導電性接続部材35を示す斜視図である。また、図10は、右方から見た第三導電部材33及び導電性接続部材35の右側面図である。図9に良く示すように、第三導電部材33も第一導電部材31と同様に、直方体形状(ブロック形状)を呈し、前方を向いた前面331、後方を向いた後面332、右方を向いた右面333、左方を向いた左面334、上方を向いた上面335、及び下方を向いた下面336を有する。第三導電部材33の右面333は、第一導電部材31の右前方面313aと同じ方向を向く面である。この右面333が、本発明の第二半導体接合面に相当する。また、第三導電部材33の下面336は、第一導電部材31の下面316と同一方向を向く面である。この下面336が、本発明の第三放熱面に相当する。また、左面334と後面332との境界部分には、面取り面337が、高さ方向に沿って連続的に形成される。第三導電部材33も第一導電部材31と同様に、電気伝導性及び熱伝導性に優れる金属、例えば銅により構成される。 FIG. 9 is a perspective view showing a third conductive member 33 and a conductive connecting member 35 included in the power module 3. Further, FIG. 10 is a right side view of the third conductive member 33 and the conductive connecting member 35 as viewed from the right. As is well shown in FIG. 9, the third conductive member 33 also has a rectangular parallelepiped shape (block shape) like the first conductive member 31, and has a front surface 331 facing forward, a rear surface 332 facing backward, and facing right. It has a right side 333, a left side 334 facing left, an upper surface 335 facing upward, and a lower surface 336 facing downward. The right surface 333 of the third conductive member 33 is a surface facing the same direction as the right front surface 313a of the first conductive member 31. The right surface 333 corresponds to the second semiconductor junction surface of the present invention. Further, the lower surface 336 of the third conductive member 33 is a surface facing the same direction as the lower surface 316 of the first conductive member 31. The lower surface 336 corresponds to the third heat radiation surface of the present invention. Further, a chamfered surface 337 is continuously formed along the height direction at the boundary portion between the left surface 334 and the rear surface 332. Like the first conductive member 31, the third conductive member 33 is also made of a metal having excellent electrical conductivity and thermal conductivity, for example, copper.
導電性接続部材35は、幅方向及び長さ方向に長い平板形状に形成され、電気伝導性及び熱伝導性に優れる金属、例えば銅により構成される。導電性接続部材35は、第三導電部材33の右前方に配置される。また、導電性接続部材35は、平面視において長方形状である平板状の本体部351と、本体部351の左後方部から延設された一対の接続片部352,352とを有する。一方の接続片部352が第三導電部材33の前面331の右寄りの部分に接合され、他方の接続片部352が第三導電部材33の右面333前寄りの部分に接合される。一対の接続片部352,352にて、導電性接続部材35が第三導電部材33に電気的に接続される。また、図10に示すように、導電性接続部材35は、高さ方向における下方寄りの位置にて、第三導電部材33に取り付けられる。ただし、第三導電部材33に取り付けられている導電性接続部材35の本体部351の下面351aの高さ方向位置は、第三導電部材33の下面336の高さ方向位置よりも上方に位置する。 The conductive connecting member 35 is formed in a flat plate shape long in the width direction and the length direction, and is made of a metal having excellent electrical conductivity and thermal conductivity, for example, copper. The conductive connecting member 35 is arranged on the right front side of the third conductive member 33. Further, the conductive connecting member 35 has a flat plate-shaped main body portion 351 that is rectangular in a plan view, and a pair of connecting piece portions 352 and 352 extending from the left rear portion of the main body portion 351. One connecting piece 352 is joined to the right side portion of the front surface 331 of the third conductive member 33, and the other connecting piece portion 352 is joined to the right side 333 front portion of the third conductive member 33. The conductive connecting member 35 is electrically connected to the third conductive member 33 by the pair of connecting piece portions 352 and 352. Further, as shown in FIG. 10, the conductive connecting member 35 is attached to the third conductive member 33 at a position closer to the lower side in the height direction. However, the height direction position of the lower surface 351a of the main body 351 of the conductive connecting member 35 attached to the third conductive member 33 is located above the height direction position of the lower surface 336 of the third conductive member 33. ..
第三導電部材33の右面333に、一対の第二トランジスタ37,37が接合される。一対の第二トランジスタ37,37は、一対の第一トランジスタ36,36と同一のトランジスタであるのがよい。一対の第二トランジスタ37,37は、一方の主面及びその反対側の他方の主面を有する。一方の主面には、第一電極としてのドレイン電極が形成され、他方の主面には第二電極としてのソース電極、及び、制御電極としてのゲート電極が形成される。そして、一対の第二トランジスタ37,37のドレイン電極が形成されている一方の主面が、はんだ等の導電性金属を介して、第三導電部材33の右面333に接合される。 A pair of second transistors 37, 37 are joined to the right surface 333 of the third conductive member 33. The pair of second transistors 37, 37 are preferably the same transistors as the pair of first transistors 36, 36. The pair of second transistors 37, 37 have one main surface and the other main surface on the opposite side. A drain electrode as a first electrode is formed on one main surface, and a source electrode as a second electrode and a gate electrode as a control electrode are formed on the other main surface. Then, one of the main surfaces on which the drain electrodes of the pair of second transistors 37 and 37 are formed is joined to the right surface 333 of the third conductive member 33 via a conductive metal such as solder.
第三導電部材33の右面333に取り付けられた一対の第二トランジスタ37,37の他方の主面に、第四導電部材34が取り付けられる。従って、第四導電部材34は、一対の第二トランジスタ37,37を介して第三導電部材33に取り付けられることになる。第四導電部材34は、電気伝導性及び熱伝導性に優れる金属、例えば銅により構成される。 The fourth conductive member 34 is attached to the other main surface of the pair of second transistors 37, 37 attached to the right surface 333 of the third conductive member 33. Therefore, the fourth conductive member 34 is attached to the third conductive member 33 via the pair of second transistors 37, 37. The fourth conductive member 34 is made of a metal having excellent electrical conductivity and thermal conductivity, for example, copper.
図11は、第三導電部材33、第四導電部材34、及び導電性接続部材35の組み付け構造体(以下、第二組付け構造体と呼ぶ場合もある)の斜視図である。また、図12は、前方から見た第二組付け構造体の正面図である。図11及び図12に示すように、第四導電部材34は、本体部341と、放熱部342と、一対の第二接合部343,343とを備える。 FIG. 11 is a perspective view of an assembled structure (hereinafter, may be referred to as a second assembled structure) of the third conductive member 33, the fourth conductive member 34, and the conductive connecting member 35. Further, FIG. 12 is a front view of the second assembled structure viewed from the front. As shown in FIGS. 11 and 12, the fourth conductive member 34 includes a main body portion 341, a heat radiating portion 342, and a pair of second joint portions 343 and 343.
本体部341は、長さ方向及び高さ方向に長い平板状に形成され、第三導電部材33の右面333の右方に所定の間隔を開けて配設される。この本体部341の上方端部に一対の第二接合部343,343が設けられ、下方端部に放熱部342が設けられる。一対の第二接合部343,343は、本体部341の上方端部から左方に延び、その先端面にて、一対の第二トランジスタ37,37の他方の主面にはんだなどの導電性金属を介して接合される。また、本体部341の下方端部に設けられた放熱部342は、本体部341の下方端部から右方及び下方に向かって延設され、直方体形状(ブロック形状)に形成される。放熱部342の下面342aは、第三導電部材33の下面336と同一方向(下方)を向く面である。また、図12からわかるように、放熱部342の下面342aの高さ方向位置は、第三導電部材33の下面336の高さ方向位置と一致する。放熱部342の下面342aが、本発明の第四放熱面に相当する。 The main body portion 341 is formed in a flat plate shape that is long in the length direction and the height direction, and is arranged on the right side of the right surface 333 of the third conductive member 33 at a predetermined interval. A pair of second joints 343 and 343 are provided at the upper end of the main body 341, and a heat dissipation portion 342 is provided at the lower end. The pair of second junctions 343 and 343 extend to the left from the upper end of the main body 341, and at the tip surface thereof, a conductive metal such as solder is formed on the other main surface of the pair of second transistors 37 and 37. It is joined via. Further, the heat radiating portion 342 provided at the lower end portion of the main body portion 341 extends from the lower end portion of the main body portion 341 toward the right and downward, and is formed in a rectangular parallelepiped shape (block shape). The lower surface 342a of the heat radiating portion 342 is a surface facing the same direction (downward) as the lower surface 336 of the third conductive member 33. Further, as can be seen from FIG. 12, the height direction position of the lower surface 342a of the heat radiating portion 342 coincides with the height direction position of the lower surface 336 of the third conductive member 33. The lower surface 342a of the heat radiating portion 342 corresponds to the fourth heat radiating surface of the present invention.
パワーモジュール3は、図7及び図8に示すような第一組付け構造体と、図11及び図12に示すような第二組付け構造体とを組み合わせることにより、図3、図4、図5に示すように形成される。この場合、図4及び図5に示すように、第三導電部材33に接続された導電性接続部材35の本体部351の下面351aが、第一導電部材31に取り付けられた第二導電部材32の放熱部322の上面322bに対面接触するように、導電性接続部材35が第二導電部材32の放熱部322の上面322bに載置される。そして、その状態で、溶接等の接合手段により、対面接触した導電性接続部材35の本体部351の下面351aと第二導電部材32の放熱部322の上面322bが接合される。斯かる接合によって、第一組付け構造体と第二組付け構造体が組み付けられる。 The power module 3 is obtained by combining the first assembly structure as shown in FIGS. 7 and 8 and the second assembly structure as shown in FIGS. 11 and 12, and the power modules 3 are shown in FIGS. It is formed as shown in 5. In this case, as shown in FIGS. 4 and 5, the lower surface 351a of the main body 351 of the conductive connecting member 35 connected to the third conductive member 33 is attached to the first conductive member 31. The conductive connecting member 35 is placed on the upper surface 322b of the heat radiating portion 322 of the second conductive member 32 so as to make face-to-face contact with the upper surface 322b of the heat radiating portion 322. Then, in that state, the lower surface 351a of the main body 351 of the conductive connecting member 35 and the upper surface 322b of the heat radiating portion 322 of the second conductive member 32 are joined by a joining means such as welding. By such joining, the first assembly structure and the second assembly structure are assembled.
