JP6896138B1 - Abrasion- and corrosion-resistant iron-based alloy powder for laser cladding and its laser cladding layer - Google Patents

Abrasion- and corrosion-resistant iron-based alloy powder for laser cladding and its laser cladding layer Download PDF

Info

Publication number
JP6896138B1
JP6896138B1 JP2020208465A JP2020208465A JP6896138B1 JP 6896138 B1 JP6896138 B1 JP 6896138B1 JP 2020208465 A JP2020208465 A JP 2020208465A JP 2020208465 A JP2020208465 A JP 2020208465A JP 6896138 B1 JP6896138 B1 JP 6896138B1
Authority
JP
Japan
Prior art keywords
cladding layer
alloy powder
based alloy
iron
cladding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020208465A
Other languages
Japanese (ja)
Other versions
JP2021110037A (en
Inventor
王▲ミョウ▼輝
葛学元
杜博睿
徐一斐
申博文
肖寧
▲ハオ▼勝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing National Innovation Institute of Lightweight Ltd
Original Assignee
Beijing National Innovation Institute of Lightweight Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing National Innovation Institute of Lightweight Ltd filed Critical Beijing National Innovation Institute of Lightweight Ltd
Application granted granted Critical
Publication of JP6896138B1 publication Critical patent/JP6896138B1/en
Publication of JP2021110037A publication Critical patent/JP2021110037A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/08Coating starting from inorganic powder by application of heat or pressure and heat
    • C23C24/10Coating starting from inorganic powder by application of heat or pressure and heat with intermediate formation of a liquid phase in the layer
    • C23C24/103Coating with metallic material, i.e. metals or metal alloys, optionally comprising hard particles, e.g. oxides, carbides or nitrides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C37/00Cast-iron alloys
    • C22C37/06Cast-iron alloys containing chromium
    • C22C37/08Cast-iron alloys containing chromium with nickel

Abstract

【課題】レーザークラッディング用の耐摩耗性および耐腐食性の鉄ベース合金粉末及びそれにより形成されたレーザークラッディング層を提供する。【解決手段】合金粉末は、以下の質量パーセントで各組成を含み、即ち、C:2.5〜3.0%、Cr:29〜31%、Ni:8.3〜8.5%、V:7.5〜8%、Ti:1.6〜1.8%、Feマージンである、ことを特徴とする。【効果】上記合金粉末が形成したクラッディング層は、良好な耐摩耗性と耐腐食性能を有するとともに、高い強度と靭性を有し、溶接性能に優れ、調製されたクラッディング層は、緻密でクラックがなく、高クラッディング速率によって引き起こされる急冷亀裂の問題を克服でき、上記合金粉末が形成したクラッディング層は、耐腐食性能が国家標準(GB/T6461−2002)レベル9に達し、硬度が61HRC〜63HRCであり、降伏強度が1700〜1900MPaである。【選択図】なしPROBLEM TO BE SOLVED: To provide an iron-based alloy powder having abrasion resistance and corrosion resistance for laser cladding and a laser cladding layer formed by the powder. SOLUTION: The alloy powder contains each composition in the following mass percent, that is, C: 2.5 to 3.0%, Cr: 29 to 31%, Ni: 8.3 to 8.5%, V. : 7.5 to 8%, Ti: 1.6 to 1.8%, Fe margin. [Effect] The cladding layer formed by the above alloy powder has good wear resistance and corrosion resistance, as well as high strength and toughness, excellent welding performance, and the prepared cladding layer is dense. There are no cracks, the problem of quenching cracks caused by high cladding rate can be overcome, and the cladding layer formed by the above alloy powder has corrosion resistance reaching the national standard (GB / T6461-2002) level 9 and hardness. It is 61HRC to 63HRC and has a yield strength of 1700 to 1900 MPa. [Selection diagram] None

Description

本発明は、金属材料分野に属し、具体的には、レーザークラッディング用の耐摩耗性および耐腐食性の鉄ベース合金粉末及びそのレーザークラッディング層に関する。 The present invention belongs to the field of metal materials, and specifically relates to wear- and corrosion-resistant iron-based alloy powders for laser cladding and laser cladding layers thereof.

レーザークラッディング技術は、表面強化プロセス技術であり、これは、異なる充填方法を介して、選択されたクラッディング材料を基板の表面に添加することを指し、高パワー密度のレーザービームを使用しながら基板表面の非常に薄い層と融合し、すばやく固化した後に、緻密な構造、非常に低い希釈、および基板との冶金学的結合を備えた表面クラッディング層を形成することにより、ベース層表面の耐摩耗性、耐腐食性、耐熱性、耐酸化性などの特性が大幅に向上し、適用範囲が非常に広くなっている。レーザークラッディングのステンレス鋼材料は、基板に優れた耐腐食性を与えることができ、これは、硬質クロム電気めっきに代わる一般的なプロセス方法であり、電気めっきと比較して、グリーンで、クリーン、高強度、長寿命という特徴がある。 Laser cladding technology is a surface strengthening process technology, which refers to the addition of selected cladding materials to the surface of a substrate via different filling methods, while using a high power density laser beam. By fusing with a very thin layer of substrate surface and quickly solidifying, it forms a surface cladding layer with a dense structure, very low dilution, and metallurgical bonding with the substrate to form a surface cladding layer on the surface of the base layer. Properties such as wear resistance, corrosion resistance, heat resistance, and oxidation resistance have been greatly improved, and the range of application has become extremely wide. Laser cladding stainless steel material can give the substrate excellent corrosion resistance, which is a common process alternative to hard chrome electroplating and is greener and cleaner compared to electroplating. It is characterized by high strength and long life.

