JP6896306B1 - ニューラルネットワーク回路、エッジデバイスおよびニューラルネットワーク演算方法 - Google Patents

ニューラルネットワーク回路、エッジデバイスおよびニューラルネットワーク演算方法 Download PDF

Info

Publication number
JP6896306B1
JP6896306B1 JP2020071932A JP2020071932A JP6896306B1 JP 6896306 B1 JP6896306 B1 JP 6896306B1 JP 2020071932 A JP2020071932 A JP 2020071932A JP 2020071932 A JP2020071932 A JP 2020071932A JP 6896306 B1 JP6896306 B1 JP 6896306B1
Authority
JP
Japan
Prior art keywords
memory
circuit
quantization
convolution
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020071932A
Other languages
English (en)
Other versions
JP2021168095A (ja
Inventor
浩明 冨田
浩明 冨田
ニコライ ネズ
ニコライ ネズ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Leap Mind Inc
Original Assignee
Leap Mind Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Leap Mind Inc filed Critical Leap Mind Inc
Priority to JP2020071932A priority Critical patent/JP6896306B1/ja
Priority to TW110113109A priority patent/TWI773245B/zh
Priority to KR1020210047004A priority patent/KR102667790B1/ko
Priority to US17/227,785 priority patent/US20210319294A1/en
Priority to CN202110388524.2A priority patent/CN113537479A/zh
Application granted granted Critical
Publication of JP6896306B1 publication Critical patent/JP6896306B1/ja
Publication of JP2021168095A publication Critical patent/JP2021168095A/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/06Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons
    • G06N3/063Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons using electronic means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/15Correlation function computation including computation of convolution operations
    • G06F17/153Multidimensional correlation or convolution
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/16Matrix or vector computation, e.g. matrix-matrix or matrix-vector multiplication, matrix factorization
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F7/00Methods or arrangements for processing data by operating upon the order or content of the data handled
    • G06F7/38Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation
    • G06F7/48Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation using non-contact-making devices, e.g. tube, solid state device; using unspecified devices
    • G06F7/57Arithmetic logic units [ALU], i.e. arrangements or devices for performing two or more of the operations covered by groups G06F7/483 – G06F7/556 or for performing logical operations
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/045Combinations of networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Data Mining & Analysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Health & Medical Sciences (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Software Systems (AREA)
  • Artificial Intelligence (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Evolutionary Computation (AREA)
  • Computational Linguistics (AREA)
  • Mathematical Analysis (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Neurology (AREA)
  • Algebra (AREA)
  • Databases & Information Systems (AREA)
  • Complex Calculations (AREA)
  • Electrotherapy Devices (AREA)
  • Details Of Television Systems (AREA)

Abstract

【課題】IoT機器などの組み込み機器に組み込み可能かつ高性能なニューラルネットワーク回路を提供する。【解決手段】ニューラルネットワーク回路100は、入力データを格納する第一メモリ1と、第一メモリに格納された入力データと重みとに対して畳み込み演算を行う畳み込み演算回路4と、畳み込み演算回路の畳み込み演算出力データを格納する第二メモリ2と、第二メモリに格納された畳み込み演算出力データに対して量子化演算を行う量子化演算回路5と、を備える。量子化演算回路の量子化演算出力データは、第一メモリに格納されて、第一メモリに格納された量子化演算出力データは、畳み込み演算回路に入力データとして入力される。【選択図】図4

