JP6895974B2 - Addition manufacturing using reactive fluids and products made using this - Google Patents

Addition manufacturing using reactive fluids and products made using this Download PDF

Info

Publication number
JP6895974B2
JP6895974B2 JP2018534824A JP2018534824A JP6895974B2 JP 6895974 B2 JP6895974 B2 JP 6895974B2 JP 2018534824 A JP2018534824 A JP 2018534824A JP 2018534824 A JP2018534824 A JP 2018534824A JP 6895974 B2 JP6895974 B2 JP 6895974B2
Authority
JP
Japan
Prior art keywords
substrate
manufacturing
adjusted
reactive
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018534824A
Other languages
Japanese (ja)
Other versions
JP2019502825A (en
JP2019502825A5 (en
Inventor
秀治 清水
秀治 清水
マーク, ダブリュー. レイナー,
マーク, ダブリュー. レイナー,
ダニエル, ジェイ. テンペル,
ダニエル, ジェイ. テンペル,
ジュンピン ヤオ,
ジュンピン ヤオ,
ラリー ワグ,
ラリー ワグ,
キャリー ワイス,
キャリー ワイス,
ロバート トレス,
ロバート トレス,
Original Assignee
マセソン トライ−ガス, インコーポレイテッド
マセソン トライ−ガス, インコーポレイテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by マセソン トライ−ガス, インコーポレイテッド, マセソン トライ−ガス, インコーポレイテッド filed Critical マセソン トライ−ガス, インコーポレイテッド
Publication of JP2019502825A publication Critical patent/JP2019502825A/en
Publication of JP2019502825A5 publication Critical patent/JP2019502825A5/ja
Application granted granted Critical
Publication of JP6895974B2 publication Critical patent/JP6895974B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/08Coating starting from inorganic powder by application of heat or pressure and heat
    • C23C24/10Coating starting from inorganic powder by application of heat or pressure and heat with intermediate formation of a liquid phase in the layer
    • C23C24/103Coating with metallic material, i.e. metals or metal alloys, optionally comprising hard particles, e.g. oxides, carbides or nitrides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K10/00Welding or cutting by means of a plasma
    • B23K10/02Plasma welding
    • B23K10/027Welding for purposes other than joining, e.g. build-up welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K15/00Electron-beam welding or cutting
    • B23K15/0046Welding
    • B23K15/0086Welding welding for purposes other than joining, e.g. built-up welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K15/00Electron-beam welding or cutting
    • B23K15/0046Welding
    • B23K15/0093Welding characterised by the properties of the materials to be welded
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K15/00Electron-beam welding or cutting
    • B23K15/10Non-vacuum electron beam-welding or cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/12Working by laser beam, e.g. welding, cutting or boring in a special atmosphere, e.g. in an enclosure
    • B23K26/126Working by laser beam, e.g. welding, cutting or boring in a special atmosphere, e.g. in an enclosure in an atmosphere of gases chemically reacting with the workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/12Working by laser beam, e.g. welding, cutting or boring in a special atmosphere, e.g. in an enclosure
    • B23K26/127Working by laser beam, e.g. welding, cutting or boring in a special atmosphere, e.g. in an enclosure in an enclosure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/34Laser welding for purposes other than joining
    • B23K26/342Build-up welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/60Preliminary treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/32Process control of the atmosphere, e.g. composition or pressure in a building chamber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/34Process control of powder characteristics, e.g. density, oxidation or flowability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/70Recycling
    • B22F10/73Recycling of powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/10Auxiliary heating means
    • B22F12/13Auxiliary heating means to preheat the material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/10Auxiliary heating means
    • B22F12/17Auxiliary heating means to heat the build chamber or platform
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/307Handling of material to be used in additive manufacturing
    • B29C64/314Preparation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Materials Engineering (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Powder Metallurgy (AREA)
  • Lubricants (AREA)
  • Producing Shaped Articles From Materials (AREA)

Description

本発明は2015年12月28日付けで出願した米国特許仮出願62/271,901号の優先権を主張し、その公開内容を全て本文中に引用する。本発明は付加製造(additive manufacturing、AM)プロセスを実行する方法、装置、及びそれにより製造される製品に関し、特に、エネルギービームを使用して材料を選択的に溶融させ、対象体を製造する付加製造プロセスに関する。更には、本発明は、反応性流体を使用して前記付加製造プロセスの前及び/或いは期間中に材料の表面を能動的に操作する方法及びシステムに関する。 The present invention claims the priority of US Patent Provisional Application No. 62 / 271,901 filed on December 28, 2015, all of which are cited in the text. The present invention relates to methods, devices, and products manufactured by performing an additive manufacturing (AM) process, in particular, the addition of using an energy beam to selectively melt a material to produce an object. Regarding the manufacturing process. Furthermore, the present invention relates to methods and systems that actively manipulate the surface of a material using reactive fluids before and / or during the addition manufacturing process.

付加製造プロセス(或いは積層造形と称する)は3Dプリンターとも呼ばれ、既に確立しているが成熟中の技術である。広義には付加製造プロセスは3D対象体の製造に関し、連続層材料が沈積されることによりネットシェイプ(net shape)またはニアネットシェイプ(near net shape、NNS)が作成される。付加製造は様々な既知の名称で呼ばれる多種類の製造技術及びプロトタイピング技術を包括し、自由形状造形(freeform fabrication)、3Dプリンター、ラピッドプロトタイピング/ツーリング(rapid prototyping/tooling)等を含む。付加製造技術は多様な材料で複雑な部材を製造可能である。 The additive manufacturing process (also referred to as laminated modeling), also called a 3D printer, is an already established but mature technology. In a broad sense, the additive manufacturing process relates to the manufacture of a 3D object, in which a continuous layer material is deposited to create a net shape or near net shape (NNS). Additive manufacturing includes a wide variety of manufacturing and prototyping techniques referred to by various known names, including freeform fabrication, 3D printers, rapid prototyping / tooling, and the like. Additional manufacturing technology can manufacture complex parts from a variety of materials.