通常の高Crステンレス鋼のクラッディング層は、C元素の含有量が少なく、クラッディング層の構造内部における硬質強化相が少ないため、クラッディング層の硬度は一般にHRC55より低く、耐摩耗性能は高くないが、C含有量を増やすと、粒子境界に大量のCr23C6が析出するが、一方で、構造内のCr含有量が希釈され、クラッディング層の耐腐食性能と粒界耐腐食性が低下する一方、粒子境界に脆いCr23C6が蓄積すると、粒子間亀裂のリスクが高まり、クラッディング層の強度が低下する。 Since the cladding layer of ordinary high Cr stainless steel has a low content of C element and a small amount of hard reinforcing phase inside the structure of the cladding layer, the hardness of the cladding layer is generally lower than that of HRC55 and the abrasion resistance is high. Although not, when the C content is increased, a large amount of Cr23C6 is deposited at the particle boundary, but on the other hand, the Cr content in the structure is diluted, and the corrosion resistance and intergranular corrosion resistance of the cladding layer are lowered. On the other hand, when brittle Cr23C6 accumulates at the particle boundary, the risk of interparticle cracking increases and the strength of the cladding layer decreases.

クラッディング効率に対する要求の増大および使用コストを削減する緊急の必要性に伴い、高強度の耐摩耗性および耐腐食性の鉄ベースの合金材料を開発することが緊急に必要とされている。 With the increasing demand for cladding efficiency and the urgent need to reduce usage costs, there is an urgent need to develop high-strength wear- and corrosion-resistant iron-based alloy materials.

本発明は、高強度耐摩耗性および耐腐食性鉄ベース合金粉末を提供し、この鉄ベース合金粉末により形成されたクラッディング層は、良好な耐摩耗性と耐腐食性能を有するとともに、高い強度と靭性を有し、溶接性能に優れ、調製されたクラッディング層は、緻密でクラックがなく、高クラッディング速率によって引き起こされた冷却亀裂の問題を克服することができる。 The present invention provides a high-strength wear-resistant and corrosion-resistant iron-based alloy powder, and the cladding layer formed by the iron-based alloy powder has good wear resistance and corrosion resistance, and has high strength. With toughness and excellent welding performance, the prepared cladding layer is dense and crack-free, and can overcome the problem of cooling cracks caused by high cladding rates.

本発明は、レーザークラッディング用の耐摩耗性および耐腐食性の鉄ベース合金粉末を提供し、以下の質量パーセントで各組成を含み、即ち、C:2.5〜3.0%、Cr:29〜31%、Ni:8.3〜8.5%、V:7.5〜8%、Ti:1.6〜1.8%、Feマージンである。 The present invention provides wear- and corrosion-resistant iron-based alloy powders for laser cladding, each containing each composition in the following mass percent, ie C: 2.5-3.0%, Cr: 29 to 31%, Ni: 8.3 to 8.5%, V: 7.5 to 8%, Ti: 1.6 to 1.8%, Fe margin.

更に、好ましくは、前記鉄ベース合金粉末の真球度は、90%以上であり、粒度分布は、15〜65μmであり、流動性は、32−41s/100gである。良好な流動性及び適切な粉末粒度範囲により、クラッディング層の品質とクラッディング安定性を確保できる。一方では、粒度分布が15μm未満の微粉末は、凝集現像を引き起こすが、粉末の真球度が小さいほど、微粉末が凝集しやすく、両者が連携して作用することで、流動性が悪くなり、クラッディング過程に微粉末の凝集現像を引き起こしやすく、プロセス安定性に影響を与える一方、高クラッディング速率下では、レーザー作用時間が短く、溶融池の固化速度が速く、単位時間当たりに粉末に伝達されるエネルギーは比較的小さく、粒度分布が65μmを超える粉末は、完全に溶融するのに十分なエネルギーを得ることができず、その後クラッディング層に残り、亀裂、ボイド、その他の未融合の欠陥を形成する。 Further, preferably, the sphericity of the iron-based alloy powder is 90% or more, the particle size distribution is 15 to 65 μm, and the fluidity is 32-41 s / 100 g. Good fluidity and an appropriate powder particle size range ensure the quality and cladding stability of the cladding layer. On the other hand, fine powder with a particle size distribution of less than 15 μm causes cohesive development, but the smaller the sphericity of the powder, the easier it is for the fine powder to coagulate, and the two act in cooperation with each other, resulting in poor fluidity. , It is easy to cause coagulation development of fine powder in the cladding process, which affects the process stability, while under high cladding rate, the laser action time is short, the solidification rate of the molten pool is fast, and it becomes powder per unit time. The transferred energy is relatively small, and powders with a particle size distribution greater than 65 μm do not have enough energy to completely melt and then remain in the cladding layer, cracks, voids and other unfused Form defects.