上記のようにして第一組付け構造体と第二組付け構造体が組み付けられた場合、図4及び図5に良く示すように、第一導電部材31の下面316、第二導電部材32の放熱部322の下面322a、第三導電部材33の下面336、及び第四導電部材34の放熱部342の下面342aが、同一方向(下面)を向き、且つ、これらの面の高さ方向位置が一致する。つまり、第一導電部材31の下面316、第二導電部材32の放熱部322の下面322a、第三導電部材33の下面336、及び第四導電部材34の放熱部342の下面342aが同一平面上に位置する。同一平面上に位置したこれらの面が、絶縁シート9を介して冷却装置4の上面41に接着される。 When the first assembly structure and the second assembly structure are assembled as described above, as shown well in FIGS. 4 and 5, the lower surface 316 of the first conductive member 31 and the second conductive member 32 The lower surface 322a of the heat radiating portion 322, the lower surface 336 of the third conductive member 33, and the lower surface 342a of the heat radiating portion 342 of the fourth conductive member 34 face in the same direction (lower surface), and the positions of these surfaces in the height direction are Match. That is, the lower surface 316 of the first conductive member 31, the lower surface 322a of the heat radiating portion 322 of the second conductive member 32, the lower surface 336 of the third conductive member 33, and the lower surface 342a of the heat radiating portion 342 of the fourth conductive member 34 are on the same plane. Located in. These surfaces located on the same plane are adhered to the upper surface 41 of the cooling device 4 via the insulating sheet 9.
また、図5に示すように、第三導電部材33の左面334は、第三導電部材33の右面333(第二半導体接合面)とは反対方向を向いた面である。この左面334が、第一導電部材31の右後方面313b(接触面)に対面する。対面した両面(334、313b)が、絶縁シート8を介して接着される。これにより、第一導電部材31と第三導電部材33が絶縁されるとともに、隣り合わせに配置される。第三導電部材33の左面334が、本発明の対抗面に相当する。 Further, as shown in FIG. 5, the left surface 334 of the third conductive member 33 is a surface facing in the direction opposite to the right surface 333 (second semiconductor joint surface) of the third conductive member 33. The left surface 334 faces the right rear surface 313b (contact surface) of the first conductive member 31. Both sides (334, 313b) facing each other are adhered to each other via the insulating sheet 8. As a result, the first conductive member 31 and the third conductive member 33 are insulated and arranged next to each other. The left surface 334 of the third conductive member 33 corresponds to the opposing surface of the present invention.
上記構成を有する第一パワーモジュール3A、第二パワーモジュール3B、第三パワーモジュール3Cが、図1に示すように、冷却装置4の上面41に、幅方向に整列して配設される。また、各パワーモジュール3A,3B,3Cが備える第一導電部材31の前面311及び第三導電部材33の前面331が、長さ方向における前方を向くように、各パワーモジュール3A,3B,3Cが冷却装置4上に配設される。 As shown in FIG. 1, the first power module 3A, the second power module 3B, and the third power module 3C having the above configuration are arranged on the upper surface 41 of the cooling device 4 so as to be aligned in the width direction. Further, the power modules 3A, 3B, 3C are arranged so that the front surface 311 of the first conductive member 31 and the front surface 331 of the third conductive member 33 included in the power modules 3A, 3B, 3C face forward in the length direction. It is arranged on the cooling device 4.
また、図1及び図2に示すように、各パワーモジュール3A,3B,3Cには電流センサ5が接続される。電流センサ5は、各パワーモジュール3A,3B,3Cにそれぞれ対応する第一入出力端子51A,51B,51C及び第二入出力端子52A,52B,52Cを備える。そして、電流センサ5は、第一パワーモジュール3Aに対応する第一入出力端子51Aと第二入出力端子52Aとの間を流れる電流の大きさ、第二パワーモジュール3Bに対応する第一入出力端子51Bと第二入出力端子52Bとの間を流れる電流の大きさ、第三パワーモジュール3Cに対応する第一入出力端子51Cと第二入出力端子52Cとの間を流れる電流の大きさを、それぞれ検出することができるように構成される。 Further, as shown in FIGS. 1 and 2, a current sensor 5 is connected to each of the power modules 3A, 3B, and 3C. The current sensor 5 includes first input / output terminals 51A, 51B, 51C and second input / output terminals 52A, 52B, 52C corresponding to the power modules 3A, 3B, 3C, respectively. Then, the current sensor 5 has the magnitude of the current flowing between the first input / output terminal 51A corresponding to the first power module 3A and the second input / output terminal 52A, and the first input / output corresponding to the second power module 3B. The magnitude of the current flowing between the terminal 51B and the second input / output terminal 52B, and the magnitude of the current flowing between the first input / output terminal 51C and the second input / output terminal 52C corresponding to the third power module 3C. , Each is configured to be detectable.
電流センサ5は、冷却装置4の上面であって各パワーモジュール3A,3B,3Cの前方側に配設される。電流センサ5の各第一入出力端子51A,51B,51Cは、それぞれ各パワーモジュール3A,3B,3Cの導電性接続部材35の本体部351の上面に載置され、ネジ止め或いは溶接等の接合手段により、導電性接続部材35に電気的に接続される。電流センサ5の各第二入出力端子52A,52B,52Cは、それぞれ、冷却装置4から前方側に突出する。第一パワーモジュール3Aに対応する第二入出力端子52Aは、三相DCブラシレスモータのU相コイルに電線(出力ライン)を介して接続される。第二パワーモジュール3Bに対応する第二入出力端子52Bは、三相DCブラシレスモータのV相コイルに電線(出力ライン)を介して接続される。第三パワーモジュール3Cに対応する第二入出力端子52Cは、三相DCブラシレスモータのW相コイルに電線(出力ライン)を介して接続される。 The current sensor 5 is arranged on the upper surface of the cooling device 4 and on the front side of each of the power modules 3A, 3B, and 3C. The first input / output terminals 51A, 51B, and 51C of the current sensor 5 are placed on the upper surface of the main body 351 of the conductive connection member 35 of the power modules 3A, 3B, and 3C, respectively, and are joined by screwing or welding. By means, it is electrically connected to the conductive connecting member 35. The second input / output terminals 52A, 52B, and 52C of the current sensor 5 project forward from the cooling device 4, respectively. The second input / output terminal 52A corresponding to the first power module 3A is connected to the U-phase coil of the three-phase DC brushless motor via an electric wire (output line). The second input / output terminal 52B corresponding to the second power module 3B is connected to the V-phase coil of the three-phase DC brushless motor via an electric wire (output line). The second input / output terminal 52C corresponding to the third power module 3C is connected to the W-phase coil of the three-phase DC brushless motor via an electric wire (output line).
また、コンデンサモジュール2は、冷却装置4の上面であって各パワーモジュール3の後方位置に配設される。このコンデンサモジュール2の正極端子221は電源の正極に接続され、負極端子222は電源の負極に接続される。また、コンデンサモジュール2の第一接続端子223は第一パワーモジュール3Aの第一導電部材31の上面315に載置され、第二接続端子224は第一パワーモジュール3Aの第四導電部材34の放熱部342の上面342bに載置される。コンデンサモジュール2の第一接続端子225は第二パワーモジュール3Bの第一導電部材31の上面315に載置され、第二接続端子226は第二パワーモジュール3Bの第四導電部材34の放熱部342の上面342bに載置される。コンデンサモジュール2の第一接続端子227は第三パワーモジュール3Cの第一導電部材31の上面315に載置され、第二接続端子228は第三パワーモジュール3Cの第四導電部材34の放熱部342の上面342bに載置される。各導電部材(31、34)の上面(315、342b)に載置された各接続端子は、レーザー溶接によって、それが載置される導電部材の上面に電気的に接続される。これにより、各パワーモジュール3A,3B,3Cが、コンデンサモジュール2に電気的に接続される。第一導電部材31の上面315が本発明の第一取付面に相当する。第四導電部材34の放熱部342の上面342bが本発明の第二取付面に相当する。 Further, the condenser module 2 is arranged on the upper surface of the cooling device 4 at a position behind each power module 3. The positive electrode terminal 221 of the capacitor module 2 is connected to the positive electrode of the power supply, and the negative electrode terminal 222 is connected to the negative electrode of the power supply. Further, the first connection terminal 223 of the capacitor module 2 is mounted on the upper surface 315 of the first conductive member 31 of the first power module 3A, and the second connection terminal 224 dissipates heat from the fourth conductive member 34 of the first power module 3A. It is placed on the upper surface 342b of the portion 342. The first connection terminal 225 of the capacitor module 2 is mounted on the upper surface 315 of the first conductive member 31 of the second power module 3B, and the second connection terminal 226 is the heat dissipation portion 342 of the fourth conductive member 34 of the second power module 3B. It is placed on the upper surface 342b of the above. The first connection terminal 227 of the capacitor module 2 is mounted on the upper surface 315 of the first conductive member 31 of the third power module 3C, and the second connection terminal 228 is the heat dissipation portion 342 of the fourth conductive member 34 of the third power module 3C. It is placed on the upper surface 342b of the above. Each connection terminal placed on the upper surface (315, 342b) of each conductive member (31, 34) is electrically connected to the upper surface of the conductive member on which it is placed by laser welding. As a result, the power modules 3A, 3B, and 3C are electrically connected to the capacitor module 2. The upper surface 315 of the first conductive member 31 corresponds to the first mounting surface of the present invention. The upper surface 342b of the heat radiating portion 342 of the fourth conductive member 34 corresponds to the second mounting surface of the present invention.
図13は、上記構成を備える半導体装置1により構成されるインバータ回路を示す回路図である。図13に示すように、電源Vの正極VPに、正極ラインPLが接続され、電源Vの負極VNに負極ラインNLが接続される。正極ラインPLにコンデンサモジュール2の正極端子221が接続され、負極ラインNLにコンデンサモジュール2の負極端子222が接続される。 FIG. 13 is a circuit diagram showing an inverter circuit configured by the semiconductor device 1 having the above configuration. As shown in FIG. 13, the positive electrode line PL is connected to the positive electrode VP of the power supply V, and the negative electrode line NL is connected to the negative electrode VN of the power supply V. The positive electrode terminal 221 of the capacitor module 2 is connected to the positive electrode line PL, and the negative electrode terminal 222 of the capacitor module 2 is connected to the negative electrode line NL.
