JP6897441B2 - Power supply voltage detector - Google Patents

Power supply voltage detector Download PDF

Info

Publication number
JP6897441B2
JP6897441B2 JP2017173964A JP2017173964A JP6897441B2 JP 6897441 B2 JP6897441 B2 JP 6897441B2 JP 2017173964 A JP2017173964 A JP 2017173964A JP 2017173964 A JP2017173964 A JP 2017173964A JP 6897441 B2 JP6897441 B2 JP 6897441B2
Authority
JP
Japan
Prior art keywords
voltage
power supply
supply voltage
resistors
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017173964A
Other languages
Japanese (ja)
Other versions
JP2019049476A (en
Inventor
崇明 萩原
崇明 萩原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2017173964A priority Critical patent/JP6897441B2/en
Publication of JP2019049476A publication Critical patent/JP2019049476A/en
Application granted granted Critical
Publication of JP6897441B2 publication Critical patent/JP6897441B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement Of Current Or Voltage (AREA)

Description

本発明は、電源電圧検出装置に関し、詳しくは、直流電源の電源電圧を複数の抵抗による分圧回路による分圧電圧に基づいて検出する電源電圧検出装置に関する。 The present invention relates to a power supply voltage detecting device, and more particularly to a power supply voltage detecting device that detects a power supply voltage of a DC power supply based on a voltage dividing voltage by a voltage dividing circuit with a plurality of resistors.

従来、この種の電源電圧検出装置としては、組電池のモジュール電圧を複数の抵抗による分圧回路による分圧電圧を検出することによって検出するものが提案されている(例えば、特許文献1参照)。この装置では、分圧回路を用いることにより、組電池のモジュール電圧が数十Vであっても入力電圧を通常レベルの5V以下とすることができ、汎用の回路素子や汎用の集積回路技術で構成することができるという効果を奏している。 Conventionally, as a power supply voltage detecting device of this type, a device that detects a module voltage of an assembled battery by detecting a voltage dividing voltage by a voltage dividing circuit by a plurality of resistors has been proposed (see, for example, Patent Document 1). .. In this device, by using a voltage divider circuit, the input voltage can be set to 5V or less, which is the normal level, even if the module voltage of the assembled battery is several tens of volts, and it can be used with general-purpose circuit elements and general-purpose integrated circuit technology. It has the effect of being able to be configured.

特開2000−199771号公報Japanese Unexamined Patent Publication No. 2000-99771

しかしながら、上述の電源電圧検出装置では、分圧回路に用いる抵抗は温度特性を有するため、雰囲気温度により抵抗値が変化し、正確な電圧を検出することができない場合を生じる。電源電圧が高電圧である場合、分圧回路に用いる抵抗値が大きくなるため、抵抗の温度特性による誤差は大きくなってしまう。 However, in the above-mentioned power supply voltage detecting device, since the resistor used in the voltage dividing circuit has a temperature characteristic, the resistance value changes depending on the atmospheric temperature, and an accurate voltage may not be detected in some cases. When the power supply voltage is a high voltage, the resistance value used in the voltage dividing circuit becomes large, so that the error due to the temperature characteristics of the resistance becomes large.

本発明の電源電圧検出装置は、より適正に直流電源の電源電圧を検出することを主目的とする。 The main purpose of the power supply voltage detection device of the present invention is to detect the power supply voltage of a DC power supply more appropriately.

本発明の電源電圧検出装置は、上述の主目的を達成するために以下の手段を採った。 The power supply voltage detector of the present invention has adopted the following means in order to achieve the above-mentioned main object.

本発明の電源電圧検出装置は、
直流電源の電源電圧を複数の抵抗による分圧回路による分圧電圧に基づいて検出する電源電圧検出装置であって、
前記複数の抵抗の雰囲気温度を検出する温度センス部と、
前記複数の抵抗の温度特性に対する係数マップを記憶する係数マップ記憶部と、
を有し、
前記分圧電圧に対して前記雰囲気温度と前記係数マップとに基づく補正を行なって前記電源電圧を検出する、
ことを特徴とする電源電圧検出装置。
The power supply voltage detection device of the present invention
It is a power supply voltage detection device that detects the power supply voltage of a DC power supply based on the voltage division voltage by a voltage divider circuit with multiple resistors.
A temperature sense unit that detects the atmospheric temperature of the plurality of resistors, and
A coefficient map storage unit that stores coefficient maps for the temperature characteristics of the plurality of resistors, and a coefficient map storage unit.
Have,
The power supply voltage is detected by correcting the divided voltage based on the atmospheric temperature and the coefficient map.
A power supply voltage detector characterized by the fact that.