上記の方案において、好ましくは、前記C元素の含有量は、2.5〜3.0%である。共晶組成の範囲のCは、クラッディング層でのフェライトの形成を抑制し、フェライト形成によって引き起こされるCr、V、Ti合金元素の損失を回避し、急冷過程においてできるだけ多くのオーステナイトがクラッディング層でマルテンサイトに変換されることを確保するとともに、合金中のクロムカーバイド、バナジウムカーバイド、チタンカーバイドは、結晶粒を微細化することができ、クラッディング層の強度と硬度を効果的に向上させることができる。ただし、Cの含有量をVおよびTi元素の含有量と一致させて、できるだけ多くのCをVおよびTiと結合することを確保する必要があり、Crと結合して粒子境界にCr23C6を析出させてクラッディング層の耐腐食性能と耐亀裂性を損なうことを回避する。高すぎるC含有量は、それに一致するためにより多くのVおよびTi含有量を必要とし、リソースの浪費とコストの増加をもたらす。 In the above plan, the content of the C element is preferably 2.5 to 3.0%. C in the eutectic composition range suppresses the formation of ferrite in the cladding layer, avoids the loss of Cr, V, and Ti alloy elements caused by ferrite formation, and the cladding layer contains as much austenite as possible during the quenching process. Chromium carbide, vanadium carbide, and titanium carbide in the alloy can refine the crystal grains and effectively improve the strength and hardness of the cladding layer, while ensuring that they are converted to martensite. Can be done. However, it is necessary to match the content of C with the content of V and Ti elements to ensure that as much C as possible is bonded to V and Ti, and to bond with Cr to precipitate Cr23C6 at the particle boundary. This avoids impairing the corrosion resistance and crack resistance of the cladding layer. A C content that is too high requires more V and Ti content to match, resulting in wasted resources and increased costs.

上記の方案において、好ましくは、前記Cr元素の含有量は、29〜31%である。高いCr含有量は、クラッディング層の腐食電極電位が上がり、腐食の発生を防ぎ、耐食性が向上するとともに、高いCr含有量は、C元素の希釈効果が低下し、腐食性能の低下を防ぐことができる。ただし、Crはフェライト形成要素として、高すぎるCr含有量は、クラッディング層でのフェライトの形成が促進され、さらにCr、V、およびTi合金元素が失われる。 In the above plan, the content of the Cr element is preferably 29 to 31%. A high Cr content increases the corrosion electrode potential of the cladding layer, prevents the occurrence of corrosion and improves corrosion resistance, and a high Cr content reduces the dilution effect of C element and prevents deterioration of corrosion performance. Can be done. However, Cr is a ferrite forming element, and if the Cr content is too high, the formation of ferrite in the cladding layer is promoted, and Cr, V, and Ti alloy elements are lost.

上記の方案において、好ましくは、前記Ni元素の含有量は、8.3〜8.5%である。Ni元素の存在は、一方で、クラッディング層の湿潤性と延性を向上させることができ、他方で、クラッディング層の耐腐食性能を向上させることができる。 In the above plan, the content of the Ni element is preferably 8.3 to 8.5%. The presence of the Ni element, on the one hand, can improve the wettability and ductility of the cladding layer, and on the other hand, it can improve the corrosion resistance of the cladding layer.

上記の方案において、好ましくは、前記Vの含有量は、7.5〜8%である。Vは強力なカーバイド形成元素であり、Cr元素と比較して、VはCと優先的に結合してバナジウムカーバイドを形成する一方、粒子を微細化し、クラッディング層の強度と硬度を向上させ、他方で、粒子境界でのCr23C6の析出を低減する。これにより、クラッディング層の耐孔食性と粒子間亀裂抵抗が向上する。好ましいCおよびV含有量範囲内で、共晶組成の炭化バナジウムは、クラッディング層構造内に均一に分布することができ、これにより、クラッディング層の全体的な強度および硬度が向上する。 In the above plan, the content of V is preferably 7.5 to 8%. V is a strong carbide-forming element, and compared to Cr element, V preferentially binds to C to form vanadium carbide, while refining the particles and improving the strength and hardness of the cladding layer. On the other hand, it reduces the precipitation of Cr23C6 at the particle boundaries. This improves the pitting corrosion resistance of the cladding layer and the crack resistance between particles. Within the preferred C and V content ranges, the eutectic composition of vanadium carbide can be uniformly distributed within the cladding layer structure, which improves the overall strength and hardness of the cladding layer.