Description

本発明は、ニューラルネットワーク回路、エッジデバイスおよびニューラルネットワーク演算方法に関する。
近年、畳み込みニューラルネットワーク(Convolutional Neural Network:CNN)が画像認識等のモデルとして用いられている。畳み込みニューラルネットワークは、畳み込み層やプーリング層を有する多層構造であり、畳み込み演算等の多数の演算を必要とする。畳み込みニューラルネットワークによる演算を高速化する演算手法が様々考案されている(特許文献1など)。
特開2018−077829号公報
一方で、IoT機器などの組み込み機器においても畳み込みニューラルネットワークを利用した画像認識等を実現することが望まれている。組み込み機器においては、特許文献1等に記載された大規模な専用回路を組み込むことは難しい。また、CPUやメモリ等のハードウェアリソースが限られた組み込み機器においては、畳み込みニューラルネットワークの十分な演算性能をソフトウェアのみにより実現することは難しい。
上記事情を踏まえ、本発明は、IoT機器などの組み込み機器に組み込み可能かつ高性能なニューラルネットワーク回路、エッジデバイスおよびニューラルネットワーク演算方法を提供することを目的とする。
上記課題を解決するために、この発明は以下の手段を提案している。
本発明の第一の態様に係るニューラルネットワーク回路は、入力データを格納する第一メモリと、前記第一メモリに格納された前記入力データと重みとに対して畳み込み演算を行う畳み込み演算回路と、前記畳み込み演算回路の畳み込み演算出力データを格納する第二メモリと、前記第二メモリに格納された前記畳み込み演算出力データに対して量子化演算を行う量子化演算回路と、を備え、前記量子化演算回路の量子化演算出力データは、前記第一メモリに格納されて、前記第一メモリに格納された前記量子化演算出力データは、前記畳み込み演算回路に前記入力データとして入力され、前記第一メモリと、前記畳み込み演算回路と、前記第二メモリと、前記畳み込み演算回路とは、ループ状に形成されている
本発明の第二の態様に係るエッジデバイスは、上記ニューラルネットワーク回路を含み、バッテリーによって駆動する。
本発明の第の態様に係るニューラルネットワーク演算方法は、第一メモリ領域と第二メモリ領域とを用いて畳み込み演算と量子化演算とを行うニューラルネットワーク演算方法であって、前記第一メモリ領域に格納された入力データに対してレイヤ2M−1(Mは自然数)の前記畳み込み演算を行い、前記レイヤ2M−1の畳み込み演算出力データを前記第二メモリ領域に格納し、前記第二メモリ領域に格納された前記レイヤ2M−1の前記畳み込み演算出力データに対してレイヤ2Mの前記量子化演算を行い、前記レイヤ2Mの量子化演算出力データを前記第一メモリ領域に格納し、前記第一メモリ領域に格納された前記レイヤ2Mの前記量子化演算出力データを前記入力データとしてレイヤ2M+1の前記畳み込み演算を行い、レイヤ2M+1の前記畳み込み演算出力データを前記第二メモリ領域に格納し、前記入力データを、第一部分テンソルと第二部分テンソルとに分解し、前記第一部分テンソルに対応する前記レイヤ2M+1の前記畳み込み演算と、前記第二部分テンソルに対応する前記レイヤ2Mの前記量子化演算と、を並列に実施する
本発明のニューラルネットワーク回路、エッジデバイスおよびニューラルネットワーク演算方法は、IoT機器などの組み込み機器に組み込み可能かつ高性能である。
畳み込みニューラルネットワークを示す図である。 畳み込み層が行う畳み込み演算を説明する図である。 畳み込み演算のデータの展開を説明する図である。 第一実施形態に係るニューラルネットワーク回路の全体構成を示す図である。 同ニューラルネットワーク回路の動作例を示すタイミングチャートである。 同ニューラルネットワーク回路の他の動作例を示すタイミングチャートである。 同ニューラルネットワーク回路のDMACの内部ブロック図である。 同DMACの制御回路のステート遷移図である。 同ニューラルネットワーク回路の畳み込み演算回路の内部ブロック図である。 同畳み込み演算回路の乗算器の内部ブロック図である。 同乗算器の積和演算ユニットの内部ブロック図である。 同畳み込み演算回路のアキュムレータ回路の内部ブロック図である。 同アキュムレータ回路のアキュムレータユニットの内部ブロック図である。 同ニューラルネットワーク回路の量子化演算回路の内部ブロック図である。 同量子化演算回路のベクトル演算回路と量子化回路の内部ブロック図である。 演算ユニットのブロック図である。 同量子化回路のベクトル量子化ユニットの内部ブロック図である。 セマフォによる同ニューラルネットワーク回路の制御を説明する図である。 第一データフローのタイミングチャートである。 第二データフローのタイミングチャートである。
(第一実施形態)
本発明の第一実施形態について、図1から図20を参照して説明する。
図1は、畳み込みニューラルネットワーク200(以下、「CNN200」という)を示す図である。第一実施形態に係るニューラルネットワーク回路100(以下、「NN回路100」という)が行う演算は、推論時に使用する学習済みのCNN200の少なくとも一部である。
[CNN200]
CNN200は、畳み込み演算を行う畳み込み層210と、量子化演算を行う量子化演算層220と、出力層230と、を含む多層構造のネットワークである。CNN200の少なくとも一部において、畳み込み層210と量子化演算層220とが交互に連結されている。CNN200は、画像認識や動画認識に広く使われるモデルである。CNN200は、全結合層などの他の機能を有する層(レイヤ)をさらに有してもよい。
図2は、畳み込み層210が行う畳み込み演算を説明する図である。
畳み込み層210は、入力データaに対して重みwを用いた畳み込み演算を行う。畳み込み層210は、入力データaと重みwとを入力とする積和演算を行う。
畳み込み層210への入力データa(アクティベーションデータ、特徴マップともいう)は、画像データ等の多次元データである。本実施形態において、入力データaは、要素(x,y,c)からなる3次元テンソルである。CNN200の畳み込み層210は、低ビットの入力データaに対して畳み込み演算を行う。本実施形態において、入力データaの要素は、2ビットの符号なし整数(0,1,2,3)である。入力データaの要素は、例えば、4ビットや8ビット符号なし整数でもよい。
CNN200に入力される入力データが、例えば32ビットの浮動小数点型など、畳み込み層210への入力データaと形式が異なる場合、CNN200は畳み込み層210の前に型変換や量子化を行う入力層をさらに有してもよい。
畳み込み層210の重みw(フィルタ、カーネルともいう)は、学習可能なパラメータである要素を有する多次元データである。本実施形態において、重みwは、要素(i,j,c,d)からなる4次元テンソルである。重みwは、要素(i,j,c)からなる3次元テンソル(以降、「重みwo」という)をd個有している。学習済みのCNN200における重みwは、学習済みのデータである。CNN200の畳み込み層210は、低ビットの重みwを用いて畳み込み演算を行う。本実施形態において、重みwの要素は、1ビットの符号付整数(0,1)であり、値「0」は+1を表し、値「1」は−1を表す。
畳み込み層210は、式1に示す畳み込み演算を行い、出力データfを出力する。式1において、sはストライドを示す。図2において点線で示された領域は、入力データaに対して重みwoが適用される領域ao(以降、「適用領域ao」という)の一つを示している。適用領域aoの要素は、(x+i,y+j,c)で表される。
Figure 0006896306
量子化演算層220は、畳み込み層210が出力する畳み込み演算の出力に対して量子化などを実施する。量子化演算層220は、プーリング層221と、Batch Normalization層222と、活性化関数層223と、量子化層224と、を有する。
プーリング層221は、畳み込み層210が出力する畳み込み演算の出力データfに対して平均プーリング(式2)やMAXプーリング(式3)などの演算を実施して、畳み込み層210の出力データfを圧縮する。式2および式3において、uは入力テンソルを示し、vは出力テンソルを示し、Tはプーリング領域の大きさを示す。式3において、maxはTに含まれるiとjの組み合わせに対するuの最大値を出力する関数である。
Figure 0006896306
Figure 0006896306
Batch Normalization層222は、量子化演算層220やプーリング層221の出力データに対して、例えば式4に示すような演算によりデータ分布の正規化を行う。式4において、uは入力テンソルを示し、vは出力テンソルを示し、αはスケールを示し、βはバイアスを示す。学習済みのCNN200において、αおよびβは学習済みの定数ベクトルである。
Figure 0006896306
活性化関数層223は、量子化演算層220やプーリング層221やBatch Normalization層222の出力に対してReLU(式5)などの活性化関数の演算を行う。式5において、uは入力テンソルであり、vは出力テンソルである。式5において、maxは引数のうち最も大きい数値を出力する関数である。
Figure 0006896306
量子化層224は、量子化パラメータに基づいて、プーリング層221や活性化関数層223の出力に対して例えば式6に示すような量子化を行う。式6に示す量子化は、入力テンソルuを2ビットにビット削減している。式6において、q(c)は量子化パラメータのベクトルである。学習済みのCNN200において、q(c)は学習済みの定数ベクトルである。式6における不等式「≦」は「<」であってもよい。
Figure 0006896306
出力層230は、恒等関数やソフトマックス関数等によりCNN200の結果を出力する層である。出力層230の前段のレイヤは、畳み込み層210であってもよいし、量子化演算層220であってもよい。
CNN200は、量子化された量子化層224の出力データが、畳み込み層210に入力されるため、量子化を行わない他の畳み込みニューラルネットワークと比較して、畳み込み層210の畳み込み演算の負荷が小さい。
[畳み込み演算の分割]
NN回路100は、畳み込み層210の畳み込み演算(式1)を分割して演算する。なお、NN回路100は、畳み込み層210の畳み込み演算(式1)を分割せずに演算することもできる。
畳み込み演算の分割において、式1における変数cは、式7に示すように、サイズBcのブロックで分割される。また、式1における変数dは、式8に示すように、サイズBdのブロックで分割される。式7において、coはオフセットであり、ciは0から(Bc−1)までのインデックスである。式8において、doはオフセットであり、diは0から(Bd−1)までのインデックスである。なお、サイズBcとサイズBdは同じであってもよい。
Figure 0006896306
Figure 0006896306
式1における入力データa(x+i,y+j,c)は、サイズBcにより分割され、分割された入力データa(x+i,y+j,co)で表される。以降の説明において、分割された入力データaを「分割入力データa」ともいう。
式1における重みw(i,j,c,d)は、サイズBcおよびBdにより分割され、分割された重みw(i,j,co,do)で表される。以降の説明において、分割された重みwを「分割重みw」ともいう。
サイズBdにより分割された出力データf(x,y,do)は、式9により求まる。分割された出力データf(x,y,do)を組み合わせることで、最終的な出力データf(x,y,d)を算出できる。
Figure 0006896306
[畳み込み演算のデータの展開]
NN回路100は、畳み込み層210の畳み込み演算における入力データaおよび重みwを展開して畳み込み演算を行う。
図3は、畳み込み演算のデータの展開を説明する図である。
