JP6897296B2 - Power factor improvement circuit - Google Patents

Power factor improvement circuit Download PDF

Info

Publication number
JP6897296B2
JP6897296B2 JP2017095387A JP2017095387A JP6897296B2 JP 6897296 B2 JP6897296 B2 JP 6897296B2 JP 2017095387 A JP2017095387 A JP 2017095387A JP 2017095387 A JP2017095387 A JP 2017095387A JP 6897296 B2 JP6897296 B2 JP 6897296B2
Authority
JP
Japan
Prior art keywords
circuit
output
multiplier
voltage
coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017095387A
Other languages
Japanese (ja)
Other versions
JP2018196168A (en
Inventor
洋光 照井
洋光 照井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanken Electric Co Ltd
Original Assignee
Sanken Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanken Electric Co Ltd filed Critical Sanken Electric Co Ltd
Priority to JP2017095387A priority Critical patent/JP6897296B2/en
Publication of JP2018196168A publication Critical patent/JP2018196168A/en
Application granted granted Critical
Publication of JP6897296B2 publication Critical patent/JP6897296B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Dc-Dc Converters (AREA)

Description

本発明は、力率改善回路に関する。 The present invention relates to a power factor improving circuit.

図6は、従来の力率改善回路の回路構成図である(特許文献1)。この力率改善回路は、交流電源1の交流電圧を全波整流回路2で整流し、得られた整流電圧を平滑コンデンサC1を介してリアクトルL1とトランスTの一次巻線PとMOSFETからなるスイッチング素子Q1との直列回路に供給する。スイッチング素子Q1は、ドライブ回路14からのPWM信号によりオンオフする。 FIG. 6 is a circuit configuration diagram of a conventional power factor improving circuit (Patent Document 1). This power factor improvement circuit rectifies the AC voltage of the AC power supply 1 with the full-wave rectifier circuit 2, and switches the obtained rectified voltage via the smoothing capacitor C1 via the reactor L1, the primary winding P of the transformer T, and the MOSFET. It is supplied to the series circuit with the element Q1. The switching element Q1 is turned on and off by a PWM signal from the drive circuit 14.

トランスTとスイッチング素子Q1との直列回路には、ダイオードDoとコンデンサCoとの直列回路が接続されている。ダイオードDoとコンデンサCoは、整流平滑回路を構成し、トランスTの一次巻線PとダイオードDoとの接続点に発生したスイッチング電圧を整流平滑して整流平滑電圧を出力電圧として負荷RLに出力する。コンデンサCoの両端には抵抗R1と抵抗R2との直列回路とが接続されている。 A series circuit of the diode Do and the capacitor Co is connected to the series circuit of the transformer T and the switching element Q1. The diode Do and the capacitor Co form a rectifying and smoothing circuit, rectifying and smoothing the switching voltage generated at the connection point between the primary winding P of the transformer T and the diode Do, and outputting the rectified and smoothed voltage as an output voltage to the load RL. .. A series circuit of the resistor R1 and the resistor R2 is connected to both ends of the capacitor Co.

トランスTは、スイッチング素子Q1のドレインに接続される一次巻線Pと一次巻線Pに電磁結合する二次巻線Sとからなる。一次巻線Pと二次巻線Sとの巻数比は、1:N(整数)である。二次巻線Sの両端にはダイオードD1と抵抗R5との直列回路が接続されている。 The transformer T includes a primary winding P connected to the drain of the switching element Q1 and a secondary winding S electromagnetically coupled to the primary winding P. The turns ratio between the primary winding P and the secondary winding S is 1: N (integer). A series circuit of the diode D1 and the resistor R5 is connected to both ends of the secondary winding S.

二次巻線Sの両端に発生した電圧は、ダイオードD1と抵抗R5により、スイッチング素子Q1のドレイン電流に対応した電圧CSに変換される。スイッチング素子Q1のドレイン電流に対応した電圧CSは、変換回路15により、リアクトルL1に流れる電流に対応した電流VLに変換される。この電流VLが加算器12に入力される。 The voltage generated across the secondary winding S is converted into a voltage CS corresponding to the drain current of the switching element Q1 by the diode D1 and the resistor R5. The voltage CS corresponding to the drain current of the switching element Q1 is converted into a current VL corresponding to the current flowing through the reactor L1 by the conversion circuit 15. This current VL is input to the adder 12.

力率改善回路は、さらに、誤差増幅器10、位相補正回路H1、位相補正回路H2、基準電源Vref、乗算器11、加算器12、PWMコンパレータ13、ドライブ回路14を備えている。誤差増幅器10は、基準電源Vrefの基準電圧と、負荷RLの出力電圧を抵抗R1と抵抗R2とで分圧した電圧との誤差電圧を増幅してCOMP電圧として乗算器11に出力する。誤差増幅器10と接地間には、位相補正回路H1が接続される。位相補正回路H1は、制御の安定性向上のための位相補正用の回路である。 The power factor improving circuit further includes an error amplifier 10, a phase correction circuit H1, a phase correction circuit H2, a reference power supply Vref, a multiplier 11, an adder 12, a PWM comparator 13, and a drive circuit 14. The error amplifier 10 amplifies the error voltage between the reference voltage of the reference power supply Vref and the voltage obtained by dividing the output voltage of the load RL by the resistors R1 and R2, and outputs the voltage to the multiplier 11 as a COMP voltage. A phase correction circuit H1 is connected between the error amplifier 10 and the ground. The phase correction circuit H1 is a circuit for phase correction for improving control stability.

乗算器11は、全波整流回路2からの交流入力電圧を抵抗R3と抵抗R4とで分圧した電圧VACと誤差増幅器10のCOMP電圧と係数Aとを乗算し、乗算出力VIREFを入力電流目標値として加算器12に出力する。 The multiplier 11 multiplies the AC input voltage from the full-wave rectifier circuit 2 by the voltage VAC divided by the resistors R3 and R4, the COMP voltage of the error amplifier 10, and the coefficient A, and sets the multiplied output VIREF as the input current target. It is output to the adder 12 as a value.

