JP6896382B2 - Boiler gas flow adjustment method, boiler and power generation system - Google Patents

Boiler gas flow adjustment method, boiler and power generation system Download PDF

Info

Publication number
JP6896382B2
JP6896382B2 JP2016140552A JP2016140552A JP6896382B2 JP 6896382 B2 JP6896382 B2 JP 6896382B2 JP 2016140552 A JP2016140552 A JP 2016140552A JP 2016140552 A JP2016140552 A JP 2016140552A JP 6896382 B2 JP6896382 B2 JP 6896382B2
Authority
JP
Japan
Prior art keywords
closing plate
heat transfer
transfer tube
exhaust gas
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016140552A
Other languages
Japanese (ja)
Other versions
JP2018009765A (en
Inventor
秀敏 馬場
秀敏 馬場
永井 雅明
雅明 永井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Mitsubishi Power Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Power Ltd filed Critical Mitsubishi Power Ltd
Priority to JP2016140552A priority Critical patent/JP6896382B2/en
Publication of JP2018009765A publication Critical patent/JP2018009765A/en
Application granted granted Critical
Publication of JP6896382B2 publication Critical patent/JP6896382B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)
  • Details Of Heat-Exchange And Heat-Transfer (AREA)

Description

本発明は、ボイラのガス流れ調整方法、ボイラ及び発電システムに関するものである。 The present invention relates to a boiler gas flow adjusting method, a boiler and a power generation system.

火力発電プラント等において用いられる排熱回収ボイラ(HRSG)のダクトの内部には、燃焼ガスなどの熱回収可能な温度を有する排ガスが流れ、給水や蒸気などと熱交換を行う熱交換器が設けられている。図19には、熱交換器が低圧節炭器53として適用される排熱回収ボイラ(HRSG)を備えるガスタービンコンバインドサイクル(Gas Turbine Combined Cycle:GTCC)発電システムを示している。なお、図19に示したガスタービンコンバインドサイクル発電システムについては、本発明の実施形態に係る発明の適用例として後述する。 Inside the duct of the exhaust heat recovery steam generator (HRSG) used in thermal power plants, exhaust gas with a heat recoverable temperature such as combustion gas flows, and a heat exchanger is provided to exchange heat with water supply and steam. Has been done. FIG. 19 shows a Gas Turbine Combined Cycle (GTCC) power generation system with an exhaust heat recovery steam generator (HRSG) in which the heat exchanger is applied as a low pressure economizer 53. The gas turbine combined cycle power generation system shown in FIG. 19 will be described later as an application example of the invention according to the embodiment of the present invention.

たとえば図15から図17に示すように、熱交換器10は、ダクト12の内部において、一側(紙面下側)から他側(紙面上側)へと矢印の方向へと排ガスが流れるように形成されている。熱交換器10は、伝熱管ブロック13が複数配置されており、伝熱管ブロック13は、図17(図16の切断方向に対して直交方向に切断した図)に示すように複数の伝熱管30から構成されている。 For example, as shown in FIGS. 15 to 17, the heat exchanger 10 is formed so that exhaust gas flows in the direction of the arrow from one side (lower side of the paper surface) to the other side (upper side of the paper surface) inside the duct 12. Has been done. A plurality of heat transfer tube blocks 13 are arranged in the heat exchanger 10, and the heat transfer tube block 13 has a plurality of heat transfer tubes 30 as shown in FIG. 17 (a diagram cut in a direction orthogonal to the cutting direction of FIG. 16). It is composed of.

図15及び図16に示すように、伝熱管ブロック13は製作、施工などの観点から、隣接する伝熱管ブロック13の間には所定の隙間が設けられている。図15の細い矢印に示すように、伝熱管ブロック13の間の隙間を排ガスが通過する場合、すなわち、排ガスの一部が、伝熱管ブロック13を構成する複数の伝熱管30を通過しないで、ショートパスする場合、伝熱管30での排ガスとの間での熱回収量の低減を招く。そのため、図16及び図17に示すように、従来、隣接する伝熱管ブロック13の間に設けられた隙間には、塞ぎ板11が配置される。これにより、伝熱管ブロック13の間の隙間を通過しようとする排ガスの流れの一部が塞ぎ板11によって妨げられ、排ガスは、ショートパスすることなく、伝熱管30側へ流れるため伝熱管30での排ガスとの間での熱回収が可能となる。 As shown in FIGS. 15 and 16, the heat transfer tube block 13 is provided with a predetermined gap between adjacent heat transfer tube blocks 13 from the viewpoint of manufacturing, construction, and the like. As shown by the thin arrow in FIG. 15, when the exhaust gas passes through the gap between the heat transfer tube blocks 13, that is, a part of the exhaust gas does not pass through the plurality of heat transfer tubes 30 constituting the heat transfer tube block 13. In the case of a short pass, the amount of heat recovered from the heat transfer tube 30 with the exhaust gas is reduced. Therefore, as shown in FIGS. 16 and 17, the closing plate 11 is conventionally arranged in the gap provided between the adjacent heat transfer tube blocks 13. As a result, a part of the flow of the exhaust gas that tries to pass through the gap between the heat transfer tube blocks 13 is blocked by the closing plate 11, and the exhaust gas flows to the heat transfer tube 30 side without short-passing, so that the heat transfer tube 30 It is possible to recover heat from the exhaust gas.

下記の特許文献1には、再熱器を構成する伝熱管の間にバッフルプレートを複数個入れることが記載されている。排ガス流路断面積を減少させることで、伝熱管間のガス流速を上昇させることが記載されている。また、下記の特許文献2では、蒸発器の管群の一部に設けられたガスバイパス路において、ガスのバイパス量を調節するためのバイパスダンパーを設けることが記載されている。バイパスダンパーの開度を調節してバイパス量を調整することによって、蒸発器とその排ガス下流側熱交換器との吸熱割合を最適化する。さらに、下記の特許文献3においても、過熱器に設けられた排ガス流通路において、加熱器をバイパスする排ガス流量を調整する流量調整機構が記載されている。 Patent Document 1 below describes that a plurality of baffle plates are inserted between heat transfer tubes constituting a reheater. It is described that the gas flow velocity between the heat transfer tubes is increased by reducing the cross-sectional area of the exhaust gas flow path. Further, Patent Document 2 below describes that a bypass damper for adjusting the amount of gas bypass is provided in the gas bypass path provided in a part of the tube group of the evaporator. By adjusting the opening degree of the bypass damper to adjust the amount of bypass, the endothermic ratio between the evaporator and the heat exchanger on the downstream side of the exhaust gas is optimized. Further, Patent Document 3 below also describes a flow rate adjusting mechanism for adjusting the flow rate of exhaust gas bypassing the heater in the exhaust gas flow path provided in the superheater.

特開2000−161647号公報Japanese Unexamined Patent Publication No. 2000-161647 特開2007−298244号公報JP-A-2007-298244 特開2010−144997号公報JP-A-2010-144997

排熱回収ボイラを流れる排ガスは、ガスタービン(GT)の出口から排出され、熱回収が可能な温度を有する排ガスである。ガスタービンの燃焼器で燃焼に用いられる空気は、季節(外気温の変化)によって空気密度が変化することから、ガスタービンの排ガス(GT排ガス)の圧力が、季節に応じて変動する。外気温度が高く空気密度が低い夏季は、GTの排ガスの流量が減少して排ガスの圧力が低下し、外気温度が低く空気密度が高い冬季は、GTの排ガスの流量が増加して排ガスの圧力が上昇する。 The exhaust gas flowing through the exhaust heat recovery boiler is exhaust gas having a temperature at which heat recovery is possible, which is discharged from the outlet of the gas turbine (GT). Since the air density of the air used for combustion in the combustor of the gas turbine changes depending on the season (change in outside temperature), the pressure of the exhaust gas (GT exhaust gas) of the gas turbine fluctuates according to the season. In the summer when the outside air temperature is high and the air density is low, the flow rate of the GT exhaust gas decreases and the exhaust gas pressure decreases, and in the winter when the outside air temperature is low and the air density is high, the GT exhaust gas flow rate increases and the exhaust gas pressure. Rise.

ところで、排熱回収ボイラの運転時において、排熱回収ボイラにおける排ガスの圧力が上昇して所定の値を越えると、GT排ガスの圧力が高くなりGTの運転継続に支障がある状態であると判断され、火力発電プラント等を停止する必要がある。火力発電プラント等では、長年にわたって運転が行われることで、排熱回収ボイラの熱交換器に付着したスケールなどによって、排熱回収ボイラ内を排ガスが通過する際に圧力損失が上昇する場合がある。そのため、特に空気密度が高くGT排ガスの流量が増加して圧力が上昇する冬季において、排熱回収ボイラにおける排ガスが通過する際の圧力損失が上昇して、GT排ガスの圧力が所定の値を越えて、運転継続が困難な状態であると判断される可能性が高い。 By the way, during the operation of the exhaust heat recovery boiler, if the pressure of the exhaust gas in the exhaust heat recovery boiler rises and exceeds a predetermined value, it is determined that the pressure of the GT exhaust gas becomes high and the GT operation continuation is hindered. Therefore, it is necessary to shut down the thermal power plant. In a thermal power plant, etc., after many years of operation, the pressure loss may increase when the exhaust gas passes through the exhaust heat recovery boiler due to the scale attached to the heat exchanger of the exhaust heat recovery boiler. .. Therefore, especially in winter when the air density is high and the flow rate of GT exhaust gas increases and the pressure rises, the pressure loss when the exhaust gas passes through in the exhaust heat recovery boiler increases, and the pressure of GT exhaust gas exceeds a predetermined value. Therefore, there is a high possibility that it will be judged that it is difficult to continue the operation.

そこで、排熱回収ボイラにおいて排ガスが通過する際の圧力損失を低減するため、排ガスの一部を、伝熱管ブロックを構成する複数の伝熱管側を通過させないで、圧力損失の増加分を見込んで排ガスの一部を最初から意図的にショートパスさせることが考えられる。しかし、排ガスが伝熱管を通過しないでショートパスを常時に続ける場合、多少なりとも排ガスからの熱回収効率が低下するので、年間を通して排ガスを常にショートパスさせることは、熱回収効率を低下させる要因となり、火力発電プラント等の全体プラントの性能向上を図るには好ましくない。 Therefore, in order to reduce the pressure loss when the exhaust gas passes through the exhaust heat recovery boiler, the increase in pressure loss is expected without allowing a part of the exhaust gas to pass through the plurality of heat transfer tube sides constituting the heat transfer tube block. It is conceivable that a part of the exhaust gas is intentionally short-passed from the beginning. However, if the exhaust gas does not pass through the heat transfer tube and the short pass is continued at all times, the heat recovery efficiency from the exhaust gas will be reduced to some extent. Therefore, always short-passing the exhaust gas throughout the year is a factor that lowers the heat recovery efficiency. Therefore, it is not preferable to improve the performance of the entire plant such as a thermal power generation plant.

本発明は、このような事情に鑑みてなされたものであって、年間を通しての熱回収効率の低下することを抑制して、ボイラ内を排ガスが通過する際に過剰となる圧力損失の増加を抑制して、GT排ガスの圧力上昇を抑制することが可能なボイラのガス流れ調整方法、ボイラ及び発電システムを提供することを目的とする。 The present invention has been made in view of such circumstances, and suppresses a decrease in heat recovery efficiency throughout the year to increase an excessive pressure loss when exhaust gas passes through the boiler. It is an object of the present invention to provide a boiler gas flow adjusting method, a boiler and a power generation system capable of suppressing an increase in pressure of GT exhaust gas.

上記課題を解決するために、本発明のボイラのガス流れ調整方法、ボイラ及び発電システムは以下の手段を採用する。
すなわち、本発明に係るボイラのガス流れ調整方法は、複数の伝熱管を有する伝熱管ブロックと、隣接する前記伝熱管ブロックとの間に形成された隙間の垂直方向上端部に前記伝熱管の長手方向に沿う方向が長手方向になるように設置され、前記隙間を通過しようとするガスの流れを妨げる塞ぎ板とを備えるボイラのガス流れ調整方法であって、外気温度又は前記ボイラへ供給されるガスの圧力に応じて、前記塞ぎ板の取り付け又は取り外しを行うステップを有する。
In order to solve the above problems, the boiler gas flow adjusting method, the boiler and the power generation system of the present invention employ the following means.
That is, in the method for adjusting the gas flow of the boiler according to the present invention, the length of the heat transfer tube is formed at the upper end in the vertical direction of the gap formed between the heat transfer tube block having a plurality of heat transfer tubes and the adjacent heat transfer tube blocks. A method for adjusting the gas flow of a boiler, which is installed so that the direction along the direction is the longitudinal direction and includes a closing plate that obstructs the flow of gas that tries to pass through the gap, and is supplied to the outside air temperature or the boiler. It has a step of attaching or detaching the closing plate according to the pressure of the gas.