また、第一パワーモジュール3Aの第一導電部材31は、コンデンサモジュール2の第一接続端子223及び正極ラインPLを介してコンデンサモジュール2及び電源Vの正極VPに接続され、第二パワーモジュール3Bの第一導電部材31は、コンデンサモジュール2の第一接続端子225及び正極ラインPLを介してコンデンサモジュール2及び電源Vの正極VPに接続され、第三パワーモジュール3Cの第一導電部材31は、コンデンサモジュール2の第一接続端子227及び正極ラインPLを介してコンデンサモジュール2及び電源Vの正極VPに接続される。 Further, the first conductive member 31 of the first power module 3A is connected to the capacitor module 2 and the positive electrode VP of the power supply V via the first connection terminal 223 of the capacitor module 2 and the positive electrode line PL, and is connected to the positive electrode VP of the power supply V. The first conductive member 31 is connected to the capacitor module 2 and the positive electrode VP of the power supply V via the first connection terminal 225 of the capacitor module 2 and the positive electrode line PL, and the first conductive member 31 of the third power module 3C is a capacitor. It is connected to the capacitor module 2 and the positive electrode VP of the power supply V via the first connection terminal 227 of the module 2 and the positive electrode line PL.
また、各パワーモジュール3A,3B,3Cの第一導電部材31は、一対の第一トランジスタ36,36のドレイン電極D,Dに接続され、各パワーモジュール3A,3B,3Cの第二導電部材32は、一対の第一トランジスタ36,36のソース電極S,Sに接続される。各パワーモジュール3A,3B,3Cの第一導電部材31、一対の第一トランジスタ36,36、及び第二導電部材32により、インバータ回路の上アームが構成される。 Further, the first conductive member 31 of each power module 3A, 3B, 3C is connected to the drain electrodes D, D of the pair of first transistors 36, 36, and the second conductive member 32 of each power module 3A, 3B, 3C is connected. Is connected to the source electrodes S, S of the pair of first transistors 36, 36. The upper arm of the inverter circuit is composed of the first conductive member 31, the pair of first transistors 36, 36, and the second conductive member 32 of each of the power modules 3A, 3B, and 3C.
また、第一パワーモジュール3Aの第四導電部材34は、コンデンサモジュール2の第二接続端子224及び負極ラインNLを介してコンデンサモジュール2及び電源Vの負極VNに接続され、第二パワーモジュール3Bの第四導電部材34は、コンデンサモジュール2の第二接続端子226及び負極ラインNLを介してコンデンサモジュール2及び電源Vの負極VNに接続され、第三パワーモジュール3Cの第四導電部材34は、コンデンサモジュール2の第二接続端子228及び負極ラインNLを介してコンデンサモジュール2及び電源Vの負極VNに接続される。 Further, the fourth conductive member 34 of the first power module 3A is connected to the capacitor module 2 and the negative electrode VN of the power supply V via the second connection terminal 224 of the capacitor module 2 and the negative electrode line NL, and the second power module 3B The fourth conductive member 34 is connected to the capacitor module 2 and the negative electrode VN of the power supply V via the second connection terminal 226 of the capacitor module 2 and the negative electrode line NL, and the fourth conductive member 34 of the third power module 3C is a capacitor. It is connected to the capacitor module 2 and the negative electrode VN of the power supply V via the second connection terminal 228 of the module 2 and the negative electrode line NL.
また、各パワーモジュール3A,3B,3Cの第四導電部材34は、一対の第二トランジスタ37,37のソース電極S,Sに接続され、各パワーモジュール3A,3B,3Cの第三導電部材33は、一対の第二トランジスタ37,37のドレイン電極D,Dに接続される。各パワーモジュール3A,3B,3Cの第三導電部材33.一対の第二トランジスタ37,37、及び第四導電部材34により、インバータ回路の下アームが構成される。 Further, the fourth conductive member 34 of each power module 3A, 3B, 3C is connected to the source electrodes S, S of the pair of second transistors 37, 37, and the third conductive member 33 of each power module 3A, 3B, 3C is connected. Is connected to the drain electrodes D, D of the pair of second transistors 37, 37. Third conductive member of each power module 3A, 3B, 3C 33. The lower arm of the inverter circuit is composed of the pair of second transistors 37, 37 and the fourth conductive member 34.
各パワーモジュール3A,3B,3Cの第二導電部材32及び第三導電部材33は、ともに、導電性接続部材35に接続される。第一パワーモジュール3Aの導電性接続部材35は、第一出力ライン71を介して三相DCブラシレスモータMのU相コイルに接続され、第二パワーモジュール3Bの導電性接続部材35は、第二出力ライン72を介して三相DCブラシレスモータMのV相コイルに接続され、第三パワーモジュール3Cの導電性接続部材35は、第三出力ライン73を介して三相DCブラシレスモータMのW相コイルに接続される。このように、各パワーモジュール3A,3B,3Cの導電性接続部材35は、いずれも、電力負荷である3相DCブラシレスモータMに接続される。 The second conductive member 32 and the third conductive member 33 of each of the power modules 3A, 3B, and 3C are both connected to the conductive connecting member 35. The conductive connecting member 35 of the first power module 3A is connected to the U-phase coil of the three-phase DC brushless motor M via the first output line 71, and the conductive connecting member 35 of the second power module 3B is the second. It is connected to the V-phase coil of the three-phase DC brushless motor M via the output line 72, and the conductive connecting member 35 of the third power module 3C is connected to the W phase of the three-phase DC brushless motor M via the third output line 73. Connected to the coil. In this way, the conductive connecting members 35 of the power modules 3A, 3B, and 3C are all connected to the three-phase DC brushless motor M, which is a power load.
各パワーモジュール3A,3B,3Cにそれぞれ備えられる一対の第一トランジスタ36,36及び一対の第二トランジスタ37,37は、スイッチング素子として機能する。この場合、図示しない制御基板から各トランジスタ36,37のゲート電極Gに所定のパターンで制御信号が入力されることにより、各トランジスタ36,37がスイッチング作動する。また、本実施形態において、一つのパワーモジュールが備える一対の第一トランジスタ36,36は同時に動作し、一つのパワーモジュールが備える一対の第二トランジスタ37,37は同時に動作する。つまり、一つのパワーモジュールが備える一対の第一トランジスタ36,36のON動作タイミング及びOFF動作タイミングは一致し、一つのパワーモジュールが備える一対の第二トランジスタ37,37のON動作タイミング及びOFF動作タイミングは一致する。 The pair of first transistors 36, 36 and the pair of second transistors 37, 37 provided in each of the power modules 3A, 3B, and 3C function as switching elements. In this case, when a control signal is input from a control board (not shown) to the gate electrodes G of the transistors 36 and 37 in a predetermined pattern, the transistors 36 and 37 are switched. Further, in the present embodiment, the pair of first transistors 36, 36 included in one power module operate at the same time, and the pair of second transistors 37, 37 included in one power module operate at the same time. That is, the ON operation timing and the OFF operation timing of the pair of first transistors 36, 36 included in one power module match, and the ON operation timing and OFF operation timing of the pair of second transistors 37, 37 included in one power module are the same. Match.
第一トランジスタ36,36又は第二トランジスタ37,37がONにされた場合、ドレイン−ソース間が導通状態にされる。第一トランジスタ36,36又は第二トランジスタ37,37がOFFにされた場合、ドレイン−ソース間が非導通状態にされる。従って、第一トランジスタ36,36がONにされているとき、その第一トランジスタ36,36を備える上アームに電流を流すことができ、第一トランジスタ36,36がOFFにされているとき、その第一トランジスタ36,36を備える上アームに電流を流すことができない。また、第二トランジスタ37,37がONにされているとき、その第二トランジスタ37,37を備える下アームに電流を流すことができ、第二トランジスタ37,37がOFFにされているとき、その第二トランジスタ37,37を備える下アームに電流を流すことができない。 When the first transistor 36, 36 or the second transistor 37, 37 is turned on, the drain and the source are brought into a conductive state. When the first transistor 36, 36 or the second transistor 37, 37 is turned off, the drain and source are brought into a non-conducting state. Therefore, when the first transistors 36, 36 are turned on, a current can be passed through the upper arm including the first transistors 36, 36, and when the first transistors 36, 36 are turned off, the current can flow. No current can flow through the upper arm including the first transistors 36, 36. Further, when the second transistors 37, 37 are turned on, a current can be passed through the lower arm including the second transistors 37, 37, and when the second transistors 37, 37 are turned off, the current can flow. No current can flow through the lower arm including the second transistors 37, 37.
図13に示すインバータ回路において、一例として、第一パワーモジュール3Aの第一トランジスタ36,36及び第三パワーモジュール3Cの第二トランジスタ37,37がONにされ、その他のトランジスタがOFFにされている場合について、インバータ回路内における電流の流れを説明する。この場合、第一パワーモジュール3Aの上アーム及び第三パワーモジュール3Cの下アームに電流が流れる。従って、電源Vの正極VPから正極ラインPLに流れてコンデンサモジュール2により平滑化された電流は、第一パワーモジュール3Aの上アームを構成する第一導電部材31、一対の第一トランジスタ36,36、第二導電部材32をこの順に流れ、さらに第二導電部材32から第一パワーモジュール3Aの導電性接続部材35に流れる。第一パワーモジュール3Aの導電性接続部材35に流れた電流は、図13において図示しない電流センサ5を経由して、第一出力ライン71に流れる。そして、第一出力ライン71から三相DCブラシレスモータMのU相コイルに電流が入力される。このようにして、電源V側からパワーモジュール3(第一パワーモジュール3A)を経由して、三相DCブラシレスモータM(電力負荷)側に電流が供給される。 In the inverter circuit shown in FIG. 13, as an example, the first transistors 36, 36 of the first power module 3A and the second transistors 37, 37 of the third power module 3C are turned on, and the other transistors are turned off. The current flow in the inverter circuit will be described with respect to the case. In this case, a current flows through the upper arm of the first power module 3A and the lower arm of the third power module 3C. Therefore, the current flowing from the positive electrode VP of the power supply V to the positive electrode line PL and smoothed by the capacitor module 2 is the first conductive member 31 forming the upper arm of the first power module 3A and the pair of first transistors 36, 36. , The second conductive member 32 flows in this order, and further flows from the second conductive member 32 to the conductive connecting member 35 of the first power module 3A. The current flowing through the conductive connecting member 35 of the first power module 3A flows to the first output line 71 via a current sensor 5 (not shown in FIG. 13). Then, a current is input from the first output line 71 to the U-phase coil of the three-phase DC brushless motor M. In this way, a current is supplied from the power supply V side to the three-phase DC brushless motor M (power load) side via the power module 3 (first power module 3A).