加算器12は、乗算器11からの乗算出力VIREFから、スイッチング素子Q1のドレインに流れる電流波形から生成された入力電流VLを差し引き、得られた値をPWMコンパレータ13に出力する。加算器12と接地間には、位相補正回路H2が接続される。位相補正回路H2は、制御の安定性向上のための位相補正用の回路である。 The adder 12 subtracts the input current VL generated from the current waveform flowing through the drain of the switching element Q1 from the multiplication output VIREF from the multiplier 11, and outputs the obtained value to the PWM comparator 13. A phase correction circuit H2 is connected between the adder 12 and the ground. The phase correction circuit H2 is a circuit for phase correction for improving control stability.

PWMコンパレータ13は、加算器12からの加算出力と三角波信号とを比較することによりPWM信号(パルス幅変調信号)を生成する。ドライブ回路14は、PWMコンパレータ13からのPWM信号によりスイッチング素子Q1をオンオフさせる。このようにして、入力電圧に相似な電流を生成し、力率改善動作を行う。 The PWM comparator 13 generates a PWM signal (pulse width modulation signal) by comparing the added output from the adder 12 with the triangular wave signal. The drive circuit 14 turns on / off the switching element Q1 by the PWM signal from the PWM comparator 13. In this way, a current similar to the input voltage is generated, and the power factor improving operation is performed.

また、特許文献2に記載された力率改善回路では、入力電圧のレベルにより、ICに入力する交流入力電圧の抵抗比を切り替えている。 Further, in the power factor improving circuit described in Patent Document 2, the resistance ratio of the AC input voltage input to the IC is switched according to the level of the input voltage.

特開平2−7869号公報Japanese Unexamined Patent Publication No. 2-7869 特開2012−135080号公報Japanese Unexamined Patent Publication No. 2012-1358080

しかしながら、特許文献1では、乗算器11は、全波整流回路2からの入力電圧と誤差増幅器10のCOMP電圧とを乗算するため、誤差増幅器10のCOMP電圧は、入力電圧に依存する。出力電力を一定とし、入力電圧を上げると、入力電流は出力電力を入力電圧で除算したものであるから、入力電流は下がる。このため、乗算器11の出力も下がる。 However, in Patent Document 1, since the multiplier 11 multiplies the input voltage from the full-wave rectifier circuit 2 with the COMP voltage of the error amplifier 10, the COMP voltage of the error amplifier 10 depends on the input voltage. When the output power is kept constant and the input voltage is increased, the input current is the output power divided by the input voltage, so the input current decreases. Therefore, the output of the multiplier 11 also decreases.

また、乗算器11により入力電圧が上がると誤差増幅器の出力が下がる。このため、誤差増幅器10のCOMP電圧は、交流入力電圧の二乗に反比例する。このため、入力電圧が低い場合、乗算器11や誤差増幅器10のダイナミックレンジの限界により出力電力が所望電力まで取れなくなる。 Further, when the input voltage is increased by the multiplier 11, the output of the error amplifier is decreased. Therefore, the COMP voltage of the error amplifier 10 is inversely proportional to the square of the AC input voltage. Therefore, when the input voltage is low, the output power cannot be obtained up to the desired power due to the limit of the dynamic range of the multiplier 11 and the error amplifier 10.

また、入力電圧が高い場合、誤差増幅器10のCOMP電圧低下により、出力電圧リプルによる誤差増幅器10のCOMP電圧のリプルの影響が大きくなり、COMP電圧とVAC電圧を乗算し生成される正弦波の目標電流が歪み、力率が低下する。 Further, when the input voltage is high, the influence of the ripple of the COMP voltage of the error amplifier 10 due to the output voltage ripple becomes large due to the decrease of the COMP voltage of the error amplifier 10, and the target of the sine wave generated by multiplying the COMP voltage and the VAC voltage. The current is distorted and the power factor decreases.

また、入力電圧が高い場合、誤差増幅器10のCOMP電圧が小さい範囲で動作することにより、力率低下や制御困難が発生する。このため、入力電圧範囲を広く取ることができなかった。 Further, when the input voltage is high, the error amplifier 10 operates in a range where the COMP voltage is small, which causes a decrease in power factor and difficulty in control. Therefore, the input voltage range could not be widened.

特許文献2では、抵抗比の切り替わりが不連続となり、入力電圧の切り替え付近で不安定になる可能性がある。また、商用交流50Hzの全波整流波形を生成できる長い時定数のフィルタが必要となり、フィルタをIC内に取り込む場合、複雑化又はチップサイズが大きくなる。 In Patent Document 2, the switching of the resistance ratio becomes discontinuous, and there is a possibility that the switching becomes unstable near the switching of the input voltage. Further, a filter having a long time constant capable of generating a full-wave rectified waveform of commercial AC 50 Hz is required, and when the filter is incorporated into an IC, the complexity or chip size becomes large.

本発明の課題は、入力電圧に対する誤差増幅器の出力の依存性を低下させ、広い入力電圧範囲で高力率となる力率改善回路を提供することにある。 An object of the present invention is to provide a power factor improving circuit that reduces the dependence of the output of an error amplifier on an input voltage and provides a high power factor over a wide input voltage range.