この構成によれば、外気温度又は伝熱管ブロックへ供給されるガス(排ガス)の圧力損失に応じて、塞ぎ板の取り付け又は取り外しが行われる。このことから、例えば、空気密度が低くGTの排気流量が減少してボイラ内部の排ガス圧力損失が低くなる傾向にあるときは、伝熱管ブロックの間の塞ぎ板が取り付けられて、熱回収効率を向上させる。また、他方、空気密度が高くGTの排ガス流量が増加してボイラ内部の排ガス圧力損失が高くなる傾向にあるときは、塞ぎ板が取り外されて、排ガスの圧力損失を低減させ、GT排ガスの圧力を低下することができる。塞ぎ板が取り外される期間を短縮することができれば、熱回収効率が低下する期間が短くなり、熱回収効率の低下を抑制しながら、年間を通してGT及びボイラの運転が可能となる。なお、排熱回収ボイラのガスが流れるダクトの断面に垂直な方向を垂直方向としている。 According to this configuration, the closing plate is attached or removed according to the outside air temperature or the pressure loss of the gas (exhaust gas) supplied to the heat transfer tube block. From this, for example, when the air density is low and the exhaust gas flow rate of the GT is reduced and the exhaust gas pressure loss inside the boiler tends to be low, a closing plate between the heat transfer tube blocks is attached to improve the heat recovery efficiency. Improve. On the other hand, when the air density is high and the exhaust gas flow rate of GT increases and the exhaust gas pressure loss inside the boiler tends to increase, the closing plate is removed to reduce the exhaust gas pressure loss and the GT exhaust gas pressure. Can be reduced. If the period during which the closing plate is removed can be shortened, the period during which the heat recovery efficiency decreases can be shortened, and the GT and the boiler can be operated throughout the year while suppressing the decrease in the heat recovery efficiency. The direction perpendicular to the cross section of the duct through which the gas of the exhaust heat recovery boiler flows is the vertical direction.

上記発明において、前記外気温度が所定の閾値よりも低いとき、前記塞ぎ板を取り外すステップと、前記外気温度が所定の閾値以上であるとき、前記塞ぎ板を取り付けるステップとを有するIn the above invention, the outside air temperature is is lower than a predetermined threshold value, a step of removing the closing plate, when the outside air temperature is equal to or greater than a predetermined threshold, the organic and attaching the closing plate.

この構成によれば、外気温度が低いため、空気密度が高くGTの排ガス流量が増加してボイラ内部を排ガスが通過する際の圧力損失が高くなる傾向にある期間には、塞ぎ板が取り外されて、圧力損失を低減させてGT及びボイラの運転の継続を可能とし、他方、外気温度が高いため、空気密度が低くGTの排ガス流量が減少してボイラ内部の排ガス圧力損失が低くなる傾向にある期間には、塞ぎ板が取り付けられて、熱回収効率を向上させることができる。すなわち、外気温度に応じて塞ぎ板を取り外しする期間と取り付ける期間を判断しているので、ボイラの停止期間などを利用して塞ぎ板の取り外しと取り付け作業を計画的に実施することが可能となる。 According to this configuration, since the outside air temperature is low, the closing plate is removed during the period when the air density is high and the GT exhaust gas flow rate increases and the pressure loss when the exhaust gas passes through the boiler tends to increase. Therefore, the pressure loss can be reduced and the operation of the GT and the boiler can be continued. On the other hand, since the outside air temperature is high, the air density is low and the exhaust gas flow rate of the GT is reduced, so that the exhaust gas pressure loss inside the boiler tends to be low. During a period of time, a closing plate can be attached to improve heat recovery efficiency. That is, since the period for removing the closing plate and the period for attaching the closing plate are determined according to the outside air temperature, it is possible to systematically carry out the removing and attaching work of the closing plate by utilizing the period when the boiler is stopped. ..

上記発明において、前記伝熱管ブロックへ供給される前記ガスの圧力が所定の閾値よりも高いとき、前記塞ぎ板を取り外すステップと、前記伝熱管ブロックへ供給される前記ガスの圧力が所定の閾値以下であるとき、前記塞ぎ板を取り付けるステップとを有するIn the above invention, when the pressure of the gas supplied to the heat transfer tube block is higher than a predetermined threshold value, the step of removing the closing plate and the pressure of the gas supplied to the heat transfer tube block are equal to or lower than the predetermined threshold value. when it is closed and attaching the closing plate.

この構成によれば、空気密度が高く、伝熱管ブロックへ供給されるガス(排ガス)の圧力、すなわちボイラ内部の排ガス圧力が高くなる傾向にある期間は、塞ぎ板が取り外されて、ボイラ内部の排ガスが通過する際の圧力損失を低減させる。他方、空気密度が低く、伝熱管ブロックへ供給されるガスの圧力、すなわちボイラ内部の排ガス圧力が低くなる傾向にある期間は、塞ぎ板が取り付けられて、熱回収効率を向上させることができる。 According to this configuration, the closing plate is removed during the period when the air density is high and the pressure of the gas (exhaust gas) supplied to the heat transfer tube block, that is, the exhaust gas pressure inside the boiler tends to be high, and the inside of the boiler is removed. Reduces pressure loss when exhaust gas passes through. On the other hand, during the period when the air density is low and the pressure of the gas supplied to the heat transfer tube block, that is, the exhaust gas pressure inside the boiler tends to be low, a closing plate can be attached to improve the heat recovery efficiency.

本発明の参考例に係るボイラは、複数の伝熱管を有する伝熱管ブロックと、隣接する前記伝熱管ブロックとの間に形成された隙間の垂直方向上端部に前記伝熱管の長手方向に沿う方向が長手方向になるように設置され、前記隙間を通過しようとするガスの流れを妨げる塞ぎ板とを備え、前記塞ぎ板は、前記伝熱管ブロックへ供給されるガスの流体力で移動しない重さを有する。 The boiler according to the reference example of the present invention has a direction along the longitudinal direction of the heat transfer tube at the upper end in the vertical direction of the gap formed between the heat transfer tube block having a plurality of heat transfer tubes and the adjacent heat transfer tube block. Is installed so as to be in the longitudinal direction, and includes a closing plate that obstructs the flow of gas that tries to pass through the gap, and the closing plate has a weight that does not move due to the fluid force of the gas supplied to the heat transfer tube block. Has.

この構成によれば、塞ぎ板は、自重によって取り付けられた状態が維持されるため、溶接によって塞ぎ板を伝熱管ブロックに対して取り付ける必要がなく、塞ぎ板の取り外しと取り付け作業を容易に実施することができる。 According to this configuration, since the closing plate is maintained in a state of being attached by its own weight, it is not necessary to attach the closing plate to the heat transfer tube block by welding, and the closing plate can be easily removed and attached. be able to.

本発明の参考例に係るボイラは、複数の伝熱管を有する伝熱管ブロックと、隣接する前記伝熱管ブロックとの間に形成された隙間の垂直方向上端部に前記伝熱管の長手方向に沿う方向が長手方向になるように設置され、前記隙間を通過しようとするガスの流れを妨げる塞ぎ板と、前記伝熱管ブロックの垂直方向上面に、前記伝熱管の長手方向に沿う方向に設けられた板状部材を有するガイド部材とを備え、前記塞ぎ板の端面は、前記ガイド部材に接触して設けられる。 The boiler according to the reference example of the present invention has a direction along the longitudinal direction of the heat transfer tube at the upper end in the vertical direction of the gap formed between the heat transfer tube block having a plurality of heat transfer tubes and the adjacent heat transfer tube block. Is installed so as to be in the longitudinal direction, and a closing plate that obstructs the flow of gas that tries to pass through the gap, and a plate that is provided on the upper surface of the heat transfer tube block in the vertical direction along the longitudinal direction of the heat transfer tube. A guide member having a shaped member is provided, and the end face of the closing plate is provided in contact with the guide member.

この構成によれば、塞ぎ板の水平方向の端面の少なくとも一部がガイド部材と接触するため、塞ぎ板の位置が水平方向にずれにくくなり、塞ぎ板と伝熱管ブロックの間の隙間が発生して、排ガスの一部がショートパスして通過することを抑制する。 According to this configuration, at least a part of the horizontal end face of the closing plate comes into contact with the guide member, so that the position of the closing plate is less likely to shift in the horizontal direction, and a gap is generated between the closing plate and the heat transfer tube block. This prevents a part of the exhaust gas from passing through in a short pass.

上記参考例において、前記塞ぎ板の垂直方向下面には、前記塞ぎ板の長手方向に対して直交方向に設けられた板状部材であり、隣接する前記伝熱管ブロックの間の隙間以上の垂直方向に延びる高さを有する第1補助板が設けられてもよい。 In the above reference example , the lower surface of the closing plate in the vertical direction is a plate-shaped member provided in a direction orthogonal to the longitudinal direction of the closing plate, and is in a vertical direction equal to or greater than a gap between adjacent heat transfer tube blocks. A first auxiliary plate having a height extending to may be provided.

この構成によれば、補助板により塞ぎ板の剛性を向上して変形を抑制するので、塞ぎ板と伝熱管ブロックの間の隙間の発生で、排ガスの一部がショートパスで通過することを抑制する。また、隣接する伝熱管ブロックの間の隙間以上の高さを有する補助板が設けられることから、塞ぎ板が想定外の移動したときや、取り外しと取り付け作業時などに、塞ぎ板が伝熱管ブロックの間から落下することを防止できる。 According to this configuration, the auxiliary plate improves the rigidity of the closing plate and suppresses deformation, so that a gap between the closing plate and the heat transfer tube block prevents part of the exhaust gas from passing through in a short path. To do. In addition, since an auxiliary plate having a height higher than the gap between adjacent heat transfer tube blocks is provided, the closing plate can be used as a heat transfer tube block when the closing plate moves unexpectedly or when the closing plate is removed and attached. It can be prevented from falling from between.

上記参考例において、前記塞ぎ板の垂直方向上面には、隣接する前記伝熱管ブロックの間の隙間以上の垂直方向に沿う高さを有する取手部が設けられてもよい。 In the above reference example , the vertical upper surface of the closing plate may be provided with a handle portion having a height along the vertical direction that is equal to or greater than the gap between the adjacent heat transfer tube blocks.

この構成によれば、隣接する伝熱管ブロックの間の隙間以上の高さを有する取手部が設けられることから、塞ぎ板が伝熱管ブロックの間から落下することを防止できる。 According to this configuration, since the handle portion having a height equal to or higher than the gap between the adjacent heat transfer tube blocks is provided, it is possible to prevent the closing plate from falling from between the heat transfer tube blocks.

上記参考例において、隣接する前記伝熱管ブロックの間にて、前記塞ぎ板の主面に対して直交方向に設けられた板状部材である複数の第2補助板が少なくとも一端側が前記伝熱管ブロックに接合して設けられ、前記塞ぎ板に対応して設置された各前記第2補助板どうしの設置間隔は、前記伝熱管ブロックの間の隙間よりも小さくてもよい。 In the above reference example , between the adjacent heat transfer tube blocks, a plurality of second auxiliary plates, which are plate-like members provided in a direction orthogonal to the main surface of the closing plate, have at least one end side of the heat transfer tube block. The installation interval between the second auxiliary plates, which are joined to each other and installed corresponding to the closing plate, may be smaller than the gap between the heat transfer tube blocks.

この構成によれば、各塞ぎ板に対する伝熱管ブロックの間に設けられた複数の補助板の設置間隔は、伝熱管ブロックの間の隙間よりも小さいことから、塞ぎ板が伝熱管ブロックの間から落下することを防止できる。 According to this configuration, since the installation interval of the plurality of auxiliary plates provided between the heat transfer tube blocks for each closing plate is smaller than the gap between the heat transfer tube blocks, the closing plates are placed between the heat transfer tube blocks. It can be prevented from falling.