また、三相DCブラシレスモータMのW相コイルから出力された電流が、第三出力ライン73及び図示しない電流センサ5を経由して第三パワーモジュール3Cの導電性接続部材35に流れ、さらに、第三パワーモジュール3Cの下アームを構成する第三導電部材33、第二トランジスタ37,37、第四導電部材34、にこの順で流れる。そして、第三パワーモジュール3Cの第四導電部材34に流れた電流は、負極ラインNLを経由して電源Vの負極VNに帰還する。このようにして、三相DCブラシレスモータM(電力負荷)側からパワーモジュール3(第三パワーモジュール3C)を経由して、電源V側に電流が流れる。 Further, the current output from the W-phase coil of the three-phase DC brushless motor M flows to the conductive connecting member 35 of the third power module 3C via the third output line 73 and the current sensor 5 (not shown), and further. The current flows through the third conductive member 33, the second transistors 37, 37, and the fourth conductive member 34, which form the lower arm of the third power module 3C, in this order. Then, the current flowing through the fourth conductive member 34 of the third power module 3C returns to the negative electrode VN of the power supply V via the negative electrode line NL. In this way, a current flows from the three-phase DC brushless motor M (power load) side to the power supply V side via the power module 3 (third power module 3C).
また、他の一例として、第二パワーモジュール3Bの第一トランジスタ36,36及び第一パワーモジュール3Aの第二トランジスタ37,37がONにされ、その他のトランジスタがOFFにされている場合について、インバータ回路内における電流の流れを説明する。この場合、第二パワーモジュール3Bの上アーム及び第一パワーモジュール3Aの下アームに電流が流れる。従って、電源Vの正極VPから正極ラインPLに流れてコンデンサモジュール2により平滑化された電流は、第二パワーモジュール3Bの上アームを構成する第一導電部材31、一対の第一トランジスタ36,36、第二導電部材32をこの順に流れ、さらに第二導電部材32から第二パワーモジュール3Bの導電性接続部材35に流れる。第二パワーモジュール3Bの導電性接続部材35に流れた電流は、図13において図示しない電流センサ5を経由して、第二出力ライン72に流れる。そして、第二出力ライン72から三相DCブラシレスモータMのV相コイルに電流が入力される。このようにして、電源V側からパワーモジュール3(第二パワーモジュール3B)を経由して、三相DCブラシレスモータM(電力負荷)側に電流が流れる。 Further, as another example, in the case where the first transistors 36 and 36 of the second power module 3B and the second transistors 37 and 37 of the first power module 3A are turned on and the other transistors are turned off, the inverter The flow of current in the circuit will be described. In this case, a current flows through the upper arm of the second power module 3B and the lower arm of the first power module 3A. Therefore, the current flowing from the positive electrode VP of the power supply V to the positive electrode line PL and smoothed by the capacitor module 2 is the first conductive member 31 forming the upper arm of the second power module 3B and the pair of first transistors 36, 36. , The second conductive member 32 flows in this order, and further flows from the second conductive member 32 to the conductive connecting member 35 of the second power module 3B. The current flowing through the conductive connecting member 35 of the second power module 3B flows to the second output line 72 via the current sensor 5 (not shown in FIG. 13). Then, a current is input from the second output line 72 to the V-phase coil of the three-phase DC brushless motor M. In this way, a current flows from the power supply V side to the three-phase DC brushless motor M (power load) side via the power module 3 (second power module 3B).
また、三相DCブラシレスモータMのU相コイルから出力された電流が、第一出力ライン71及び図示しない電流センサ5を経由して第一パワーモジュール3Aの導電性接続部材35に流れ、さらに、第一パワーモジュール3Aの下アームを構成する第三導電部材33、第二トランジスタ37,37、第四導電部材34、にこの順で流れる。そして、第一パワーモジュール3Aの第四導電部材34に流れた電流は、負極ラインNLを経由して電源Vの負極VNに帰還する。このようにして、三相DCブラシレスモータM(電力負荷)側からパワーモジュール3(第一パワーモジュール3A)を経由して、電源V側に電流が流れる。 Further, the current output from the U-phase coil of the three-phase DC brushless motor M flows to the conductive connecting member 35 of the first power module 3A via the first output line 71 and the current sensor 5 (not shown), and further. The current flows through the third conductive member 33, the second transistors 37, 37, and the fourth conductive member 34, which form the lower arm of the first power module 3A, in this order. Then, the current flowing through the fourth conductive member 34 of the first power module 3A returns to the negative electrode VN of the power supply V via the negative electrode line NL. In this way, a current flows from the three-phase DC brushless motor M (power load) side to the power supply V side via the power module 3 (first power module 3A).
図14は、電源V側からパワーモジュール3を経由して三相DCブラシレスモータM側に電流が入力される場合における、パワーモジュール3内の電流の直流入力経路を示す図である。この場合、第一トランジスタ36,36はON(導通状態)にされており、第二トランジスタ37,37はOFF(非導通状態)にされている。図14に示すように、電源V側(コンデンサモジュール2側)からの電流は、第一導電部材31の後方から第一導電部材31に流入する。ここで、第一トランジスタ36,36の一方の主面が接合されている第一導電部材31の右前方面313aは、第一導電部材31の前方側に形成されている。また、第一導電部材31の右後方面313b及び右前方面313aは、長さ方向における前方に沿って、右後方面313b、右前方面313a、の順に形成されている。従って、第一導電部材31の後方から流入した電流は、第一導電部材31の右後方面313bに対応する部分を経由して第一導電部材31を前方に向かって流れて、右前方面313aに接合された一対の第一トランジスタ36,36に至る。そして、第一トランジスタ36,36を経由して、第二導電部材32を流れる。なお、第一導電部材31に第三導電部材33が隣接配置されているが、両者間に絶縁シート8が介在されているので、第一導電部材31から第三導電部材33に電流が流れることはない。第一導電部材31を前方に流れて第二導電部材32に流入した電流は、さらに、第二導電部材32から、第二導電部材32の放熱部322に接続されている導電性接続部材35に流れる。そして、導電性接続部材35から、図示しない電流センサ5を経由して、三相DCブラシレスモータM側に電流が流れる。 FIG. 14 is a diagram showing a DC input path of the current in the power module 3 when a current is input from the power supply V side to the three-phase DC brushless motor M side via the power module 3. In this case, the first transistors 36 and 36 are turned on (conducting state), and the second transistors 37 and 37 are turned off (non-conducting state). As shown in FIG. 14, the current from the power supply V side (capacitor module 2 side) flows into the first conductive member 31 from the rear of the first conductive member 31. Here, the right front surface 313a of the first conductive member 31 to which one of the main surfaces of the first transistors 36, 36 is joined is formed on the front side of the first conductive member 31. Further, the right rear surface 313b and the right front surface 313a of the first conductive member 31 are formed in the order of the right rear surface 313b and the right front surface 313a along the front in the length direction. Therefore, the current flowing from the rear of the first conductive member 31 flows forward through the first conductive member 31 via the portion corresponding to the right rear surface 313b of the first conductive member 31 and reaches the right front surface 313a. It leads to a pair of bonded first transistors 36, 36. Then, it flows through the second conductive member 32 via the first transistors 36 and 36. Although the third conductive member 33 is arranged adjacent to the first conductive member 31, the insulating sheet 8 is interposed between the first conductive member 31, so that a current flows from the first conductive member 31 to the third conductive member 33. There is no. The current flowing forward through the first conductive member 31 and flowing into the second conductive member 32 is further transferred from the second conductive member 32 to the conductive connecting member 35 connected to the heat radiating portion 322 of the second conductive member 32. It flows. Then, a current flows from the conductive connecting member 35 to the three-phase DC brushless motor M side via a current sensor 5 (not shown).
図15は、三相DCブラシレスモータM側からパワーモジュール3を経由して電源V側に電流が出力される場合における、パワーモジュール内の電流の直流出力経路を示す図である。この場合、第一トランジスタ36,36はOFF(非導通状態)にされており、第二トランジスタ37,37はON(導通状態)にされている。図15に示すように、三相DCブラシレスモータMから出力された電流は、図示しない電流センサ5を経由した後に、導電性接続部材35に流れる。導電性接続部材35は第三導電部材33の右前方部分に接続されているので、導電性接続部材35を流れた電流は、次に第三導電部材33の右前方部分に流入する。ここで、図15に示すように、導電性接続部材35が第三導電部材33に接続される位置(図15において位置A)は、一対の第二トランジスタ37,37の一方の主面が第三導電部材33の右面333に接合される位置(図15において位置B)よりも、長さ方向における前方である。従って、導電性接続部材35から第三導電部材33に流れた電流は、第三導電部材33内を後方に向かって流れて、第三導電部材33の右面333に接合されている第二トランジスタ37,37に向かう。そして、第二トランジスタ37,37を経由して、第四導電部材34に流れ、さらに、第四導電部材34から電源V側(コンデンサモジュール2側)に電流が流れる。 FIG. 15 is a diagram showing a DC output path of the current in the power module when a current is output from the three-phase DC brushless motor M side to the power supply V side via the power module 3. In this case, the first transistors 36 and 36 are turned off (non-conducting state), and the second transistors 37 and 37 are turned on (conducting state). As shown in FIG. 15, the current output from the three-phase DC brushless motor M flows through the conductive connecting member 35 after passing through the current sensor 5 (not shown). Since the conductive connecting member 35 is connected to the right front portion of the third conductive member 33, the current flowing through the conductive connecting member 35 then flows into the right front portion of the third conductive member 33. Here, as shown in FIG. 15, at the position where the conductive connecting member 35 is connected to the third conductive member 33 (position A in FIG. 15), one main surface of the pair of second transistors 37, 37 is the first. It is anterior in the length direction from the position (position B in FIG. 15) joined to the right surface 333 of the three conductive members 33. Therefore, the current flowing from the conductive connecting member 35 to the third conductive member 33 flows rearward in the third conductive member 33 and is joined to the right surface 333 of the third conductive member 33. , 37. Then, the current flows to the fourth conductive member 34 via the second transistors 37 and 37, and further, a current flows from the fourth conductive member 34 to the power supply V side (capacitor module 2 side).