本発明に係る力率改善回路は、交流電源の交流電圧を整流する整流回路と、一次巻線と二次巻線とを有するトランスと、前記整流回路の出力両端に接続され、リアクトルと前記トランスの一次巻線とスイッチング素子とが直列に接続された直列回路と、前記トランスの一次巻線と前記スイッチング素子との直列回路に接続され、整流素子と平滑コンデンサとからなる整流平滑回路と、前記平滑コンデンサの出力電圧と基準電圧との誤差電圧と前記整流回路の出力電圧とを乗算する乗算器と、前記乗算器の出力を第1係数倍する係数倍回路と、前記係数倍回路からの第1係数倍された前記乗算器の出力に前記整流回路の出力を加算して得られた加算出力を前記乗算器に出力する加算器と、前記乗算器の出力と前記トランスの二次巻線から変換された電流に基づきパルス信号を生成し、前記パルス信号により前記スイッチング素子をオンオフさせる制御回路とを備えることを特徴とする。 The power factor improving circuit according to the present invention is connected to a rectifier circuit that rectifies the AC voltage of an AC power supply, a transformer having a primary winding and a secondary winding, and both ends of the output of the rectifier circuit, and is connected to a reactor and the transformer. A series circuit in which the primary winding and the switching element are connected in series, a rectifying and smoothing circuit in which the primary winding of the transformer and the switching element are connected in series, and a rectifying element and a smoothing capacitor, and the above. A multiplier that multiplies the error voltage between the output voltage of the smoothing capacitor and the reference voltage and the output voltage of the rectifier circuit, a coefficient multiplier circuit that multiplies the output of the multiplier by the first coefficient, and a first from the coefficient multiplier circuit. From the adder that outputs the added output obtained by adding the output of the rectifier circuit to the output of the multiplier multiplied by one coefficient to the multiplier, and the output of the multiplier and the secondary winding of the transformer. It is characterized by including a control circuit that generates a pulse signal based on the converted current and turns the switching element on and off by the pulse signal.

また、本発明に係る力率改善回路は、交流電源の交流電圧を整流する整流回路と、前記整流回路の出力両端に接続され、リアクトルとスイッチング素子と電流検出抵抗とが直列に接続された直列回路と、前記スイッチング素子と前記電流検出抵抗の直列回路に接続され、整流素子と平滑コンデンサとからなる整流平滑回路と、前記平滑コンデンサの出力電圧と基準電圧との誤差電圧と前記整流回路の出力電圧とを乗算する乗算器と、前記乗算器の出力を第1係数倍する係数倍回路と、前記係数倍回路からの第1係数倍された前記乗算器の出力に前記整流回路の出力を加算して得られた加算出力を前記乗算器に出力する加算器と、前記乗算器の出力と前記電流検出抵抗の両端に発生する電圧とに基づきパルス信号を生成し、パルス信号により前記スイッチング素子をオンオフさせる制御回路とを備えることを特徴とする。 Further, the power factor improvement circuit according to the present invention is a series of a rectifier circuit that rectifies the AC voltage of the AC power supply and a reactor, a switching element, and a current detection resistor connected in series at both ends of the output of the rectifier circuit. A rectifying and smoothing circuit connected to a circuit, a series circuit of the switching element and the current detection resistor, and composed of a rectifying element and a smoothing capacitor, an error voltage between the output voltage and the reference voltage of the smoothing capacitor, and an output of the rectifying circuit. A multiplier that multiplies the voltage, a coefficient-multiplier circuit that multiplies the output of the multiplier by the first coefficient, and the output of the rectifier circuit is added to the output of the multiplier that is multiplied by the first coefficient from the coefficient-multiplier circuit. A pulse signal is generated based on the adder that outputs the added output obtained as a result to the multiplier and the output of the multiplier and the voltage generated at both ends of the current detection resistor, and the switching element is generated by the pulse signal. It is characterized by including a control circuit for turning it on and off.

また、本発明に係る力率改善回路は、交流電源の交流電圧を整流する整流回路と、前記整流回路の出力両端に接続され、リアクトルとスイッチング素子と電流検出抵抗とが直列に接続された直列回路と、前記スイッチング素子と前記電流検出抵抗の直列回路に接続され、整流素子と平滑コンデンサとからなる整流平滑回路と、前記電流検出抵抗に流れる電流を前記リアクトルに流れる電流に変換する変換回路と、前記平滑コンデンサの出力電圧と基準電圧との誤差電圧と前記整流回路の出力電圧とを乗算する乗算器と、前記乗算器の出力を第1係数倍する係数倍回路と、前記係数倍回路からの第1係数倍された前記乗算器の出力に前記整流回路の出力を加算して得られた加算出力を前記乗算器に出力する加算器と、前記乗算器の出力と前記変換回路で変換された前記リアクトルに流れる電流に対応する信号とに基づきパルス信号を生成し、パルス信号により前記スイッチング素子をオンオフさせる制御回路とを備えることを特徴とする。 Further, the power factor improving circuit according to the present invention is a series in which a rectifier circuit that rectifies the AC voltage of an AC power supply and a reactor, a switching element, and a current detection resistor are connected in series at both ends of the output of the rectifier circuit. A circuit, a rectifying and smoothing circuit connected to a series circuit of the switching element and the current detection resistor and composed of a rectifying element and a smoothing capacitor, and a conversion circuit for converting the current flowing through the current detecting resistor into the current flowing through the reactor. From the multiplier that multiplies the error voltage between the output voltage of the smoothing capacitor and the reference voltage and the output voltage of the rectifier circuit, the coefficient multiplying circuit that multiplies the output of the multiplier by the first coefficient, and the coefficient multiplying circuit. The adder that outputs the added output obtained by adding the output of the rectifier circuit to the output of the multiplier multiplied by the first coefficient of the above to the multiplier, and the output of the multiplier and the conversion circuit are converted. It is characterized by including a control circuit that generates a pulse signal based on a signal corresponding to a current flowing through the reactor and turns the switching element on and off by the pulse signal.

本発明によれば、係数倍回路が乗算器の出力を第1係数倍し、加算器が係数倍回路からの第1係数倍された乗算器の出力に整流回路の出力を加算して得られた加算出力を乗算器に出力する。 According to the present invention, the coefficient multiplier circuit is obtained by multiplying the output of the multiplier by the first coefficient, and the adder is obtained by adding the output of the rectifier circuit to the output of the multiplier multiplied by the first coefficient from the coefficient multiplier circuit. Output the added output to the multiplier.