上記の方案において、好ましくは、前記Tiの含有量は、1.6〜1.8%である。Tiは非常に強力なカーバイド形成要素である。VおよびCr要素と比較して、TiはCと優先的に結合してチタンカーバイドを形成し、有害なCr23C6の析出を低減または回避することにより、クラッディング層の強度と耐腐食性能を向上させる。好ましい範囲を超えると、過剰なTiがNiと結合してNi3Tiを形成し、粒子境界に沿って析出し、クラッディング層の靭性が急激に低下する。 In the above plan, the Ti content is preferably 1.6 to 1.8%. Ti is a very strong carbide forming element. Compared to V and Cr elements, Ti preferentially binds to C to form titanium carbide, reducing or avoiding the precipitation of harmful Cr23C6, thereby improving the strength and corrosion resistance of the cladding layer. .. If it exceeds the preferable range, excess Ti is combined with Ni to form Ni3Ti, which is precipitated along the particle boundary, and the toughness of the cladding layer is sharply lowered.

上記の方案において、前記鉄ベース合金粉末が形成したクラッディング層は、良好な耐摩耗性と耐腐食性能を有するとともに、高い強度と靭性を有し、溶接性能に優れ、調製されたクラッディング層は、緻密でクラックがなく、高クラッディング速率によって引き起こされた冷却亀裂の問題を克服することができる。 In the above plan, the cladding layer formed by the iron-based alloy powder has good wear resistance and corrosion resistance, high strength and toughness, excellent welding performance, and a prepared cladding layer. Is dense and crack-free, and can overcome the problem of cooling cracks caused by high cladding rates.

従来技術と比較して、本発明は、以下の有益な効果を有する。
(1)本発明の鉄ベース合金粉末が形成したクラッディング層は、良好な耐摩耗性と耐腐食性能を有するとともに、高い強度と靭性を有し、溶接性能に優れ、調製されたクラッディング層は、緻密でクラックがなく、高クラッディング速率によって引き起こされた冷却亀裂の問題を克服することができる。
Compared with the prior art, the present invention has the following beneficial effects.
(1) The cladding layer formed by the iron-based alloy powder of the present invention has good wear resistance and corrosion resistance, as well as high strength and toughness, excellent welding performance, and a prepared cladding layer. Is dense and crack-free, and can overcome the problem of cooling cracks caused by high cladding rates.

(2)本発明の鉄ベース合金粉末が形成したクラッディング層硬度は、61HRC〜63HRCであり、GB/T6461−2002《腐食試験後の金属基板上の金属およびその他の無機コーティングのサンプルおよび試験片の評価》によれば、中性塩水噴霧試験でのクラッディング層の耐腐食性がレベル9に達し、良好な耐摩耗性と耐腐食性能を有する。 (2) The hardness of the cladding layer formed by the iron-based alloy powder of the present invention is 61HRC to 63HRC, and GB / T6461-2002 << Samples and test pieces of metal and other inorganic coatings on the metal substrate after the corrosion test. According to >>, the corrosion resistance of the cladding layer in the neutral salt spray test reaches level 9, and it has good wear resistance and corrosion resistance.

(3)本発明の鉄ベース合金粉末が形成したクラッディング層は、良好な強度と靭性を有し、クラッディング性能に優れ、クラッディング層の降伏強度が1700〜1900MPaに達する。 (3) The cladding layer formed by the iron-based alloy powder of the present invention has good strength and toughness, is excellent in cladding performance, and the yield strength of the cladding layer reaches 1700 to 1900 MPa.

本発明は、レーザークラッディング用の耐摩耗性および耐腐食性鉄ベース合金粉末を提出する。レーザークラッディングの前に、設計組成に従って原材料と粉末を配置して調製する必要がある。その粉末原材料の調製方法は、水噴霧、ガス噴霧、または機械的ボールミリング合金化を使用できる。これらの粉末調製方法と技術は、当業者によく知られているので、ここでは繰り返しない。本発明の技術案は、例示を通して以下にさらに詳述されるが、本発明の保護範囲は、内容に限定されない。 The present invention provides wear- and corrosion-resistant iron-based alloy powders for laser cladding. Prior to laser cladding, raw materials and powders must be placed and prepared according to the design composition. As a method for preparing the powder raw material, water spraying, gas spraying, or mechanical ball milling alloying can be used. These powder preparation methods and techniques are well known to those of skill in the art and will not be repeated here. The technical proposal of the present invention will be further described in detail below by way of illustration, but the scope of protection of the present invention is not limited to the content.

表1に示される実施例1、2及び比較例1、2の粉末組成に従って、采用以下のようなレーザークラッディングプロセス及びステップを用い、φ110mm×1200mmの9Cr2Mo軸に鉄ベース合金のクラッディング層をクラッディングする。
(1)鉄ベース合金粉末を篩分及びパージ処理する。
According to the powder composition of Examples 1 and 2 and Comparative Examples 1 and 2 shown in Table 1, the iron-based alloy cladding layer was formed on a 9Cr2Mo axis of φ110 mm × 1200 mm by using the following laser cladding process and step. Cladding.
(1) The iron-based alloy powder is sieved and purged.

(2)研削加工により軸類のワーク表面の酸化物層と油汚れをクリアし、そのうち、ワークのクラッディング面積は、0.414m<2>である。 (2) The oxide layer and oil stains on the work surface of the shafts are cleared by grinding, and the cladding area of the work is 0.414 m <2>.