図14からわかるように、電源V側から三相DCブラシレスモータM側に電流が流れる場合、パワーモジュール3の第一導電部材31内を前方に向かって電流が流れる。一方。図15からわかるように三相DCブラシレスモータM側から電源V側に電流が流れる場合、パワーモジュール3内の第三導電部材33内を後方に向かって電流が流れる。つまり、第一導電部材31を流れる直流入力電流の向きと、第三導電部材33を流れる直流出力電流の向きが反対である。また、第一導電部材31は、直流入力経路のうち、第一トランジスタ36,36を通過する前の電流経路を構成する。一方、第三導電部材33は、直流出力経路のうち、第二トランジスタ37,37を通過する前の電流経路を構成する。従って、本実施形態に係る半導体装置1は、直流入力経路のうち半導体素子を通過する前の電流経路を流れる電流と、直流出力経路のうち半導体素子を通過する前の電流経路を流れる電流の向きが反対方向であるように構成される。 As can be seen from FIG. 14, when a current flows from the power supply V side to the three-phase DC brushless motor M side, the current flows forward in the first conductive member 31 of the power module 3. on the other hand. As can be seen from FIG. 15, when a current flows from the three-phase DC brushless motor M side to the power supply V side, the current flows backward in the third conductive member 33 in the power module 3. That is, the direction of the DC input current flowing through the first conductive member 31 and the direction of the DC output current flowing through the third conductive member 33 are opposite. Further, the first conductive member 31 constitutes a current path of the DC input paths before passing through the first transistors 36, 36. On the other hand, the third conductive member 33 constitutes a current path of the DC output paths before passing through the second transistors 37 and 37. Therefore, in the semiconductor device 1 according to the present embodiment, the directions of the current flowing through the current path of the DC input path before passing through the semiconductor element and the direction of the current flowing through the current path of the DC output path before passing through the semiconductor element. Is configured to be in the opposite direction.
そして、第一導電部材31と第三導電部材33は、絶縁シート8を介して隣接配置している。反対方向に電流が流れる部材が隣接配置している場合、両部材の相互インダクタンスの作用によって、両部材の寄生インダクタンスが低減する。つまり、本実施形態に係る半導体装置1は、寄生インダクタンスを低減することができるように構成される。 The first conductive member 31 and the third conductive member 33 are arranged adjacent to each other via the insulating sheet 8. When the members through which currents flow in opposite directions are arranged adjacent to each other, the parasitic inductance of both members is reduced by the action of the mutual inductance of both members. That is, the semiconductor device 1 according to the present embodiment is configured to be able to reduce the parasitic inductance.
また、電流の直流入出力経路の構成部品(第一導電部材31、第二導電部材32、第三導電部材33、第四導電部材34、導電性接続部材35)は、電線ではなくブロック形状或いは板状の部材である。このため、電線に比べて寄生インダクタンスが低い。よって、さらに半導体装置1内の寄生インダクタンスを低下させることができる。 Further, the components of the DC input / output path of the current (first conductive member 31, second conductive member 32, third conductive member 33, fourth conductive member 34, conductive connecting member 35) are not electric wires but block-shaped or It is a plate-shaped member. Therefore, the parasitic inductance is lower than that of the electric wire. Therefore, the parasitic inductance in the semiconductor device 1 can be further reduced.
また、本実施形態に係る半導体装置1によれば、第一トランジスタ36,36の一方の主面が第一導電部材31に面接触され、他方の主面が第二導電部材32の第一接合部323の先端面に面接触される。このため、第一トランジスタ36,36のスイッチング作動時に生じる熱が、第一導電部材31及び第二導電部材32の双方を介して冷却装置4に伝達される。このようにして第一トランジスタ36,36の熱が複数の部材を介して冷却装置4に伝達されるので、伝熱面積が拡大し、それゆえに放熱効率が向上する。 Further, according to the semiconductor device 1 according to the present embodiment, one main surface of the first transistors 36, 36 is in surface contact with the first conductive member 31, and the other main surface is the first junction of the second conductive member 32. It comes into surface contact with the tip surface of the portion 323. Therefore, the heat generated during the switching operation of the first transistors 36, 36 is transferred to the cooling device 4 via both the first conductive member 31 and the second conductive member 32. In this way, the heat of the first transistors 36, 36 is transferred to the cooling device 4 via the plurality of members, so that the heat transfer area is expanded, and therefore the heat dissipation efficiency is improved.
また、第一導電部材31は直方体形状であり、冷却装置4に接触する面である下面316の面積は大きい。さらに、第二導電部材32は放熱部322を備え、この放熱部322は、冷却装置4に接触する下面322aが大きくなるように、冷却装置4の上面41において長さ方向及び幅方向に広がっている。よって、第一導電部材31及び第二導電部材32が上面41(冷却面)に接触する面積は大きく、それ故に、第一トランジスタ36,36の熱を、より効率的に、冷却装置4に伝達させることができ、その結果、放熱効率がより一層向上する。 Further, the first conductive member 31 has a rectangular parallelepiped shape, and the area of the lower surface 316, which is the surface in contact with the cooling device 4, is large. Further, the second conductive member 32 includes a heat radiating portion 322, and the heat radiating portion 322 extends in the length direction and the width direction on the upper surface 41 of the cooling device 4 so that the lower surface 322a in contact with the cooling device 4 becomes large. There is. Therefore, the area where the first conductive member 31 and the second conductive member 32 come into contact with the upper surface 41 (cooling surface) is large, and therefore, the heat of the first transistors 36, 36 is more efficiently transferred to the cooling device 4. As a result, the heat dissipation efficiency is further improved.
また、本実施形態に係る半導体装置1によれば、第二トランジスタ37,37の一方の主面が第三導電部材33に面接触され、他方の主面が第四導電部材34の第二接合部343の先端面に面接触される。このため、第二トランジスタ37,37のスイッチング作動時に生じる熱が、第三導電部材33及び第四導電部材34の双方を介して冷却装置4に伝達される。このようにして第二トランジスタ37,37の熱が複数の部材を介して冷却装置4に伝達されるので、伝熱面積が拡大し、それゆえに放熱効率が向上する。 Further, according to the semiconductor device 1 according to the present embodiment, one main surface of the second transistors 37, 37 is brought into surface contact with the third conductive member 33, and the other main surface is the second junction of the fourth conductive member 34. The tip surface of the portion 343 is brought into surface contact. Therefore, the heat generated during the switching operation of the second transistors 37 and 37 is transferred to the cooling device 4 via both the third conductive member 33 and the fourth conductive member 34. In this way, the heat of the second transistors 37, 37 is transferred to the cooling device 4 via the plurality of members, so that the heat transfer area is expanded, and therefore the heat dissipation efficiency is improved.
また、第三導電部材33は直方体形状であり、冷却装置4に接触する面である下面336の面積は大きい。さらに、第四導電部材34は放熱部342を備え、この放熱部342は、冷却装置4に接触する下面342aが大きくなるように、冷却装置4の上面41において長さ方向及び幅方向に広がっている。よって、第三導電部材33及び第四導電部材34が冷却装置4の上面41(冷却面)に接触する面積は大きく、それ故に、第二トランジスタ37,37の熱を、より効率的に、冷却装置4に伝達させることができ、その結果、放熱効率がより一層向上する。 Further, the third conductive member 33 has a rectangular parallelepiped shape, and the area of the lower surface 336, which is the surface in contact with the cooling device 4, is large. Further, the fourth conductive member 34 includes a heat radiating portion 342, and the heat radiating portion 342 extends in the length direction and the width direction on the upper surface 41 of the cooling device 4 so that the lower surface 342a in contact with the cooling device 4 becomes large. There is. Therefore, the area where the third conductive member 33 and the fourth conductive member 34 come into contact with the upper surface 41 (cooling surface) of the cooling device 4 is large, and therefore, the heat of the second transistors 37 and 37 is cooled more efficiently. It can be transmitted to the device 4, and as a result, the heat dissipation efficiency is further improved.
また、第一導電部材31、第二導電部材32、第三導電部材33、及び第四導電部材34は、絶縁シート9のみを介して、冷却装置4の上面41に接触している。従って、各各導電部材と冷却装置4との間に放熱を阻害する部材が少なく、これにより効率的に第一トランジスタ36,36の熱及び第二トランジスタ37,37の熱を冷却装置4に伝達させることができる。 Further, the first conductive member 31, the second conductive member 32, the third conductive member 33, and the fourth conductive member 34 are in contact with the upper surface 41 of the cooling device 4 only through the insulating sheet 9. Therefore, there are few members that hinder heat dissipation between each conductive member and the cooling device 4, and thereby efficiently transfer the heat of the first transistors 36 and 36 and the heat of the second transistors 37 and 37 to the cooling device 4. Can be made to.
また、本実施形態に係る半導体装置1によれば、パワーモジュール3の第一導電部材31の右前方面313aに第一トランジスタ36,36の一方の主面が接合され、第三導電部材33の右面333に第二トランジスタ37,37の一方の主面が接合される。従って、第一トランジスタ36,36は、第一導電部材31の右側から接合され、第二トランジスタ37,37は、第三導電部材33の右側から接合される。また、第二導電部材32は、第一導電部材31に接合された第一トランジスタ36,36の右方を向いた他方の主面に接合され、第四導電部材34は、第三導電部材33に接合された第二トランジスタ37,37の右方を向いた他方の主面に接合される。従って、第二導電部材32は、第一トランジスタ36,36の右側から第一トランジスタ36,36に接合されることになり、第四導電部材34は、第二トランジスタ37,37の右側から第二トランジスタ37,37に接合されることになる。さらに、第三導電部材33は、第一導電部材31の右後方面313b、すなわち右方を向いた面に対して、絶縁シート8を介して右側から接続される。このように、第一導電部材31への第一トランジスタ36,36の組み付け、第一トランジスタ36,36への第二導電部材32の組み付け、第三導電部材33への第二トランジスタ37,37の組み付け、第二トランジスタ37,37への第四導電部材34の組み付け、及び、第一導電部材31への第三導電部材33の組み付けは、全て、右側から行われる。つまり、一方向組付けが実現される。このようにして一方向組付けを実現することにより、半導体装置1の製造の自動化を図ることができるとともに生産性を向上させることができる。 Further, according to the semiconductor device 1 according to the present embodiment, one main surface of the first transistors 36, 36 is joined to the right front surface 313a of the first conductive member 31 of the power module 3, and the right surface of the third conductive member 33. One main surface of the second transistors 37, 37 is joined to the 333. Therefore, the first transistors 36, 36 are joined from the right side of the first conductive member 31, and the second transistors 37, 37 are joined from the right side of the third conductive member 33. Further, the second conductive member 32 is joined to the other main surface of the first transistors 36, 36 joined to the first conductive member 31 facing to the right, and the fourth conductive member 34 is the third conductive member 33. It is joined to the other main surface of the second transistors 37, 37, which are joined to the right side, facing to the right. Therefore, the second conductive member 32 is joined to the first transistors 36, 36 from the right side of the first transistors 36, 36, and the fourth conductive member 34 is second from the right side of the second transistors 37, 37. It will be joined to the transistors 37 and 37. Further, the third conductive member 33 is connected to the right rear surface 313b of the first conductive member 31, that is, the surface facing to the right from the right side via the insulating sheet 8. As described above, the first transistors 36, 36 are assembled to the first conductive member 31, the second conductive member 32 is assembled to the first conductors 36, 36, and the second transistors 37, 37 are assembled to the third conductive member 33. Assembling, assembling the fourth conductive member 34 to the second transistors 37, 37, and assembling the third conductive member 33 to the first conductive member 31 are all performed from the right side. That is, one-way assembly is realized. By realizing the one-way assembly in this way, it is possible to automate the production of the semiconductor device 1 and improve the productivity.