入力電圧が上がった場合、整流回路の出力は上がるが、出力電力を一定とすると、入力電流は、下がる。乗算器出力と入力電流は、比例するため、整流回路の出力と乗算器出力とを加算した加算出力を乗算器に入力することにより、入力された信号のレベルの入力電圧変動を打ち消し合う方向となり、誤差増幅器の出力の変動を抑制することができる。即ち、乗算器出力をフィードバックすることにより、入力電圧に対する誤差増幅器の出力の変動を軽減することができる。これにより広い入力電圧範囲に対し高い力率を得ることができる。 When the input voltage rises, the output of the rectifier circuit rises, but when the output power is constant, the input current falls. Since the multiplier output and the input current are proportional, by inputting the additive output, which is the sum of the output of the rectifier circuit and the multiplier output, to the multiplier, the input voltage fluctuation of the input signal level is canceled out. , The fluctuation of the output of the error amplifier can be suppressed. That is, by feeding back the multiplier output, it is possible to reduce the fluctuation of the output of the error amplifier with respect to the input voltage. This makes it possible to obtain a high power factor over a wide input voltage range.

本発明の実施例1に係る力率改善回路の回路構成図である。It is a circuit block diagram of the power factor improvement circuit which concerns on Example 1 of this invention. 本発明の実施例1に係る力率改善回路の交流入力電圧に対する誤差増幅器の出力電圧の特性を示す図である。It is a figure which shows the characteristic of the output voltage of the error amplifier with respect to the AC input voltage of the power factor improvement circuit which concerns on Example 1 of this invention. 本発明の実施例1に係る力率改善回路の出力電力に対する誤差増幅器の出力電圧の特性を示す図である。It is a figure which shows the characteristic of the output voltage of an error amplifier with respect to the output power of the power factor improvement circuit which concerns on Example 1 of this invention. 本発明の実施例2に係る力率改善回路の回路構成図である。It is a circuit block diagram of the power factor improvement circuit which concerns on Example 2 of this invention. 本発明の実施例3に係る力率改善回路の回路構成図である。It is a circuit block diagram of the power factor improvement circuit which concerns on Example 3 of this invention. 従来の力率改善回路の回路構成図である。It is a circuit block diagram of the conventional power factor improvement circuit. 従来の力率改善回路の交流入力電圧に対する誤差増幅器の出力電圧の特性を示す図である。It is a figure which shows the characteristic of the output voltage of an error amplifier with respect to the AC input voltage of the conventional power factor improvement circuit. 従来の力率改善回路の出力電力に対する誤差増幅器の出力電圧の特性を示す図である。It is a figure which shows the characteristic of the output voltage of an error amplifier with respect to the output power of a conventional power factor improvement circuit.

以下、本発明の実施の形態の力率改善回路について、図面を参照しながら詳細に説明する。 Hereinafter, the power factor improving circuit according to the embodiment of the present invention will be described in detail with reference to the drawings.

(実施例1)
図1は、本発明の実施例1に係る力率改善回路の回路構成図である。実施例1に係る力率改善回路は、図6に示す従来の力率改善回路の回路構成図に対して、C倍回路3、加算器4を追加したことを特徴とする。
(Example 1)
FIG. 1 is a circuit configuration diagram of a power factor improving circuit according to a first embodiment of the present invention. The power factor improving circuit according to the first embodiment is characterized in that a C times circuit 3 and an adder 4 are added to the circuit configuration diagram of the conventional power factor improving circuit shown in FIG.

C倍回路3、加算器4以外の構成については、既に図6において説明したので、ここでは、C倍回路3、加算器4の構成についてのみ説明する。なお、PWMコンパレータ13は、本発明の制御回路に対応する。 Since the configurations other than the C-fold circuit 3 and the adder 4 have already been described in FIG. 6, only the configurations of the C-fold circuit 3 and the adder 4 will be described here. The PWM comparator 13 corresponds to the control circuit of the present invention.

C倍回路3は、乗算器11の出力を第1係数C倍して加算器4に出力する。C倍回路3は、例えば、乗算器11の出力両端に図示しない第1抵抗と第2抵抗とからなる直列回路が接続され、第1抵抗と第2抵抗との接続点から乗算器11の出力を第1係数C倍した電圧を取り出して加算器4に出力する。 The C-fold circuit 3 multiplies the output of the multiplier 11 by the first coefficient C and outputs it to the adder 4. In the C-multiplier circuit 3, for example, a series circuit including a first resistor and a second resistor (not shown) is connected to both ends of the output of the multiplier 11, and the output of the multiplier 11 is output from the connection point between the first resistor and the second resistor. Is multiplied by the first coefficient C, and the voltage is taken out and output to the adder 4.

加算器4は、C倍回路3からの第1係数C倍された乗算器11の出力に全波整流回路2の出力を抵抗R3,R4で分圧した電圧VACを加算して得られた加算出力を乗算器11に出力する。 The adder 4 is an addition obtained by adding the voltage VAC obtained by dividing the output of the full-wave rectifier circuit 2 by the resistors R3 and R4 to the output of the multiplier 11 multiplied by the first coefficient C from the C multiplier circuit 3. The output is output to the multiplier 11.

次にこのように構成された実施例1に係る力率改善回路の動作を説明する。まず、乗算器11の出力をVIREFとする。C倍回路3は、乗算器11の出力VIREFを第1係数C倍して加算器4に出力する。このため、加算器4には、C・VIREFの電圧が入力される。 Next, the operation of the power factor improving circuit according to the first embodiment configured in this way will be described. First, let the output of the multiplier 11 be VIREF. The C-multiplier circuit 3 multiplies the output VIREF of the multiplier 11 by the first coefficient C and outputs it to the adder 4. Therefore, the voltage of C / VIREF is input to the adder 4.