本発明の参考例に係るボイラは、複数の伝熱管を有する伝熱管ブロックと、隣接する前記伝熱管ブロックとの間に形成された隙間の垂直方向上端部に前記伝熱管の長手方向に沿う方向が長手方向になるように設置され、前記隙間を通過しようとするガスの流れを妨げる塞ぎ板と、前記伝熱管ブロックの垂直方向上面に設けられ、前記伝熱管ブロックの間の隙間の方へ折り曲げられた形状を有する固定具と、前記固定具と前記塞ぎ板の間の隙間に挿入される、垂直方向に高さが変化する傾斜面を保有するストッパーとを備える。 The boiler according to the reference example of the present invention has a direction along the longitudinal direction of the heat transfer tube at the vertical upper end of the gap formed between the heat transfer tube block having a plurality of heat transfer tubes and the adjacent heat transfer tube block. Is installed so as to be in the longitudinal direction, and is provided on the vertical upper surface of the heat transfer tube block and a closing plate that obstructs the flow of gas that tries to pass through the gap, and is bent toward the gap between the heat transfer tube blocks. It is provided with a fixture having a shaped shape and a stopper having an inclined surface whose height changes in the vertical direction, which is inserted into a gap between the fixture and the closing plate.

この構成によれば、塞ぎ板が、固定具とストッパーによって、伝熱管ブロックに対して固定される。塞ぎ板と固定具、及び、固定具とストッパーは、簡単に移動しない程度に例えば溶接や点付溶接などによって固定される。この場合、塞ぎ板を全周溶接によって伝熱管ブロックに対して固定する場合に比べて溶接箇所を減らすことができる。したがって、塞ぎ板の取り外しと取り付け作業を容易に実施することができる。 According to this configuration, the closing plate is fixed to the heat transfer tube block by the fixture and the stopper. The closing plate and the fixture, and the fixture and the stopper are fixed by, for example, welding or spot welding to the extent that they do not move easily. In this case, the number of welded parts can be reduced as compared with the case where the closing plate is fixed to the heat transfer tube block by full-circle welding. Therefore, the work of removing and attaching the closing plate can be easily performed.

本発明の参考例に係るボイラは、複数の伝熱管を有する伝熱管ブロックと、隣接する前記伝熱管ブロックとの間に形成された隙間の垂直方向上端部に前記伝熱管の長手方向に沿う方向が長手方向になるように設置され、前記隙間を通過しようとするガスの流れを妨げる塞ぎ板と、前記伝熱管ブロックと前記塞ぎ板を挟んで、前記伝熱管ブロックに対して前記塞ぎ板を締め付け力で固定するクランプとを備える。 The boiler according to the reference example of the present invention has a direction along the longitudinal direction of the heat transfer tube at the upper end in the vertical direction of the gap formed between the heat transfer tube block having a plurality of heat transfer tubes and the adjacent heat transfer tube block. Is installed so as to be in the longitudinal direction, and the closing plate that obstructs the flow of gas that tries to pass through the gap is sandwiched between the heat transfer tube block and the closing plate, and the closing plate is tightened against the heat transfer tube block. It is equipped with a clamp that is fixed by force.

この構成によれば、クランプが、伝熱管ブロックと塞ぎ板を挟むことで、塞ぎ板が、クランプによって伝熱管ブロックに対して固定される。この場合、塞ぎ板を全周溶接によって伝熱管ブロックに対して固定する場合に比べて溶接箇所を減らすことができる。したがい、塞ぎ板の取り外しと取り付け作業を容易に実施することができる。 According to this configuration, the clamp sandwiches the heat transfer tube block and the closing plate, so that the closing plate is fixed to the heat transfer tube block by the clamp. In this case, the number of welded parts can be reduced as compared with the case where the closing plate is fixed to the heat transfer tube block by full-circle welding. Therefore, the work of removing and attaching the closing plate can be easily carried out.

本発明の参考例に係るボイラは、複数の伝熱管を有する伝熱管ブロックと、隣接する前記伝熱管ブロックとの間に形成された隙間の垂直方向上端部に前記伝熱管の長手方向に沿う方向が長手方向になるように設置され、前記隙間を通過しようとするガスの流れを妨げる塞ぎ板とを備え、前記伝熱管ブロックの隙間において、前記塞ぎ板が前記伝熱管の長手方向に沿う方向が長手方向になるよう複数配置され、前記塞ぎ板の長手方向の端部には、隣接する前記塞ぎ板の長手方向の端部と互いに嵌め合わされる段差構造を有する。 The boiler according to the reference example of the present invention has a direction along the longitudinal direction of the heat transfer tube at the vertical upper end of the gap formed between the heat transfer tube block having a plurality of heat transfer tubes and the adjacent heat transfer tube block. Is installed so as to be in the longitudinal direction, and is provided with a closing plate that obstructs the flow of gas that tries to pass through the gap, and in the gap of the heat transfer tube block, the direction in which the closing plate is along the longitudinal direction of the heat transfer tube is A plurality of them are arranged so as to be in the longitudinal direction, and the longitudinal end portion of the closing plate has a step structure that is fitted to each other with the longitudinal end portion of the adjacent closing plate.

この構成によれば、塞ぎ板の長手方向(縦方向)端部が隣接する他の塞ぎ板の端部によって拘束されるため、塞ぎ板の垂直方向上面と底面との温度差に伴う熱伸び差による塞ぎ板端部の変形(反り)が抑制され、塞ぎ板と伝熱管ブロックの間の隙間が発生して、排ガスの一部がショートパスで通過することを抑制する。 According to this configuration, the longitudinal (longitudinal) end of the closing plate is constrained by the end of another adjacent closing plate, so that the heat elongation difference due to the temperature difference between the vertical upper surface and the bottom surface of the closing plate. Deformation (warp) of the end of the closing plate due to the above is suppressed, a gap is generated between the closing plate and the heat transfer tube block, and a part of the exhaust gas is suppressed from passing through in a short path.

本発明の参考例に係る発電システムは、燃料ガスを燃焼して発生させた高温高圧ガスによって駆動されるガスタービンと、前記ガスタービンで発生した排ガスが供給される上述したボイラと、前記ボイラから排出された蒸気によって駆動する蒸気タービンと、前記ガスタービン及び前記蒸気タービンの回転力によって駆動する発電機とを備える。 The power generation system according to the reference example of the present invention comprises a gas turbine driven by a high-temperature and high-pressure gas generated by burning fuel gas, the above-mentioned boiler to which exhaust gas generated by the gas turbine is supplied, and the above-mentioned boiler. A steam turbine driven by the discharged steam and a gas turbine and a generator driven by the rotational force of the steam turbine are provided.

本発明によれば、年間を通しての熱回収効率の低下を抑制して、排ガスの過剰となる圧力損失の増加を抑制して、GT排ガスの圧力上昇を抑制することできる。 According to the present invention, it is possible to suppress a decrease in heat recovery efficiency throughout the year, suppress an increase in pressure loss due to excessive exhaust gas, and suppress an increase in pressure of GT exhaust gas.

本発明の第1実施形態に係る伝熱管ブロック間の塞ぎ板構造を示す縦断面図である。It is a vertical cross-sectional view which shows the closing plate structure between the heat transfer tube blocks which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係る伝熱管ブロック間の塞ぎ板構造を示す斜視図である。It is a perspective view which shows the closing plate structure between the heat transfer tube blocks which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係る伝熱管ブロック間の塞ぎ板構造の第1変形例を示す斜視図である。It is a perspective view which shows the 1st modification of the closing plate structure between the heat transfer tube blocks which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係る伝熱管ブロック間の塞ぎ板構造の第2変形例を示す斜視図である。It is a perspective view which shows the 2nd modification of the closing plate structure between the heat transfer tube blocks which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係る伝熱管ブロック間の塞ぎ板構造の第3変形例を示す斜視図である。It is a perspective view which shows the 3rd modification of the closing plate structure between the heat transfer tube blocks which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係る伝熱管ブロック間の塞ぎ板構造の第3変形例を示す斜視図であり、塞ぎ板を取り外した状態を示している。It is a perspective view which shows the 3rd modification of the closing plate structure between the heat transfer tube blocks which concerns on 1st Embodiment of this invention, and shows the state which the closing plate is removed. 本発明の第2実施形態に係る伝熱管ブロック間の塞ぎ板構造を示す縦断面図である。It is a vertical cross-sectional view which shows the closing plate structure between the heat transfer tube blocks which concerns on 2nd Embodiment of this invention. 本発明の第2実施形態に係る伝熱管ブロック間の塞ぎ板構造を示す側面図である。It is a side view which shows the closing plate structure between the heat transfer tube blocks which concerns on 2nd Embodiment of this invention. 本発明の第2実施形態に係る伝熱管ブロック間の塞ぎ板構造を示す平面図である。It is a top view which shows the closing plate structure between the heat transfer tube blocks which concerns on 2nd Embodiment of this invention. 本発明の第2実施形態に係る伝熱管ブロック間の塞ぎ板構造の第1変形例を示す側面図である。It is a side view which shows the 1st modification of the closing plate structure between the heat transfer tube blocks which concerns on 2nd Embodiment of this invention. 本発明の第2実施形態に係る伝熱管ブロック間の塞ぎ板構造の第2変形例を示す縦断面図である。It is a vertical cross-sectional view which shows the 2nd modification of the closing plate structure between the heat transfer tube blocks which concerns on 2nd Embodiment of this invention. 本発明の第2実施形態に係る伝熱管ブロック間の塞ぎ板構造の第2変形例を示す部分拡大縦断面図である。It is a partially enlarged vertical sectional view which shows the 2nd modification of the closing plate structure between the heat transfer tube blocks which concerns on 2nd Embodiment of this invention. 本発明の第2実施形態に係る伝熱管ブロック間の塞ぎ板構造の第3変形例を示す部分拡大縦断面図である。It is a partially enlarged vertical sectional view which shows the 3rd modification of the closing plate structure between the heat transfer tube blocks which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態に係る伝熱管ブロック間の塞ぎ板構造を示す斜視図である。It is a perspective view which shows the closing plate structure between the heat transfer tube blocks which concerns on 3rd Embodiment of this invention. 伝熱管ブロックを示す縦断面図である。It is a vertical cross-sectional view which shows the heat transfer tube block. 伝熱管ブロック及び塞ぎ板を示す縦断面図である。It is a vertical cross-sectional view which shows the heat transfer tube block and the closing plate. 伝熱管ブロック及び塞ぎ板を示す縦断面図であり、図16の切断方向に対して直交方向に切断した図である。It is a vertical cross-sectional view which shows the heat transfer tube block and the closing plate, and is the figure which cut in the direction orthogonal to the cutting direction of FIG. 伝熱管ブロック間の隙間に設置される塞ぎ板を示す斜視図である。It is a perspective view which shows the closing plate installed in the gap between the heat transfer tube blocks. 排熱回収ボイラを備えるガスタービンコンバインドサイクル発電システムを示す概略構成図である。It is a schematic block diagram which shows the gas turbine combined cycle power generation system which includes the exhaust heat recovery boiler.

[第1実施形態]
火力発電プラント等において用いられる排熱回収ボイラ(HRSG)のダクト12の内部を図1に示す。排熱回収ボイラのダクト12の排ガス通路断面に垂直な方向を垂直方向とする。図1では排ガスが流れる方向が垂直方向になり、図19に示すような縦型の排熱回収ボイラ42では、垂直方向は略鉛直方向になる。ダクト12の配置方向で、垂直方向は、必ずしも鉛直方向に沿う必要はない。図1に示すように、熱交換器10が設置されていて、本実施形態では、排ガス(ガス)は、熱交換器10の一側(紙面下側)から他側(紙面上側)へと垂直方向へと矢印で示した方向へと流れる。熱交換器10は、伝熱管ブロック13が複数配置されており、伝熱管ブロック13は、複数の伝熱管30から構成されていて、伝熱管30内を流通する給水や蒸気などが排ガスと熱交換をする。隣接する伝熱管ブロック13の間には製作・施工などの観点から所定の隙間が設けられている。なお、伝熱管ブロック13とダクト12の間の隙間には、排ガスをショートパスして通過させないように、伝熱管ブロック13垂直方向上面の一端に固定板14が設置されている。
[First Embodiment]
FIG. 1 shows the inside of the duct 12 of the exhaust heat recovery boiler (HRSG) used in a thermal power plant or the like. The direction perpendicular to the cross section of the exhaust gas passage of the duct 12 of the exhaust heat recovery boiler is defined as the vertical direction. In FIG. 1, the direction in which the exhaust gas flows is the vertical direction, and in the vertical exhaust heat recovery boiler 42 as shown in FIG. 19, the vertical direction is substantially the vertical direction. In the arrangement direction of the duct 12, the vertical direction does not necessarily have to be along the vertical direction. As shown in FIG. 1, the heat exchanger 10 is installed, and in the present embodiment, the exhaust gas (gas) is vertical from one side (lower side of the paper surface) of the heat exchanger 10 to the other side (upper side of the paper surface). It flows in the direction indicated by the arrow. A plurality of heat transfer tube blocks 13 are arranged in the heat exchanger 10, and the heat transfer tube block 13 is composed of a plurality of heat transfer tubes 30, and water supply and steam circulating in the heat transfer tube 30 exchange heat with exhaust gas. do. A predetermined gap is provided between the adjacent heat transfer tube blocks 13 from the viewpoint of manufacturing, construction, and the like. In the gap between the heat transfer tube block 13 and the duct 12, a fixing plate 14 is installed at one end of the upper surface of the heat transfer tube block 13 in the vertical direction so that the exhaust gas does not pass through in a short pass.