分割入力データa(x+i、y+j、co)は、Bc個の要素を持つベクトルデータに展開される。分割入力データaの要素は、ciでインデックスされる(0≦ci<Bc)。以降の説明において、i,jごとにベクトルデータに展開された分割入力データaを「入力ベクトルA」ともいう。入力ベクトルAは、分割入力データa(x+i、y+j、co×B)から分割入力データa(x+i、y+j、co×Bc+(Bc−1))までを要素とする。
分割重みw(i,j,co、do)は、Bc×Bd個の要素を持つマトリクスデータに展開される。マトリクスデータに展開された分割重みwの要素は、ciとdiでインデックスされる(0≦di<Bd)。以降の説明において、i,jごとにマトリクスデータに展開された分割重みwを「重みマトリクスW」ともいう。重みマトリクスWは、分割重みw(i,j,co×Bc、do×Bd)から分割重みw(i,j,co×Bc+(Bc−1)、do×Bd+(Bd−1))までを要素とする。
入力ベクトルAと重みマトリクスWとを乗算することで、ベクトルデータが算出される。i,j,coごとに算出されたベクトルデータを3次元テンソルに整形することで、出力データf(x,y,do)を得ることができる。このようなデータの展開を行うことで、畳み込み層210の畳み込み演算を、ベクトルデータとマトリクスデータとの乗算により実施できる。
[NN回路100]
図4は、本実施形態に係るNN回路100の全体構成を示す図である。
NN回路100は、第一メモリ1と、第二メモリ2と、DMAコントローラ3(以下、「DMAC3」ともいう)と、畳み込み演算回路4と、量子化演算回路5と、コントローラ6と、を備える。NN回路100は、第一メモリ1および第二メモリ2を介して、畳み込み演算回路4と量子化演算回路5とがループ状に形成されていることを特徴とする。
第一メモリ1は、例えばSRAM(Static RAM)などで構成された揮発性のメモリ等の書き換え可能なメモリである。第一メモリ1には、DMAC3やコントローラ6を介してデータの書き込みおよび読み出しが行われる。第一メモリ1は、畳み込み演算回路4の入力ポートと接続されており、畳み込み演算回路4は第一メモリ1からデータを読み出すことができる。また、第一メモリ1は、量子化演算回路5の出力ポートと接続されており、量子化演算回路5は第一メモリ1にデータを書き込むことができる。外部ホストCPUは、第一メモリ1に対するデータの書き込みや読み出しにより、NN回路100に対するデータの入出力を行うことができる。
第二メモリ2は、例えばSRAM(Static RAM)などで構成された揮発性のメモリ等の書き換え可能なメモリである。第二メモリ2には、DMAC3やコントローラ6を介してデータの書き込みおよび読み出しが行われる。第二メモリ2は、量子化演算回路5の入力ポートと接続されており、量子化演算回路5は第二メモリ2からデータを読み出すことができる。また、第二メモリ2は、畳み込み演算回路4の出力ポートと接続されており、畳み込み演算回路4は第二メモリ2にデータを書き込むことができる。外部ホストCPUは、第二メモリ2に対するデータの書き込みや読み出しにより、NN回路100に対するデータの入出力を行うことができる。
DMAC3は、外部バスEBに接続されており、DRAMなどの外部メモリと第一メモリ1との間のデータ転送を行う。また、DMAC3は、DRAMなどの外部メモリと第二メモリ2との間のデータ転送を行う。また、DMAC3は、DRAMなどの外部メモリと畳み込み演算回路4との間のデータ転送を行う。また、DMAC3は、DRAMなどの外部メモリと量子化演算回路5との間のデータ転送を行う。
畳み込み演算回路4は、学習済みのCNN200の畳み込み層210における畳み込み演算を行う回路である。第一メモリ1に格納された入力データaを読み出し、入力データaに対して畳み込み演算を実施する。畳み込み演算回路4は、畳み込み演算の出力データf(以降、「畳み込み演算出力データ」ともいう)を第二メモリ2に書き込む。
量子化演算回路5は、学習済みのCNN200の量子化演算層220における量子化演算の少なくとも一部を行う回路である。第二メモリ2に格納された畳み込み演算の出力データfを読み出し、畳み込み演算の出力データfに対して量子化演算(プーリング、Batch Normalization、活性化関数、および量子化のうち少なくとも量子化を含む演算)を行う。量子化演算回路5は、量子化演算の出力データ(以降、「量子化演算出力データ」ともいう)を第一メモリ1に書き込む。
コントローラ6は、外部バスEBに接続されており、外部のホストCPUのスレーブとして動作する。コントローラ6は、パラメータレジスタや状態レジスタを含むレジスタ61を有している。パラメータレジスタは、NN回路100の動作を制御するレジスタである。状態レジスタはセマフォSを含むNN回路100の状態を示すレジスタである。外部ホストCPUは、コントローラ6を経由して、レジスタ61にアクセスできる。
コントローラ6は、内部バスIBを介して、第一メモリ1と、第二メモリ2と、DMAC3と、畳み込み演算回路4と、量子化演算回路5と、接続されている。外部ホストCPUは、コントローラ6を経由して、各ブロックに対してアクセスできる。例えば、外部ホストCPUは、コントローラ6を経由して、DMAC3や畳み込み演算回路4や量子化演算回路5に対する命令を指示することができる。また、DMAC3や畳み込み演算回路4や量子化演算回路5は、内部バスIBを介して、コントローラ6が有する状態レジスタ(セマフォSを含む)を更新できる。状態レジスタ(セマフォSを含む)は、DMAC3や畳み込み演算回路4や量子化演算回路5と専用配線により更新させるように構成されていてもよい。
NN回路100は、第一メモリ1や第二メモリ2等を有するため、DRAMなどの外部メモリからのDMAC3によるデータ転送において、重複するデータのデータ転送の回数を低減できる。これにより、メモリアクセスにより発生する消費電力を大幅に低減することができる。
[NN回路100の動作例1]
図5は、NN回路100の動作例を示すタイミングチャートである。
DMAC3は、レイヤ1の入力データaを第一メモリ1に格納する。DMAC3は、畳み込み演算回路4が行う畳み込み演算の順序にあわせて、レイヤ1の入力データaを分割して第一メモリ1に転送してもよい。
畳み込み演算回路4は、第一メモリ1に格納されたレイヤ1の入力データaを読み出す。畳み込み演算回路4は、レイヤ1の入力データaに対して図1に示すレイヤ1の畳み込み演算を行う。レイヤ1の畳み込み演算の出力データfは、第二メモリ2に格納される。
量子化演算回路5は、第二メモリ2に格納されたレイヤ1の出力データfを読み出す。量子化演算回路5は、レイヤ1の出力データfに対してレイヤ2の量子化演算を行う。レイヤ2の量子化演算の出力データは、第一メモリ1に格納される。
畳み込み演算回路4は、第一メモリ1に格納されたレイヤ2の量子化演算の出力データを読み出す。畳み込み演算回路4は、レイヤ2の量子化演算の出力データを入力データaとしてレイヤ3の畳み込み演算を行う。レイヤ3の畳み込み演算の出力データfは、第二メモリ2に格納される。
畳み込み演算回路4は、第一メモリ1に格納されたレイヤ2M−2(Mは自然数)の量子化演算の出力データを読み出す。畳み込み演算回路4は、レイヤ2M−2の量子化演算の出力データを入力データaとしてレイヤ2M−1の畳み込み演算を行う。レイヤ2M−1の畳み込み演算の出力データfは、第二メモリ2に格納される。
量子化演算回路5は、第二メモリ2に格納されたレイヤ2M−1の出力データfを読み出す。量子化演算回路5は、2M−1レイヤの出力データfに対してレイヤ2Mの量子化演算を行う。レイヤ2Mの量子化演算の出力データは、第一メモリ1に格納される。
畳み込み演算回路4は、第一メモリ1に格納されたレイヤ2Mの量子化演算の出力データを読み出す。畳み込み演算回路4は、レイヤ2Mの量子化演算の出力データを入力データaとしてレイヤ2M+1の畳み込み演算を行う。レイヤ2M+1の畳み込み演算の出力データfは、第二メモリ2に格納される。
畳み込み演算回路4と量子化演算回路5とが交互に演算を行い、図1に示すCNN200の演算を進めていく。NN回路100は、畳み込み演算回路4が時分割によりレイヤ2M−1の畳み込み演算とレイヤ2M+1を実施する。また、NN回路100は、量子化演算回路5が時分割によりレイヤ2M−2の畳み込み演算とレイヤ2Mを実施する。そのため、NN回路100は、レイヤごとに別々の畳み込み演算回路4と量子化演算回路5を実装する場合と比較して、回路規模が著しく小さい。
NN回路100は、複数のレイヤの多層構造であるCNN200の演算を、ループ状に形成された回路により演算する。NN回路100は、ループ状の回路構成により、ハードウェア資源を効率的に利用できる。なお、NN回路100は、ループ状に回路を形成するために、各レイヤで変化する畳み込み演算回路4や量子化演算回路5におけるパラメータは適宜更新される。
CNN200の演算にNN回路100により実施できない演算が含まれる場合、NN回路100は外部ホストCPUなど外部演算デバイスに中間データを転送する。外部演算デバイスが中間データに対して演算を行った後、外部演算デバイスによる演算結果は第一メモリ1や第二メモリ2に入力される。NN回路100は、外部演算デバイスによる演算結果に対する演算を再開する。
[NN回路100の動作例2]
図6は、NN回路100の他の動作例を示すタイミングチャートである。
NN回路100は、入力データaを部分テンソルに分割して、時分割により部分テンソルに対する演算を行ってもよい。部分テンソルへの分割方法や分割数は特に限定されない。
図6は、入力データaを二つの部分テンソルに分解した場合の動作例を示している。分解された部分テンソルを、「第一部分テンソルa1」、「第二部分テンソルa2」とする。例えば、レイヤ2M−1の畳み込み演算は、第一部分テンソルa1に対応する畳み込み演算(図6において、「レイヤ2M−1(a1)」と表記)と、第二部分テンソルa2に対応する畳み込み演算(図6において、「レイヤ2M−1(a2)」と表記)と、に分解される。
第一部分テンソルa1に対応する畳み込み演算および量子化演算と、第二部分テンソルa2に対応する畳み込み演算および量子化演算とは、図6に示すように、独立して実施することができる。
畳み込み演算回路4は、第一部分テンソルa1に対応するレイヤ2M−1の畳み込み演算(図6において、レイヤ2M−1(a1)で示す演算)を行う。その後、畳み込み演算回路4は、第二部分テンソルaに対応するレイヤ2M−1の畳み込み演算(図6において、レイヤ2M−1(a)で示す演算)を行う。また、量子化演算回路5は、第一部分テンソルa1に対応するレイヤ2Mの量子化演算(図6において、レイヤ2M(a1)で示す演算)を行う。このように、NN回路100は、第二部分テンソルaに対応するレイヤ2M−1の畳み込み演算と、第一部分テンソルa1に対応するレイヤ2Mの量子化演算と、を並列に実施できる。
次に、畳み込み演算回路4は、第一部分テンソルa1に対応するレイヤ2M+1の畳み込み演算(図6において、レイヤ2M+1(a1)で示す演算)を行う。また、量子化演算回路5は、第二部分テンソルaに対応するレイヤ2Mの量子化演算(図6において、レイヤ2M(a)で示す演算)を行う。このように、NN回路100は、第一部分テンソルa1に対応するレイヤ2M+1の畳み込み演算と、第二部分テンソルaに対応するレイヤ2Mの量子化演算と、を並列に実施できる。
入力データaを部分テンソルに分割することで、NN回路100は畳み込み演算回路4と量子化演算回路5とを並列して動作させることができる。その結果、畳み込み演算回路4と量子化演算回路5が待機する時間が削減され、NN回路100の演算処理効率が向上する。図6に示す動作例において分割数は2であったが、分割数が2より大きい場合も同様に、NN回路100は畳み込み演算回路4と量子化演算回路5とを並列して動作させることができる。