次に、加算器4は、C倍回路3からの第1係数C倍された乗算器11の出力C・VIREFに全波整流回路2の出力を抵抗R3,R4で分圧した電圧VACを加算して得られた加算出力に第2係数Bを乗算して乗算器11に出力する。このため、乗算器11には、B(C・VIREF+VAC)の電圧が入力される。 Next, the adder 4 adds the voltage VAC obtained by dividing the output of the full-wave rectifier circuit 2 by the resistors R3 and R4 to the output C / VIREF of the multiplier 11 multiplied by the first coefficient C from the C-fold circuit 3. The addition output obtained in this manner is multiplied by the second coefficient B and output to the multiplier 11. Therefore, the voltage of B (C · VIREF + VAC) is input to the multiplier 11.

次に、乗算器11は、加算器4からのB(C・VIREF+VAC)の電圧に、第3係数Aと、誤差増幅器10のCOMP電圧とを乗算する。この乗算出力が電圧VIREFとなるので、式(1)が成立する。 Next, the multiplier 11 multiplies the voltage of B (C · VIREF + VAC) from the adder 4 by the third coefficient A and the COMP voltage of the error amplifier 10. Since this multiplication output becomes the voltage VIREF, the equation (1) holds.

A・B(C・VIREF+VAC)COMP=VIREF …(1)
式(1)より
COMP=VIREF/{A・B(C・VIREF+VAC)}…(2)
VIREFはリアクトル電流ILからVLの変換インピーダンスをRxとすると(VL=Rx・IL)、式(3)が成立する。
A ・ B (C ・ VIREF + VAC) COMP = VIREF… (1)
From equation (1), COMP = VIREF / {AB (C ・ VIREF + VAC)} ... (2)
For VIREF, when the conversion impedance of the reactor current IL to VL is Rx (VL = Rx · IL), the equation (3) is established.

VIREF=Rx・IL=Rx・Po/Vin …(3)
ここで、Vinは入力電圧、Poは、出力電力である。式(2)(3)より、各入力電圧Vin、出力電力Poに対する誤差増幅器10のCOMP電圧を求めることができる。
VIREF = Rx ・ IL = Rx ・ Po / Vin… (3)
Here, Vin is the input voltage and Po is the output power. From the equations (2) and (3), the COMP voltage of the error amplifier 10 for each input voltage Vin and output power Po can be obtained.

VAC=R3・Vin/(R3+R4)=k・Vin…(4)
とすると、式(2)のVIREFと式(4)のVACを式(3)に代入して、
COMP=(Rx・Po/Vin)/{A・B(C・Rx・Po/Vin+k・Vin)}=1/{A・B(C+k・Vin/Rx・Po)} …(5)
式(5)からもわかるように、係数Cが分母に入るため、入力電圧Vinが小さい時、入力電圧Vinの二乗に反比例する度合いが減少する。このため、係数A、係数B、係数Cを適切に設定することにより、入力電圧Vinの依存性を下げることができる。
VAC = R3 · Vin / (R3 + R4) = k · Vin ... (4)
Then, by substituting the VIREF of the equation (2) and the VAC of the equation (4) into the equation (3),
COMP = (Rx ・ Po / Vin) / {A ・ B (C ・ Rx ・ Po / Vin + k ・ Vin)} = 1 / {A ・ B (C + k ・ Vin 2 / Rx ・ Po)}… (5)
As can be seen from the equation (5), since the coefficient C is included in the denominator, when the input voltage Vin is small, the degree of inverse proportionality to the square of the input voltage Vin decreases. Therefore, the dependence of the input voltage Vin can be reduced by appropriately setting the coefficient A, the coefficient B, and the coefficient C.

なお、係数C=0の場合には、乗算器11の出力のフィードバック経路がない図6に示す従来の回路と同じになる。 When the coefficient C = 0, the circuit is the same as the conventional circuit shown in FIG. 6 without a feedback path for the output of the multiplier 11.

図6に示す従来の回路のCOMP電圧は、
COMP=Rx・Po/A・k・Vin …(6)
式(6)からもわかるように、COMP電圧は、入力電圧Vinの二乗に反比例して低下する。
The COMP voltage of the conventional circuit shown in FIG. 6 is
COMP = Rx ・ Po / A ・ k ・ Vin 2 … (6)
As can be seen from the equation (6), the COMP voltage decreases in inverse proportion to the square of the input voltage Vin.

簡単のために、直流入力を想定し、Vin=85VPo=1800Wの時、COMP電圧<2.5VになるようにA,B,C,Rxを決める。定数Rx=0.05、A=1/2.5、B=0.68、C=1、VAC=Vin/160とする。Vin=85VPo=1800Wの時、COMP電圧=2.45Vとなる。一方、Vin=265VPo=4400Wの時のCOMP電圧は、式(5)から1.22Vとなる。 For simplicity, assuming a DC input, A, B, C, and Rx are determined so that the COMP voltage <2.5V when Vin = 85VPo = 1800W. The constants Rx = 0.05, A = 1 / 2.5, B = 0.68, C = 1, VAC = Vin / 160. When Vin = 85VPo = 1800W, the COMP voltage = 2.45V. On the other hand, the COMP voltage when Vin = 265VPo = 4400W is 1.22V from the equation (5).

比較のため、従来回路図6で85V入力Po=1800Wの場合、COMP電圧が2.5V程度になるように定数を決めると、Rx=0.025、A=1/2.5、VAC=Vin/160と設定する。 For comparison, in the case of 85V input Po = 1800W in the conventional circuit diagram 6, if the constant is determined so that the COMP voltage is about 2.5V, Rx = 0.025, A = 1 / 2.5, VAC = Vin. Set to / 160.

従来の回路のCOMP電圧は、0.63Vであり、実施例1の回路のCOMP電圧の方が従来の回路のCOMP電圧よりも高くすることができる。 The COMP voltage of the conventional circuit is 0.63V, and the COMP voltage of the circuit of the first embodiment can be higher than the COMP voltage of the conventional circuit.