現在、大量の付加製造プロセスが使用可能な状況であり、特別な付加製造プロセスではエネルギービーム(例えば、電子ビーム)または電磁放射(例えば、レーザービーム)を使用して材料(例えば、粉末、柱体、ワイヤー、または流体)の焼結または溶融を行い、固体3D対象体を作成する。ここでは、粉末材料の粒子は結合される。粉末材料に組み合わせて最もよく使用される方法は電子ビーム溶融(electron-beam melting、EBM)、選択的レーザー溶融(selective laser melting、SLM)または直接金属レーザー焼結(direct metal laser sintering、DMLS)、選択的レーザー焼結(selective laser sintering、SLS)、熱溶解積層法(fused deposition modeling、FDM)、融解フィラメント製造(fused filament fabrication、FFF)、或いは粉末床及びインクジェットヘッド3Dプリンティング(powder bed and inkjet head 3D printing、3DP)である。これらの粉末層プロセスはレーザー粉末沈積またはレーザー付加製造(laser additive manufacturing (LAM))と総称される。選択的レーザー焼結は顕著な付加製造プロセスであり、レーザービームを使用して細小粉末の焼結または溶融を行い、機能的プロトタイピング及びツーリングの高速製造を達成させる。より詳しくは、焼結は粉末材料の融点より低い温度で粉末の粒子を融合(集塊(agglomerating))させるが、但し、溶融では粉末の粒子を完全に溶融させて固体同質塊(solid homogeneous mass)を形成させる必要がある。レーザー焼結またはレーザー溶融の具体的なプロセスは、粉末材料への伝熱工程及びその後の前記粉末材料の焼結または溶融工程を含む。レーザー焼結及び溶融プロセスは広範の粉末材料に応用されるが、但し、製造プロセスの科学的及び技術的側面については未だ完全には理解されておらず、例えば、焼結または溶融速度及び積層造形過程中の処理パラメータが微細構造の進展に与える影響はよく分かっていない。この製造法には様々な熱、質量、及び運動量輸送モード、及び粉末表面に発生し、且つ処理をより複雑にする化学反応が伴う。 Currently, a large number of additional manufacturing processes are available, and special additional manufacturing processes use energy beams (eg, electron beams) or electromagnetic radiation (eg, laser beams) to make materials (eg, powders, pillars). , Wire, or fluid) is sintered or melted to create a solid 3D object. Here, the particles of the powder material are combined. The most commonly used methods in combination with powder materials are electron-beam melting (EBM), selective laser melting (SLM) or direct metal laser sintering (DMLS), Selective laser sintering (SLS), Fused deposition modeling (FDM), fused filament fabrication (FFF), or powder bed and inkjet head 3D printing, 3DP). These powder layer processes are collectively referred to as laser powder deposition or laser additive manufacturing (LAM). Selective laser sintering is a prominent additional manufacturing process that uses a laser beam to sinter or melt fine powders to achieve high speed manufacturing of functional prototyping and tooling. More specifically, sintering causes the powder particles to fuse (agglomerating) at a temperature lower than the melting point of the powder material, except that melting completely melts the powder particles and solid homogeneous mass. ) Need to be formed. Specific processes of laser sintering or laser melting include a heat transfer step to the powder material and a subsequent sintering or melting step of the powder material. Laser sintering and melting processes are applied to a wide range of powder materials, but the scientific and technical aspects of the manufacturing process are not yet fully understood, for example, sintering or melting rates and laminate molding. The effect of processing parameters during the process on the evolution of microstructures is not well understood. This process involves various heat, mass, and momentum transport modes, and chemical reactions that occur on the powder surface and complicate the process.

様々なレーザー付加製造形式が複雑な対象体の製造及び修復に対して高い潜在的可能性を示すが、但し、それらは粉末材料の使用について存在する幾つかの欠点に起因する制限を受ける。その内の1つの欠点として、粉末材料表面と酸素や窒素等の空気中の元素との間の反応性にある。粉末材料が反応性金属として鉄、アルミニウム、及びチタンを含む場合、これら前記金属粒子の表面がガスと反応して最終的に製品中に微細構造の欠点(例えば、隙間、不純物、または含有物)が形成される。このような欠点が悲惨な失敗に繋がる。これら前記不純物として金属酸化物及び金属窒化物を含み、且つこれらの欠点は、不純物、隙間、或いは含有物に限らず、その比率は粉末材料の表面積の増加に従って増える。 Although various laser addition manufacturing formats offer high potential for the production and repair of complex objects, they are limited by some of the drawbacks present with the use of powdered materials. One of the drawbacks is the reactivity between the surface of the powder material and the elements in the air such as oxygen and nitrogen. When the powder material contains iron, aluminum, and titanium as reactive metals, the surfaces of these metal particles react with the gas and eventually have microstructural imperfections (eg, crevices, impurities, or inclusions) in the product. Is formed. Such shortcomings lead to disastrous failure. These impurities include metal oxides and metal nitrides, and their drawbacks are not limited to impurities, gaps, or inclusions, and their ratio increases as the surface area of the powder material increases.