本実施形態では、年間を通して熱交換器10の熱回収効率が低下しないように、隣接する伝熱管ブロック13の間に設けられた隙間に対して、ある期間には塞ぎ板11を配置して排ガスをショートパスして通過させないようにしたり、別の期間には塞ぎ板11を取り外して、排ガスの一部を、複数の伝熱管30側を通過させずにショートパスして通過させたりしている。 In the present embodiment, in order to prevent the heat recovery efficiency of the heat exchanger 10 from decreasing throughout the year, a closing plate 11 is arranged for a certain period of time in the gap provided between the adjacent heat transfer tube blocks 13 to exhaust gas. Is short-passed to prevent it from passing through, or the closing plate 11 is removed during another period to allow a part of the exhaust gas to pass through by short-passing without passing through the plurality of heat transfer tubes 30. ..

外気温度が低い期間は、空気密度が高くGTの排ガス流量が増加するので、排熱回収ボイラ内部を排ガスが通過する際の圧力損失が高くなる傾向にある。この期間には、塞ぎ板11が取り外されて、圧力損失を低減させてGT及び排熱回収ボイラの運転の継続を可能とする。 During the period when the outside air temperature is low, the air density is high and the exhaust gas flow rate of the GT increases, so that the pressure loss when the exhaust gas passes through the exhaust heat recovery boiler tends to increase. During this period, the closing plate 11 is removed to reduce the pressure loss and allow the GT and the exhaust heat recovery boiler to continue operation.

他方、外気温度が高い期間は、空気密度が低くGTの排ガス流量が減少するので、排熱回収ボイラ内部の排ガス圧力損失が低くなる傾向にある。この期間には、塞ぎ板11が取り付けられて、熱交換器10の熱回収効率を向上させることができる。 On the other hand, during the period when the outside air temperature is high, the air density is low and the exhaust gas flow rate of the GT is reduced, so that the exhaust gas pressure loss inside the exhaust heat recovery boiler tends to be low. During this period, the closing plate 11 is attached, and the heat recovery efficiency of the heat exchanger 10 can be improved.

また、外気温度の計測に因らずに、ガスタービンの排ガス(GT排ガス)の圧力による判断も可能である。空気密度が高く、伝熱管ブロック13へ供給される排ガスの圧力、すなわち排熱回収ボイラ内部の排ガス圧力が高くなる傾向にある期間は、塞ぎ板11が取り外されて、排熱回収ボイラ内部の排ガスが通過する際の圧力損失を低減させる。 Further, it is possible to make a judgment based on the pressure of the exhaust gas (GT exhaust gas) of the gas turbine regardless of the measurement of the outside air temperature. During the period when the air density is high and the pressure of the exhaust gas supplied to the heat transfer tube block 13, that is, the exhaust gas pressure inside the exhaust heat recovery boiler tends to be high, the closing plate 11 is removed and the exhaust gas inside the exhaust heat recovery boiler is removed. Reduces pressure loss as it passes.

他方、空気密度が低く、伝熱管ブロック13へ供給されるガスの圧力、すなわち排熱回収ボイラ内部の排ガス圧力が低くなる傾向にある期間は、塞ぎ板11が取り付けられて、熱交換器10の熱回収効率を向上させることができる。 On the other hand, during the period when the air density is low and the pressure of the gas supplied to the heat transfer tube block 13, that is, the exhaust gas pressure inside the exhaust heat recovery boiler tends to be low, the closing plate 11 is attached to the heat exchanger 10. The heat recovery efficiency can be improved.

すなわち、所定の閾値として、GTと排熱回収ボイラの仕様や運用状況に応じて、適切な外気温度、又は、GT排ガスの圧力を設定することで、外気温度に応じて、又は、GT排ガスの圧力に応じて、塞ぎ板11を取り外しする期間と取り付ける期間を判断して、排熱回収ボイラの停止期間などを利用して、塞ぎ板11の取り外しや取り付け作業を計画的に実施することが可能となる。 That is, by setting an appropriate outside air temperature or GT exhaust gas pressure according to the specifications and operating conditions of the GT and the exhaust heat recovery boiler as a predetermined threshold, the GT exhaust gas can be adjusted according to the outside air temperature. It is possible to systematically carry out the removal and installation work of the closing plate 11 by determining the period for removing and installing the closing plate 11 according to the pressure and using the stop period of the exhaust heat recovery boiler or the like. It becomes.

外気温度は、ガスタービンの吸気口入口によって測定される。また、GT排ガスの圧力は、ガスタービンの排ガス出口側に設けられた、図示しない圧力計によって測定される。 The outside air temperature is measured by the intake inlet of the gas turbine. The pressure of the GT exhaust gas is measured by a pressure gauge (not shown) provided on the exhaust gas outlet side of the gas turbine.

伝熱管ブロック13の間の隙間に設置する塞ぎ板11は、縦方向(紙面直交方向)の縦長さが伝熱管ブロック13の縦方向長さを覆う長さであり、水平方向の横長さが隣接する伝熱管ブロック13間の隙間の幅を覆う長さである。また、垂直方向の板厚はソリ変形が生じにくく溶接などで固定が可能な厚さである。本実施形態では、例えば、縦2,000〜4,000mm×横50〜200mm×板厚3〜5mm程度である。塞ぎ板11を配置して伝熱管ブロック13を排ガスの一部がショートパスして通過しないようにすることで、排ガスは伝熱管30の周囲を通過するので熱交換器10の熱回収効率の低減を抑制できる。但し、この状態では、排熱回収ボイラにおける排ガスの流通による圧力損失は、GT排ガスの流量が増加した場合には高くなる。一方、塞ぎ板11を取り外して、排ガスの一部を、複数の伝熱管30の周囲を通過させずにショートパスして通過させることで、排熱回収ボイラにおける排ガスの圧力損失を低減できる。但し、この状態では、熱交換器10の熱回収効率に多少の低下が生じる。 The closing plate 11 installed in the gap between the heat transfer tube blocks 13 has a vertical length (in the direction orthogonal to the paper surface) that covers the vertical length of the heat transfer tube block 13, and the horizontal horizontal lengths are adjacent to each other. It is a length that covers the width of the gap between the heat transfer tube blocks 13. In addition, the plate thickness in the vertical direction is such that warpage deformation is unlikely to occur and can be fixed by welding or the like. In the present embodiment, for example, the length is about 2,000 to 4,000 mm, the width is 50 to 200 mm, and the plate thickness is about 3 to 5 mm. By arranging the closing plate 11 so that a part of the exhaust gas does not pass through the heat transfer tube block 13 by short-passing, the exhaust gas passes around the heat transfer tube 30, so that the heat recovery efficiency of the heat exchanger 10 is reduced. Can be suppressed. However, in this state, the pressure loss due to the flow of the exhaust gas in the exhaust heat recovery boiler becomes high when the flow rate of the GT exhaust gas increases. On the other hand, by removing the closing plate 11 and passing a part of the exhaust gas through a short pass without passing around the plurality of heat transfer tubes 30, the pressure loss of the exhaust gas in the exhaust heat recovery boiler can be reduced. However, in this state, the heat recovery efficiency of the heat exchanger 10 is slightly reduced.

具体的には、ガスタービンが燃焼に用いる空気の空気密度が高くなり排ガス流量が増加する期間、すなわち、外気温度が低くなる期間又はGT排ガスの圧力が高くなる期間(主に冬季)は塞ぎ板11を取り外す。他方、ガスタービンが燃焼に用いる空気の空気密度が低くなり排ガス流量が減少する期間、すなわち、外気温度が高くなる期間又はGT排ガスの圧力が低くなる期間(主に夏季)は塞ぎ板11を取り付ける。 Specifically, the period when the air density of the air used for combustion by the gas turbine increases and the exhaust gas flow rate increases, that is, the period when the outside air temperature decreases or the period when the GT exhaust gas pressure increases (mainly in winter) is a closing plate. Remove 11 On the other hand, the closing plate 11 is attached during the period when the air density of the air used by the gas turbine for combustion decreases and the exhaust gas flow rate decreases, that is, the period when the outside air temperature rises or the GT exhaust gas pressure decreases (mainly in summer). ..

冬季は塞ぎ板11が取り外された部分(伝熱管ブロック13の間の隙間)を排ガスの一部が通過し、排ガスの一部が伝熱管30を通過せずにショートパスして通過するため、熱交換器10の熱回収効率が低下する。しかし、排熱回収ボイラにおける排ガスの圧力が過剰な分へと上昇し難くなるので、排ガスの圧力が所定の値を越えにくくなるため、GTの運転継続を控える状態であると判断されることはない。このように、塞ぎ板11を取り外すという作業のみで、GTと排熱回収ボイラを容易に運転継続できるという利点がある。他方、夏季は、塞ぎ板11によって、排ガスの一部がショートパスして通過することを妨げ、排ガスが伝熱管30の周囲を通過することから、熱交換器10の熱回収効率の低下を抑制できる。夏季は、空気密度が低く、排ガス流量が減少して冬季に比べて排熱回収ボイラにおける排ガスの圧力損出は少なくGT排ガスの圧力が上昇していないことから、塞ぎ板11の設置による排熱回収ボイラの排ガス流通による圧力損失の上昇分は、GTの運転継続の妨げとはならない。塞ぎ板11を伝熱管ブロック13の間の隙間に取り付けたり取り外したりすることにより、例えば0.1kPa〜0.5kPaの排ガス流通による圧力損失を調整でき、GT排ガスの圧力の変動を吸収できるので、好ましい。 In winter, a part of the exhaust gas passes through the part where the closing plate 11 is removed (the gap between the heat transfer tube blocks 13), and a part of the exhaust gas passes through the heat transfer tube 30 without passing through the short pass. The heat recovery efficiency of the heat exchanger 10 is reduced. However, since it becomes difficult for the exhaust gas pressure in the exhaust heat recovery boiler to rise to an excessive amount, it becomes difficult for the exhaust gas pressure to exceed a predetermined value, and it is judged that the GT is in a state of refraining from continuing operation. Absent. As described above, there is an advantage that the GT and the exhaust heat recovery boiler can be easily continued to operate only by removing the closing plate 11. On the other hand, in the summer, the closing plate 11 prevents a part of the exhaust gas from passing through in a short pass, and the exhaust gas passes around the heat transfer tube 30, so that the decrease in the heat recovery efficiency of the heat exchanger 10 is suppressed. it can. In the summer, the air density is low, the exhaust gas flow rate decreases, the pressure loss of the exhaust gas in the exhaust heat recovery boiler is small, and the pressure of the GT exhaust gas does not rise. The increase in pressure loss due to the exhaust gas flow of the recovery boiler does not hinder the continuation of GT operation. By attaching or detaching the closing plate 11 to or from the gap between the heat transfer tube blocks 13, the pressure loss due to the exhaust gas flow of, for example, 0.1 kPa to 0.5 kPa can be adjusted, and the fluctuation of the pressure of the GT exhaust gas can be absorbed. preferable.

[第1実施形態の変形例1]
従来、塞ぎ板11を取り付けたままとしており、塞ぎ板11は、図18のように全周溶接で固定して伝熱管ブロック13との間に排ガスの一部が漏れて通過することを抑制してある。図18では、溶接部分を符号Wで表している。したがって、塞ぎ板11を、外気温度に応じて、又は、ガスタービンの排ガス(GT排ガス)の圧力に応じて、例えば夏場と冬場の移り変わり時期に取り付けたり、取り外したりするには、全周溶接で塞ぎ板11を固定するよりも、下記の構成を採用して、取り付けと取り外しをする作業性を改善させることが望ましい。
[Modification 1 of the first embodiment]
Conventionally, the closing plate 11 is left attached, and the closing plate 11 is fixed by full-circle welding as shown in FIG. 18 to prevent a part of the exhaust gas from leaking and passing between the closing plate 11 and the heat transfer tube block 13. There is. In FIG. 18, the welded portion is represented by the reference numeral W. Therefore, in order to attach or detach the closing plate 11 according to the outside air temperature or the pressure of the exhaust gas (GT exhaust gas) of the gas turbine, for example, at the transition time between summer and winter, it is necessary to perform full-circle welding. Rather than fixing the closing plate 11, it is desirable to adopt the following configuration to improve the workability of attaching and detaching.