図2に実施例1に係る力率改善回路の交流入力電圧に対する誤差増幅器の出力電圧の特性を示す。図3に実施例1に係る力率改善回路の出力電力に対する誤差増幅器の出力電圧の特性を示す。図7に従来の力率改善回路の交流入力電圧に対する誤差増幅器の出力電圧の特性を示す。図8に従来の力率改善回路の出力電力に対する誤差増幅器の出力電圧の特性を示す。 FIG. 2 shows the characteristics of the output voltage of the error amplifier with respect to the AC input voltage of the power factor improving circuit according to the first embodiment. FIG. 3 shows the characteristics of the output voltage of the error amplifier with respect to the output power of the power factor improving circuit according to the first embodiment. FIG. 7 shows the characteristics of the output voltage of the error amplifier with respect to the AC input voltage of the conventional power factor improving circuit. FIG. 8 shows the characteristics of the output voltage of the error amplifier with respect to the output power of the conventional power factor improving circuit.

図2に示すように、高電圧入力時にもCOMP電圧が従来のそれよりも大きくなっている。このため、実施例1に係る力率改善回路は、従来の回路よりも高い力率となり、また、ノイズに対してもより安定に制御することができる。 As shown in FIG. 2, the COMP voltage is larger than that of the conventional one even when a high voltage is input. Therefore, the power factor improving circuit according to the first embodiment has a higher power factor than the conventional circuit, and can be controlled more stably with respect to noise.

このように実施例1に係る力率改善回路によれば、C倍回路3が乗算器11の出力を第1係数C倍し、加算器4がC倍回路3からの第1係数C倍された乗算器11の出力に全波整流回路2の電圧を抵抗分圧した電圧VACを加算して得られた加算出力を乗算器11に出力する。 As described above, according to the power factor improving circuit according to the first embodiment, the C multiplier circuit 3 multiplies the output of the multiplier 11 by the first coefficient C, and the adder 4 multiplies the output of the C multiplier circuit 3 by the first coefficient C. The added output obtained by adding the voltage VAC obtained by dividing the voltage of the full-wave rectifying circuit 2 by resistance to the output of the multiplier 11 is output to the multiplier 11.

入力電圧が上がった場合、全波整流回路2の電圧VACは上がるが、出力電力を一定とすると、入力電流は、下がる。乗算器出力と入力電流は、比例するため、全波整流回路2の電圧VACと乗算器出力とを加算した加算出力を乗算器11に入力することにより、入力された信号のレベルの入力電圧変動を打ち消し合う方向となり、誤差増幅器10の出力の変動を抑制することができる。 When the input voltage rises, the voltage VAC of the full-wave rectifier circuit 2 rises, but when the output power is constant, the input current falls. Since the multiplier output and the input current are proportional, the input voltage fluctuation of the level of the input signal is obtained by inputting the additive output obtained by adding the voltage VAC of the full-wave rectifier circuit 2 and the multiplier output to the multiplier 11. Are in the direction of canceling each other out, and fluctuations in the output of the error amplifier 10 can be suppressed.

また、入力電圧が下がった時、多く流す目標入力電流信号を電圧VACに加算することにより、VAC側の入力電圧の低下を補い、入力電圧の変化に対してCOMP電圧の変化を少なくするように動作する。 In addition, when the input voltage drops, a large amount of target input current signal is added to the voltage VAC to compensate for the drop in the input voltage on the VAC side and reduce the change in the COMP voltage with respect to the change in the input voltage. Operate.

即ち、乗算器出力をフィードバックすることにより、入力電圧に対する誤差増幅器10の出力の変動を軽減することができる。 That is, by feeding back the multiplier output, it is possible to reduce the fluctuation of the output of the error amplifier 10 with respect to the input voltage.

また、係数Aと係数Bと係数Cとを誤差増幅器10の出力低下が所定値以下になるように設定することで、低い入力電圧時のCOMP電圧をそのままとし、高い入力電圧時のCOMP電圧を上げることができる。 Further, by setting the coefficient A, the coefficient B, and the coefficient C so that the output decrease of the error amplifier 10 is equal to or less than a predetermined value, the COMP voltage at the low input voltage is kept as it is, and the COMP voltage at the high input voltage is set. Can be raised.

(実施例2)
図4は、本発明の実施例2に係る力率改善回路の回路構成図である。実施例2に係る力率改善回路は、実施例1に係る力率改善回路のトランスT、ダイオードD1、抵抗R5を削除し、スイッチング素子Q1のソースとグランドとの間に電流検出抵抗Rdを接続した。
(Example 2)
FIG. 4 is a circuit configuration diagram of the power factor improving circuit according to the second embodiment of the present invention. In the power factor improvement circuit according to the second embodiment, the transformer T, the diode D1 and the resistor R5 of the power factor improvement circuit according to the first embodiment are deleted, and the current detection resistor Rd is connected between the source and the ground of the switching element Q1. did.

電流検出抵抗Rdは、リアクトルL1に流れる電流を検出して加算器12aに出力する。加算器12aは、乗算器11の出力VIREFから、電流検出抵抗Rdで検出されたスイッチング素子Q1に流れる電流を差し引き、得られた値をPWMコンパレータ13に出力する。 The current detection resistor Rd detects the current flowing through the reactor L1 and outputs it to the adder 12a. The adder 12a subtracts the current flowing through the switching element Q1 detected by the current detection resistor Rd from the output VIREF of the multiplier 11, and outputs the obtained value to the PWM comparator 13.

図4に示す実施例2に係る力率改善回路のその他の構成及び動作は、図1に示す実施例1に係る力率改善回路の構成及び動作と同様であるので、その説明は省略する。 Since the other configurations and operations of the power factor improving circuit according to the second embodiment shown in FIG. 4 are the same as the configurations and operations of the power factor improving circuit according to the first embodiment shown in FIG. 1, the description thereof will be omitted.

このように実施例2に係る力率改善回路によっても、実施例1に係る力率改善回路の効果と同様な効果が得られる。 As described above, the power factor improving circuit according to the second embodiment also has the same effect as the effect of the power factor improving circuit according to the first embodiment.