(3)ステップ(2)では、前記ワーク表面にレーザークラッディングによりクラッディング層が調製され、使用するレーザー機は、半導体レーザーであり、プロセスパラメータは、レーザーパワー2100W、スポット径1mm、走査線速度55m/min、粉末供給速率35g/minであり、 (3) In step (2), a cladding layer is prepared on the surface of the work by laser cladding, the laser machine used is a semiconductor laser, and the process parameters are laser power 2100 W, spot diameter 1 mm, scanning line speed. 55 m / min, powder supply rate 35 g / min,

(4)ステップ(3)で得られたワークを5軸数値制御工作機械で部品図に従って最終仕上げする。 (4) The work obtained in step (3) is finally finished according to the parts drawing with a 5-axis numerical control machine tool.

本発明の方法によって、ピースクラッドされたワークに対して統計および性能試験を実施し、その結果は表1に示されている。実施例1および実施例2の粉末組成は両方とも好ましい範囲内であり、55m/minの走査線速度で得られたクラッディング層は、優れた性能を有し、良好な硬度および降伏強度を有する。比較例1および比較例2の粉末組成は好ましい範囲内になく、比較例1で55m/minの走査線速度で得られたクラッディング層は、低硬度および劣った耐摩耗性を有する。しかしながら、比較実施例2で得られたクラッディング層の降伏強度は低く、クラッディング層は高い線速度で亀裂を生じ、どちらも使用の要件を満たさなかった。比較例3と比較例4の粉末組成は実施例1と同じですが、真球度、粒度分布、流動性が好ましい範囲内になく、比較例3は真球度が低く、15μm以下の粉末が多いため、流動性が悪くなり、クラッディング過程において、微粉末の凝集現像は深刻であり、安定したクラッディングを達成することはできない。比較例4では、粉末粒度が65μm以上の粗い粉末が多く、クラッディング層の硬度は実施例1と同程度であるが、大量の未溶融粒子が存在しているため、高クラッディング線速度でクラッディング層にボイドやその他の未融合の欠陥が現れ、どちらも使用要件を満たしていなかった。 Statistical and performance tests were performed on piece-clad workpieces by the method of the invention and the results are shown in Table 1. The powder compositions of Examples 1 and 2 are both within the preferred range, and the cladding layer obtained at a scanning line speed of 55 m / min has excellent performance and good hardness and yield strength. .. The powder composition of Comparative Example 1 and Comparative Example 2 was not within a preferable range, and the cladding layer obtained in Comparative Example 1 at a scanning line speed of 55 m / min had low hardness and poor wear resistance. However, the yield strength of the cladding layer obtained in Comparative Example 2 was low, and the cladding layer cracked at a high linear velocity, neither of which met the requirements for use. The powder composition of Comparative Example 3 and Comparative Example 4 is the same as that of Example 1, but the sphericity, particle size distribution, and fluidity are not within the preferable ranges, and Comparative Example 3 has a low sphericity, and a powder of 15 μm or less is used. Since there are many of them, the fluidity becomes poor, and in the cladding process, the cohesive development of the fine powder is serious, and stable cladding cannot be achieved. In Comparative Example 4, there are many coarse powders having a powder particle size of 65 μm or more, and the hardness of the cladding layer is about the same as that of Example 1, but since a large amount of unmelted particles are present, the cladding linear velocity is high. Voids and other unfused defects appeared in the cladding layer, neither of which met the requirements for use.

表1には、具体的に、実施例及び比較例に記載の組成、真球度、粒度分布及び流動性を示す。

Figure 0006896138
Table 1 specifically shows the composition, sphericity, particle size distribution, and fluidity described in Examples and Comparative Examples.
Figure 0006896138

表2には、具体的に、実施例及び比較例クラッディング層の性能及びクラッディング層の品質を示す。

Figure 0006896138
Table 2 specifically shows the performance of the cladding layer of Examples and Comparative Examples and the quality of the cladding layer.
Figure 0006896138

上記は、本発明の好ましい具体的な実施形態にすぎないが、本発明の保護範囲はそれに限定されない。本発明によって開示される技術的範囲内の当業者によって容易に想像され得るいかなる変更または交換も、本発明の保護範囲に含まれるべきである。したがって、本発明の保護範囲は、特許請求の範囲の保護範囲に従うべきである。 The above is only a preferred specific embodiment of the present invention, but the scope of protection of the present invention is not limited thereto. Any modification or exchange that can be easily imagined by one of ordinary skill in the art within the technical scope disclosed by the present invention should be included in the scope of protection of the present invention. Therefore, the scope of protection of the present invention should follow the scope of protection of the claims.