なお、部分テンソルに対する演算方法としては、同一レイヤにおける部分テンソルの演算を畳み込み演算回路4または量子化演算回路5で行った後に次のレイヤにおける部分テンソルの演算を行う例(方法1)を示したが、演算方法はこれに限られない。NN回路100は、複数レイヤにおける一部の部分テンソルの演算をした後に残部の部分テンソルの演算をしてもよい(方法2)。また、NN回路100は、方法1と方法2とを組み合わせて部分テンソルを演算してもよい。
次に、NN回路100の各構成に関して詳しく説明する。
[DMAC3]
図7は、DMAC3の内部ブロック図である。
DMAC3は、データ転送回路31と、ステートコントローラ32と、を有する。DMAC3は、データ転送回路31に対する専用のステートコントローラ32を有しており、命令コマンドが入力されると、外部のコントローラを必要とせずにDMAデータ転送を実施できる。
データ転送回路31は、外部バスEBに接続されており、DRAMなどの外部メモリと第一メモリ1との間のDMAデータ転送を行う。また、データ転送回路31は、DRAMなどの外部メモリと第二メモリ2との間のDMAデータ転送を行う。また、データ転送回路31は、DRAMなどの外部メモリと畳み込み演算回路4との間のデータ転送を行う。また、データ転送回路31は、DRAMなどの外部メモリと量子化演算回路5との間のデータ転送を行う。データ転送回路31のDMAチャンネル数は限定されない。例えば、第一メモリ1と第二メモリ2のそれぞれに専用のDMAチャンネルを有していてもよい。
ステートコントローラ32は、データ転送回路31のステートを制御する。また、ステートコントローラ32は、内部バスIBを介してコントローラ6と接続されている。ステートコントローラ32は、命令キュー33と制御回路34とを有する。
命令キュー33は、DMAC3用の命令コマンドC3が格納されるキューであり、例えばFIFOメモリで構成される。命令キュー33には、内部バスIB経由で1つ以上の命令コマンドC3が書き込まれる。
制御回路34は、命令コマンドC3をデコードし、命令コマンドC3に基づいて順次データ転送回路31を制御するステートマシンである。制御回路34は、論理回路により実装されていてもよいし、ソフトウェアによって制御されるCPUによって実装されていてもよい。
図8は、制御回路34のステート遷移図である。
制御回路34は、命令キュー33に命令コマンドC3が入力されると(Not empty)、アイドルステートS1からデコードステートS2に遷移する。
制御回路34は、デコードステートS2において、命令キュー33から出力される命令コマンドC3をデコードする。また、制御回路34は、コントローラ6のレジスタ61に格納されたセマフォSを読み出し、命令コマンドC3において指示されたデータ転送回路31の動作を実行可能であるかを判定する。実行不能である場合(Not ready)、制御回路34は実行可能となるまで待つ(Wait)。実行可能である場合(ready)、制御回路34はデコードステートS2から実行ステートS3に遷移する。
制御回路34は、実行ステートS3において、データ転送回路31を制御して、データ転送回路31に命令コマンドC3において指示された動作を実施させる。制御回路34は、データ転送回路31の動作が終わると、命令キュー33から実行を終えた命令コマンドC3を取り除くとともに、コントローラ6のレジスタ61に格納されたセマフォSを更新する。制御回路34は、命令キュー33に命令がある場合(Not empty)、実行ステートS3からデコードステートS2に遷移する。制御回路34は、命令キュー33に命令がない場合(empty)、実行ステートS3からアイドルステートS1に遷移する。
[畳み込み演算回路4]
図9は、畳み込み演算回路4の内部ブロック図である。
畳み込み演算回路4は、重みメモリ41と、乗算器42と、アキュムレータ回路43と、ステートコントローラ44と、を有する。畳み込み演算回路4は、乗算器42およびアキュムレータ回路43に対する専用のステートコントローラ44を有しており、命令コマンドが入力されると、外部のコントローラを必要とせずに畳み込み演算を実施できる。
重みメモリ41は、畳み込み演算に用いる重みWが格納されるメモリであり、例えばSRAM(Static RAM)などで構成された揮発性のメモリ等の書き換え可能なメモリである。DMAC3は、DMA転送により、畳み込み演算に必要な重みWを重みメモリ41に書き込む。
図10は、乗算器42の内部ブロック図である。
乗算器42は、入力ベクトルAと重みマトリクスWとを乗算する。入力ベクトルAは、上述したように、分割入力データa(x+i、y+j、co)が展開されたBc個の要素を持つベクトルデータである。また、重みマトリクスWは、分割重みw(i,j,co、do)が展開されたBc×Bd個の要素を持つマトリクスデータである。乗算器42は、Bc×Bd個の積和演算ユニット47を有し、入力ベクトルAと重みマトリクスWとを乗算を並列して実施できる。
乗算器42は、乗算に必要な入力ベクトルAと重みマトリクスWを、第一メモリ1および重みメモリ41から読み出して乗算を実施する。乗算器42は、Bd個の積和演算結果O(di)を出力する。
図11は、積和演算ユニット47の内部ブロック図である。
積和演算ユニット47は、入力ベクトルAの要素A(ci)と、重みマトリクスWの要素W(ci,di)との乗算を実施する。また、積和演算ユニット47は、乗算結果と他の積和演算ユニット47の乗算結果S(ci,di)と加算する。積和演算ユニット47は、加算結果S(ci+1,di)を出力する。要素A(ci)は、2ビットの符号なし整数(0,1,2,3)である。要素W(ci,di)は、1ビットの符号付整数(0,1)であり、値「0」は+1を表し、値「1」は−1を表す。
積和演算ユニット47は、反転器(インバータ)47aと、セレクタ47bと、加算器47cと、を有する。積和演算ユニット47は、乗算器を用いず、反転器47aおよびセレクタ47bのみを用いて乗算を行う。セレクタ47bは、要素W(ci,di)が「0」の場合、要素A(ci)の入力を選択する。セレクタ47bは、要素W(ci,di)が「1」の場合、要素A(ci)を反転器により反転させた補数を選択する。要素W(ci,di)は、加算器47cのCarry−inにも入力される。加算器47cは、要素W(ci,di)が「0」のとき、S(ci,di)に要素A(ci)を加算した値を出力する。加算器47cは、W(ci,di)が「1」のとき、S(ci,di)から要素A(ci)を減算した値を出力する。
図12は、アキュムレータ回路43の内部ブロック図である。
アキュムレータ回路43は、乗算器42の積和演算結果O(di)を第二メモリ2にアキュムレートする。アキュムレータ回路43は、Bd個のアキュムレータユニット48を有し、Bd個の積和演算結果O(di)を並列して第二メモリ2にアキュムレートできる。
図13は、アキュムレータユニット48の内部ブロック図である。
アキュムレータユニット48は、加算器48aと、マスク部48bとを有している。加算器48aは、積和演算結果Oの要素O(di)と、第二メモリ2に格納された式1に示す畳み込み演算の途中経過である部分和と、を加算する。加算結果は、要素あたり16ビットである。加算結果は、要素あたり16ビットに限定されず、例えば要素あたり15ビットや17ビットであってもよい。
加算器48aは、加算結果を第二メモリの同一アドレスに書き込む。マスク部48bは、初期化信号clearがアサートされた場合に、第二メモリ2からの出力をマスクし、要素O(di)に対する加算対象をゼロにする。初期化信号clearは、第二メモリ2に途中経過の部分和が格納されていない場合にアサートされる。
乗算器42およびアキュムレータ回路43による畳み込み演算が完了すると、第二メモリに、出力データf(x,y,do)が格納される。
ステートコントローラ44は、乗算器42およびアキュムレータ回路43のステートを制御する。また、ステートコントローラ44は、内部バスIBを介してコントローラ6と接続されている。ステートコントローラ44は、命令キュー45と制御回路46とを有する。
命令キュー45は、畳み込み演算回路4用の命令コマンドC4が格納されるキューであり、例えばFIFOメモリで構成される。命令キュー45には、内部バスIB経由で命令コマンドC4が書き込まれる。
制御回路46は、命令コマンドC4をデコードし、命令コマンドC4に基づいて乗算器42およびアキュムレータ回路43を制御するステートマシンである。制御回路46は、DMAC3のステートコントローラ32の制御回路34と同様の構成である。
[量子化演算回路5]
図14は、量子化演算回路5の内部ブロック図である。
量子化演算回路5は、量子化パラメータメモリ51と、ベクトル演算回路52と、量子化回路53と、ステートコントローラ54と、を有する量子化演算回路5は、ベクトル演算回路52および量子化回路53に対する専用のステートコントローラ54を有しており、命令コマンドが入力されると、外部のコントローラを必要とせずに量子化演算を実施できる。
量子化パラメータメモリ51は、量子化演算に用いる量子化パラメータqが格納されるメモリであり、例えばSRAM(Static RAM)などで構成された揮発性のメモリ等の書き換え可能なメモリである。DMAC3は、DMA転送により、量子化演算に必要な量子化パラメータqを量子化パラメータメモリ51に書き込む。
図15は、ベクトル演算回路52と量子化回路53の内部ブロック図である。
ベクトル演算回路52は、第二メモリ2に格納された出力データf(x,y,do)に対して演算を行う。ベクトル演算回路52は、Bd個の演算ユニット57を有し、出力データf(x,y,do)に対して並列にSIMD演算を行う。
図16は、演算ユニット57のブロック図である。
演算ユニット57は、例えば、ALU57aと、第一セレクタ57bと、第二セレクタ57cと、レジスタ57dと、シフタ57eと、を有する。演算ユニット57は、公知の汎用SIMD演算回路が有する他の演算器等をさらに有してもよい。
ベクトル演算回路52は、演算ユニット57が有する演算器等を組み合わせることで、出力データf(x,y,do)に対して、量子化演算層220におけるプーリング層221や、Batch Normalization層222や、活性化関数層223の演算のうち少なくとも一つの演算を行う。
演算ユニット57は、レジスタ57dに格納されたデータと第二メモリ2から読み出した出力データf(x,y,do)の要素f(di)とをALU57aにより加算できる。演算ユニット57は、ALU57aによる加算結果をレジスタ57dに格納できる。演算ユニット57は、第一セレクタ57bの選択によりレジスタ57dに格納されたデータに代えて「0」をALU57aに入力することで加算結果を初期化できる。例えばプーリング領域が2×2である場合、シフタ57eはALU57aの出力を2bit右シフトすることで加算結果の平均値を出力できる。ベクトル演算回路52は、Bd個の演算ユニット57による上記の演算等を繰り返すことで、式2に示す平均プーリングの演算を実施できる。
演算ユニット57は、レジスタ57dに格納されたデータと第二メモリ2から読み出した出力データf(x,y,do)の要素f(di)とをALU57aにより比較できる。
演算ユニット57は、ALU57aによる比較結果に応じて第二セレクタ57cを制御して、レジスタ57dに格納されたデータと要素f(di)の大きい方を選択できる。演算ユニット57は、第一セレクタ57bの選択により要素f(di)の取りうる値の最小値をALU57aに入力することで比較対象を最小値に初期化できる。本実施形態において要素f(di)は16bit符号付き整数であるので、要素f(di)の取りうる値の最小値は「0x8000」である。ベクトル演算回路52は、Bd個の演算ユニット57による上記の演算等を繰り返すことで、式3のMAXプーリングの演算を実施できる。なお、MAXプーリングの演算ではシフタ57eは第二セレクタ57cの出力をシフトしない。