(実施例3)
図5は、本発明の実施例3に係る力率改善回路の回路構成図である。実施例3に係る力率改善回路は、実施例2に係る力率改善回路に対して、スイッチング素子Q1のソースと電流検出抵抗Rdとの接続点と加算器12aとの間に変換回路16を接続した。
(Example 3)
FIG. 5 is a circuit configuration diagram of a power factor improving circuit according to a third embodiment of the present invention. The power factor improvement circuit according to the third embodiment has a conversion circuit 16 between the connection point between the source of the switching element Q1 and the current detection resistor Rd and the adder 12a with respect to the power factor improvement circuit according to the second embodiment. Connected.

変換回路16は、電流検出抵抗Rdに流れる電流を入力し、電流検出抵抗に流れる電流をリアクトルL1に流れる電流に変換し、加算器12aに出力する。加算器12aは、乗算器11の出力VIREFから、変換回路16で変換されたリアクトルL1に流れる電流を差し引き、得られた値をPWMコンパレータ13に出力する。 The conversion circuit 16 inputs the current flowing through the current detection resistor Rd, converts the current flowing through the current detection resistor into the current flowing through the reactor L1, and outputs the current to the adder 12a. The adder 12a subtracts the current flowing through the reactor L1 converted by the conversion circuit 16 from the output VIREF of the multiplier 11, and outputs the obtained value to the PWM comparator 13.

図5に示す実施例3に係る力率改善回路のその他の構成及び動作は、図1に示す実施例1に係る力率改善回路の構成及び動作と同様であるので、その説明は省略する。 Since the other configurations and operations of the power factor improving circuit according to the third embodiment shown in FIG. 5 are the same as the configurations and operations of the power factor improving circuit according to the first embodiment shown in FIG. 1, the description thereof will be omitted.

このように実施例3に係る力率改善回路によっても、実施例1に係る力率改善回路の効果と同様な効果が得られる。 As described above, the power factor improving circuit according to the third embodiment also has the same effect as the effect of the power factor improving circuit according to the first embodiment.

1 交流電源
2 全波整流回路
3 C倍回路
10 誤差増幅器
11 乗算器
4,12 加算器
13 PWMコンパレータ
14 ドライブ回路
16 変換回路
L1 リアクトル
Q1 スイッチング素子
T トランス
D1 ダイオード
Co,C1,C2 コンデンサ
P 一次巻線
S 二次巻線
R1〜R4 抵抗
RL 負荷
Rd 電流検出抵抗
1 AC power supply 2 Full-wave rectifier circuit 3 C times circuit 10 Error amplifier 11 Multiplier 4, 12 Adder 13 PWM comparator 14 Drive circuit 16 Conversion circuit L1 Reactor Q1 Switching element T Transformer D1 Diode Co, C1, C2 Capacitor P Primary winding Wire S Secondary winding R1 to R4 Resistance RL Load Rd Current detection resistance

Claims (5)