また、本実施形態に係る半導体装置1によれば、各パワーモジュール3A,3B,3Cの第一導電部材31の上面315及び第四導電部材34の放熱部342の上面342bに、に、直接、コンデンサモジュール2の接続端子が溶接接合されている。このため、コンデンサモジュール2を例えばネジにより各パワーモジュール3A,3B,3C接合する場合と比較して、接合位置の寸法公差を大きくすることができる。そのため、半導体装置1の設計工数及び半導体装置の生産性を向上することができるとともに、締結部材を必要としないことから、コスト低減を図ることもできる。 Further, according to the semiconductor device 1 according to the present embodiment, the power modules 3A, 3B, and 3C are directly attached to the upper surface 315 of the first conductive member 31 and the upper surface 342b of the heat radiating portion 342 of the fourth conductive member 34. The connection terminals of the capacitor module 2 are welded together. Therefore, the dimensional tolerance of the joining position can be increased as compared with the case where the capacitor modules 2 are joined to the power modules 3A, 3B, and 3C with screws, for example. Therefore, the design man-hours of the semiconductor device 1 and the productivity of the semiconductor device can be improved, and the cost can be reduced because the fastening member is not required.
また、本実施形態に係る半導体装置1によれば、各導電部材(31,32,33,34)の放熱面(316,322a,336,342a)が、一枚の絶縁シート9を介して冷却装置4の上面41(冷却面)に接触している。このため、2層以上の絶縁シートを介して放熱面が冷却装置に接触するような従来の構造に比べて、より放熱効率が向上する。また、このように各導電部材から冷却装置4への放熱効率が向上するので、例えば第一トランジスタ36,36の熱が、接触端子を介してコンデンサモジュール2側に伝達されることがない。また、導電部材の熱容量が大きいので、端子温度の上昇が抑えられ、コンデンサモジュール2への伝熱量を低減することができる。つまり、本実施形態に係る半導体装置1は、内部に熱が籠ることがないように構成されており、半導体装置1内の熱を冷却装置4を介して外部に効率的に放出することができる。 Further, according to the semiconductor device 1 according to the present embodiment, the heat radiating surfaces (316, 322a, 336, 342a) of each conductive member (31, 32, 33, 34) are cooled via one insulating sheet 9. It is in contact with the upper surface 41 (cooling surface) of the device 4. Therefore, the heat dissipation efficiency is further improved as compared with the conventional structure in which the heat radiating surface comes into contact with the cooling device via the two or more layers of insulating sheets. Further, since the heat dissipation efficiency from each conductive member to the cooling device 4 is improved in this way, for example, the heat of the first transistors 36, 36 is not transferred to the capacitor module 2 side via the contact terminals. Further, since the heat capacity of the conductive member is large, an increase in the terminal temperature can be suppressed, and the amount of heat transferred to the capacitor module 2 can be reduced. That is, the semiconductor device 1 according to the present embodiment is configured so that heat does not accumulate inside, and the heat inside the semiconductor device 1 can be efficiently released to the outside via the cooling device 4. ..
また、本実施形態に係る半導体装置1によれば、絶縁シート8を介して隣接配置された第一導電部材31と第三導電部材33の後端部分にそれぞれ面取り面(317,337)が形成されており、これらの面取り面が、絶縁シート8を挟んで対向配置している。このような面取り面を形成することにより、半導体装置1への通電時に第一導電部材31と第三導電部材33との間で沿面放電による短絡が発生することが効果的に防止される。 Further, according to the semiconductor device 1 according to the present embodiment, chamfered surfaces (317, 337) are formed at the rear end portions of the first conductive member 31 and the third conductive member 33 which are adjacently arranged via the insulating sheet 8. These chamfered surfaces are arranged so as to face each other with the insulating sheet 8 interposed therebetween. By forming such a chamfered surface, it is possible to effectively prevent a short circuit due to creeping discharge between the first conductive member 31 and the third conductive member 33 when the semiconductor device 1 is energized.
以上、本発明の実施形態について説明したが、本発明は、上記実施形態に限定されるべきものではない。例えば、上記実施形態においては、第一半導体素子及び第二半導体素子として、トランジスタを例示したが、それ以外の半導体素子、例えばダイオードを用いることもできる。また、上記実施形態では、第一半導体素子として一対の第一トランジスタ36,36を用い、第二半導体素子として一対の第二トランジスタ37,37を用いる例について説明したが、第一半導体素子及び第二半導体素子は、それぞれ単数であってもよいし複数であってもよい。また、上記実施形態にて用いられる第一トランジスタ36及び第二トランジスタ37に接続する信号線(例えばゲート電極に接続する信号線、ソース電極に接続する信号線)に、可撓性を有するフレキシブル配線を用いることもできる。これによれば、フレキシブル配線を陥ることによってこれらの信号線を直接制御基板に接続することができる。従って、これらの配線を制御基板に接続するための中間端子を省略することができ、コスト低減を図ることができる。また、上記実施形態では、各導電部材及び導電性接続部材の材質として銅を例示したが、電気伝導性及び熱伝導性を有する材質、好ましくは電気伝導性及び熱伝導性に優れる材質であれば、銅以外の材質を用いても良い。このように、本発明は、その趣旨を逸脱しない限りにおいて、変形可能である。 Although the embodiments of the present invention have been described above, the present invention should not be limited to the above embodiments. For example, in the above embodiment, the transistor is exemplified as the first semiconductor element and the second semiconductor element, but other semiconductor elements such as diodes can also be used. Further, in the above embodiment, an example in which a pair of first transistors 36, 36 are used as the first semiconductor element and a pair of second transistors 37, 37 are used as the second semiconductor element has been described. The two semiconductor elements may be singular or plural, respectively. Further, flexible wiring having flexibility in the signal lines connected to the first transistor 36 and the second transistor 37 (for example, the signal line connected to the gate electrode and the signal line connected to the source electrode) used in the above embodiment. Can also be used. According to this, these signal lines can be directly connected to the control board by falling into the flexible wiring. Therefore, it is possible to omit the intermediate terminal for connecting these wirings to the control board, and it is possible to reduce the cost. Further, in the above embodiment, copper is exemplified as the material of each conductive member and the conductive connecting member, but any material having electrical conductivity and thermal conductivity, preferably a material having excellent electrical conductivity and thermal conductivity. , A material other than copper may be used. As described above, the present invention can be modified as long as it does not deviate from the gist thereof.
1…半導体装置、2…コンデンサモジュール、3…パワーモジュール、3A…第一パワーモジュール、3B…第二パワーモジュール、3C…第三パワーモジュール、31…第一導電部材、311…前面、312…後面、313…右面、313a…右前方面(第一半導体接合面)、313b…右後方面(接触面)、314…左面、315…上面(第一取付面)、316…下面(第一放熱面)、317…面取り面、32…第二導電部材、321…本体部、322…放熱部、322a…下面(第二放熱面)、322b…上面(載置面)、323…第一接合部、33…第三導電部材、331…前面、332…後面、333…右面(第二半導体接合面)、334…左面(対向面)、335…上面、336…下面(第三放熱面)、337…面取り面、34…第四導電部材、341…本体部、342…放熱部、342a…下面(第四放熱面)、342b…上面(第二取付面)、343…第二接合部、35…導電性接続部材、351…本体部、351a…下面、352…接続片部、36…第一トランジスタ(第一半導体素子)、37…第二トランジスタ(第二半導体素子)、4…冷却装置、41…上面(冷却面)、5…電流センサ、8…絶縁シート(シート状の絶縁部材)、9…絶縁シート、223,225,227…第一接続端子、224,226,228…第二接続端子、D…ドレイン電極(第一の電極)、S…ソース電極(第二の電極)、G…ゲート電極、M…三相DCブラシレスモータ、V…電源 1 ... Semiconductor device, 2 ... Condenser module, 3 ... Power module, 3A ... First power module, 3B ... Second power module, 3C ... Third power module, 31 ... First conductive member, 311 ... Front, 312 ... Rear , 313 ... Right surface, 313a ... Right front surface (first semiconductor joint surface), 313b ... Right rear surface (contact surface), 314 ... Left surface, 315 ... Upper surface (first mounting surface), 316 ... Lower surface (first heat radiation surface) , 317 ... chamfered surface, 32 ... second conductive member, 321 ... main body, 322 ... heat radiating part, 322a ... lower surface (second heat radiating surface), 322b ... upper surface (mounting surface), 323 ... first joint, 33 ... Third conductive member, 331 ... Front surface, 332 ... Rear surface, 333 ... Right surface (second semiconductor joint surface), 334 ... Left surface (opposing surface), 335 ... Upper surface, 336 ... Lower surface (third heat radiation surface), 337 ... Chamfering Surface, 34 ... Fourth conductive member, 341 ... Main body, 342 ... Heat dissipation part, 342a ... Lower surface (fourth heat dissipation surface), 342b ... Upper surface (second mounting surface), 343 ... Second joint, 35 ... Conductive Connecting member, 351 ... Main body, 351a ... Bottom surface, 352 ... Connection piece, 36 ... First transistor (first semiconductor element), 37 ... Second transistor (second semiconductor element), 4 ... Cooling device, 41 ... Top surface (Cooling surface), 5 ... Current sensor, 8 ... Insulation sheet (sheet-like insulation member), 9 ... Insulation sheet, 223, 225, 227 ... First connection terminal, 224, 226, 228 ... Second connection terminal, D ... Drain electrode (first electrode), S ... Source electrode (second electrode), G ... Gate electrode, M ... Three-phase DC brushless motor, V ... Power supply