かつては、粉末材料を低酸素環境に形成させることにより不必要な化学反応を減少させたこともある。然しながら、粉末材料の製造時から付加製造プロセスにおける粉末材料の実際の使用時までを通じて実行される不活性ガス環境を利用した低酸素粉末材料の取り扱いは、粉末材料の製造コスト、粉末のサイズによる分類、輸送、及び安全性の確保のためのコストを著しく増加させてしまう。これは低酸素金属粉末が有する高い爆発性に起因する。このように取り扱われていない場合、不幸にも、酸化物または他の不純物が粉末材料表面上に存在することで金属製品の製造に用いられる粉末の付着が妨げられ、製造された製品の機械的特性が低下した。プロセス中の温度勾配に起因して多くの/大きな微細孔及び無秩序な粒配列が形成され、このような微細孔及び粒配列を有する粒構造(grain structure)は、製造される製品中に残留応力を生じさせた。 In the past, unnecessary chemical reactions have been reduced by forming powdered materials in a hypoxic environment. However, the handling of hypoxic powder materials utilizing the inert gas environment, which is carried out from the time of manufacturing the powder material to the actual use of the powder material in the addition manufacturing process, is classified according to the manufacturing cost of the powder material and the size of the powder. , Transportation, and safety assurance costs are significantly increased. This is due to the high explosiveness of the hypoxic metal powder. When not treated in this way, unfortunately, the presence of oxides or other impurities on the surface of the powder material prevents the adhesion of the powder used in the manufacture of metal products, and the mechanical of the manufactured product. The characteristics have deteriorated. Many / large micropores and disordered grain arrangements are formed due to the temperature gradient during the process, and the grain structure with such micropores and grain arrangements is a residual stress in the manufactured product. Caused.

粉末材料は湿気を吸いやすく、金属粉末を例すると、湿気は金属酸化物を形成させ、レーザー粉末沈積により形成される金属対象体中に不要な多孔性を生じさせやすくなる。高強度の鋼に対しては湿気も水素の元であり、粉末表面及び製造される製品に水素の元を形成して、後に亀裂や水素脆化(hydrogen embrittlement)をもたらす。 The powder material easily absorbs moisture, and in the case of metal powder, the moisture easily forms a metal oxide and causes unnecessary porosity in the metal object formed by the laser powder deposition. Moisture is also a source of hydrogen for high-strength steels, forming a source of hydrogen on the powder surface and in the products produced, which later leads to cracking and hydrogen embrittlement.

空気及び湿気が粉末材料に与える有害な影響を更に緩和させるため、レーザー粉末沈積により生成される溶融プールは、アルゴンやヘリウム等の不活性ガスを応用することで防護される。然しながら、このような防護では、製造、保存、及び操作期間中に材料粉末の外面に形成されやすい、既に存在する酸化物を除去できない。結果、これら酸化物で被覆される金属充填材料は溶融プロセス中に還元を行って多孔性及び金属沈積が形成されるなどの欠点を回避させる必要がある。沈積後処理は、例えば、熱間等方圧加圧(hot isostatic pressing、HIP)が常用されて微細孔(隙間)、含有物、及び亀裂を陥没させ 、レーザー沈積金属の性質を改善させる。湿気の吸収を回避させるため、金属粉末充填材料を予め加熱された貯蔵槽に保存する方法も常用される。このような保護及び後処理方法は反応性が高い金属(例えば、超合金)を含む金属粉末及び広い表面積を有する微小粒子粉末にとっても非常に重要である。 To further mitigate the harmful effects of air and moisture on the powder material, the molten pool created by laser powder deposition is protected by applying an inert gas such as argon or helium. However, such protection cannot remove pre-existing oxides that are likely to form on the outer surface of the material powder during manufacturing, storage and operation. As a result, these oxide-coated metal-filled materials need to be reduced during the melting process to avoid drawbacks such as porosity and metal deposition. In the post-deposition treatment, for example, hot isostatic pressing (HIP) is commonly used to sink micropores (gap), inclusions, and cracks, improving the properties of the laser deposited metal. In order to avoid absorption of moisture, a method of storing the metal powder filling material in a preheated storage tank is also commonly used. Such protection and post-treatment methods are also very important for metal powders containing highly reactive metals (eg, superalloys) and fine particle powders with large surface areas.

一方、空気の有害な影響を軽減させる他の技術としては、粉末材料と一緒に融剤(flux)を使用してレーザー粉末沈積により生成される溶融プールの防護を試み、不純物を除去するものがある(例えば、米国特許出願第2013/0136868号公報参照)。融剤により製造される製品が空気中のガスと反応することを回避させ、例えば、シールドガスまたは先に論じられたガスの混合物との反応を回避させる。然しながら、融剤は固体材料であり、ときには製造された製品の材料中に組み込まれてしまう。 On the other hand, another technique to reduce the harmful effects of air is to use flux with the powder material to try to protect the molten pool created by laser powder deposition and remove impurities. (See, eg, US Patent Application No. 2013/0136868). It prevents the product produced by the flux from reacting with the gas in the air, for example, reacting with the shield gas or a mixture of gases discussed above. However, the flux is a solid material and is sometimes incorporated into the material of the manufactured product.

幾つかの付加製造プロセスに使用される原粉末材料の前処理も往々にして必要である。前処理は塗布、脱気、及び粉末の加熱を含む。脱気は粉末粒子中の水蒸気の除去に用いられる。環境中に曝される場合、粉末表面は製造過程で非常に高速に酸化される。水蒸気は酸化物内に吸収され、付加製造プロセスにより形成される材料中に隙間(voids)が形成される。製造された材料から水分を除去する方法により水素が形成され、最終材料が更に脆化する。前述の粉末の水蒸気の除去方法は多種類の脱気方法を含む。例えば、中国特許出願第105593185A号公報には水素雰囲気を使用して低酸素金属チタン粉末を生成する方法及び水素脆化が記載されている。然しながら、酸素との反応を回避させるため、安全運送/操作が複雑になるのは、低酸素金属粉末が高い爆発性を有する故である。 Pretreatment of raw powder materials used in some additive manufacturing processes is also often required. Pretreatment involves coating, degassing, and heating the powder. Degassing is used to remove water vapor in powder particles. When exposed to the environment, the powder surface oxidizes very quickly during the manufacturing process. Water vapor is absorbed into the oxide, creating voids in the material formed by the addition manufacturing process. Hydrogen is formed by the method of removing water from the produced material, further embrittlement of the final material. The above-mentioned method for removing water vapor from powder includes various degassing methods. For example, Chinese Patent Application No. 105593185A describes a method for producing hypoxic metal titanium powder using a hydrogen atmosphere and hydrogen embrittlement. However, safe transportation / operation is complicated in order to avoid reaction with oxygen because the hypoxic metal powder has high explosiveness.