この本発明の電源電圧検出装置では、分圧回路による分圧電圧に対して、温度センス部により検出される複数の抵抗の雰囲気温度と複数の抵抗の温度特性に対する係数マップとに基づく補正を行なって電源電圧を検出する。これにより、複数の抵抗の雰囲気温度に基づく補正を行なわないものに比して、より適正に電源電圧を検出することができる。 In the power supply voltage detection device of the present invention, the voltage dividing voltage by the voltage dividing circuit is corrected based on the ambient temperature of the plurality of resistors detected by the temperature sense unit and the coefficient map for the temperature characteristics of the plurality of resistors. To detect the power supply voltage. As a result, the power supply voltage can be detected more appropriately as compared with the case where the correction based on the atmospheric temperature of the plurality of resistors is not performed.

ここで、複数の抵抗としては、複数のチップ抵抗を用いることができる。こうすれば、個々の抵抗の温度特性を得なくても容易に係数マップを得ることができる。また、温度センス部としては、サーミスタを用いたり、温度測定機能を有する半導体素子を用いることができる。 Here, as the plurality of resistors, a plurality of chip resistors can be used. In this way, the coefficient map can be easily obtained without obtaining the temperature characteristics of the individual resistors. Further, as the temperature sense unit, a thermistor or a semiconductor element having a temperature measuring function can be used.

本発明の一実施例としての電源電圧検出装置20の構成の概略を示す構成図である。It is a block diagram which shows the outline of the structure of the power supply voltage detection device 20 as one Example of this invention. 係数マップ34の一例を示す説明図である。It is explanatory drawing which shows an example of the coefficient map 34. 変形例の温度センス部26Bの構成の概略を示す構成図である。It is a block diagram which shows the outline of the structure of the temperature sense part 26B of a modification.

次に、本発明を実施するための形態を実施例を用いて説明する。 Next, a mode for carrying out the present invention will be described with reference to examples.

図1は、本発明の一実施例としての電源電圧検出装置20の構成の概略を示す構成図である。実施例の電源電圧検出装置20は、直流電源10の電圧(電源電圧V0)を検出する装置として構成されており、直流電源10の電圧V0を検出用に調整する電圧調整回路22と、電圧調整回路22の雰囲気温度Trを検出する温度センス部26と、CPU32や入力回路36を中心として構成された電子制御ユニット30と、を備える。 FIG. 1 is a configuration diagram showing an outline of the configuration of a power supply voltage detection device 20 as an embodiment of the present invention. The power supply voltage detection device 20 of the embodiment is configured as a device that detects the voltage of the DC power supply 10 (power supply voltage V0), and includes a voltage adjustment circuit 22 that adjusts the voltage V0 of the DC power supply 10 for detection and voltage adjustment. It includes a temperature sense unit 26 for detecting the atmospheric temperature Tr of the circuit 22, and an electronic control unit 30 configured around the CPU 32 and the input circuit 36.

直流電源10は、例えば組電池や、燃料電池などの直流電力を昇圧して500Vや800V或いは1000Vの高電圧(電源電圧V0)として供給する電源を用いることができる。 As the DC power supply 10, for example, a power source such as an assembled battery or a fuel cell that boosts DC power and supplies it as a high voltage of 500 V, 800 V, or 1000 V (power supply voltage V0) can be used.