本実施形態では排ガスが図1の矢印で示す方向である垂直上方向へと排ガスが流れるので、塞ぎ板11は、図1に示すように、伝熱管ブロック13の垂直方向上面であって、伝熱管ブロック13の間の隙間を塞ぐように配置される。 In the present embodiment, the exhaust gas flows in the vertical upward direction, which is the direction indicated by the arrow in FIG. 1, so that the closing plate 11 is the upper surface of the heat transfer tube block 13 in the vertical direction as shown in FIG. It is arranged so as to close the gap between the heat tube blocks 13.

塞ぎ板11は、例えば鋼板であり、表面には腐食防止の表面処理が施されてもよい。塞ぎ板11の板厚は、例えば、t10mm〜t30mm程度の厚板として、塞ぎ板11の重量は、排ガスの流体力による圧力で塞ぎ板11が浮かび上がらない重さとする。このように塞ぎ板11の重量を設定することで、塞ぎ板11は、自重によって取り付けられた状態が維持されるため、溶接によって塞ぎ板11を伝熱管ブロック13に対して取り付ける必要がなく、塞ぎ板11の取り付け・取り外し作業を短期間で実施することが可能となる。 The closing plate 11 is, for example, a steel plate, and the surface thereof may be subjected to a surface treatment to prevent corrosion. The thickness of the closing plate 11 is, for example, a thick plate of about t10 mm to t30 mm, and the weight of the closing plate 11 is such that the closing plate 11 does not rise due to the pressure due to the fluid force of the exhaust gas. By setting the weight of the closing plate 11 in this way, the closing plate 11 is maintained in a state of being attached by its own weight, so that it is not necessary to attach the closing plate 11 to the heat transfer tube block 13 by welding, and the closing plate 11 is closed. The plate 11 can be attached / detached in a short period of time.

また、図1及び図2に示すように、塞ぎ板11が伝熱管ブロック13の垂直方向上面に設置されたとき、塞ぎ板11の水平方向の両端部にある端面に面するガイド金物(L字金物)15が、伝熱管ブロック13の垂直方向上面において、塞ぎ板11の端面の少なくとも一部と接触して設置されてもよい。ガイド金物15を設けることで、塞ぎ板11の位置が水平方向にずれにくくなる。その結果、塞ぎ板11がボイラ運転中の振動や排ガスの流体力などを受けたとしても、水平方向のずれを防止でき、塞ぎ板11と伝熱管ブロック13の間の隙間が発生して、排ガスの一部がショートパスして通過することを抑制するので好ましい。 Further, as shown in FIGS. 1 and 2, when the closing plate 11 is installed on the upper surface of the heat transfer tube block 13 in the vertical direction, the guide hardware (L-shape) facing the end faces at both ends in the horizontal direction of the closing plate 11 is formed. The hardware) 15 may be installed on the upper surface of the heat transfer tube block 13 in the vertical direction in contact with at least a part of the end surface of the closing plate 11. By providing the guide hardware 15, the position of the closing plate 11 is less likely to shift in the horizontal direction. As a result, even if the closing plate 11 receives vibration during boiler operation or the fluid force of the exhaust gas, it is possible to prevent the displacement in the horizontal direction, and a gap is generated between the closing plate 11 and the heat transfer tube block 13 to generate the exhaust gas. It is preferable because it suppresses the passage of a part of the short pass.

ガイド金物15は、水平部15aと垂直部15bを有し、水平部15aは、主面が水平方向に延び、伝熱管ブロック13の垂直上面に載置される。垂直部15bは、水平部15aに対して直交方向である垂直方向に延びるように設けられる。 The guide hardware 15 has a horizontal portion 15a and a vertical portion 15b, and the horizontal portion 15a has a main surface extending in the horizontal direction and is placed on the vertical upper surface of the heat transfer tube block 13. The vertical portion 15b is provided so as to extend in the vertical direction which is orthogonal to the horizontal portion 15a.

[第1実施形態の変形例2]
さらに、本実施形態では、図3に示すように、各塞ぎ板11の底面に第1補助板16が取り付けられてもよい。第1補助板16は、例えば、幅が30〜100mm、高さが100〜200mm、板厚が3〜10mm程度である。図3は、配置構造を判り易くするために、図2と異なり、手前側の伝熱管ブロック13及びガイド金物15の記載を省略した状態を示している。第1補助板16は、縦方向に延在する塞ぎ板11の長手方向の中央付近にて、塞ぎ板11の底面に対して直交方向に、溶接によって取り付けられる。第1補助板16により塞ぎ板11の剛性を向上して、温度差などによるソリ変形を抑制できる。また、第1補助板16の高さと塞ぎ板11の板厚を合わせた長さ(β)が、伝熱管ブロック13間の隙間の幅(α)よりも長くしてある。塞ぎ板11が予測できない状況で移動したときや、取り外しと取り付け作業時などに、仮に塞ぎ板11がガイド金物15から鉛直下方向(本実施形態では垂直下方向)に抜けることがあった場合でも、伝熱管ブロック13の間の隙間へと塞ぎ板11が落下することを防止できる。
[Modification 2 of the first embodiment]
Further, in the present embodiment, as shown in FIG. 3, the first auxiliary plate 16 may be attached to the bottom surface of each closing plate 11. The first auxiliary plate 16 has, for example, a width of 30 to 100 mm, a height of 100 to 200 mm, and a plate thickness of about 3 to 10 mm. FIG. 3 shows a state in which the description of the heat transfer tube block 13 and the guide hardware 15 on the front side is omitted, unlike FIG. 2, in order to make the arrangement structure easy to understand. The first auxiliary plate 16 is attached by welding in a direction orthogonal to the bottom surface of the closing plate 11 near the center in the longitudinal direction of the closing plate 11 extending in the vertical direction. The rigidity of the closing plate 11 can be improved by the first auxiliary plate 16, and warpage deformation due to a temperature difference or the like can be suppressed. Further, the total length (β) of the height of the first auxiliary plate 16 and the plate thickness of the closing plate 11 is longer than the width (α) of the gap between the heat transfer tube blocks 13. Even if the closing plate 11 moves in an unpredictable situation, or when the closing plate 11 is removed and attached, the closing plate 11 may come off from the guide hardware 15 in the vertical downward direction (vertically downward in the present embodiment). , It is possible to prevent the closing plate 11 from falling into the gap between the heat transfer tube blocks 13.

[第1実施形態の変形例3]
また、本実施形態では、図4に示すように、第1補助板16の取り付けはないが、取手部17の高さを高くし、塞ぎ板11の板厚と取手部17の高さ(γ)を合わせた長さが、伝熱管ブロック13間の隙間の幅(α)より大きくなるようにしてもよい。取手部17は、縦方向に延在する塞ぎ板11の長手方向の中央付近にて、塞ぎ板11の垂直方向上面に対して直交方向に、溶接によって取り付けられる。この場合も、塞ぎ板11が仮にガイド金物15から鉛直下方向(本実施形態では垂直下方向)に抜けることがあった場合でも、伝熱管ブロック13の間の隙間へと塞ぎ板11が落下することを防止できる。
[Modification 3 of the first embodiment]
Further, in the present embodiment, as shown in FIG. 4, although the first auxiliary plate 16 is not attached, the height of the handle portion 17 is increased, and the plate thickness of the closing plate 11 and the height of the handle portion 17 (γ) are increased. ) May be larger than the width (α) of the gap between the heat transfer tube blocks 13. The handle portion 17 is attached by welding in a direction orthogonal to the vertical upper surface of the closing plate 11 near the center in the longitudinal direction of the closing plate 11 extending in the vertical direction. Also in this case, even if the closing plate 11 is pulled out from the guide hardware 15 in the vertical downward direction (vertically downward in the present embodiment), the closing plate 11 falls into the gap between the heat transfer tube blocks 13. Can be prevented.

[第1実施形態の変形例4]
さらに、上述した図3の説明では、第1補助板16が塞ぎ板11の底面に設置される場合について説明したが、図5及び図6に示すように、少なくとも1つの第2補助板18が、伝熱管ブロック13の間の隙間に設置されるように、第2補助板18の水平方向の少なくとも一方の端部を伝熱管ブロック13に溶接などで取り付けてもよい。塞ぎ板11が1枚当たり第2補助板18は2対以上を設けると更に好ましい。この場合、複数の第2補助板18が伝熱管ブロック13の間の隙間の縦方向(塞ぎ板11の長手方向)に沿って並んで設置され、梯子状に設けられる。第2補助板18の設置間隔(δ)は、各塞ぎ板11に対して伝熱管ブロック13の間の隙間(α)の幅より小さくすることで、仮に塞ぎ板11がガイド金物15から鉛直下方向(本実施形態では垂直下方向)に抜けることがあった場合でも、伝熱管ブロック13の間の隙間へと塞ぎ板11が落下することを防止できる。
[Modification 4 of the first embodiment]
Further, in the above description of FIG. 3, the case where the first auxiliary plate 16 is installed on the bottom surface of the closing plate 11 has been described, but as shown in FIGS. 5 and 6, at least one second auxiliary plate 18 is provided. , At least one end of the second auxiliary plate 18 in the horizontal direction may be attached to the heat transfer tube block 13 by welding or the like so as to be installed in the gap between the heat transfer tube blocks 13. It is more preferable that two or more pairs of the second auxiliary plates 18 are provided for each closing plate 11. In this case, a plurality of second auxiliary plates 18 are installed side by side along the vertical direction (longitudinal direction of the closing plate 11) of the gap between the heat transfer tube blocks 13 and are provided in a ladder shape. The installation interval (δ) of the second auxiliary plate 18 is made smaller than the width of the gap (α) between the heat transfer tube blocks 13 for each closing plate 11, so that the closing plate 11 is tentatively below the guide hardware 15. Even if it comes off in the direction (vertically downward in the present embodiment), it is possible to prevent the closing plate 11 from falling into the gap between the heat transfer tube blocks 13.

[第2実施形態]
次に、本発明の第2実施形態に係る塞ぎ板構造について説明する。
上述した第1実施形態では、塞ぎ板11の厚さをt10mm〜t30mm程度の厚板とする場合について説明したが、本発明はこの例に限定されない。
[Second Embodiment]
Next, the closing plate structure according to the second embodiment of the present invention will be described.
In the above-described first embodiment, the case where the thickness of the closing plate 11 is a thick plate of about t10 mm to t30 mm has been described, but the present invention is not limited to this example.

塞ぎ板11は、図7から図10に示すように、従来程度の板厚(例えば、t3〜5mm程度)として、重量物としないで、固定具19を伝熱管ブロック13に溶接固定しておき、塞ぎ板11を固定具19と伝熱管ブロック13の間に挿入し、塞ぎ板11と固定具との間にストッパー20を挿入することで塞ぎ板11を固定する。 As shown in FIGS. 7 to 10, the closing plate 11 has a conventional plate thickness (for example, about t3 to 5 mm), and the fixture 19 is welded and fixed to the heat transfer tube block 13 without making it a heavy object. , The closing plate 11 is inserted between the fixing tool 19 and the heat transfer tube block 13, and the closing plate 11 is fixed by inserting the stopper 20 between the closing plate 11 and the fixing tool.

図7、図8に示すように固定具19は、伝熱管ブロック13の垂直方向上面から垂直方向上方へ延びて設けられ、垂直方向上部で伝熱管ブロック13の隙間の方に向かって折れ曲がった形状、例えばL字形状を有する。固定具19は、伝熱管ブロック13に対して溶接や締結ボルトなどによって固定される。図8では、溶接による固定部分を符号W1で示している。 As shown in FIGS. 7 and 8, the fixture 19 is provided so as to extend vertically upward from the vertical upper surface of the heat transfer tube block 13, and is bent toward the gap of the heat transfer tube block 13 at the upper part in the vertical direction. For example, it has an L-shape. The fixture 19 is fixed to the heat transfer tube block 13 by welding, fastening bolts, or the like. In FIG. 8, the fixed portion by welding is indicated by reference numeral W1.