演算ユニット57は、レジスタ57dに格納されたデータと第二メモリ2から読み出した出力データf(x,y,do)の要素f(di)とをALU57aにより減算できる。シフタ57eはALU57aの出力を左シフト(すなわち乗算)もしくは右シフト(すなわち除算)できる。ベクトル演算回路52は、Bd個の演算ユニット57による上記の演算等を繰り返すことで、式4のBatch Normalizationの演算を実施できる。
演算ユニット57は、第二メモリ2から読み出した出力データf(x,y,do)の要素f(di)と第一セレクタ57bにより選択された「0」とをALU57aにより比較できる。演算ユニット57は、ALU57aによる比較結果に応じて要素f(di)と予めレジスタ57dに格納された定数値「0」のいずれかを選択して出力できる。ベクトル演算回路52は、Bd個の演算ユニット57による上記の演算等を繰り返すことで、式5のReLU演算を実施できる。
ベクトル演算回路52は、平均プーリング、MAXプーリング、Batch Normalization、活性化関数の演算およびこれらの演算の組み合わせを実施できる。ベクトル演算回路52は、汎用SIMD演算を実施できるため、量子化演算層220における演算に必要な他の演算を実施してもよい。また、ベクトル演算回路52は、量子化演算層220における演算以外の演算を実施してもよい。
なお、量子化演算回路5は、ベクトル演算回路52を有してなくてもよい。量子化演算回路5がベクトル演算回路52を有していない場合、出力データf(x,y,do)は量子化回路53に入力される。
量子化回路53は、ベクトル演算回路52の出力データに対して、量子化を行う。量子化回路53は、図15に示すように、Bd個の量子化ユニット58を有し、ベクトル演算回路52の出力データに対して並列に演算を行う。
図17は、量子化ユニット58の内部ブロック図である。
量子化ユニット58は、ベクトル演算回路52の出力データの要素in(di)に対して量子化を行う。量子化ユニット58は、比較器58aと、エンコーダ58bと、を有する。量子化ユニット58はベクトル演算回路52の出力データ(16ビット/要素)に対して、量子化演算層220における量子化層224の演算(式6)を行う。量子化ユニット58は、量子化パラメータメモリ51から必要な量子化パラメータq(th0,th1,th2)を読み出し、比較器58aにより入力in(di)と量子化パラメータqとの比較を行う。量子化ユニット58は、比較器58aによる比較結果をエンコーダ58bにより2ビット/要素に量子化する。式4におけるα(c)とβ(c)は、変数cごとに異なるパラメータであるため、α(c)とβ(c)を反映する量子化パラメータq(th0,th1,th2)はin(di)ごとに異なるパラメータである。
量子化ユニット58は、入力in(di)を3つの閾値th0,th1,th2と比較することにより、入力in(di)を4領域(例えば、in≦th0,th0<in≦th1,th1<in≦th2,th2<in)に分類し、分類結果を2ビットにエンコードして出力する。量子化ユニット58は、量子化パラメータq(th0,th1,th2)の設定により、量子化と併せてBatch Normalizationや活性化関数の演算を行うこともできる。
量子化ユニット58は、閾値th0を式4のβ(c)、閾値の差(th1―th0)および(th2―th1)を式4のα(c)として設定して量子化を行うことで、式4に示すBatch Normalizationの演算を量子化と併せて実施できる。(th1―th0)および(th2―th1)を大きくすることでα(c)を小さくできる。(th1―th0)および(th2―th1)を小さくすることで、α(c)を大きくできる。
量子化ユニット58は、入力in(di)の量子化と併せて活性化関数のReLU演算を実施できる。例えば、量子化ユニット58は、in(di)≦th0およびth2<in(di)となる領域では出力値を飽和させる。量子化ユニット58は、出力が非線形とするように量子化パラメータqを設定することで活性化関数の演算を量子化と併せて実施できる。
ステートコントローラ54は、ベクトル演算回路52および量子化回路53のステートを制御する。また、ステートコントローラ54は、内部バスIBを介してコントローラ6と接続されている。ステートコントローラ54は、命令キュー55と制御回路56とを有する。
命令キュー55は、量子化演算回路5用の命令コマンドC5が格納されるキューであり、例えばFIFOメモリで構成される。命令キュー55には、内部バスIB経由で命令コマンドC5が書き込まれる。
制御回路56は、命令コマンドC5をデコードし、命令コマンドC5に基づいてベクトル演算回路52および量子化回路53を制御するステートマシンである。制御回路56は、DMAC3のステートコントローラ32の制御回路34と同様の構成である。
量子化演算回路5は、Bd個の要素を持つ量子化演算出力データを第一メモリ1に書き込む。なお、BdとBcの好適な関係を式10に示す。式10においてnは整数である。
Figure 0006896306
[コントローラ6]
コントローラ6は、外部ホストCPUから転送される命令コマンドを、DMAC3、畳み込み演算回路4および量子化演算回路5が有する命令キューに転送する。コントローラ6は、各回路に対する命令コマンドを格納する命令メモリを有してもよい。
コントローラ6は、外部バスEBに接続されており、外部ホストCPUのスレーブとして動作する。コントローラ6は、パラメータレジスタや状態レジスタを含むレジスタ61を有している。パラメータレジスタは、NN回路100の動作を制御するレジスタである。状態レジスタは、セマフォSを含むNN回路100の状態を示すレジスタである。
[セマフォS]
図18は、セマフォSによるNN回路100の制御を説明する図である。
セマフォSは、第一セマフォS1と、第二セマフォS2と、第三セマフォS3と、を有する。セマフォSは、P操作によりデクリメントされ、V操作によってインクリメントされる。DMAC3、畳み込み演算回路4および量子化演算回路5によるP操作およびV操作は、内部バスIBを経由して、コントローラ6が有するセマフォSを更新する。
第一セマフォS1は、第一データフローF1の制御に用いられる。第一データフローF1は、DMAC3(Producer)が第一メモリ1に入力データaを書き込み、畳み込み演算回路4(Consumer)が入力データaを読み出すデータフローである。第一セマフォS1は、第一ライトセマフォS1Wと、第一リードセマフォS1Rと、を有する。
第二セマフォS2は、第二データフローF2の制御に用いられる。第二データフローF2は、畳み込み演算回路4(Producer)が出力データfを第二メモリ2に書き込み、量子化演算回路5(Consumer)が出力データfを読み出すデータフローである。第二セマフォS2は、第二ライトセマフォS2Wと、第二リードセマフォS2Rと、を有する。
第三セマフォS3は、第三データフローF3の制御に用いられる。第三データフローF3は、量子化演算回路5(Producer)が量子化演算出力データを第一メモリ1に書き込み、畳み込み演算回路4(Consumer)が量子化演算回路5の量子化演算出力データを読み出すデータフローである。第三セマフォS3は、第三ライトセマフォS3Wと、第三リードセマフォS3Rと、を有する。
[第一データフローF1]
図19は、第一データフローF1のタイミングチャートである。
第一ライトセマフォS1Wは、第一データフローF1におけるDMAC3による第一メモリ1に対する書き込みを制限するセマフォである。第一ライトセマフォS1Wは、第一メモリ1において、例えば入力ベクトルAなどの所定のサイズのデータを格納可能なメモリ領域のうち、データが読み出し済みで他のデータを書き込み可能なメモリ領域の数を示している。第一ライトセマフォS1Wが「0」の場合、DMAC3は第一メモリ1に対して第一データフローF1における書き込みを行えず、第一ライトセマフォS1Wが「1」以上となるまで待たされる。
第一リードセマフォS1Rは、第一データフローF1における畳み込み演算回路4による第一メモリ1からの読み出しを制限するセマフォである。第一リードセマフォS1Rは、第一メモリ1において、例えば入力ベクトルAなどの所定のサイズのデータを格納可能なメモリ領域のうち、データが書き込み済みで読み出し可能なメモリ領域の数を示している。第一リードセマフォS1Rが「0」の場合、畳み込み演算回路4は第一メモリ1からの第一データフローF1における読み出しを行えず、第一リードセマフォS1Rが「1」以上となるまで待たされる。
DMAC3は、命令キュー33に命令コマンドC3が格納されることにより、DMA転送を開始する。図19に示すように、第一ライトセマフォS1Wが「0」でないため、DMAC3はDMA転送を開始する(DMA転送1)。DMAC3は、DMA転送を開始する際に、第一ライトセマフォS1Wに対してP操作を行う。DMAC3は、DMA転送の完了後に、第一リードセマフォS1Rに対してV操作を行う。
畳み込み演算回路4は、命令キュー45に命令コマンドC4が格納されることにより、畳み込み演算を開始する。図19に示すように、第一リードセマフォS1Rが「0」であるため、畳み込み演算回路4は第一リードセマフォS1Rが「1」以上となるまで待たされる(デコードステートS2におけるWait)。DMAC3によるV操作により第一リードセマフォS1Rが「1」となると、畳み込み演算回路4は畳み込み演算を開始する(畳み込み演算1)。畳み込み演算回路4は、畳み込み演算を開始する際、第一リードセマフォS1Rに対してP操作を行う。畳み込み演算回路4は、畳み込み演算の完了後に、第一ライトセマフォS1Wに対してV操作を行う。
図19において「DMA転送3」と記載されたDMA転送をDMAC3が開始する際、第一ライトセマフォS1Wが「0」であるため、DMAC3は第一ライトセマフォS1Wが「1」以上となるまで待たされる(デコードステートS2におけるWait)。畳み込み演算回路4によるV操作により第一ライトセマフォS1Wが「1」以上となると、DMAC3はDMA転送を開始する。
DMAC3と畳み込み演算回路4とは、セマフォS1を使用することで、第一データフローF1において第一メモリ1に対するアクセス競合を防止できる。また、DMAC3と畳み込み演算回路4とは、セマフォS1を使用することで、第一データフローF1におけるデータ転送の同期を取りつつ、独立して並列に動作できる。
[第二データフローF2]
図20は、第二データフローF2のタイミングチャートである。
第二ライトセマフォS2Wは、第二データフローF2における畳み込み演算回路4による第二メモリ2に対する書き込みを制限するセマフォである。第二ライトセマフォS2Wは、第二メモリ2において、例えば出力データfなどの所定のサイズのデータを格納可能なメモリ領域のうち、データが読み出し済みで他のデータを書き込み可能なメモリ領域の数を示している。第二ライトセマフォS2Wが「0」の場合、畳み込み演算回路4は第二メモリ2に対して第二データフローF2における書き込みを行えず、第二ライトセマフォS2Wが「1」以上となるまで待たされる。
第二リードセマフォS2Rは、第二データフローF2における量子化演算回路5による第二メモリ2からの読み出しを制限するセマフォである。第二リードセマフォS2Rは、第二メモリ2において、例えば出力データfなどの所定のサイズのデータを格納可能なメモリ領域のうち、データが書き込み済みで読み出し可能なメモリ領域の数を示している。第二リードセマフォS2Rが「0」の場合、量子化演算回路5は第二メモリ2からの第二データフローF2における読み出しを行えず、第一リードセマフォS1Rが「1」以上となるまで待たされる。
畳み込み演算回路4は、図20に示すように、畳み込み演算を開始する際、第二ライトセマフォS2Wに対してP操作を行う。畳み込み演算回路4は、畳み込み演算の完了後に、第二リードセマフォS2Rに対してV操作を行う。