Claims (5)

  1. 第一の電極が形成された一方の主面及び前記一方の主面とは反対側の面であって第二の電極が形成された他方の主面を有する第一半導体素子及び第二半導体素子と、
    電気伝導性及び熱伝導性を有する金属により形成され、前記第一半導体素子の前記一方の主面が接合される第一半導体接合面と、前記第一半導体接合面と同一方向を向いた接触面と、前記第一半導体接合面とは異なる方向を向いた第一放熱面とを有する第一導電部材と、
    電気伝導性及び熱伝導性を有する金属により形成され、前記第一導電部材の前記第一半導体接合面に接合された前記第一半導体素子の前記他方の主面に接合される第一接合部と、前記第一放熱面と同一方向を向いた第二放熱面とを有する第二導電部材と、
    電気伝導性及び熱伝導性を有する金属により形成され、前記第一半導体接合面と同一方向を向くとともに前記第二半導体素子の前記一方の主面が接合される第二半導体接合面と、前記第二半導体接合面とは反対方向を向いた面であってシート状の絶縁部材を介して前記接触面に対面接触する対向面と、前記第一放熱面と同一方向を向いた第三放熱面とを有し、前記絶縁部材を介して前記第一導電部材に隣接して配置された第三導電部材と、
    電気伝導性及び熱伝導性を有する金属により形成され、前記第二導電部材の前記第二半導体接合面に接合された前記第二半導体素子の前記他方の主面に接合される第二接合部と、前記第一放熱面と同一方向を向いた第四放熱面と、を有する第四導電部材と、
    前記第一放熱面、前記第二放熱面、前記第三放熱面、及び前記第四放熱面に面接触する冷却面を有する冷却装置と、
    を備える、半導体装置。
    A first semiconductor device and a second semiconductor device having one main surface on which the first electrode is formed and the other main surface on the side opposite to the one main surface on which the second electrode is formed. When,
    A first semiconductor bonding surface formed of a metal having electrical conductivity and thermal conductivity, to which one of the main surfaces of the first semiconductor element is bonded, and a contact surface facing the same direction as the first semiconductor bonding surface. And a first conductive member having a first heat radiation surface facing in a direction different from that of the first semiconductor joint surface.
    With a first joint portion formed of a metal having electrical conductivity and thermal conductivity and joined to the other main surface of the first semiconductor element joined to the first semiconductor joint surface of the first conductive member. , A second conductive member having a second heat radiating surface facing the same direction as the first heat radiating surface,
    A second semiconductor junction surface formed of a metal having electrical conductivity and thermal conductivity, facing the same direction as the first semiconductor junction surface and to which one of the main surfaces of the second semiconductor element is bonded, and the first semiconductor junction surface. (Ii) A surface facing in the opposite direction to the semiconductor bonding surface and facing the contact surface via a sheet-shaped insulating member, and a third heat radiating surface facing the same direction as the first heat radiating surface. And a third conductive member arranged adjacent to the first conductive member via the insulating member.
    With a second junction formed of a metal having electrical conductivity and thermal conductivity and bonded to the other main surface of the second semiconductor element bonded to the second semiconductor bonding surface of the second conductive member. A fourth conductive member having a fourth heat radiating surface facing in the same direction as the first heat radiating surface,
    A cooling device having a cooling surface having surface contact with the first heat radiation surface, the second heat radiation surface, the third heat radiation surface, and the fourth heat radiation surface.
    A semiconductor device.
  2. 請求項1に記載の半導体装置において、
    電気伝導性及び熱伝導性を有する金属により形成され、前記第二導電部材及び前記第三導電部材に電気的に接続される導電性接続部材を備え、
    前記第一導電部材は、電源の正極及び負極のいずれか一方に電気的に接続され、
    前記第四導電部材は、電源の正極及び負極のいずれか他方に電気的に接続され、
    前記導電性接続部材は、電力負荷に電気的に接続される、半導体装置。
    In the semiconductor device according to claim 1,
    A conductive connecting member formed of a metal having electrical conductivity and thermal conductivity and electrically connected to the second conductive member and the third conductive member.
    The first conductive member is electrically connected to either the positive electrode or the negative electrode of the power supply.
    The fourth conductive member is electrically connected to either the positive electrode or the negative electrode of the power supply.
    The conductive connecting member is a semiconductor device that is electrically connected to a power load.
  3. 請求項2に記載の半導体装置において、
    前記第二導電部材は、前記第二放熱面及び前記第二放熱面とは反対方向を向いた載置面を有する放熱部を有し、
    前記導電性接続部材は、前記載置面に載置された状態で前記放熱部に接続された本体部と、前記本体部から延設されて前記第三導電部材に接続される接続片部とを有する、半導体装置。
    In the semiconductor device according to claim 2,
    The second conductive member has a heat radiating portion having a second heat radiating surface and a mounting surface facing the direction opposite to the second heat radiating surface.
    The conductive connecting member includes a main body portion connected to the heat radiating portion while being mounted on the above-mentioned mounting surface, and a connecting piece portion extending from the main body portion and connected to the third conductive member. A semiconductor device.
  4. 請求項2又は3に記載の半導体装置において、
    前記第一導電部材が有する前記第一半導体接合面及び前記接触面は、所定の第一方向における後方から前方に向かって、前記接触面、前記第一半導体接合面、の順に形成されており、
    前記導電性接続部材が前記第三導電部材に接続される位置は、前記第二半導体素子の前記一方の主面が前記第三導電部材の前記第二半導体接合面に接合される位置よりも前記第一方向における前方である、半導体装置。
    In the semiconductor device according to claim 2 or 3.
    The first semiconductor joint surface and the contact surface of the first conductive member are formed in the order of the contact surface and the first semiconductor joint surface from the rear to the front in a predetermined first direction.
    The position where the conductive connecting member is connected to the third conductive member is higher than the position where the one main surface of the second semiconductor element is joined to the second semiconductor bonding surface of the third conductive member. A semiconductor device that is forward in the first direction.
  5. 請求項1乃至4のいずれか1項に記載の半導体装置において、
    電源に接続されるとともに第一接続端子および第二接続端子を有する第三半導体素子をさらに備え、
    前記第一導電部材は、前記第一接続端子が載置される第一取付面を有し、
    前記第四導電部材は、前記第二接続端子が載置される第二取付面を有し、
    前記第一取付面に前記第一接続端子が溶接され、
    前記第二取付面に前記第二接続端子が溶接される、半導体装置。
    In the semiconductor device according to any one of claims 1 to 4.
    Further provided with a third semiconductor element connected to a power source and having a first connection terminal and a second connection terminal,
    The first conductive member has a first mounting surface on which the first connection terminal is mounted.
    The fourth conductive member has a second mounting surface on which the second connection terminal is mounted.
    The first connection terminal is welded to the first mounting surface,
    A semiconductor device in which the second connection terminal is welded to the second mounting surface.
JP2017138969A 2017-07-18 2017-07-18 Semiconductor device Active JP6898588B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017138969A JP6898588B2 (en) 2017-07-18 2017-07-18 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017138969A JP6898588B2 (en) 2017-07-18 2017-07-18 Semiconductor device