伝熱管ブロック13の隙間の間に塞ぎ板11が設置されたとき、固定具19のうち、垂直方向上端部分で伝熱管ブロック13の隙間の方に向かって折れ曲がった部材は、例えば、塞ぎ板11と平行である。そして、伝熱管ブロック13の隙間の間に塞ぎ板11が設置されたとき、固定具19と塞ぎ板11の間に垂直方向に縦長さ(高さ)が変化する傾斜面のあるストッパー20が挿入可能である。固定具19は、例えば、垂直方向の縦:20〜50mm×水平方向の横:50〜100mm×板厚:3〜5mm程度であり、伝熱管ブロック13の隙間を挟んで一つずつ対で設置される。 When the closing plate 11 is installed between the gaps of the heat transfer tube block 13, the member of the fixture 19 that is bent toward the gap of the heat transfer tube block 13 at the upper end portion in the vertical direction is, for example, the closing plate 11. Is parallel to. Then, when the closing plate 11 is installed between the gaps of the heat transfer tube block 13, a stopper 20 having an inclined surface whose vertical length (height) changes in the vertical direction is inserted between the fixture 19 and the closing plate 11. It is possible. The fixtures 19 are, for example, vertical length: 20 to 50 mm × horizontal width: 50 to 100 mm × plate thickness: about 3 to 5 mm, and are installed one by one with a gap of the heat transfer tube block 13 in between. Will be done.

ストッパー20は、例えばクサビ形状を有し、垂直方向に長さ(高さ)が変化する傾斜面を持つものである。固定具19と塞ぎ板11の間で、例えば、塞ぎ板11の長手方向の端部側から中央部側に向かって挿入されたり、塞ぎ板11の長手方向の中央部側から端部側へ向かって挿入されたりする。ストッパー20は、例えば、垂直方向の高さ:10〜30mm×水平方向の横:30〜50mm×板厚10〜20mm程度のサイズを有する。ストッパー20は、固定具19と塞ぎ板11の間に挿入された後、固定具に対して運転中の振動などで簡易に移動しないよう点溶接で固定される。図8及び図9では、点溶接部分を符号W2で示している。 The stopper 20 has, for example, a wedge shape and has an inclined surface whose length (height) changes in the vertical direction. Between the fixture 19 and the closing plate 11, for example, it is inserted from the end side to the center side in the longitudinal direction of the closing plate 11, or from the center side to the end side in the longitudinal direction of the closing plate 11. Is inserted. The stopper 20 has a size of, for example, a height in the vertical direction: 10 to 30 mm × a horizontal direction: 30 to 50 mm × a plate thickness of about 10 to 20 mm. After being inserted between the fixture 19 and the closing plate 11, the stopper 20 is fixed to the fixture by spot welding so as not to easily move due to vibration during operation or the like. In FIGS. 8 and 9, the spot welded portion is indicated by reference numeral W2.

この構造では、溶接箇所は、固定具19と伝熱管ブロック13との間、固定具19とストッパー20との間に限られる(W1,W2)。そのため、従来の固定方法(全周溶接)に比べ、伝熱管ブロック13との溶接箇所が減少し、塞ぎ板11の取り付けや取り外しの作業期間が短縮される。なお、固定具19は消耗品であり、塞ぎ板11の取り付けや取り外し作業の数回に1度程度で交換される。また、ストッパー20が振動で外れないようにするために、図10に示すように、ストッパー20を両クサビ状(下側ストッパー20A,上側ストッパー20B)に支持固定してもよい。すなわち、伝熱管ブロック13の隙間を挟んで一つずつ対で設置されるストッパー20は、一方の下側ストッパー20Aが塞ぎ板11の長手方向の端部側から中央部側に向かって挿入され、他方の上側ストッパー20Bが塞ぎ板11の長手方向の中央部側から端部側へ向かって挿入される。下側ストッパー20Aと上側ストッパー20B同士、及び固定具に対しては、運転中の振動などで簡易に移動しないよう点溶接で固定されていると更に好ましい。 In this structure, the welded portion is limited between the fixture 19 and the heat transfer tube block 13 and between the fixture 19 and the stopper 20 (W1, W2). Therefore, as compared with the conventional fixing method (entire circumference welding), the number of welded points with the heat transfer tube block 13 is reduced, and the work period for attaching and detaching the closing plate 11 is shortened. The fixture 19 is a consumable item, and is replaced about once every several times of attaching and detaching the closing plate 11. Further, in order to prevent the stopper 20 from coming off due to vibration, the stopper 20 may be supported and fixed in a wedge shape (lower stopper 20A, upper stopper 20B) as shown in FIG. That is, in the stoppers 20 which are installed in pairs one by one with the gap of the heat transfer tube block 13 interposed therebetween, one lower stopper 20A is inserted from the end side to the center side in the longitudinal direction of the closing plate 11. The other upper stopper 20B is inserted from the central portion side to the end portion side in the longitudinal direction of the closing plate 11. It is more preferable that the lower stopper 20A, the upper stopper 20B, and the fixture are fixed by spot welding so as not to easily move due to vibration during operation or the like.

[第2実施形態の変形例1]
上述した実施形態では、伝熱管ブロック13に対して、固定具19及びストッパー20を用いて溶接によって、塞ぎ板11を固定する構成について説明したが、本発明はこの例に限定されない。
[Modification 1 of the second embodiment]
In the above-described embodiment, the configuration in which the closing plate 11 is fixed to the heat transfer tube block 13 by welding using the fixture 19 and the stopper 20 has been described, but the present invention is not limited to this example.

例えば、塞ぎ板11は、図11及び図12に示すように、締め付け力を保持できるクランプ21を用いて、伝熱管ブロック13に対して固定されてもよい。クランプ21は、例えば、C型クランプ(シャコ万力とも呼ばれる。)である。 For example, as shown in FIGS. 11 and 12, the closing plate 11 may be fixed to the heat transfer tube block 13 by using a clamp 21 capable of holding a tightening force. The clamp 21 is, for example, a C-type clamp (also referred to as a mantis shrimp vise).

クランプ21は、伝熱管ブロック13と塞ぎ板11を挟むように、例えば、長方形状の塞ぎ板11の四隅に配置され、クランプ21の締め付けネジ22を調整して、対向する可動口金23と固定口金24との間で塞ぎ板11を締め付け力で固定する。また、塞ぎ板11が縦方向に沿う一方向に長い形状、すなわち長方形状である場合、塞ぎ板11の四隅だけでなく、縦方向に直交する水平方向に沿う短尺方向両側に所定のピッチ、例えば、300〜600mmピッチでクランプ21を配置してもよい。従来の固定方法(全周溶接)に比べ、伝熱管ブロック13との溶接箇所が減少し、塞ぎ板11の取り付けや取り外しの作業期間が短縮される。
また、クランプ21の締め付けネジ22により塞ぎ板11の固定圧力を微調整可能であり、数回再使用することが可能である。
The clamps 21 are arranged, for example, at the four corners of the rectangular closing plate 11 so as to sandwich the heat transfer tube block 13 and the closing plate 11, and the tightening screws 22 of the clamp 21 are adjusted to face the movable base 23 and the fixing base. The closing plate 11 is fixed to and from 24 by a tightening force. Further, when the closing plate 11 has a long shape in one direction along the vertical direction, that is, a rectangular shape, a predetermined pitch, for example, not only at the four corners of the closing plate 11 but also on both sides in the short direction along the horizontal direction orthogonal to the vertical direction, for example. , The clamps 21 may be arranged at a pitch of 300 to 600 mm. Compared with the conventional fixing method (entire circumference welding), the number of welded points with the heat transfer tube block 13 is reduced, and the work period for attaching and detaching the closing plate 11 is shortened.
Further, the fixing pressure of the closing plate 11 can be finely adjusted by the tightening screw 22 of the clamp 21, and can be reused several times.

また、クランプ21の締め付け力の低下抑制のため、可動口金23と塞ぎ板11とを溶接(点溶接)してもよい。図12では、点溶接部分を符号W3で示している。さらに、また、締め付けネジ22のねじ山を潰してもよい(ねじ山潰し)。これにより、締め付けネジ22が緩まなくなるため、クランプ21の締め付け力の低下を抑制できる。なお、ねじ山を潰した場合は、塞ぎ板11及びクランプ21を取り外した後、使用済みのクランプ21を再利用することはできない。クランプ21を再利用するためには、締め付けネジ22の交換を行うことが好ましい。 Further, in order to suppress a decrease in the tightening force of the clamp 21, the movable base 23 and the closing plate 11 may be welded (spot welded). In FIG. 12, the spot welded portion is indicated by reference numeral W3. Further, the thread of the tightening screw 22 may be crushed (thread crushing). As a result, the tightening screw 22 does not loosen, so that a decrease in the tightening force of the clamp 21 can be suppressed. When the screw thread is crushed, the used clamp 21 cannot be reused after removing the closing plate 11 and the clamp 21. In order to reuse the clamp 21, it is preferable to replace the tightening screw 22.

なお、クランプ21の熱膨張によって締め付け力が低下して、塞ぎ板11のズレやシャコ万力の脱落が生じないように、図13に示すように、対向する可動口金23と固定口金24との間で塞ぎ板11と共に、クッション材25を挟み込んでもよい。クッション材25は、例えば、軟鋼や銅,エンジニアリングプラスチック等の使用温度(本実施形態では200〜300℃)まで弾性を有する素材である。 As shown in FIG. 13, the movable base 23 and the fixed base 24 are opposed to each other so that the tightening force is reduced due to the thermal expansion of the clamp 21 and the closing plate 11 does not shift or the mantis shrimp vise does not fall off. The cushion material 25 may be sandwiched between the closing plate 11 and the closing plate 11. The cushion material 25 is, for example, a material having elasticity up to the operating temperature (200 to 300 ° C. in this embodiment) such as mild steel, copper, and engineering plastic.

[第3実施形態]
次に、本発明の第3実施形態に係る塞ぎ板構造について説明する。なお、第1実施形態又は第2実施形態と重複する構成及び作用効果については、詳細な説明を省略する。
上述した第1及び第2実施形態では、複数の塞ぎ板11が縦方向に沿い長手方向に複数枚配置される。隣接する塞ぎ板11は、平滑な長手方向の端面が互いに突き合わされて配置されてもよいし、本実施形態において、下記のとおり、長手方向の端面に噛み合い形状が施されて互いに若干の自由に動ける程度の隙間を持って接合されてもよい。
[Third Embodiment]
Next, the closing plate structure according to the third embodiment of the present invention will be described. The detailed description of the configuration and the action and effect overlapping with the first embodiment or the second embodiment will be omitted.
In the first and second embodiments described above, a plurality of closing plates 11 are arranged in the longitudinal direction along the vertical direction. The adjacent closing plates 11 may be arranged so that their smooth longitudinal end faces are abutted against each other, or in the present embodiment, the longitudinal end faces are provided with a meshing shape so as to be slightly free from each other. They may be joined with a gap that allows them to move.

上述した第1実施形態のように、塞ぎ板11を厚板とすると表裏に温度差が発生することにより反り変形が生じやすくなる。このため、図14に示すように、隣接する塞ぎ板11の縦方向に沿う長手方向の端部の形状をそれぞれ凸状と凹状とし、隣接する端部同士を互いに若干の自由に動ける程度の隙間を持って篏合させる段差構造とする。すなわち、隣接する2枚の塞ぎ板11のうち、一方の塞ぎ板11の長手方向端部において凸部26が形成され、他方の塞ぎ板11の長手方向端部において凹部27が形成される。凸部26は、塞ぎ板11の板厚方向中央部にて、塞ぎ板11の長手方向端部から長手方向に突出した形状を有し、凹部27は、塞ぎ板11の板厚方向中央部にて、塞ぎ板11の長手方向端部から長手方向に窪んだ形状を有する。 When the closing plate 11 is made of a thick plate as in the first embodiment described above, warpage deformation is likely to occur due to a temperature difference between the front and back surfaces. Therefore, as shown in FIG. 14, the shapes of the end portions in the longitudinal direction along the vertical direction of the adjacent closing plates 11 are convex and concave, respectively, and the adjacent end portions are slightly free to move with each other. It has a stepped structure that is held together. That is, of the two adjacent closing plates 11, the convex portion 26 is formed at the longitudinal end portion of one closing plate 11, and the concave portion 27 is formed at the longitudinal end portion of the other closing plate 11. The convex portion 26 has a shape protruding in the longitudinal direction from the longitudinal end portion of the closing plate 11 at the central portion in the plate thickness direction of the closing plate 11, and the concave portion 27 is located at the central portion in the plate thickness direction of the closing plate 11. Therefore, the closing plate 11 has a shape recessed in the longitudinal direction from the end portion in the longitudinal direction.