また、従来の方法として、金属酸化物ペーストを利用して製造した後、還元反応を十分に行える高温下で水素を使用して大量の金属酸化物を還元させる方法(例えば、米国特許出願第2013/0136868号公報参照)にも不足が存在する。それは、ガスを侵入及び拡散させにくいため、製造された製品内で酸化物を減らすことが困難だからである。ガスの高温熱処理は不要な粉末の焼結を生じさせる。 Further, as a conventional method, a method of reducing a large amount of metal oxide by using hydrogen at a high temperature at which a reduction reaction can be sufficiently carried out after production using a metal oxide paste (for example, US Patent Application No. 2013). / 0136868 (see Gazette No. 0136868) also has a shortage. This is because it is difficult to reduce oxides in manufactured products because it is difficult for gas to enter and diffuse. High temperature heat treatment of the gas causes unwanted powder sintering.

以上を鑑み、レーザー付加製造の技術に関して幾つかの問題、欠点、または不利な条件があることを理解し、ニアネットシェイプ対象体を製造する方法及び設備を改善することにより、完成品の許容誤差を厳しくし、及び/或いは完成品の高品質な表面加工をなし、及び/或いは完成品中の亀裂、含有物、及び沈積層の間の微細孔を減少または消除させることが望まれていることを理解することができる。このため、レーザー付加製造のシステムが必要であり、付加製造プロセスの前及び/或いは期間中に少なくとも1つの反応性流体または流体混合物を導入することにより材料の表面の能動的な操作を達成させることができる。反応性流体または流体混合物は基材の表面と反応し、例えば、限定されるわけではないが、粉末、プラズマ、柱体、ワイヤー、または流体等が沈積され、沈積される基材の異なる部分が異なる基材性質を有するように形成することができる。基材の表面が制御/改良/調整されることで、製造された対象体の機械的及び/或いは化学性質が基材の表面性質の操作により強化されることができる。 In view of the above, understanding that there are some problems, drawbacks, or disadvantages regarding the technology of laser addition manufacturing, and improving the method and equipment for manufacturing the near-net shape object, the tolerance of the finished product And / or high quality surface treatment of the finished product and / or reduction or elimination of cracks, inclusions and micropores between sedimentation in the finished product. Can be understood. For this reason, a laser addition manufacturing system is required to achieve active manipulation of the surface of the material by introducing at least one reactive fluid or fluid mixture before and / or during the addition manufacturing process. Can be done. Reactive fluids or fluid mixtures react with the surface of the substrate, for example, but not limited to, powders, plasmas, columns, wires, fluids, etc. are deposited and different parts of the substrate are deposited. It can be formed to have different substrate properties. By controlling / improving / adjusting the surface of the substrate, the mechanical and / or chemical properties of the manufactured object can be enhanced by manipulating the surface properties of the substrate.

本発明が提供される方法及び装置は、付加製造技術に適用され、反応性流体は、例えば、限定されるわけではないが、粉末、プラズマ、柱体、ワイヤー、または流体の基材に接触させる。前記反応性流体はエネルギービームが施される前、期間中、または後に基材の表面を調整させて求められる化学性質を達成させる。前記エネルギービームは前記基材の選択的な焼結(融合(fuse))或いは溶融(melt)に用いられ、3D対象体が製造される。 The methods and devices provided by the present invention apply to additive manufacturing techniques, where the reactive fluid is brought into contact with, for example, but not limited to, a powder, plasma, prism, wire, or fluid substrate. .. The reactive fluid adjusts the surface of the substrate before, during, or after the energy beam is applied to achieve the desired chemistry. The energy beam is used for selective sintering (fuse) or melting of the substrate to produce a 3D object.

本発明の第一のアスペクトに基づくと、基材の表面の化学成分は付加製造プロセスの前、期間中、及び/或いは後に基材の表面と化学反応を起こす少なくとも1つの反応性流体または流体混合物が導入されることにより制御/改良/調整されることができる。ガス混合物を含む流体混合物は、ヘリウム、アルゴン、或いは窒素のような浄化ガス(pure purge gas)を代替して/又は混合してチャンバー本体内、及び金属粉末輸送ライン、金属粉末輸送容器内、或いは使用済みの金属粉末収容容器内に使用される。流体混合物に含まれるガス混合物は、水素、一酸化炭素、或いは表面の酸化物を化学的に減少させるか、及び/或いは固体粉末の材料表面の不純物を洗浄または除去させる他のガス成分を含む。 Based on the first aspect of the invention, the chemical composition of the surface of the substrate is at least one reactive fluid or fluid mixture that chemically reacts with the surface of the substrate before, during, and / or after the addition manufacturing process. Can be controlled / improved / adjusted by introducing. Fluid mixtures, including gas mixtures, substitute / or mix pure purge gas such as helium, argon, or nitrogen in chamber bodies and in metal powder transport lines, metal powder transport vessels, or. Used in a used metal powder container. The gas mixture contained in the fluid mixture contains other gas components that chemically reduce hydrogen, carbon monoxide, or surface oxides and / or clean or remove impurities on the material surface of the solid powder.

本発明はガスまたは複数のガスにより行われる材料の処理を含み、ガスはガス混合物を含み、例えば、使用済みの金属粉末を回収して再利用するために用いられ、粉末のコストを減少させることができる。また、高い熱伝導性を有するこれら前記ガス(例えば、ヘリウム)が淨化ガスまたはバランスガスとして使用され、温度勾配に起因する残留応力を有効的に減少させる。 The present invention comprises the treatment of a material with a gas or a plurality of gases, wherein the gas comprises a gas mixture and is used, for example, to recover and reuse used metal powders to reduce the cost of the powders. Can be done. Further, these gases having high thermal conductivity (for example, helium) are used as a smelting gas or a balance gas, and effectively reduce the residual stress due to the temperature gradient.