Claims (2)

レーザークラッディング用の耐摩耗性および耐腐食性の鉄ベース合金粉末であって、
以下の質量パーセントで各組成を含み、即ち、C:2.5〜3.0%、Cr:29〜31%、Ni:8.3〜8.5%、V:7.5〜8%、Ti:1.6〜1.8%、残部がFeからなり
各組成の質量の合計は、100%であり、
前記鉄ベース合金粉末の真球度は、90%以上であり、
粒度分布は、15〜65μmであり、
流動性は、32−41s/100gである、ことを特徴とする鉄ベース合金粉末。
Abrasion and corrosion resistant iron-based alloy powders for laser cladding,
Each composition is contained in the following mass percent, i.e., C: 2.5-3.0%, Cr: 29-31%, Ni: 8.3-8.5%, V: 7.5-8%, Ti: 1.6 to 1.8%, the rest consists of Fe ,
The total mass of each composition is 100%
The sphericity of the iron-based alloy powder is 90% or more, and the sphericity is 90% or more.
The particle size distribution is 15-65 μm.
An iron-based alloy powder characterized by a fluidity of 32-41 s / 100 g.
以下のステップを含む耐摩耗性及び耐腐食性のレーザークラッディング層の製造方法であって、
(1)請求項1に記載の鉄ベース合金粉末を篩分及びパージ処理し、鉄ベース合金粉末の真球度は、90%以上であり、粒度分布は、15〜65μmであり、流動性は、32−41s/100gであり、
(2)研削加工により軸類のワーク表面の酸化物層と油汚れをクリアし、そのうち、ワークのクラッディング面積は、0.414m であり、
(3)ステップ(2)では、前記ワーク表面にレーザークラッディングによりクラッディング層が調製され、使用するレーザー機は、半導体レーザーであり、プロセスパラメータは、レーザーパワー2100W、スポット径1mm、走査線速度55m/min、粉末供給速率35g/minであり、
(4)ステップ(3)で得られたワークを5軸の数値制御工作機械で部品図に従って最終仕上げすることにより、耐摩耗性及び耐腐食性のレーザークラッディング層を得る、ことを特徴とする製造方法
A method for producing a wear-resistant and corrosion-resistant laser cladding layer , which includes the following steps.
(1) The iron-based alloy powder according to claim 1 is sieved and purged, the sphericity of the iron-based alloy powder is 90% or more, the particle size distribution is 15 to 65 μm, and the fluidity is , 32-41s / 100g,
(2) The oxide layer and oil stains on the work surface of the shafts were cleared by grinding, and the cladding area of the work was 0.414 m 2 .
(3) In step (2), a cladding layer is prepared on the surface of the work by laser cladding, the laser machine used is a semiconductor laser, and the process parameters are laser power 2100 W, spot diameter 1 mm, scanning line speed. 55 m / min, powder supply rate 35 g / min,
(4) The work obtained in step (3) is finally finished with a 5-axis numerically controlled machine tool according to the parts drawing to obtain a wear-resistant and corrosion-resistant laser cladding layer. Manufacturing method .
JP2020208465A 2020-01-02 2020-12-16 Abrasion- and corrosion-resistant iron-based alloy powder for laser cladding and its laser cladding layer Active JP6896138B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010002726.4 2020-01-02
CN202010002726.4A CN110965061B (en) 2020-01-02 2020-01-02 Wear-resistant and corrosion-resistant iron-based alloy powder for laser cladding and laser cladding layer thereof

Publications (2)

Publication Number Publication Date
JP6896138B1 true JP6896138B1 (en) 2021-06-30
JP2021110037A JP2021110037A (en) 2021-08-02

Family

ID=70037965

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020208465A Active JP6896138B1 (en) 2020-01-02 2020-12-16 Abrasion- and corrosion-resistant iron-based alloy powder for laser cladding and its laser cladding layer

Country Status (3)

Country Link
JP (1) JP6896138B1 (en)
CN (1) CN110965061B (en)
SG (1) SG10202012383SA (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114147215A (en) * 2021-12-03 2022-03-08 广东省科学院新材料研究所 Tungsten carbide reinforced high-entropy alloy composite powder for ultrahigh-speed laser cladding, coating of tungsten carbide reinforced high-entropy alloy composite powder, preparation method and application of tungsten carbide reinforced high-entropy alloy composite powder
CN114457332A (en) * 2022-01-23 2022-05-10 南华大学 Iron-based alloy powder special for repairing nodular iron castings and method
CN114807824A (en) * 2022-06-06 2022-07-29 齐鲁工业大学 Low-cost high-performance Fe-based ultrafine grain plasma cladding layer and preparation method thereof
CN114959413A (en) * 2022-06-14 2022-08-30 广东省科学院新材料研究所 Stainless steel-based composite material and additive manufacturing method and application thereof
CN114951641A (en) * 2022-06-09 2022-08-30 海南大学 TiC ceramic/iron-based composite coating, carbon steel-based composite material and preparation method thereof
CN114985728A (en) * 2022-06-09 2022-09-02 海南大学 Ceramic/iron-based composite coating, carbon steel-based composite material and preparation method thereof
CN115110076A (en) * 2022-06-07 2022-09-27 湘潭大学 Method for ultrahigh-speed laser cladding of nodular cast iron shaft parts
CN115287649A (en) * 2022-08-05 2022-11-04 中电华创电力技术研究有限公司 High-temperature wear-resistant corrosion-resistant fire grate segment and preparation method thereof
CN115341210A (en) * 2022-08-16 2022-11-15 泰尔(安徽)工业科技服务有限公司 Composite step pad for rolling mill and processing method thereof
CN115491671A (en) * 2022-08-26 2022-12-20 天津职业技术师范大学(中国职业培训指导教师进修中心) Laser cladding environment temperature control device and cladding layer microstructure control method
CN115537803A (en) * 2022-10-09 2022-12-30 广东粤科新材料科技有限公司 WC-Ni wear-resistant coating on surface of 316L stainless steel and preparation method thereof
CN115807189A (en) * 2022-11-25 2023-03-17 无锡市江南橡塑机械有限公司 High-temperature wear-resistant coating of internal mixer rotor, preparation method thereof and rotor repair method
CN116516257A (en) * 2023-05-20 2023-08-01 江苏齐硕科技发展有限公司 High-wear-resistance alloy and preparation method of laser cladding layer thereof