この構造により、塞ぎ板11の長手方向端部が隣接する他の塞ぎ板11の長手方向端部によって、相互の長手方向の熱伸びを許容しながら垂直方向の反り変形が拘束されるため、垂直方向上面と底面との温度差を生じて熱伸び差による塞ぎ板11の長手方向端部垂直方向を主とし、さらには面内温度分布があれば水平方向の変形も加わった変形(反り)が抑制され、伝熱管ブロック13と塞ぎ板11の間に隙間の発生を抑制して、この隙間からショートパスして通過する排ガス量を低減できる。 Due to this structure, the longitudinal end of the closing plate 11 is adjacent to the other closing plate 11, and the longitudinal end of the closing plate 11 restrains the warp deformation in the vertical direction while allowing mutual thermal elongation in the longitudinal direction. Deformation (warp) that occurs mainly in the vertical direction of the longitudinal end of the closing plate 11 due to the difference in thermal elongation due to the temperature difference between the upper surface and the bottom surface in the direction, and further includes horizontal deformation if there is an in-plane temperature distribution. It is suppressed, the generation of a gap between the heat transfer tube block 13 and the closing plate 11 can be suppressed, and the amount of exhaust gas passing through this gap in a short pass can be reduced.

なお、塞ぎ板11のような板状部材では、長手方向の板長が長くなるにつれて変形量(反り量)が増加することが知られていることから、塞ぎ板11の板長を短くして反り変形を抑制するようにしてもよい。塞ぎ板11として、厚板を用いることで表裏温度差が大きくなると反り変形を生じる量が大きくなる。したがって、板長を短くして、塞ぎ板11の長手方向端面を凸凹状の嵌め合い構造を持たせたものを組み合わせることによって、反り変形を抑制し、かつ、塞ぎ板11相互間の位置ずれや隙間発生を防止できる。 In a plate-shaped member such as the closing plate 11, it is known that the amount of deformation (warping amount) increases as the plate length in the longitudinal direction increases. Therefore, the plate length of the closing plate 11 is shortened. Warpage deformation may be suppressed. By using a thick plate as the closing plate 11, the amount of warpage deformation increases as the temperature difference between the front and back surfaces increases. Therefore, by shortening the plate length and combining the closing plate 11 with an uneven fitting structure on the end surface in the longitudinal direction, warpage deformation can be suppressed and the closing plates 11 can be displaced from each other. It is possible to prevent the occurrence of gaps.

なお、塞ぎ板11同士の嵌め合い構造は、凸部26と凹部27に限られず、L字形状の突出部を組み合わせたものでもよい。 The fitting structure of the closing plates 11 is not limited to the convex portion 26 and the concave portion 27, and may be a combination of L-shaped protruding portions.

以下、本発明の第1から第3実施形態に係る熱交換器10が低圧節炭器53として適用される排熱回収ボイラ(HRSG)を備えるガスタービンコンバインドサイクル(Gas Turbine Combined Cycle:GTCC)発電システムについて説明する。 Hereinafter, a gas turbine combined cycle (GTCC) power generation including an exhaust heat recovery steam generator (HRSG) to which the heat exchanger 10 according to the first to third embodiments of the present invention is applied as a low-pressure economizer 53. The system will be described.

図19に示すように、ガスタービンコンバインドサイクル発電システム40は、ガスタービン41と、排熱回収ボイラ42と、蒸気タービン43と、復水器(コンデンサ)44と、給水循環ライン(給水手段)62とを有する。 As shown in FIG. 19, the gas turbine combined cycle power generation system 40 includes a gas turbine 41, an exhaust heat recovery boiler 42, a steam turbine 43, a condenser (condenser) 44, and a water supply circulation line (water supply means) 62. And have.

ガスタービン41は、大気中から空気を吸込んで圧縮機45にて圧縮し、高圧の空気を燃焼器46に送給する。一方、燃料ガスが燃焼器46へ供給され、圧縮機45から供給された高圧の空気によって燃料が燃焼し、高温・高圧のガスとなる。高温・高圧のガスは、タービン47を回転させてガスタービン41を回転駆動する。また、蒸気タービン43が排熱回収ボイラ42で発生する蒸気(低圧蒸気、高圧蒸気)により回転駆動して、圧縮機45を駆動させると共に、蒸気タービン43とガスタービン41の回転駆動の少なくともいずれかで発電機48を回転駆動して電気出力を発生させ、発電を行う。 The gas turbine 41 sucks air from the atmosphere, compresses it with the compressor 45, and sends high-pressure air to the combustor 46. On the other hand, the fuel gas is supplied to the combustor 46, and the fuel is burned by the high-pressure air supplied from the compressor 45 to become a high-temperature, high-pressure gas. The high-temperature and high-pressure gas rotates the turbine 47 to rotationally drive the gas turbine 41. Further, the steam turbine 43 is rotationally driven by the steam (low pressure steam, high pressure steam) generated in the exhaust heat recovery boiler 42 to drive the compressor 45, and at least one of the rotational drive of the steam turbine 43 and the gas turbine 41. The generator 48 is rotationally driven to generate electric output and generate electricity.

そして、ガスタービン41で燃焼して発生した排ガス(GT排ガス)は、排熱回収ボイラ42に送給される。 Then, the exhaust gas (GT exhaust gas) generated by combustion in the gas turbine 41 is sent to the exhaust heat recovery boiler 42.

排熱回収ボイラ42は、ダクト12と、高圧過熱器49と、高圧蒸発器50と、高圧節炭器51と、低圧蒸発器52と、低圧節炭器53などを有する。高圧過熱器49、高圧蒸発器50、高圧節炭器51、低圧蒸発器52、低圧節炭器53は、ダクト12内に排ガスのガス流れ方向に沿って前流側から後流側に向かってこの順に配置されている。上述した熱交換器10は、排熱回収ボイラ42のダクト12内に配置される複数の熱交換器のうち最上部に配置される低圧節炭器53である。 The exhaust heat recovery boiler 42 includes a duct 12, a high-pressure superheater 49, a high-pressure economizer 50, a high-pressure economizer 51, a low-pressure economizer 52, a low-pressure economizer 53, and the like. The high-pressure superheater 49, the high-pressure evaporator 50, the high-pressure economizer 51, the low-pressure economizer 52, and the low-pressure economizer 53 are placed in the duct 12 from the front flow side to the back flow side along the gas flow direction of the exhaust gas. They are arranged in this order. The heat exchanger 10 described above is a low-pressure economizer 53 arranged at the top of a plurality of heat exchangers arranged in the duct 12 of the exhaust heat recovery boiler 42.

ダクト12はガスタービン41からの排ガスが導入されるガス入口部54と、煙突に続く出口ダンパ55とを有する。図19に示す例では、ダクト12中に形成される排ガスの流路は、垂直上下方向に延びており、垂直下方側から垂直上方側に向けて排ガスが流れるように形成されている。出口ダンパ55は煙突と連結しており、出口ダンパ55から排出される排ガスは煙突から大気に放出される。 The duct 12 has a gas inlet portion 54 into which the exhaust gas from the gas turbine 41 is introduced, and an outlet damper 55 leading to the chimney. In the example shown in FIG. 19, the flow path of the exhaust gas formed in the duct 12 extends in the vertical vertical direction, and is formed so that the exhaust gas flows from the vertical lower side to the vertical upper side. The outlet damper 55 is connected to the chimney, and the exhaust gas discharged from the outlet damper 55 is released from the chimney to the atmosphere.

高圧過熱器49、高圧蒸発器50、高圧節炭器51、低圧蒸発器52及び低圧節炭器53は、ダクト12内に収納されている。高圧過熱器49、高圧蒸発器50、高圧節炭器51、低圧蒸発器52及び低圧節炭器53は、複数の伝熱管30から構成される。また図19の例では、高圧過熱器49、高圧蒸発器50、高圧節炭器51、低圧蒸発器52及び低圧節炭器53は、ダクト12内に各々の長手方向が水平となるように配置されている。高圧過熱器49、高圧蒸発器50、高圧節炭器51、低圧蒸発器52及び低圧節炭器53は、排ガスの排ガス流路と交差するように設けられ、垂直下方から垂直上方に向けて流れる排ガスに晒されるように配置されている。 The high-pressure superheater 49, the high-pressure evaporator 50, the high-pressure economizer 51, the low-pressure economizer 52, and the low-pressure economizer 53 are housed in the duct 12. The high-pressure superheater 49, the high-pressure evaporator 50, the high-pressure economizer 51, the low-pressure evaporator 52, and the low-pressure economizer 53 are composed of a plurality of heat transfer tubes 30. Further, in the example of FIG. 19, the high-pressure superheater 49, the high-pressure evaporator 50, the high-pressure economizer 51, the low-pressure economizer 52, and the low-pressure economizer 53 are arranged in the duct 12 so that their longitudinal directions are horizontal. Has been done. The high-pressure superheater 49, the high-pressure evaporator 50, the high-pressure economizer 51, the low-pressure economizer 52, and the low-pressure economizer 53 are provided so as to intersect the exhaust gas flow path of the exhaust gas, and flow from vertically downward to vertically upward. It is arranged so that it is exposed to exhaust gas.

排熱回収ボイラ42から排出される低圧蒸気、高圧蒸気は、蒸気タービン43へ供給される。蒸気タービン43は、排熱回収ボイラ42で発生した低圧蒸気、高圧蒸気により回転駆動する。蒸気タービン43の駆動源として用いられた低圧蒸気、高圧蒸気は、給水循環ライン62に排出され、復水器44に送給される。復水器44は、蒸気タービン43の駆動源として用いられた低圧蒸気、高圧蒸気を凝縮して復水にする。復水器44から排出される復水はポンプ56により給水循環ライン62を介して排熱回収ボイラ42内に給水として送給される。 The low-pressure steam and high-pressure steam discharged from the exhaust heat recovery boiler 42 are supplied to the steam turbine 43. The steam turbine 43 is rotationally driven by the low-pressure steam and high-pressure steam generated by the exhaust heat recovery boiler 42. The low-pressure steam and high-pressure steam used as the drive source of the steam turbine 43 are discharged to the water supply circulation line 62 and sent to the condenser 44. The condenser 44 condenses the low-pressure steam and high-pressure steam used as the drive source of the steam turbine 43 to condense the water. The condensate discharged from the condensate 44 is supplied by the pump 56 to the exhaust heat recovery boiler 42 via the water supply circulation line 62 as water supply.

排熱回収ボイラ42内に送給された給水は、低圧節炭器53に送り込まれて排ガスと熱交換することで加熱され、低圧蒸発器52内で加熱されて低圧ドラム57に送り込まれて気液分離される。低圧ドラム57で気液分離された低圧蒸気は、低圧ドラム57から排出され、蒸気タービン43の低圧蒸気タービン58に供給され、低圧蒸気タービン58を回転駆動させる。 The water supplied to the exhaust heat recovery boiler 42 is sent to the low-pressure economizer 53 and heated by exchanging heat with the exhaust gas, heated in the low-pressure evaporator 52, and sent to the low-pressure drum 57. The liquid is separated. The low-pressure steam separated by the low-pressure drum 57 is discharged from the low-pressure drum 57 and supplied to the low-pressure steam turbine 58 of the steam turbine 43 to rotationally drive the low-pressure steam turbine 58.

また、給水はポンプ59にて加圧された後、高圧節炭器51に送り込まれて加熱された後、高圧蒸発器50内で加熱されて高圧ドラム60に送り込まれて気液分離される。高圧ドラム60で気液分離された高圧蒸気は、高圧ドラム60から排出され、高圧過熱器49で過熱された後、蒸気タービン43の高圧蒸気タービン61に供給され、高圧蒸気タービン61を回転駆動させる。高圧蒸気タービン61から排出された蒸気は、図示しない蒸気配管で低圧蒸発器52内へと送られて再加熱されて低圧ドラム57で気液分離され、蒸気タービン43の低圧蒸気タービン58に供給される。 Further, the water supply is pressurized by the pump 59, then sent to the high-pressure economizer 51 to be heated, and then heated in the high-pressure evaporator 50 and sent to the high-pressure drum 60 for gas-liquid separation. The high-pressure steam separated by the high-pressure drum 60 is discharged from the high-pressure drum 60, heated by the high-pressure superheater 49, and then supplied to the high-pressure steam turbine 61 of the steam turbine 43 to rotationally drive the high-pressure steam turbine 61. .. The steam discharged from the high-pressure steam turbine 61 is sent into the low-pressure evaporator 52 by a steam pipe (not shown), reheated, gas-liquid separated by the low-pressure drum 57, and supplied to the low-pressure steam turbine 58 of the steam turbine 43. To.