本発明にはガス混合物を含むガスが更に使用されて基材または製造される製品中の水素を除去させる及び/或いは基材の表面を意図的に酸化させる。前述のように、基材表面上及び製造される製品内の水素が水素脆化を引き起こすことが知られている。本発明に基づくと、CO、CO及び/或いはフッ化炭素化合物を有するガス混合物を含むガスが水素を除去させて製造される製品の機械的強度を増強させるために使用される。 In the present invention, a gas containing a gas mixture is further used to remove hydrogen in the substrate or the product produced and / or intentionally oxidize the surface of the substrate. As mentioned above, it is known that hydrogen on the surface of the base material and in the produced product causes hydrogen embrittlement. Based on the present invention, a gas containing a gas mixture having CO, CO 2 and / or a fluorocarbon compound is used to remove hydrogen and enhance the mechanical strength of the produced product.

本発明はガス混合物を含むガスが使用されることで窒化物、炭化物、ホウ化物、リン化物、珪化物、または他の化学層が基材の表面上に形成されることを更に考慮し、例えば、限定されるわけではないが金属粉末により製造される製品の耐摩耗性や耐腐蝕性が強化される。 The present invention further considers that the use of a gas containing a gas mixture will result in the formation of nitrides, carbides, borides, phosphides, silices, or other chemical layers on the surface of the substrate, eg, , But not limited to, the wear resistance and corrosion resistance of products manufactured by metal powder are enhanced.

これらガスのあらゆる組み合わせが使用されて二元、三元、或いは更に高い高次化合物が同時に形成され、例えば、窒化物及びホウ化物が形成される。 Any combination of these gases is used to simultaneously form binary, ternary, or even higher order compounds, such as nitrides and borides.

本発明はその混合物を含むガス/流体が使用されて付加製造の前、期間中、及び/或いは後に基材の合金成分が改変されることを更に考慮する。揮発性の有機金属成分を含むガス/流体が使用されて化学気相成長、原子層堆積、或いは他のプロセスにより金属が粉末の表面上に導入または沈積され、このように3Dプリンタープロセスに使用される。 The present invention further considers that the gas / fluid containing the mixture is used to modify the alloy components of the substrate before, during, and / or after the addition production. Gases / fluids containing volatile organometallic components are used to introduce or deposit metals onto the surface of the powder by chemical vapor deposition, atomic layer deposition, or other processes, thus being used in 3D printer processes. To.

本発明はその混合物を含む反応性流体の使用は理想的には独立レーザー切断プロセスに一緒に使用されるかレーザー切断プロセスに付加製造プロセスが結合されて一緒に使用されることに適合することを更に考慮する。この例では、本発明は製造される対象体がレーザーを使用して更に成形されることを考慮し、前記レーザーにより基材が溶融、燃焼、または気化されて切断される。前記切断後及び/或いは期間中に前記製造される対象体の表面が反応性流体及び/或いはその混合物に曝され、製造される対象体の表面全体が同様に必要な化学性を有するようにする。 The present invention makes that the use of reactive fluids containing the mixture is ideally adapted to be used together in an independent laser cutting process or combined with an additional manufacturing process combined with a laser cutting process. Consider further. In this example, the present invention considers that the object to be manufactured is further molded using a laser, and the laser melts, burns, or vaporizes and cuts the substrate. After the cutting and / or during the period, the surface of the manufactured object is exposed to a reactive fluid and / or a mixture thereof so that the entire surface of the manufactured object also has the required chemistry. ..

本発明の技術効果は機械的性質を改善させる能力であり、例えば、レーザー付加製造で製造される金属製品はより高い耐摩耗性、耐腐蝕性、機械的強度、及び低い残留応力を有する。いかなる理論にも制限されないことが望まれ、製造される製品の機械的及び/或いは化学性質は化学成分、製造される製品の基質、表面の粒子構造、及びプロセスに使用される基材に依拠すると考えられている。酸化物または他の不純物が基材表面に存在することで製造される製品の基材の付着が妨害され、製造される製品の機械的性質が低下する。プロセス中の温度勾配のために多くの/大きい微細孔及び不規則な粒配列を有する粒構造が製造される製品中に残留応力を生じさせる。 The technical effect of the present invention is the ability to improve mechanical properties, for example, metal products manufactured by laser addition manufacturing have higher wear resistance, corrosion resistance, mechanical strength, and lower residual stress. It is hoped that it is not limited to any theory, and that the mechanical and / or chemical properties of the manufactured product depend on the chemical composition, the substrate of the manufactured product, the particle structure of the surface, and the substrate used in the process. It is considered. The presence of oxides or other impurities on the surface of the substrate prevents the adherence of the substrate of the manufactured product and reduces the mechanical properties of the manufactured product. Due to the temperature gradient during the process, residual stress is generated in the product where the grain structure with many / large micropores and irregular grain arrangement is manufactured.

他の実施形態及び特徴は以下の説明で明らかにし、且つ本分野で通常知識を有する者ならば、本明細書を研究した後にこれら実施形態及び技術的特徴についてある程度理解でき、或いは記載の実施形態を実施することで学習できる。記載される実施形態の特徴及び有利な条件は明細書で述べる工具、組み合わせ、及び方法を通して理解及び達成可能である。 Other embodiments and features will be clarified in the following description, and those who have conventional knowledge in the art can understand these embodiments and technical features to some extent after studying the present specification, or the embodiments described. You can learn by implementing. The features and favorable conditions of the embodiments described are understandable and achievable through the tools, combinations and methods described herein.

本発明の特徴及び長所は本明細書の残りの部分及び図面を参照することで更に理解可能である。 The features and advantages of the present invention can be further understood by reference to the rest of the specification and the drawings.