Publications (2)

Publication Number Publication Date
JP2019022330A JP2019022330A (en) 2019-02-07
JP6898588B2 true JP6898588B2 (en) 2021-07-07

Family

ID=65353688

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017138969A Active JP6898588B2 (en) 2017-07-18 2017-07-18 Semiconductor device

Country Status (1)

Country Link
JP (1) JP6898588B2 (en)

Also Published As

Publication number Publication date
JP2019022330A (en) 2019-02-07

Similar Documents

Publication Publication Date Title
US9379083B2 (en) Semiconductor device and method for manufacturing semiconductor device
JP5924164B2 (en) Semiconductor device
JP4005814B2 (en) Distribution unit for electrical junction box and electrical junction box
JP6160780B2 (en) 3-level power converter
JP5263334B2 (en) Busbar module
JP2010119300A5 (en)
JP4640425B2 (en) Power converter
JP6331294B2 (en) Semiconductor device
US10027094B2 (en) Power module, power converter and drive arrangement with a power module
JP4064741B2 (en) Semiconductor device
JPWO2016158259A1 (en) Power converter
US10720383B2 (en) Semiconductor device configuring upper and lower arms including auxiliary terminals
WO2013065849A1 (en) Inverter device
JP6020379B2 (en) Semiconductor device
JP2004063681A (en) Semiconductor device
JP2008098308A (en) Semiconductor device
JP6898588B2 (en) Semiconductor device
JP6891904B2 (en) Semiconductor modules, electric vehicles and power control units
JP6919392B2 (en) Semiconductor module
JP2014229782A (en) Semiconductor device and manufacturing method of the same
JP2014160717A (en) Power conversion device and semiconductor device
JP2011014744A (en) Semiconductor device
JP6805768B2 (en) Semiconductor device
JP5971051B2 (en) Semiconductor unit
WO2019106839A1 (en) Power conversion device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200611

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210415

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210512

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210525

R151 Written notification of patent or utility model registration

Ref document number: 6898588

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151