量子化演算回路5は、命令キュー55に命令コマンドC5が格納されることにより、量子化演算を開始する。図20に示すように、第二リードセマフォS2Rが「0」であるため、量子化演算回路5は第二リードセマフォS2Rが「1」以上となるまで待たされる(デコードステートS2におけるWait)。畳み込み演算回路4によるV操作により第二リードセマフォS2Rが「1」となると、量子化演算回路5は畳み込み演算を開始する(量子化演算1)。量子化演算回路5は、量子化演算を開始する際、第二リードセマフォS2Rに対してP操作を行う。量子化演算回路5は、量子化演算の完了後に、第二ライトセマフォS2Wに対してV操作を行う。
図20において「量子化演算2」と記載された量子化演算を量子化演算回路5が開始する際、第二リードセマフォS2Rが「0」であるため、量子化演算回路5は第二リードセマフォS2Rが「1」以上となるまで待たされる(デコードステートS2におけるWait)。畳み込み演算回路4によるV操作により第二リードセマフォS2Rが「1」以上となると、量子化演算回路5は量子化演算を開始する。
畳み込み演算回路4と量子化演算回路5とは、セマフォS2を使用することで、第二データフローF2において第二メモリ2に対するアクセス競合を防止できる。また、畳み込み演算回路4と量子化演算回路5とは、セマフォS2を使用することで、第二データフローF2におけるデータ転送の同期を取りつつ、独立して並列に動作できる。
[第三データフローF3]
第三ライトセマフォS3Wは、第三データフローF3における量子化演算回路5による第一メモリ1に対する書き込みを制限するセマフォである。第三ライトセマフォS3Wは、第一メモリ1において、例えば量子化演算回路5の量子化演算出力データなどの所定のサイズのデータを格納可能なメモリ領域のうち、データが読み出し済みで他のデータを書き込み可能なメモリ領域の数を示している。第三ライトセマフォS3Wが「0」の場合、量子化演算回路5は第一メモリ1に対して第三データフローF3における書き込みを行えず、第三ライトセマフォS3Wが「1」以上となるまで待たされる。
第三リードセマフォS3Rは、第三データフローF3における畳み込み演算回路4による第一メモリ1からの読み出しを制限するセマフォである。第三リードセマフォS3Rは、第一メモリ1において、例えば量子化演算回路5の量子化演算出力データなどの所定のサイズのデータを格納可能なメモリ領域のうち、データが書き込み済みで読み出し可能なメモリ領域の数を示している。第三リードセマフォS1Rが「0」の場合、畳み込み演算回路4は第三データフローF3における第一メモリ1からの読み出しを行えず、第三リードセマフォS1Rが「1」以上となるまで待たされる。
量子化演算回路5と畳み込み演算回路4とは、セマフォS3を使用することで、第三データフローF3において第一メモリ1に対するアクセス競合を防止できる。また、量子化演算回路5と畳み込み演算回路4とは、セマフォS3を使用することで、第三データフローF3におけるデータ転送の同期を取りつつ、独立して並列に動作できる。
第一メモリ1は、第一データフローF1および第三データフローF3において共有される。NN回路100は、第一セマフォS1と第三セマフォS3とを別途設けることで、第一データフローF1と第三データフローF3とを区別してデータ転送の同期を取ることができる。
[畳み込み演算回路4の動作(1)]
畳み込み演算回路4は、畳み込み演算を行う際、第一メモリ1から読み出しを行い、第二メモリ2に対して書き込みを行う。すなわち、畳み込み演算回路4は、第一データフローF1においてはConsumerであり、第二データフローF2においてはProducerである。そのため、畳み込み演算回路4は、畳み込み演算を開始する際、第一リードセマフォS1Rに対してP操作を行い(図19参照)、第二ライトセマフォS2Wに対してP操作を行う(図20参照)。畳み込み演算回路4は、畳み込み演算の完了後に、第一ライトセマフォS1Wに対してV操作を行い(図19参照)、第二リードセマフォS2Rに対してV操作を行う(図20参照)。
畳み込み演算回路4は、畳み込み演算を開始する際、第一リードセマフォS1Rが「1」以上、かつ、第二ライトセマフォS2Wが「1」以上となるまで待たされる(デコードステートS2におけるWait)。
[量子化演算回路5の動作]
量子化演算回路5は、量子化演算を行う際、第二メモリ2から読み出しを行い、第一メモリ1に対して書き込みを行う。すなわち、量子化演算回路5は、第二データフローF2においてはConsumerであり、第三データフローF3においてはProducerである。そのため、量子化演算回路5は、量子化演算を開始する際、第二リードセマフォS2Rに対してP操作を行い、第三ライトセマフォS3Wに対してP操作を行う。量子化演算回路5は量子化演算の完了後に、第二ライトセマフォS2Wに対してV操作を行い、第三リードセマフォS3Rに対してV操作を行う。
量子化演算回路5は、量子化演算を開始する際、第二リードセマフォS2Rが「1」以上、かつ、第三ライトセマフォS3Wが「1」以上となるまで待たされる(デコードステートS2におけるWait)。
[畳み込み演算回路4の動作(2)]
畳み込み演算回路4が第一メモリ1から読み出す入力データは、第三データフローにおいて量子化演算回路5が書き込んだデータである場合もある。この場合、畳み込み演算回路4は、第三データフローF3においてはConsumerであり、第二データフローF2においてはProducerである。そのため、畳み込み演算回路4は、畳み込み演算を開始する際、第三リードセマフォS3Rに対してP操作を行い、第二ライトセマフォS2Wに対してP操作を行う。畳み込み演算回路4は、畳み込み演算の完了後に、第三ライトセマフォS3Wに対してV操作を行い、第二リードセマフォS2Rに対してV操作を行う。
畳み込み演算回路4は、畳み込み演算を開始する際、第三リードセマフォS3Rが「1」以上、かつ、第二ライトセマフォS2Wが「1」以上となるまで待たされる(デコードステートS2におけるWait)。
以上説明したように、本実施形態に係るNN回路100によれば、畳み込み演算回路4と量子化演算回路5とがループ状に形成されており、畳み込み演算回路4と量子化演算回路5とが交互(図5)もしくは並列(図6)に、図1に示すCNN200の演算を行う。そのため、NN回路100は回路規模が小さく、IoT機器などの組み込み機器に組み込み可能である。
本実施形態に係るNN回路100によれば、畳み込み演算回路4への入力データは、量子化演算回路5によって量子化される。そのため、畳み込み演算回路4の演算量を削減でき、畳み込み演算回路4の回路規模を低減できる。
本実施形態に係るNN回路100によれば、DMAC3と量子化演算回路5と畳み込み演算回路4とは、セマフォSを使用することで、使用するデータフローにおけるデータ転送の同期を取りつつ、独立して並列に動作できる。また、本実施形態に係るNN回路100によれば、データフローごとにセマフォを設けることで、データフローを区別してデータ転送の同期を取ることができる。そのため、NN回路100は、各回路が順次実行される場合と比較して、演算速度が速く高性能である。
以上、本発明の第一実施形態について図面を参照して詳述したが、具体的な構成はこの実施形態に限られるものではなく、本発明の要旨を逸脱しない範囲の設計変更等も含まれる。また、上述の実施形態および変形例において示した構成要素は適宜に組み合わせて構成することが可能である。
(変形例1)
上記実施形態において、第一メモリ1と第二メモリ2は別のメモリであったが、第一メモリ1と第二メモリ2の態様はこれに限定されない。第一メモリ1と第二メモリ2は、例えば、同一メモリにおける第一メモリ領域と第二メモリ領域であってもよい。
(変形例2)
上記実施形態において、セマフォSは第一データフローF1、第二データフローF2および第三データフローF3に対して設けられていたが、セマフォSの態様はこれに限定されない。セマフォSは、例えば、DMAC3が重みWを重みメモリ41に書き込み、乗算器42が重みWを読み出すデータフローに設けられていてもよい。セマフォSは、例えば、DMAC3が量子化パラメータqを量子化パラメータメモリ51に書き込み、量子化回路53が量子化パラメータqを読み出すデータフローに設けられていてもよい。
(変形例3)
例えば、上記実施形態に記載のCNN200に入力されるデータは単一の形式に限定されず、静止画像、動画像、音声、文字、数値およびこれらの組み合わせで構成することが可能である。なお、CNN200に入力されるデータは、CNN200が設けられるエッジデバイスに搭載され得る、光センサ、温度計、Global Positioning System(GPS)計測器、角速度計測器、風速計などの物理量測定器における測定結果に限られない。周辺機器から有線または無線通信経由で受信する基地局情報、車両・船舶等の情報、天候情報、混雑状況に関する情報などの周辺情報や金融情報や個人情報等の異なる情報を組み合わせてもよい。
(変形例4)
NN100が設けられるエッジデバイスは、バッテリー等で駆動する携帯電話などの通信機器、パーソナルコンピュータなどのスマートデバイス、デジタルカメラ、ゲーム機器、ロボット製品などのモバイル機器を想定するが、これに限られるものではない。Power on Ethernet(PoE)などでの供給可能なピーク電力制限、製品発熱の低減または長時間駆動の要請が高い製品に利用することでも他の先行例にない効果を得ることができる。例えば、車両や船舶などに搭載される車載カメラや、公共施設や路上などに設けられる監視カメラ等に適用することで長時間の撮影を実現できるだけでなく、軽量化や高耐久化にも寄与する。また、テレビやディスプレイ等の表示デバイス、医療カメラや手術ロボット等の医療機器、製造現場や建築現場で使用される作業ロボットなどにも適用することで同様の効果を奏することができる。
(変形例5)
NN回路100は、NN回路100の一部または全部を一つ以上のプロセッサを用いて実現してもよい。例えば、NN回路100は、入力層または出力層の一部または全部をプロセッサによるソフトウェア処理により実現してもよい。ソフトウェア処理により実現する入力層または出力層の一部は、例えば、データの正規化や変換である。これにより、様々な形式の入力形式または出力形式に対応できる。なお、プロセッサで実行するソフトウェアは、通信手段や外部メディアを用いて書き換え可能に構成してもよい。
(変形例6)
NN回路100は、CNN200における処理の一部をクラウド上のGraphics Processing Unit(GPU)等を組み合わせることで実現してもよい。NN回路100は、NN回路100が設けられるエッジデバイスで行った処理に加えて、クラウド上でさらに処理を行ったり、クラウド上での処理に加えてエッジデバイス上で処理を行ったりすることで、より複雑な処理を少ないリソースで実現できる。このような構成によれば、NN回路100は、処理分散によりエッジデバイスとクラウドとの間の通信量を低減できる。
(変形例7)
NN回路100が行う演算は、学習済みのCNN200の少なくとも一部であったが、NN回路100が行う演算の対象はこれに限定されない。NN回路100が行う演算は、例えば畳み込み演算と量子化演算のように、2種類の演算を繰り返す学習済みのニューラルネットワークの少なくとも一部であってもよい。
また、本明細書に記載された効果は、あくまで説明的または例示的なものであって限定的ではない。つまり、本開示に係る技術は、上記の効果とともに、または上記の効果に代えて、本明細書の記載から当業者には明らかな他の効果を奏しうる。
本発明は、ニューラルネットワークの演算に適用することができる。
200 畳み込みニューラルネットワーク
100 ニューラルネットワーク回路(NN回路)
1 第一メモリ
2 第二メモリ
3 DMAコントローラ(DMAC)
4 畳み込み演算回路
42 乗算器
43 アキュムレータ回路
5 量子化演算回路
52 ベクトル演算回路
53 量子化回路
6 コントローラ
61 レジスタ
S セマフォ
F1 第一データフロー
F2 第二データフロー
F3 第三データフロー