本発明の一アスペクトを包括する付加製造装置を示す概略図であり、反応性流体及び基材がビルドチャンバー内で相互に接触する。It is a schematic diagram which shows the addition manufacturing apparatus which covers one aspect of this invention, and a reactive fluid and a base material come into contact with each other in a build chamber. 本発明の一アスペクトを包括する付加製造装置を示す概略図であり、反応性流体及び基材がビルドチャンバーに進入する前に相互に接触する。It is a schematic diagram which shows the addition manufacturing apparatus which covers one aspect of this invention, and a reactive fluid and a base material come into contact with each other before entering a build chamber. 本発明の一アスペクトを包括する付加製造装置を示す概略図であり、反応性流体及び基材が同じ容器内に保存されると共にビルドチャンバーに進入する前に相互に接触する。It is a schematic diagram which shows the addition manufacturing apparatus which covers one aspect of this invention, in which a reactive fluid and a substrate are stored in the same container and come into contact with each other before entering a build chamber.

概略図において、相似する部材及び/或いは特徴については同じ符号を有する。また、同じ様式を有する多種類の部材については下線または第二符号を用いて区別する。例えば、明細書中で第一符号のみを有する場合、その説明は同じ第一符号を有する相似する部材に対してのみ有効であり、第二符号を有する部材とは関係ない。 In the schematic, similar members and / or features have the same reference numerals. In addition, many types of members having the same form are distinguished by using an underline or a second reference numeral. For example, when having only the first code in the specification, the description is valid only for similar members having the same first code and has nothing to do with the member having the second code.

以下の定義が本発明に適用される。付加製造プロセス(AM processes)(または積層造形と称する)は以下では有用な3D対象体の製造に用いられると共に前記対象体の形状が1回に一層づつ順に形成される工程を含むあらゆるプロセスに関する。付加製造プロセスとして電子ビーム溶融(electron-beam melting、EBM)、選択的レーザー溶融(selective laser melting、SLM)または直接金属レーザー焼結(direct metal laser sintering、DMLS)、直接金属レーザー溶融(direct metal laser melting、DMLM)、選択的レーザー焼結(selective laser sintering、SLS)、熱溶解積層法(fused deposition modeling、FDM)、融解フィラメント製造(fused filament fabrication、FFF)、粉末床及びインクジェットヘッド3Dプリンティング(powder bed and inkjet head 3D printing、3DP)、レーザーネットシェイプ製造、直接金属レーザー焼結(DMLS)、プラズマ移行アーク(plasma transferred arc)、自由形状造形(freeform fabrication)等を含む。特定の形式の付加製造プロセスにはエネルギービーム(例えば、電子ビーム)または電磁放射(例えば、レーザービーム)が使用され、粉末材料が焼結または溶融される。付加製造プロセスでは相対的に高価な材料が常用され、例えば、限定されないが粉末、金属粉末材料、柱体、流体、またはワイヤーを原材料とする(raw material)。 The following definitions apply to the present invention. The additional manufacturing process (AM processes) (or referred to as laminated molding) is used below for the production of a useful 3D object and relates to any process including a step in which the shape of the object is formed one layer at a time. Additional manufacturing processes include electron-beam melting (EBM), selective laser melting (SLM) or direct metal laser sintering (DMLS), and direct metal laser melting (DMLS). melting, DMLM, selective laser sintering (SLS), fused deposition modeling (FDM), fused filament fabrication (FFF), powder bed and inkjet head 3D printing (powder) Includes bed and inkjet head 3D printing (3DP), laser net shape manufacturing, direct metal laser sintering (DMLS), plasma transferred arc, freeform fabrication, etc. Energy beams (eg, electron beams) or electromagnetic radiation (eg, laser beams) are used in certain types of additive manufacturing processes to sinter or melt the powder material. Relatively expensive materials are commonly used in additional manufacturing processes, such as, but not limited to, powders, metal powder materials, prisms, fluids, or wires.

理解を容易にするため、以下では金属粉末について述べるが、但し、あらゆる材料の使用を考慮し、例えば、限定されないが粉末、柱体、流体、またはワイヤーの使用を考慮し、よって条件の制限と見做すべきではない。本発明は付加製造プロセスに関し、これは対象体(物、部材、部品、製品等)を高速に製造する方法であり、多重の薄い単位層が順に形成されて前記対象体が製造される。更には、多層の金属粉末が敷設されると共にエネルギービーム(例えば、レーザービーム)が照射され、各層内の金属粉末の粒子が順に焼結(溶解fused)または溶融(melted)されて前記層または基板が硬化される。本発明の一アスペクトによると、金属粉末または多種類の粉末の表面と反応する少なくとも1つの反応性流体または流体混合物が付加製造プロセスの前、期間中、及び/或いは後に導入されて前記金属粉末に接触させ、前記粉末材料の表面の化学性が能動的に操作される。これにより、粉末材料の表面の化学成分が付加製造プロセスの前、期間中、及び/或いは後に制御/改良/調整される。純浄化ガス(例えば、ヘリウム、アルゴン、または窒素)を不使用または使用する状況において、水素、一酸化炭素、或いは他の表面の酸化物を化学還元させ、及び/或いは固体の粉末表面上の不純物を洗浄または除去させるガス成分を含むガス混合物がビルドチャンバー自体、及び金属粉末輸送ライン上、金属粉末輸送容器中、または使用済みの金属粉末収容容器中に使用される。 For ease of understanding, the following describes metal powders, but considers the use of any material, eg, but not limited to, the use of powders, prisms, fluids, or wires, and thus with limited conditions. It should not be considered. The present invention relates to an additional manufacturing process, which is a method of manufacturing an object (object, member, part, product, etc.) at high speed, in which a plurality of thin unit layers are sequentially formed to produce the object. Further, a multi-layered metal powder is laid and an energy beam (for example, a laser beam) is irradiated, and the particles of the metal powder in each layer are sequentially sintered (fused) or melted (melted) to form the layer or substrate. Is cured. According to one aspect of the invention, at least one reactive fluid or fluid mixture that reacts with the surface of the metal powder or various powders is introduced into the metal powder before, during, and / or after the addition manufacturing process. Upon contact, the chemical properties of the surface of the powder material are actively manipulated. This controls / improves / adjusts the chemical composition of the surface of the powder material before, during, and / or after the addition manufacturing process. Chemical reduction of hydrogen, carbon monoxide, or other surface oxides and / or impurities on the solid powder surface in the absence or use of pure purification gases (eg, helium, argon, or nitrogen). A gas mixture containing a gas component that cleans or removes the gas is used in the build chamber itself and on the metal powder transport line, in the metal powder transport vessel, or in the used metal powder containment vessel.