上述したとおり、ガスタービンコンバインドサイクル発電システム40では、ガスタービン41のタービン47を回転させ、ガスタービン41を回転駆動させると共に、低圧蒸気、高圧蒸気を用いて蒸気タービン43の低圧蒸気タービン58、高圧蒸気タービン61を回転させ、蒸気タービン43を回転駆動させて、発電機48を回転駆動して発電を行う。 As described above, in the gas turbine combined cycle power generation system 40, the turbine 47 of the gas turbine 41 is rotated to drive the gas turbine 41, and the low pressure steam turbine 58 and the high pressure of the steam turbine 43 are used by using low pressure steam and high pressure steam. The steam turbine 61 is rotated, the steam turbine 43 is rotationally driven, and the generator 48 is rotationally driven to generate power.

また、低圧蒸気、高圧蒸気は、各々蒸気タービン43へ供給された後、復水器44に供給され、復水となり、排熱回収ボイラ42に給水として循環される。排熱回収ボイラ42で生成された低圧蒸気、高圧蒸気は蒸気タービン43に供給され、蒸気タービン43を回転駆動させ、蒸気タービン43とガスタービン41の回転駆動の少なくともいずれかで発電機48を回転駆動して発電を行う。 Further, the low-pressure steam and the high-pressure steam are supplied to the steam turbine 43, then supplied to the condenser 44 to be condensed water, and are circulated as water supply to the exhaust heat recovery boiler 42. The low-pressure steam and high-pressure steam generated by the exhaust heat recovery boiler 42 are supplied to the steam turbine 43 to rotate the steam turbine 43, and the generator 48 is rotated by at least one of the rotary drive of the steam turbine 43 and the gas turbine 41. Drive to generate electricity.

以上、本発明の第1から第3実施形態によれば、伝熱管ブロック13と間の隙間に塞ぎ板11を取り付けたり、取り外したりすることで、外気温度、すなわち空気密度の変化によるGT排ガスの流量変動や排ガスの圧力の変動を吸収でき、排熱回収ボイラにおける排ガスの圧力損失が増加してGT排ガスの圧力が上昇する場合でも、GT排ガスの圧力が所定の圧力値を越える状態を回避できる。その結果、GTを停止させることなく、運転継続することが可能となる。 As described above, according to the first to third embodiments of the present invention, by attaching or detaching the closing plate 11 to the gap between the heat transfer tube block 13 and the heat transfer tube block 13, the GT exhaust gas due to the change in the outside air temperature, that is, the air density can be obtained. It can absorb fluctuations in flow rate and pressure of exhaust gas, and even when the pressure loss of exhaust gas in the exhaust heat recovery boiler increases and the pressure of GT exhaust gas rises, it is possible to avoid the state where the pressure of GT exhaust gas exceeds a predetermined pressure value. .. As a result, the operation can be continued without stopping the GT.

また、本発明の第1から第3実施形態によれば、塞ぎ板11の全周を溶接する場合に比べて、塞ぎ板11の取り付け取り外しの設置作業性が向上するため、設置作業期間の短縮が可能となる。 Further, according to the first to third embodiments of the present invention, the installation work period for attaching and detaching the closing plate 11 is improved as compared with the case where the entire circumference of the closing plate 11 is welded, so that the installation work period is shortened. Is possible.

10 :熱交換器
11 :塞ぎ板
12 :ダクト
13 :伝熱管ブロック
14 :固定板
15 :ガイド金物
15a :水平部
15b :垂直部
16 :第1補助板
17 :取手部
18 :第2補助板
19 :固定具
20 :ストッパー
20A :下側ストッパー
20B :上側ストッパー
21 :クランプ
22 :締め付けネジ
23 :可動口金
24 :固定口金
25 :クッション材
26 :凸部
27 :凹部
30 :伝熱管
40 :ガスタービンコンバインドサイクル発電システム
41 :ガスタービン
42 :排熱回収ボイラ
43 :蒸気タービン
44 :復水器
45 :圧縮機
46 :燃焼器
47 :タービン
48 :発電機
49 :高圧過熱器
50 :高圧蒸発器
51 :高圧節炭器
52 :低圧蒸発器
53 :低圧節炭器
54 :ガス入口部
55 :出口ダンパ
56 :ポンプ
57 :低圧ドラム
58 :低圧蒸気タービン
59 :ポンプ
60 :高圧ドラム
61 :高圧蒸気タービン
62 :給水循環ライン
10: Heat exchanger 11: Closing plate 12: Duct 13: Heat transfer tube block 14: Fixed plate 15: Guide hardware 15a: Horizontal part 15b: Vertical part 16: First auxiliary plate 17: Handle part 18: Second auxiliary plate 19 : Fixing tool 20: Stopper 20A: Lower stopper 20B: Upper stopper 21: Clamp 22: Tightening screw 23: Movable base 24: Fixing base 25: Cushion material 26: Convex part 27: Recessed part 30: Heat transfer tube 40: Gas turbine combined Cycle power generation system 41: Gas turbine 42: Exhaust heat recovery boiler 43: Steam turbine 44: Water recovery device 45: Compressor 46: Combustor 47: Turbine 48: Generator 49: High pressure overheater 50: High pressure evaporator 51: High pressure Economizer 52: Low pressure evaporator 53: Low pressure coal saver 54: Gas inlet 55: Outlet damper 56: Pump 57: Low pressure drum 58: Low pressure steam turbine 59: Pump 60: High pressure drum 61: High pressure steam turbine 62: Water supply Circulation line

Claims (2)

複数の伝熱管を有する伝熱管ブロックと、
隣接する前記伝熱管ブロックとの間に形成された隙間の垂直方向上端部に前記伝熱管の長手方向に沿う方向が長手方向になるように設置され、前記隙間を通過しようとするガスの流れを妨げる塞ぎ板と、
を備えるボイラのガス流れ調整方法であって、
気温度が所定の閾値よりも低いとき、前記塞ぎ板を取り外すステップと、
前記外気温度が前記所定の閾値以上であるとき、前記塞ぎ板を取り付けるステップとを有するボイラのガス流れ調整方法。
A heat transfer tube block with multiple heat transfer tubes and
It is installed at the upper end of the gap formed between the adjacent heat transfer tube blocks in the vertical direction so that the direction along the longitudinal direction of the heat transfer tube is the longitudinal direction, and the flow of gas trying to pass through the gap is allowed to flow. With a blocking plate that hinders
It is a method of adjusting the gas flow of a boiler equipped with
When the outside air temperature is lower than a predetermined threshold value, a step of removing the closing plate,
Wherein when the outside air temperature is above the predetermined threshold, Rubo Ira method for a gas flow adjustment having a and attaching the closing plate.
複数の伝熱管を有する伝熱管ブロックと、
隣接する前記伝熱管ブロックとの間に形成された隙間の垂直方向上端部に前記伝熱管の長手方向に沿う方向が長手方向になるように設置され、前記隙間を通過しようとするガスの流れを妨げる塞ぎ板と、
を備えるボイラのガス流れ調整方法であって、
前記伝熱管ブロックへ供給される前記ガスの圧力が所定の閾値よりも高いとき、前記塞ぎ板を取り外すステップと、
前記伝熱管ブロックへ供給される前記ガスの圧力が前記所定の閾値以下であるとき、前記塞ぎ板を取り付けるステップとを有するボイラのガス流れ調整方法。
A heat transfer tube block with multiple heat transfer tubes and
It is installed at the upper end of the gap formed between the adjacent heat transfer tube blocks in the vertical direction so that the direction along the longitudinal direction of the heat transfer tube is the longitudinal direction, and the flow of gas trying to pass through the gap is allowed to flow. With a blocking plate that hinders
It is a method of adjusting the gas flow of a boiler equipped with
When the pressure of the gas supplied to the heat transfer tube block is higher than a predetermined threshold value, the step of removing the closing plate and the step of removing the closing plate.
When the pressure of the gas supplied to the heat transfer thermal tubes block is below the predetermined threshold, Rubo Ira method for a gas flow adjustment having a and attaching the closing plate.
JP2016140552A 2016-07-15 2016-07-15 Boiler gas flow adjustment method, boiler and power generation system Active JP6896382B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016140552A JP6896382B2 (en) 2016-07-15 2016-07-15 Boiler gas flow adjustment method, boiler and power generation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016140552A JP6896382B2 (en) 2016-07-15 2016-07-15 Boiler gas flow adjustment method, boiler and power generation system

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2020126334A Division JP6995944B2 (en) 2020-07-27 2020-07-27 Boiler and power generation system

Publications (2)

Publication Number Publication Date
JP2018009765A JP2018009765A (en) 2018-01-18
JP6896382B2 true JP6896382B2 (en) 2021-06-30

Family

ID=60995215

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016140552A Active JP6896382B2 (en) 2016-07-15 2016-07-15 Boiler gas flow adjustment method, boiler and power generation system

Country Status (1)

Country Link
JP (1) JP6896382B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110980497A (en) * 2019-12-30 2020-04-10 福建福清核电有限公司 Flexible sealing ring supporting device for low-pressure cylinder of steam turbine
JP6995944B2 (en) * 2020-07-27 2022-01-17 三菱パワー株式会社 Boiler and power generation system
CN112050454A (en) * 2020-09-19 2020-12-08 杨华 Main case structure of flip type side-opening cover full heat exchanger
CN116592333A (en) 2023-04-03 2023-08-15 内蒙古和林发电有限责任公司 Quick detach formula power plant machine stove economizer

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0826963B2 (en) * 1990-09-17 1996-03-21 株式会社東芝 Exhaust heat recovery boiler
JP2000304203A (en) * 1999-04-23 2000-11-02 Babcock Hitachi Kk Waste heat recovery boiler
EP1454107A1 (en) * 2001-11-09 2004-09-08 Aalborg Industries A/S A heat exchanger, combination with heat exchanger and method of manufacturing the heat exchanger
AU2003252323A1 (en) * 2003-07-30 2005-02-15 Babcock-Hitachi Kabushiki Kaisha Heat exchanger tube panel module, and method of constructing exhaust heat recovery boiler using the module
JP2010144997A (en) * 2008-12-18 2010-07-01 Mitsubishi Heavy Ind Ltd Exhaust heat recovery boiler

Also Published As

Publication number Publication date
JP2018009765A (en) 2018-01-18

Similar Documents

Publication Publication Date Title
JP6896382B2 (en) Boiler gas flow adjustment method, boiler and power generation system
JP5260585B2 (en) Coal-fired power plant and method for operating coal-fired power plant
US8096268B2 (en) Municipal solid waste fuel steam generator with waterwall furnace platens
EP2375012B1 (en) Boiler apparatus
US20130192810A1 (en) Tube and baffle arrangement in a once-through horizontal evaporator
JP6995944B2 (en) Boiler and power generation system
JP4373420B2 (en) Combined power plant and closed air cooled gas turbine system
JPH10196316A (en) Combined power generating plant and closed air cooling gas turbine system
US20200284426A1 (en) Hrsg with stepped tube restraints
US20090050079A1 (en) Economizer for a steam generator
JP5901194B2 (en) Gas turbine cooling system and gas turbine cooling method
KR101076220B1 (en) Brazing apparatus for al clad oblong tube for air cooling system condensing plant
KR101508755B1 (en) A HRSG of mono drum type
JP2020101320A (en) Seal structure of boiler, boiler, and method for operating boiler
JP3872407B2 (en) Combined power plant and closed air cooled gas turbine system
JP5514690B2 (en) Waste heat recovery device
KR20100066496A (en) Steam generator
CN217441615U (en) Novel high-temperature flue gas bypass system
KR101161588B1 (en) Anti-vibration baffle finned tube support of waste heat recovery boiler system
KR200311524Y1 (en) Combined array recovery boiler for even flow without guide vanes or perforated plates
KR200167978Y1 (en) Complex heat recovery steam generator
JP2024080906A (en) Exhaust gas bypass device, exhaust heat recovery boiler, and exhaust gas bypass method
JP6873707B2 (en) Cleaning method of exhaust heat recovery boiler, power generation system and exhaust heat recovery boiler
US20150211732A1 (en) Tempering air system for municipal solid waste fuel steam generator
JP4457339B2 (en) Thermal shock heat exchanger

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20190612

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200609

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210511

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210609

R150 Certificate of patent or registration of utility model

Ref document number: 6896382

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150