Claims (21)

  1. 入力データを格納する第一メモリと、
    前記第一メモリに格納された前記入力データと重みとに対して畳み込み演算を行う畳み込み演算回路と、
    前記畳み込み演算回路の畳み込み演算出力データを格納する第二メモリと、
    前記第二メモリに格納された前記畳み込み演算出力データに対して量子化演算を行う量子化演算回路と、
    を備え、
    前記量子化演算回路の量子化演算出力データは、前記第一メモリに格納されて、
    前記第一メモリに格納された前記量子化演算出力データは、前記畳み込み演算回路に前記入力データとして入力され
    前記第一メモリと、前記畳み込み演算回路と、前記第二メモリと、前記畳み込み演算回路とは、ループ状に形成されている、
    ニューラルネットワーク回路。
  2. 前記畳み込み演算回路は、前記畳み込み演算回路用の命令コマンドに基づき、前記第一メモリから前記入力データを読み出し、前記畳み込み演算出力データを前記第二メモリに書き込み、
    前記量子化演算回路は、前記量子化演算回路用の命令コマンドに基づき、前記第二メモリから前記畳み込み演算出力データを読み出し、前記量子化演算出力データを前記第一メモリに書き込む、
    請求項1に記載のニューラルネットワーク回路。
  3. 前記入力データは、第一部分テンソルと第二部分テンソルとに分解され、
    前記畳み込み演算回路における前記第一部分テンソルに対する前記畳み込み演算と、前記量子化演算回路における前記第二部分テンソルに対する前記量子化演算と、は並列に実行される、
    請求項1または請求項2に記載のニューラルネットワーク回路。
  4. 前記畳み込み演算回路は、前記第一メモリに格納された前記入力データに対してレイヤ2M−1(Mは自然数)の前記畳み込み演算を行い、前記レイヤ2M−1の前記畳み込み演算出力データを前記第二メモリに格納し、
    前記量子化演算回路は、前記第二メモリに格納された前記レイヤ2M−1の前記畳み込み演算出力データに対してレイヤ2Mの前記量子化演算を行い、前記レイヤ2Mの前記量子化演算出力データを前記第一メモリに格納し、
    前記畳み込み演算回路は、前記第一メモリに格納された前記レイヤ2Mの前記量子化演算出力データを前記入力データとしてレイヤ2M+1の前記畳み込み演算を行い、レイヤ2M+1の前記畳み込み演算出力データを前記第二メモリに格納する、
    請求項1または請求項2に記載のニューラルネットワーク回路。
  5. 前記入力データは、第一部分テンソルと第二部分テンソルとに分解され、
    前記第一部分テンソルに対応する前記レイヤ2M+1の前記畳み込み演算と、前記第二部分テンソルに対応する前記レイヤ2Mの前記量子化演算と、は並列に実施される、
    請求項に記載のニューラルネットワーク回路。
  6. 前記畳み込み演算回路は、
    前記入力データと前記重みとを積和演算する乗算器と、
    前記乗算器の積和演算結果を累積加算するアキュムレータ回路と、
    を有する、
    請求項1から請求項のいずれか一項に記載のニューラルネットワーク回路。
  7. 前記乗算器は、前記入力データと前記重みとを反転器およびセレクタにより乗算する
    請求項に記載のニューラルネットワーク回路。
  8. 前記入力データは、ベクトルデータであり、
    前記重みは、マトリクスデータである、
    請求項1から請求項のいずれか一項に記載のニューラルネットワーク回路。
  9. 前記入力データの各要素は、2ビットであり、
    前記重みの各要素は、1ビットである、
    請求項1から請求項のいずれか一項に記載のニューラルネットワーク回路。
  10. 前記量子化演算回路は、前記畳み込み演算出力データを正規化する回路をさらに有する、
    請求項1から請求項のいずれか一項に記載のニューラルネットワーク回路。
  11. 前記量子化演算回路は、プーリングの演算を実施する回路をさらに有する、
    請求項1から請求項のいずれか一項に記載のニューラルネットワーク回路。
  12. 前記量子化演算回路は、活性化関数の演算を実施する回路をさらに有する、
    請求項1から請求項のいずれか一項に記載のニューラルネットワーク回路。
  13. 前記第一メモリに前記入力データを転送するDMAコントローラをさらに有する、
    請求項1に記載のニューラルネットワーク回路。
  14. 前記第二メモリは、ランダムアクセス可能かつ書き換え可能なメモリである、
    請求項1に記載のニューラルネットワーク回路
  15. 前記DMAコントローラによる前記第一メモリに対する書き込みを制限する第一ライトセマフォと、
    前記畳み込み演算回路による前記第一メモリからの読み出しを制限する第一リードセマフォと、
    を有する、
    請求項13に記載のニューラルネットワーク回路。
  16. 前記畳み込み演算回路による前記第二メモリに対する書き込みを制限する第二ライトセマフォと、
    前記量子化演算回路による前記第二メモリからの読み出しを制限する第二リードセマフォと、
    を有する、
    請求項1に記載のニューラルネットワーク回路。
  17. 前記量子化演算回路による前記第一メモリに対する書き込みを制限する第三ライトセマフォと、
    前記畳み込み演算回路による前記第一メモリからの読み出しを制限する第三リードセマフォと、
    を有する、
    請求項1に記載のニューラルネットワーク回路。
  18. 入力データを格納する第一メモリと、
    前記第一メモリに格納された前記入力データと重みとに対して畳み込み演算を行う畳み込み演算回路と、
    前記畳み込み演算回路の畳み込み演算出力データを格納する第二メモリと、
    前記第二メモリに格納された前記畳み込み演算出力データに対して量子化演算を行う量子化演算回路と、
    を備え、
    前記量子化演算回路の量子化演算出力データは、前記第一メモリに格納されて、
    前記第一メモリに格納された前記量子化演算出力データは、前記畳み込み演算回路に前記入力データとして入力され
    前記畳み込み演算回路は、前記第一メモリに格納された前記入力データに対してレイヤ2M−1(Mは自然数)の前記畳み込み演算を行い、前記レイヤ2M−1の前記畳み込み演算出力データを前記第二メモリに格納し、
    前記量子化演算回路は、前記第二メモリに格納された前記レイヤ2M−1の前記畳み込み演算出力データに対してレイヤ2Mの前記量子化演算を行い、前記レイヤ2Mの前記量子化演算出力データを前記第一メモリに格納し、
    前記畳み込み演算回路は、前記第一メモリに格納された前記レイヤ2Mの前記量子化演算出力データを前記入力データとしてレイヤ2M+1の前記畳み込み演算を行い、レイヤ2M+1の前記畳み込み演算出力データを前記第二メモリに格納し、
    前記入力データは、第一部分テンソルと第二部分テンソルとに分解され、
    前記第一部分テンソルに対応する前記レイヤ2M+1の前記畳み込み演算と、前記第二部分テンソルに対応する前記レイヤ2Mの前記量子化演算と、は並列に実施される
    ニューラルネットワーク回路。
  19. 請求項1から請求項18のいずれか一項に記載のニューラルネットワーク回路を含み、バッテリーによって駆動するエッジデバイス。
  20. プロセッサをさらに備え、
    前記プロセッサは前記ニューラルネットワーク回路の入力層または出力層における少なくとも一部の演算を行う、
    請求項19に記載のエッジデバイス。
  21. 第一メモリ領域と第二メモリ領域とを用いて畳み込み演算と量子化演算とを行うニューラルネットワーク演算方法であって、
    前記第一メモリ領域に格納された入力データに対してレイヤ2M−1(Mは自然数)の前記畳み込み演算を行い、前記レイヤ2M−1の畳み込み演算出力データを前記第二メモリ領域に格納し、
    前記第二メモリ領域に格納された前記レイヤ2M−1の前記畳み込み演算出力データに対してレイヤ2Mの前記量子化演算を行い、前記レイヤ2Mの量子化演算出力データを前記第一メモリ領域に格納し、
    前記第一メモリ領域に格納された前記レイヤ2Mの前記量子化演算出力データを前記入力データとしてレイヤ2M+1の前記畳み込み演算を行い、レイヤ2M+1の前記畳み込み演算出力データを前記第二メモリ領域に格納し、
    前記入力データを、第一部分テンソルと第二部分テンソルとに分解し、
    前記第一部分テンソルに対応する前記レイヤ2M+1の前記畳み込み演算と、前記第二部分テンソルに対応する前記レイヤ2Mの前記量子化演算と、を並列に実施する、
    ニューラルネットワーク演算方法。
JP2020071932A 2020-04-13 2020-04-13 ニューラルネットワーク回路、エッジデバイスおよびニューラルネットワーク演算方法 Active JP6896306B1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2020071932A JP6896306B1 (ja) 2020-04-13 2020-04-13 ニューラルネットワーク回路、エッジデバイスおよびニューラルネットワーク演算方法
TW110113109A TWI773245B (zh) 2020-04-13 2021-04-12 神經網路電路、網路終端設備及神經網路運算方法
KR1020210047004A KR102667790B1 (ko) 2020-04-13 2021-04-12 뉴럴 네트워크 회로, 에지 디바이스 및 뉴럴 네트워크 연산 방법
US17/227,785 US20210319294A1 (en) 2020-04-13 2021-04-12 Neural network circuit, edge device and neural network operation process
CN202110388524.2A CN113537479A (zh) 2020-04-13 2021-04-12 神经网络电路、边缘设备以及神经网络运算方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020071932A JP6896306B1 (ja) 2020-04-13 2020-04-13 ニューラルネットワーク回路、エッジデバイスおよびニューラルネットワーク演算方法