電圧調整回路22は、直流電源10の正極端子に接続された正極側分圧回路R1と、直流電源10の負極端子に接続された負極側分割回路R2とにより構成されている。正極側分圧回路R1は、直流電源10の正極端子と電子制御ユニット30の入力回路36とに直列に接続されたn個の同一のチップ抵抗R1(1)〜R1(n)と、入力回路36と接地とに接続されたチップ抵抗R1(1)〜R1(n)と同一のチップ抵抗R1(n+1)と、により構成されている。チップ抵抗R1(1)〜R1(n+1)は、作用する電圧に対して十分な沿面距離が確保されるように間隔をもって接続されている。こうした正極側分圧回路R1により、直流電源10の正極側端子の接地に対する電圧V1は、V1/(n+1)として入力回路36に入力される。負極側分圧回路R2は、正極側分圧回路R1と同様に、直流電源10の負極端子と電子制御ユニット30の入力回路36とに接続されたn個の直列接続のチップ抵抗R2(1)〜R2(n)と、入力回路36と接地とに接続された1個のチップ抵抗R2(n+1)とにより構成されている。チップ抵抗R2(1)〜R2(n+1)も、作用する電圧に対して十分な沿面距離が確保されるように間隔をもって接続されている。こうした負極側分圧回路R2により、直流電源10の負極側端子の接地に対する電圧V2は、V2/(n+1)として入力回路36に入力される。したがって、入力開度34にはV1/(n+1)とV2/(n+1)のとの電位差としてのモニタ電圧Vm(Vm=(V1−V2)/(n+1))が入力されることになる。 The voltage adjusting circuit 22 is composed of a positive electrode side voltage dividing circuit R1 connected to the positive electrode terminal of the DC power supply 10 and a negative electrode side dividing circuit R2 connected to the negative electrode terminal of the DC power supply 10. The positive voltage divider circuit R1 includes n identical chip resistors R1 (1) to R1 (n) connected in series to the positive terminal of the DC power supply 10 and the input circuit 36 of the electronic control unit 30, and an input circuit. It is composed of a chip resistor R1 (n + 1) which is the same as the chip resistors R1 (1) to R1 (n) connected to the 36 and the ground. The chip resistors R1 (1) to R1 (n + 1) are connected at intervals so as to secure a sufficient creepage distance with respect to the acting voltage. By such a positive electrode side voltage dividing circuit R1, the voltage V1 with respect to the grounding of the positive electrode side terminal of the DC power supply 10 is input to the input circuit 36 as V1 / (n + 1). Similar to the positive voltage dividing circuit R1, the negative voltage dividing circuit R2 has n series-connected chip resistors R2 (1) connected to the negative terminal of the DC power supply 10 and the input circuit 36 of the electronic control unit 30. It is composed of ~ R2 (n) and one chip resistor R2 (n + 1) connected to the input circuit 36 and the ground. The chip resistors R2 (1) to R2 (n + 1) are also connected at intervals so as to secure a sufficient creepage distance with respect to the acting voltage. By such a negative electrode side voltage dividing circuit R2, the voltage V2 with respect to the grounding of the negative electrode side terminal of the DC power supply 10 is input to the input circuit 36 as V2 / (n + 1). Therefore, the monitor voltage Vm (Vm = (V1-V2) / (n + 1)) as the potential difference between V1 / (n + 1) and V2 / (n + 1) is input to the input opening degree 34.

温度センス部26は、チップ抵抗R1(1)〜R1(n+1),R2(1)〜R2(n+1)の近傍に配置されたサーミスタとして構成されており、チップ抵抗R1(1)〜R1(n+1),R2(1)〜R2(n+1)の雰囲気温度Trを検出する。 The temperature sense unit 26 is configured as a thermistor arranged in the vicinity of the chip resistors R1 (1) to R1 (n + 1) and R2 (1) to R2 (n + 1), and the chip resistors R1 (1) to R1 (n + 1). ), R2 (1) to R2 (n + 1) atmospheric temperature Tr is detected.

電子制御ユニット30は、CPU32や入力回路36を中心とした汎用のマイクロコンピュータとして構成されており、CPU32には記憶部としてのROMが内蔵されており、ROMにはチップ抵抗R1(1)〜R1(n+1),R2(1)〜R2(n+1)の温度特性に対応するための係数マップ34が記憶されている。係数マップ34は、例えば、チップ抵抗R1(1)〜R1(n+1),R2(1)〜R2(n+1)の雰囲気温度Trと電圧調整回路22から入力回路36に入力されるモニタ電圧Vmと電源電圧V0の関係を実験などにより予め定めたものである。係数マップ34の一例を図2に示す。図2では、雰囲気温度Trが−30℃、25℃、120℃のときのモニタ電圧Vmと電源電圧V0との関係として示した。したがって、CPU30は、入力回路36からのモニタ電圧Vmと温度センス部26からの雰囲気温度Trとを係数マップ34に適用して得られる電圧を電源電圧V0として検出する。 The electronic control unit 30 is configured as a general-purpose microcomputer centered on a CPU 32 and an input circuit 36. The CPU 32 has a built-in ROM as a storage unit, and the ROM has chip resistors R1 (1) to R1. A coefficient map 34 for corresponding to the temperature characteristics of (n + 1) and R2 (1) to R2 (n + 1) is stored. The coefficient map 34 includes, for example, the atmospheric temperature Tr of the chip resistors R1 (1) to R1 (n + 1) and R2 (1) to R2 (n + 1), the monitor voltage Vm input from the voltage adjusting circuit 22 to the input circuit 36, and the power supply. The relationship of the voltage V0 is determined in advance by an experiment or the like. An example of the coefficient map 34 is shown in FIG. In FIG. 2, the relationship between the monitor voltage Vm and the power supply voltage V0 when the atmospheric temperature Tr is −30 ° C., 25 ° C., and 120 ° C. is shown. Therefore, the CPU 30 detects the voltage obtained by applying the monitor voltage Vm from the input circuit 36 and the atmospheric temperature Tr from the temperature sense unit 26 to the coefficient map 34 as the power supply voltage V0.