本発明は基材の全体調整(bulk modification)を含み、例えば、超薄膜/層(例えば、1μm以下)であり、反応性流体に曝されると共にエネルギーの補助(例えば、半導体プロセス中の熱拡散)により全体的な性質の調整が実行可能である。 The present invention includes bulk modification of the substrate, eg, an ultrathin film / layer (eg, 1 μm or less), exposed to a reactive fluid and supplemented with energy (eg, thermal diffusion during a semiconductor process). ) Allows adjustment of the overall nature.

本発明はガスまたはガス混合物を含む複数のガスにより行われる基材の処理を含み、且つ使用済みの金属粉末を回収しての再利用に用いられ、粉末のコストが低下する。また、高い熱伝導性を有するこれら前記ガス(例えば、ヘリウム)が淨化ガスまたはバランスガスとして使用され、温度勾配に起因する残留応力が有効的に減少する。 The present invention comprises the treatment of a substrate with a plurality of gases including a gas or a gas mixture, and is used for recovering and reusing used metal powders, reducing the cost of the powders. Further, these gases having high thermal conductivity (for example, helium) are used as a smelting gas or a balance gas, and the residual stress due to the temperature gradient is effectively reduced.

本発明はガス混合物を含むガスを更に使用して粉末中または製造される製品中の水素を除去させ、及び/或いは粉末の表面を意図的に酸化させる。前述のように、基材表面上及び製造される製品内の水素が水素脆化を招くことが知られている。本発明によると、CO、CO及び/或いはフッ化炭素化合物を有するガス混合物を含むガスが使用されて水素を除去させ、製造される製品の機械的強度が増強される。これらのガスのほか、酸素、オゾン、及び/或いは過酸化水素も水素の除去に使用可能であるのみならず、金属酸化物材料の形成にも使用可能である。 The present invention further uses a gas containing a gas mixture to remove hydrogen in the powder or in the product produced and / or intentionally oxidize the surface of the powder. As mentioned above, it is known that hydrogen on the surface of the base material and in the produced product causes hydrogen embrittlement. According to the present invention, a gas containing a gas mixture having CO, CO 2 and / or a fluorocarbon compound is used to remove hydrogen and enhance the mechanical strength of the produced product. In addition to these gases, oxygen, ozone, and / or hydrogen peroxide can be used not only for removing hydrogen, but also for forming metal oxide materials.

本発明はガス混合物を含むガスを使用して窒化物、炭化物、ホウ化物、リン化物、珪化物、または他の化学層を基材の表面上に形成させ、製造される製品の耐摩耗性や耐腐蝕性を強化させることを更に考慮する。これらガスのあらゆる組み合わせが使用されて二元、三元、或いは更に高い高次化合物が同時に形成され、例えば、窒化物及びホウ化物。本発明はその混合物を含むガス/流体が使用されて付加製造の前及び/或いは期間中に粉末材料の合金成分を改変させることを更に考慮する。揮発性の有機金属成分を含むガス/流体が使用されて化学気相成長、原子層堆積、または他のプロセスにより金属が粉末の表面上に導入または沈積され、こうして3Dプリンタープロセスに使用される。 The present invention uses a gas containing a gas mixture to form nitrides, carbides, borides, phosphides, silices, or other chemical layers on the surface of a substrate to provide wear resistance to the products produced. Further consideration is given to enhancing corrosion resistance. Any combination of these gases can be used to simultaneously form binary, ternary, or even higher order compounds, such as nitrides and borides. The present invention further considers that the gas / fluid containing the mixture is used to modify the alloying components of the powder material before and / or during the addition production. Gases / fluids containing volatile organometallic components are used to introduce or deposit metals onto the surface of the powder by chemical vapor deposition, atomic layer deposition, or other processes, thus being used in 3D printer processes.

レーザー焼結/溶融技術の詳細な説明は米国特許出願第4,863,538号明細書、第5,017,753号明細書、第5,076,869号明細書、及び第4,944,817号明細書を参照する。このプロセスについて、ベッド上の材料の断面がスキャンされることによりレーザービームが使用されて粉末材料が選択的に溶融される。これら断面は求めれる対象体の3D描写に基づいてスキャンされる。前記描写は多種類の情報源から取得され、例えば、CAD(computer aided design)ファイル、スキャンデータ、或いは他の情報源から取得される。 For a detailed description of the laser sintering / melting technique, refer to U.S. Patent Applications Nos. 4,863,538, 5,017,753, 5,076,869, and 4,944,817. For this process, a laser beam is used to selectively melt the powder material by scanning the cross section of the material on the bed. These cross sections are scanned based on the desired 3D depiction of the object. The depiction is obtained from a variety of sources, such as CAD (computer aided design) files, scan data, or other sources.

一実施形態においで、付加プロセス装置は物品がその中で製造されるビルドチャンバーと、前記ビルドチャンバー内に位置されると共に物品がその上で製造される移動可能な製造プラットフォームと、基材/流体輸送システム及びエネルギー伝送システムとを備える。基材/流体輸送システムは化学調整された基材を前記製造プラットフォームに輸送させる。選択的な実施形態において、加熱システムは加熱されたガスにより前記基材及び前記プラットフォームを加熱させるために用いられる。前記対象体の形状に符合することで、基材は前記移動可能なプラットフォームの幾つかの部分に供給されるのみで、前記プロセスがその上で実行される。 In one embodiment, the addition process equipment includes a build chamber in which the article is manufactured, a mobile manufacturing platform located in and on which the article is manufactured, and a substrate / fluid. It is equipped with a transportation system and an energy transmission system. The substrate / fluid transport system transports the chemically adjusted substrate to the manufacturing platform. In a selective embodiment, the heating system is used to heat the substrate and the platform with heated gas. By matching the shape of the object, the substrate is only fed to some part of the movable platform on which the process is performed.