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111607789B (en) * 2020-04-27 2021-06-15 矿冶科技集团有限公司 Laser cladding in-situ authigenic carbide particle reinforced iron-based cladding layer and preparation method thereof
CN111809177B (en) * 2020-06-23 2022-10-14 宁波中物力拓超微材料有限公司 Laser cladding alloy powder for repairing die and preparation method thereof
CN111826650B (en) * 2020-07-24 2021-05-18 包头市宏正机械科技有限公司 Laser cladding composite powder and cladding method
CN112122607B (en) * 2020-10-10 2023-05-09 哈尔滨工程大学 Material adding and repairing material suitable for ocean oscillation working condition and stability-shape regulation and control method of molten pool
CN115233220A (en) * 2022-08-04 2022-10-25 沈阳大陆激光先进制造技术创新有限公司 Wear-resistant material for laser cladding carbon and boron common reinforcement
CN115433936B (en) * 2022-08-18 2024-03-12 江苏华洋新思路能源装备股份有限公司 Preparation method of laser cladding furnace roller

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3343576B2 (en) * 1998-02-09 2002-11-11 アイエヌジ商事株式会社 Overlay welding material and overlay cladding material
WO2015157169A2 (en) * 2014-04-07 2015-10-15 Scoperta, Inc. Fine-grained high carbide cast iron alloys
CN106609334B (en) * 2017-03-16 2018-05-08 石家庄铁道大学 A kind of superelevation chrome cast iron and preparation method thereof
JP6703511B2 (en) * 2017-10-27 2020-06-03 山陽特殊製鋼株式会社 Fe-based metal powder for modeling
CN108220951A (en) * 2017-12-22 2018-06-29 北京机科国创轻量化科学研究院有限公司 A kind of ultrahigh speed laser melting coating system
CN109351957A (en) * 2017-12-25 2019-02-19 宁波中物东方光电技术有限公司 Laser melting coating iron(-)base powder and preparation method thereof
CN108374115B (en) * 2018-04-03 2020-01-24 湖南工学院 Iron-based composite wear-resistant steel based on (V, Ti) C particle reinforcement and manufacturing method thereof
CN110172693A (en) * 2019-05-15 2019-08-27 上海交通大学 A kind of crystal boundary toughening high rigidity ferrio wear-resistant material and preparation method thereof