以上説明した実施例の電源電圧検出装置20では、チップ抵抗R1(1)〜R1(n+1),R2(1)〜R2(n+1)の温度特性に対応するための係数マップ34を記憶しておき、電圧調整回路22から入力回路36に入力されるモニタ電圧Vmと温度センス部26により検出されるチップ抵抗R1(1)〜R1(n+1),R2(1)〜R2(n+1)の雰囲気温度Trを係数マップ34に適用して得られる電圧を電源電圧V0として検出する。これにより、より適正に直流電源10の電圧(電源電圧V0)を検出することができる。 In the power supply voltage detection device 20 of the embodiment described above, the coefficient map 34 for corresponding to the temperature characteristics of the chip resistors R1 (1) to R1 (n + 1) and R2 (1) to R2 (n + 1) is stored. , The monitor voltage Vm input from the voltage adjustment circuit 22 to the input circuit 36 and the atmospheric temperature Tr of the chip resistors R1 (1) to R1 (n + 1) and R2 (1) to R2 (n + 1) detected by the temperature sense unit 26. Is applied to the coefficient map 34, and the voltage obtained is detected as the power supply voltage V0. As a result, the voltage of the DC power supply 10 (power supply voltage V0) can be detected more appropriately.

実施例の電源電圧検出装置20では、チップ抵抗R1(1)〜R1(n+1),R2(1)〜R2(n+1)の雰囲気温度Trを検出する温度センス部26として、サーミスタを用いるものとした。しかし、図3に例示する変形例の温度センス部26Bのように、温度測定機能を有する半導体素子により温度センス部を構成するものとしてもよい。 In the power supply voltage detection device 20 of the embodiment, a thermistor is used as the temperature sense unit 26 for detecting the atmospheric temperature Tr of the chip resistors R1 (1) to R1 (n + 1) and R2 (1) to R2 (n + 1). .. However, as in the temperature sense unit 26B of the modified example illustrated in FIG. 3, the temperature sense unit may be configured by a semiconductor element having a temperature measurement function.

以上、本発明を実施するための形態について実施例を用いて説明したが、本発明はこうした実施例に何等限定されるものではなく、本発明の要旨を逸脱しない範囲内において、種々なる形態で実施し得ることは勿論である。 Although the embodiments for carrying out the present invention have been described above with reference to examples, the present invention is not limited to these examples, and various embodiments are used without departing from the gist of the present invention. Of course, it can be done.

本発明は、電源電圧検出装置の製造産業などに利用可能である。 The present invention can be used in the manufacturing industry of power supply voltage detectors and the like.

10 直流電源、20 電源電圧検出装置、22 電圧調整回路、26,26B 温度センス部、30 電子制御ユニット、32 CPU、34 係数マップ、36 入力回路、R1(1)〜R1(n+1),R2(1)〜R2(n+1) チップ抵抗。 10 DC power supply, 20 power supply voltage detector, 22 voltage adjustment circuit, 26, 26B temperature sense unit, 30 electronic control unit, 32 CPU, 34 coefficient map, 36 input circuit, R1 (1) to R1 (n + 1), R2 ( 1) ~ R2 (n + 1) chip resistance.

Claims (1)