交流電源の交流電圧を整流する整流回路と、
一次巻線と二次巻線とを有するトランスと、
前記整流回路の出力両端に接続され、リアクトルと前記トランスの一次巻線とスイッチング素子とが直列に接続された直列回路と、
前記トランスの一次巻線と前記スイッチング素子との直列回路に接続され、整流素子と平滑コンデンサとからなる整流平滑回路と、
前記平滑コンデンサの出力電圧と基準電圧との誤差電圧と前記整流回路の出力電圧とを乗算する乗算器と、
前記乗算器の出力を第1係数倍する係数倍回路と、
前記係数倍回路からの第1係数倍された前記乗算器の出力に前記整流回路の出力を加算して得られた加算出力を前記乗算器に出力する加算器と、
前記乗算器の出力と前記トランスの二次巻線に発生する電圧から変換された電流に基づきパルス信号を生成し、前記パルス信号により前記スイッチング素子をオンオフさせる制御回路と、
を備えることを特徴とする力率改善回路。
A rectifier circuit that rectifies the AC voltage of the AC power supply,
A transformer with a primary winding and a secondary winding,
A series circuit connected to both ends of the output of the rectifier circuit, and the reactor, the primary winding of the transformer, and the switching element connected in series,
A rectifying and smoothing circuit that is connected to a series circuit of the transformer's primary winding and the switching element and consists of a rectifying element and a smoothing capacitor.
A multiplier that multiplies the error voltage between the output voltage of the smoothing capacitor and the reference voltage and the output voltage of the rectifier circuit.
A coefficient multiplication circuit that multiplies the output of the multiplier by the first coefficient,
An adder that outputs an added output obtained by adding the output of the rectifying circuit to the output of the multiplier multiplied by the first coefficient from the coefficient multiplying circuit and outputs the added output to the multiplier.
A control circuit that generates a pulse signal based on the current converted from the output of the multiplier and the voltage generated in the secondary winding of the transformer, and turns the switching element on and off by the pulse signal.
A power factor improving circuit characterized by being equipped with.
交流電源の交流電圧を整流する整流回路と、
前記整流回路の出力両端に接続され、リアクトルとスイッチング素子と電流検出抵抗とが直列に接続された直列回路と、
前記スイッチング素子と前記電流検出抵抗の直列回路に接続され、整流素子と平滑コンデンサとからなる整流平滑回路と、
前記平滑コンデンサの出力電圧と基準電圧との誤差電圧と前記整流回路の出力電圧とを乗算する乗算器と、
前記乗算器の出力を第1係数倍する係数倍回路と、
前記係数倍回路からの第1係数倍された前記乗算器の出力に前記整流回路の出力を加算して得られた加算出力を前記乗算器に出力する加算器と、
前記乗算器の出力と前記電流検出抵抗の両端に発生する電圧とに基づきパルス信号を生成し、パルス信号により前記スイッチング素子をオンオフさせる制御回路と、
を備えることを特徴とする力率改善回路。
A rectifier circuit that rectifies the AC voltage of the AC power supply,
A series circuit connected to both ends of the output of the rectifier circuit and a reactor, a switching element, and a current detection resistor connected in series,
A rectifying and smoothing circuit connected to a series circuit of the switching element and the current detection resistor and composed of a rectifying element and a smoothing capacitor.
A multiplier that multiplies the error voltage between the output voltage of the smoothing capacitor and the reference voltage and the output voltage of the rectifier circuit.
A coefficient multiplier circuit that multiplies the output of the multiplier by the first coefficient,
An adder that outputs an added output obtained by adding the output of the rectifying circuit to the output of the multiplier multiplied by the first coefficient from the coefficient multiplying circuit and outputs the added output to the multiplier.
A control circuit that generates a pulse signal based on the output of the multiplier and the voltage generated across the current detection resistor and turns the switching element on and off by the pulse signal.
A power factor improving circuit characterized by being equipped with.
交流電源の交流電圧を整流する整流回路と、
前記整流回路の出力両端に接続され、リアクトルとスイッチング素子と電流検出抵抗とが直列に接続された直列回路と、
前記スイッチング素子と前記電流検出抵抗の直列回路に接続され、整流素子と平滑コンデンサとからなる整流平滑回路と、
前記電流検出抵抗に流れる電流を前記リアクトルに流れる電流に変換する変換回路と、
前記平滑コンデンサの出力電圧と基準電圧との誤差電圧と前記整流回路の出力電圧とを乗算する乗算器と、
前記乗算器の出力を第1係数倍する係数倍回路と、
前記係数倍回路からの第1係数倍された前記乗算器の出力に前記整流回路の出力を加算して得られた加算出力を前記乗算器に出力する加算器と、
前記乗算器の出力と前記変換回路で変換された前記リアクトルに流れる電流に対応する信号とに基づきパルス信号を生成し、パルス信号により前記スイッチング素子をオンオフさせる制御回路と、
を備えることを特徴とする力率改善回路。
A rectifier circuit that rectifies the AC voltage of the AC power supply,
A series circuit connected to both ends of the output of the rectifier circuit and a reactor, a switching element, and a current detection resistor connected in series,
A rectifying and smoothing circuit connected to a series circuit of the switching element and the current detection resistor and composed of a rectifying element and a smoothing capacitor.
A conversion circuit that converts the current flowing through the current detection resistor into the current flowing through the reactor.
A multiplier that multiplies the error voltage between the output voltage of the smoothing capacitor and the reference voltage and the output voltage of the rectifier circuit.
A coefficient multiplication circuit that multiplies the output of the multiplier by the first coefficient,
An adder that outputs an added output obtained by adding the output of the rectifying circuit to the output of the multiplier multiplied by the first coefficient from the coefficient multiplying circuit and outputs the added output to the multiplier.
A control circuit that generates a pulse signal based on the output of the multiplier and a signal corresponding to the current flowing through the reactor converted by the conversion circuit, and turns the switching element on and off by the pulse signal.
A power factor improving circuit characterized by being equipped with.
前記加算器は、第2係数を前記加算出力に乗算し、
前記乗算器は、前記誤差電圧と、第3係数と、前記加算器からの前記第2係数と前記加算出力との乗算結果と、を乗算することを特徴とする請求項1又は請求項2又は請求項3記載の力率改善回路。
The adder multiplies the adder by a second coefficient and
The multiplier 1 or claim 2 or the present invention comprises multiplying the error voltage, the third coefficient, and the multiplication result of the second coefficient from the adder and the addition output. The power factor improving circuit according to claim 3.
前記第1係数と前記第2係数と前記第3係数とは、差増幅器の出力低下が所定値以下になるように設定されていることを特徴とする請求項4記載の力率改善回路。 Wherein the first coefficient and the second coefficient and the third coefficient, power factor correction circuit of claim 4, wherein the reduction in the output of the error amplifier is characterized in that it is set to be equal to or less than the predetermined value.
JP2017095387A 2017-05-12 2017-05-12 Power factor improvement circuit Active JP6897296B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017095387A JP6897296B2 (en) 2017-05-12 2017-05-12 Power factor improvement circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017095387A JP6897296B2 (en) 2017-05-12 2017-05-12 Power factor improvement circuit

Publications (2)

Publication Number Publication Date
JP2018196168A JP2018196168A (en) 2018-12-06
JP6897296B2 true JP6897296B2 (en) 2021-06-30

Family

ID=64570637

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017095387A Active JP6897296B2 (en) 2017-05-12 2017-05-12 Power factor improvement circuit

Country Status (1)

Country Link
JP (1) JP6897296B2 (en)

Also Published As

Publication number Publication date
JP2018196168A (en) 2018-12-06

Similar Documents

Publication Publication Date Title
JP3994953B2 (en) Power factor correction circuit
JP3774788B2 (en) Power factor compensation power supply
KR100333973B1 (en) Power Factor Compensation Controller
US8630105B2 (en) Switching power supply apparatus including a PFC converter that suppresses harmonic currents
JP5273158B2 (en) PFC converter
US10312800B2 (en) AC-DC converter
JPS627778B2 (en)
JP4899547B2 (en) Switching power supply
US9048751B2 (en) Power supply circuit with ripple compensation
JP5109769B2 (en) Switching power supply
US8289738B2 (en) Switching power supply
JP2011152017A (en) Switching power supply device
JP4466089B2 (en) Power factor correction circuit
JP6911677B2 (en) AC-DC converter
JP2003244953A (en) Dc-dc converter
JP4608284B2 (en) Power factor correction equipment
JP6897296B2 (en) Power factor improvement circuit
JP6395318B2 (en) Switching power supply
JP5222587B2 (en) Power factor correction circuit
WO2017126023A1 (en) Power factor improvement circuit and dc/dc converter
JPH0378469A (en) Power supply
US20070271047A1 (en) Method of power factor correction
JP4423994B2 (en) Power factor correction circuit
JP3472517B2 (en) DC stabilized power supply
JP2512040B2 (en) Power supply

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210511

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210524

R150 Certificate of patent or registration of utility model

Ref document number: 6897296

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250