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114147215B (en) * 2021-12-03 2023-08-18 广东省科学院新材料研究所 Tungsten carbide reinforced high-entropy alloy composite powder for ultra-high-speed laser cladding, coating thereof, preparation method and application
CN114147215A (en) * 2021-12-03 2022-03-08 广东省科学院新材料研究所 Tungsten carbide reinforced high-entropy alloy composite powder for ultrahigh-speed laser cladding, coating of tungsten carbide reinforced high-entropy alloy composite powder, preparation method and application of tungsten carbide reinforced high-entropy alloy composite powder
CN114457332A (en) * 2022-01-23 2022-05-10 南华大学 Iron-based alloy powder special for repairing nodular iron castings and method
CN114457332B (en) * 2022-01-23 2023-11-24 南华大学 Iron-based alloy powder special for repairing ductile iron castings and method
CN114807824A (en) * 2022-06-06 2022-07-29 齐鲁工业大学 Low-cost high-performance Fe-based ultrafine grain plasma cladding layer and preparation method thereof
CN115110076A (en) * 2022-06-07 2022-09-27 湘潭大学 Method for ultrahigh-speed laser cladding of nodular cast iron shaft parts
CN115110076B (en) * 2022-06-07 2024-02-06 湘潭大学 Method for cladding ductile iron shaft parts by ultra-high-speed laser
CN114951641A (en) * 2022-06-09 2022-08-30 海南大学 TiC ceramic/iron-based composite coating, carbon steel-based composite material and preparation method thereof
CN114985728A (en) * 2022-06-09 2022-09-02 海南大学 Ceramic/iron-based composite coating, carbon steel-based composite material and preparation method thereof
CN114959413A (en) * 2022-06-14 2022-08-30 广东省科学院新材料研究所 Stainless steel-based composite material and additive manufacturing method and application thereof
CN115287649B (en) * 2022-08-05 2023-09-26 中电华创电力技术研究有限公司 High-temperature wear-resistant corrosion-resistant fire grate segment and preparation method thereof
CN115287649A (en) * 2022-08-05 2022-11-04 中电华创电力技术研究有限公司 High-temperature wear-resistant corrosion-resistant fire grate segment and preparation method thereof
CN115341210A (en) * 2022-08-16 2022-11-15 泰尔(安徽)工业科技服务有限公司 Composite step pad for rolling mill and processing method thereof
CN115341210B (en) * 2022-08-16 2023-12-19 泰尔(安徽)工业科技服务有限公司 Composite ladder pad for rolling mill and processing method thereof
CN115491671B (en) * 2022-08-26 2023-06-16 天津职业技术师范大学(中国职业培训指导教师进修中心) Laser cladding environment temperature control device and cladding microstructure control method
CN115491671A (en) * 2022-08-26 2022-12-20 天津职业技术师范大学(中国职业培训指导教师进修中心) Laser cladding environment temperature control device and cladding layer microstructure control method
CN115537803A (en) * 2022-10-09 2022-12-30 广东粤科新材料科技有限公司 WC-Ni wear-resistant coating on surface of 316L stainless steel and preparation method thereof
CN115807189A (en) * 2022-11-25 2023-03-17 无锡市江南橡塑机械有限公司 High-temperature wear-resistant coating of internal mixer rotor, preparation method thereof and rotor repair method
CN115807189B (en) * 2022-11-25 2024-01-26 无锡市江南橡塑机械有限公司 High-temperature wear-resistant coating for internal mixer rotor, preparation method thereof and rotor repairing method
CN116516257A (en) * 2023-05-20 2023-08-01 江苏齐硕科技发展有限公司 High-wear-resistance alloy and preparation method of laser cladding layer thereof
CN116516257B (en) * 2023-05-20 2023-10-24 江苏齐硕科技发展有限公司 High-wear-resistance alloy and preparation method of laser cladding layer thereof

Also Published As

Publication number Publication date
CN110965061B (en) 2020-09-08
JP2021110037A (en) 2021-08-02
SG10202012383SA (en) 2021-08-30
CN110965061A (en) 2020-04-07

Similar Documents

Publication Publication Date Title
JP6896138B1 (en) Abrasion- and corrosion-resistant iron-based alloy powder for laser cladding and its laser cladding layer
US11932927B2 (en) Iron-based metal powder for ultra-high-speed laser cladding, its preparation method and its application
CN106119838B (en) Cutter for strengthening cutting edge by laser cladding technology
CN102453902B (en) Method for preparing tungsten carbide hard alloy coating on surface of high-speed wire roller collar
CN101338428A (en) Strengthen process for pick head by laser fusing and coating wear-resistant coating
CN105081612B (en) A kind of plasma arc surfacing alloy powder for hot-work die
CN101994112A (en) Laser cladding process for abrasion-resistant anticorrosion coating of water turbine unit runner
CN113122841B (en) Corrosion-resistant and wear-resistant coating with gradient composite structure and preparation method thereof
CN101994113A (en) Laser cladding process of wear-resistant and corrosion-resistant coating of top cover of hydraulic turbine set
CN107760956B (en) A kind of hard alloy and local laser coated cemented carbide technique
CN109355652A (en) Laser melting coating Co-based alloy powder and preparation method thereof
CN111604618A (en) Stainless steel argon tungsten-arc welding active agent and preparation method and application thereof
CN102021567B (en) Nickel base alloy powder for manufacturing anticorrosive coating of boiler tube
CN113416952A (en) TiC reinforced metal matrix composite alloy powder for laser cladding of nodular iron castings and preparation method thereof
CN103302286A (en) Cobalt-based metal ceramic alloy powder exclusively used in laser cladding of turning tool
CN103305831A (en) Special cobalt-based cermet alloy powder for laser cladding of surface of bushing
CN102152020A (en) Coating powder for submerged arc surfacing of low-carbon steel and application method thereof
CN103305837A (en) Special nickel-based metal ceramic alloy powder for laser cladding on surface of piercing point
CN113046625B (en) Alloy powder for laser cladding repair of middle cylinder of mining hydraulic stand column and repair method
CN102453905B (en) Method for preparing wear-resistant alloy coating on surface of wear plate of concrete pump track
CN101994115A (en) Process for laser cladding for abrasion-resistant and etch-resistant coating of water turbine set bottom ring
CN105014260B (en) Welding rod and welding method for repair welding of high-strength steel wheel
CN109371392B (en) Nickel-based wear-resistant corrosion-resistant coating composition for marine hydraulic piston rod, coating and preparation method of coating
JP7134026B2 (en) Fe-based alloy powder
CN102345085A (en) Surface strengthening treatment method of glass ware pressing die

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201216

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20201218

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20210107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210302

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210401

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210525

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210608

R150 Certificate of patent or registration of utility model

Ref document number: 6896138

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350