直流電源の電源電圧を複数の抵抗による分圧回路による分圧電圧に基づいて検出する電源電圧検出装置であって、
前記複数の抵抗の雰囲気温度を検出する温度センス部と、
前記複数の抵抗の温度特性に基づく係数マップを記憶する係数マップ記憶部と、
を有し、
前記分圧回路は、直列に接続された複数の同一の温度特性の抵抗により構成され、一端が前記直流電源の端子に接続され、他端が接地され、前記他端からみて1番目の抵抗と2番目の抵抗との間の接点の電圧を前記分圧電圧とし、
前記分圧電圧に対して前記雰囲気温度と前記係数マップとに基づく補正を行なって前記電源電圧を検出する、
ことを特徴とする電源電圧検出装置。
It is a power supply voltage detection device that detects the power supply voltage of a DC power supply based on the voltage division voltage by a voltage divider circuit with multiple resistors.
A temperature sense unit that detects the atmospheric temperature of the plurality of resistors, and
A coefficient map storage unit that stores a coefficient map based on the temperature characteristics of the plurality of resistors, and a coefficient map storage unit.
Have,
The voltage divider circuit is composed of a plurality of resistors having the same temperature characteristics connected in series, one end of which is connected to the terminal of the DC power supply, the other end of which is grounded, and the first resistor as seen from the other end. The voltage of the contact with the second resistor is defined as the voltage dividing voltage.
The power supply voltage is detected by correcting the divided voltage based on the atmospheric temperature and the coefficient map.
A power supply voltage detector characterized by the fact that.
JP2017173964A 2017-09-11 2017-09-11 Power supply voltage detector Active JP6897441B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017173964A JP6897441B2 (en) 2017-09-11 2017-09-11 Power supply voltage detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017173964A JP6897441B2 (en) 2017-09-11 2017-09-11 Power supply voltage detector

Publications (2)

Publication Number Publication Date
JP2019049476A JP2019049476A (en) 2019-03-28
JP6897441B2 true JP6897441B2 (en) 2021-06-30

Family

ID=65906202

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017173964A Active JP6897441B2 (en) 2017-09-11 2017-09-11 Power supply voltage detector

Country Status (1)

Country Link
JP (1) JP6897441B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023017737A1 (en) * 2021-08-10 2023-02-16 日置電機株式会社 Probe device

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10289037A (en) * 1997-04-11 1998-10-27 Matsushita Electric Ind Co Ltd Battery voltage monitoring device and wireless printer
JP4075176B2 (en) * 1998-10-27 2008-04-16 株式会社デンソー Voltage detection device for battery pack
JP4035750B2 (en) * 1999-05-31 2008-01-23 株式会社デンソー Battery monitoring circuit
JP4523099B2 (en) * 1999-12-27 2010-08-11 富士通フロンテック株式会社 Battery voltage detection circuit and battery voltage detection method
JP4569641B2 (en) * 2008-02-06 2010-10-27 株式会社デンソー Analog to digital converter
JP6045984B2 (en) * 2013-06-10 2016-12-14 古河電気工業株式会社 Secondary battery status detector
JP2015021731A (en) * 2013-07-16 2015-02-02 富士通株式会社 Electronic device and current monitoring method
GB2518863A (en) * 2013-10-03 2015-04-08 Technelec Ltd Galvanically isolated monitoring circuit
JP2017049229A (en) * 2015-08-31 2017-03-09 住友電気工業株式会社 Battery state detector and computer program
CN106053909B (en) * 2016-07-25 2019-08-27 浙江天际互感器有限公司 Electric resistance partial pressure type three-phase combination voltage mutual inductor with residual voltage output

Also Published As

Publication number Publication date
JP2019049476A (en) 2019-03-28

Similar Documents

Publication Publication Date Title
US9991792B2 (en) Current sensing with RDSON correction
US9772369B2 (en) Precision measurement of voltage drop across a semiconductor switching element
US10054648B2 (en) Power source voltage detection apparatus
JP5477261B2 (en) MOSFET current determination device
US10309841B2 (en) Temperature detecting apparatus
US20160372954A1 (en) Method of overcurrent detection voltage correction and battery protection integrated circuit
US9335350B2 (en) Electronic device and current monitoring method
US20190257860A1 (en) Voltage detection and determination circuit and power battery system having same
JP6928228B2 (en) Battery monitoring circuit
US20180024042A1 (en) Corrosion monitor
JP6897441B2 (en) Power supply voltage detector
JP5168927B2 (en) Semiconductor device and trimming method thereof
US7825767B2 (en) System for setting shutdown voltage of electronic device
JP4641164B2 (en) Overheat detection circuit
US9568518B2 (en) Power measuring device with internal calibration of diode detectors
JP2017003441A (en) Gas thermal conduction type gas sensor and output correction method thereof
US20170363481A1 (en) Fault Detection Apparatus
JP6188170B2 (en) Glow plug fault diagnosis method and glow plug fault diagnosis device
JP5608328B2 (en) Constant current circuit and test device
JP6414446B2 (en) A / F sensor protection device
TWI491857B (en) Temperature sensing means
KR101452615B1 (en) Measurement method of the same
US10591332B2 (en) Airflow meter
KR101927733B1 (en) Integrated water and temperature sensor, and measuring device using thereof
WO2016166901A1 (en) Temperature measurement device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210316

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210511

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210524

R151 Written notification of patent or utility model registration

Ref document number: 6897441

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151