Publications (2)

Publication Number Publication Date
JP6896306B1 true JP6896306B1 (ja) 2021-06-30
JP2021168095A JP2021168095A (ja) 2021-10-21

Family

ID=76540464

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020071932A Active JP6896306B1 (ja) 2020-04-13 2020-04-13 ニューラルネットワーク回路、エッジデバイスおよびニューラルネットワーク演算方法

Country Status (5)

Country Link
US (1) US20210319294A1 (ja)
JP (1) JP6896306B1 (ja)
KR (1) KR102667790B1 (ja)
CN (1) CN113537479A (ja)
TW (1) TWI773245B (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023058422A1 (ja) * 2021-10-08 2023-04-13 LeapMind株式会社 ニューラルネットワーク回路およびニューラルネットワーク回路の制御方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023139990A1 (ja) * 2022-01-24 2023-07-27 LeapMind株式会社 ニューラルネットワーク回路およびニューラルネットワーク演算方法
KR20240128219A (ko) 2023-02-17 2024-08-26 주식회사 이엠솔루션 IoT 에지 디바이스에 기반하여 고속의 시각정보를 제공하는 지능 플랫폼 시스템 및 그 서비스 제공방법

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04233063A (ja) * 1990-12-28 1992-08-21 Matsushita Electric Ind Co Ltd ニューロプロセッサ
WO2007046368A1 (ja) * 2005-10-18 2007-04-26 Matsushita Electric Industrial Co., Ltd. 半導体集積回路
JP6539459B2 (ja) * 2015-02-24 2019-07-03 国立大学法人広島大学 Lvqニューラルネットワーク
JP6964234B2 (ja) 2016-11-09 2021-11-10 パナソニックIpマネジメント株式会社 情報処理方法、情報処理装置およびプログラム
US10528321B2 (en) * 2016-12-07 2020-01-07 Microsoft Technology Licensing, Llc Block floating point for neural network implementations
US10410098B2 (en) * 2017-04-24 2019-09-10 Intel Corporation Compute optimizations for neural networks
US10474458B2 (en) * 2017-04-28 2019-11-12 Intel Corporation Instructions and logic to perform floating-point and integer operations for machine learning
CN112214726B (zh) * 2017-07-07 2024-05-03 华为技术有限公司 运算加速器
KR102534917B1 (ko) * 2017-08-16 2023-05-19 에스케이하이닉스 주식회사 신경망 처리 회로를 구비하는 메모리 장치 및 이를 포함하는 메모리 시스템
US10699160B2 (en) * 2017-08-23 2020-06-30 Samsung Electronics Co., Ltd. Neural network method and apparatus
WO2019113007A1 (en) * 2017-12-05 2019-06-13 Wave Computing, Inc. Pipelined tensor manipulation within a reconfigurable fabric
CN108364061B (zh) * 2018-02-13 2020-05-05 北京旷视科技有限公司 运算装置、运算执行设备及运算执行方法
CN110245741A (zh) * 2018-03-09 2019-09-17 佳能株式会社 多层神经网络模型的优化和应用方法、装置及存储介质
US20190332925A1 (en) * 2018-04-30 2019-10-31 International Business Machines Corporation Neural hardware accelerator for parallel and distributed tensor computations
WO2019222150A1 (en) * 2018-05-15 2019-11-21 Lightmatter, Inc. Algorithms for training neural networks with photonic hardware accelerators
WO2019220692A1 (ja) * 2018-05-15 2019-11-21 三菱電機株式会社 演算装置
US10860865B2 (en) * 2018-09-13 2020-12-08 Chiral Software, Inc. Predictive security camera system
US10713012B2 (en) * 2018-10-15 2020-07-14 Intel Corporation Method and apparatus for efficient binary and ternary support in fused multiply-add (FMA) circuits

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023058422A1 (ja) * 2021-10-08 2023-04-13 LeapMind株式会社 ニューラルネットワーク回路およびニューラルネットワーク回路の制御方法

Also Published As

Publication number Publication date
JP2021168095A (ja) 2021-10-21
KR102667790B1 (ko) 2024-05-20
TWI773245B (zh) 2022-08-01
KR20210127099A (ko) 2021-10-21
TW202139077A (zh) 2021-10-16
US20210319294A1 (en) 2021-10-14
CN113537479A (zh) 2021-10-22

Similar Documents

Publication Publication Date Title
JP6896306B1 (ja) ニューラルネットワーク回路、エッジデバイスおよびニューラルネットワーク演算方法
TWI818944B (zh) 神經網路處理單元及系統晶片
Choi et al. An energy-efficient deep convolutional neural network training accelerator for in situ personalization on smart devices
WO2021210527A1 (ja) ニューラルネットワーク回路の制御方法
EP3709225A1 (en) System and method for efficient utilization of multipliers in neural-network computations
WO2022163861A1 (ja) ニューラルネットワーク生成装置、ニューラルネットワーク演算装置、エッジデバイス、ニューラルネットワーク制御方法およびソフトウェア生成プログラム
US20100257342A1 (en) Row of floating point accumulators coupled to respective pes in uppermost row of pe array for performing addition operation
JP6931252B1 (ja) ニューラルネットワーク回路およびニューラルネットワーク回路の制御方法
WO2023058422A1 (ja) ニューラルネットワーク回路およびニューラルネットワーク回路の制御方法
WO2022085661A1 (ja) ニューラルネットワーク生成装置、ニューラルネットワーク制御方法およびソフトウェア生成プログラム
WO2022004815A1 (ja) ニューラルネットワーク生成装置、ニューラルネットワーク生成方法およびニューラルネットワーク生成プログラム
WO2024038662A1 (ja) ニューラルネットワーク学習装置およびニューラルネットワーク学習方法
JP2022105437A (ja) ニューラルネットワーク回路およびニューラルネットワーク演算方法
WO2023139990A1 (ja) ニューラルネットワーク回路およびニューラルネットワーク演算方法
WO2024111644A1 (ja) ニューラルネットワーク回路およびニューラルネットワーク演算方法
JP2022183833A (ja) ニューラルネットワーク回路およびニューラルネットワーク演算方法
JP2024118195A (ja) ニューラルネットワーク回路およびニューラルネットワーク演算方法
WO2022230906A1 (ja) ニューラルネットワーク生成装置、ニューラルネットワーク演算装置、エッジデバイス、ニューラルネットワーク制御方法およびソフトウェア生成プログラム
JP2023154880A (ja) ニューラルネットワーク生成方法およびニューラルネットワーク生成プログラム
JP2022114698A (ja) ニューラルネットワーク生成装置、ニューラルネットワーク制御方法およびソフトウェア生成プログラム
JP2023006509A (ja) ソフトウェア生成装置およびソフトウェア生成方法
US20240256901A1 (en) Information processing apparatus, information processing method and non-transitory computer-readable storage medium
JP2024026993A (ja) 情報処理装置、情報処理方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200413

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20200413

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20200507

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20200622

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200901

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20201102

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210511

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210602

R150 Certificate of patent or registration of utility model

Ref document number: 6896306

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250