本発明の幾つかのアスペクトによれば、基材は金属材料であり、例えば、限定されないがアルミニウム及びその合金、鉄及びその合金、チタン及びその合金、ニッケル及びその合金、ステンレス、コバルトクロム合金、タンタル、並びにニオブを含む。反応性流体は使用される特定の金属材料及び求めれる表面の化学性に応じて選択される。反応性流体は、例えば、限定されないが高拡散ガス及び/或いは、還元、酸化剤、反応性ガス、または反応性流体等のガス混合物を含む。純浄化ガス(例えば、ヘリウム、アルゴン、または窒素)が不使用または使用される状況において、水素、一酸化炭素、或いは表面の酸化物を化学還元させる及び/或いは基材表面上の不純物を洗浄または除去させる他のガス成分を含むガス混合物の流体がビルドチャンバー自体、及び基材輸送ライン上、基材容器中、或いは使用済みの基材収容容器中に使用される。 According to some aspects of the invention, the substrate is a metallic material, eg, but not limited to aluminum and its alloys, iron and its alloys, titanium and its alloys, nickel and its alloys, stainless steel, cobalt-chromium alloys, Includes tantalum and niobium. The reactive fluid is selected according to the particular metal material used and the desired surface chemistry. Reactive fluids include, for example, but not limited to highly diffusive gases and / or gas mixtures such as reductions, oxidants, reactive gases, or reactive fluids. Chemically reduce hydrogen, carbon monoxide, or surface oxides and / or clean impurities on the substrate surface in situations where a pure purification gas (eg, helium, argon, or nitrogen) is not used or used. The fluid of the gas mixture containing the other gas components to be removed is used on the build chamber itself and on the substrate transport line, in the substrate container, or in the used substrate container.

3D構造の製造方法は第一層の少なくとも1種類の前述の基材が前記プラットフォームに沈積されることにより基板が形成される工程を含む。基板の少なくとも他の一層が沈積された後に各連続層のレーザースキャン工程が重複して実行され、求められる対象体が得られるまで厚い基板が形成される。3D構造の製造について、前記基材は積層プロセス期間中に反応性ガスが改変されることにより能動的に調整される。前記物品は完成するまで層毎に形成される。本発明において、一実施形態で使用される基材の粒子形状には特別な制限はない。粉末について、一実施形態における平均的な粒サイズは約10-100μmである。金属粉末または金属製品の性質は製造プロセス期間中に付加製造プロセス期間の時空間的(チャンバー/ワイヤー/容器、連続/循環/複数の工程)制御がなされる化学反応により改善される。 The method for producing a 3D structure includes a step of forming a substrate by depositing at least one of the above-mentioned substrates of the first layer on the platform. After at least the other layers of the substrate have been deposited, the laser scanning steps of each continuous layer are duplicated to form a thick substrate until the desired object is obtained. For the production of 3D structures, the substrate is actively adjusted by modifying the reactive gas during the laminating process. The article is formed layer by layer until completed. In the present invention, there is no particular limitation on the particle shape of the base material used in one embodiment. For powders, the average grain size in one embodiment is about 10-100 μm. The properties of metal powders or metal products are improved by chemical reactions that are spatiotemporally (chamber / wire / container, continuous / circulating / multiple steps) controlled during the additional manufacturing process during the manufacturing process.

ある実施形態においで、高寸法精度及び良好な微細構造特性以外、本発明は高純度を金属製品に提供する。前記金属製品は基板の相、結晶構造、及び冶金構造が改良され、例えば、隙間、不純物、含有物、及び特別な微小亀裂及び多孔性等の微細構造の欠点がなく、且つ金属プレス加工が不使用の状況において、前記製品は純金属及び/或いは合金粉末材料で製造される可能性があっても、耐焼結性を有すると見做せる。また、本発明は製造される製品中の磁気性質及び残留応力の調整の方法論を提供する。 In certain embodiments, the present invention provides high purity for metal products, except for high dimensional accuracy and good microstructural properties. The metal product has improved substrate phase, crystal structure, and metallurgy structure, and is free from microstructure defects such as gaps, impurities, inclusions, and special microcracks and porosity, and is not metal stamping. In the context of use, the product is considered to be sintered resistant, even though it may be made of pure metal and / or alloy powder materials. The present invention also provides a methodology for adjusting magnetic properties and residual stresses in manufactured products.

本発明に係る付加製造プロセスは不活性ガス環境で実現され、基材がビルドチャンバーに進入する前に反応性流体に保存されるか反応性流体と反応する。このような例では、不活性ガス環境としてヘリウム、アルゴン、水素、酸素、窒素、空気、窒素酸化物、アンモニア、二酸化炭素、及びそれらの組み合わせで構成されるグループから選択されるガスを含む。一実施形態においで、不活性ガス環境として窒素(N2)、アルゴン(Ar)、ヘリウム(He)、及びそれらの混合物で構成されるグループから選択されるガスを含む。一実施形態においで、不活性ガス環境は実質的にアルゴンガス環境である。また、本発明に係る付加製造プロセスは求められる反応性流体のガス環境下で実現され、基材が前記ビルドチャンバーに進入する前には反応性流体に保存されるか反応性流体と反応する。 The additive manufacturing process according to the present invention is realized in an inert gas environment and is stored in or reacts with the reactive fluid before the substrate enters the build chamber. In such an example, the inert gas environment includes a gas selected from the group consisting of helium, argon, hydrogen, oxygen, nitrogen, air, nitrogen oxides, ammonia, carbon dioxide, and combinations thereof. In one embodiment, the inert gas environment comprises a gas selected from the group consisting of nitrogen (N2), argon (Ar), helium (He), and mixtures thereof. In one embodiment, the inert gas environment is substantially an argon gas environment. Further, the addition manufacturing process according to the present invention is realized in a gas environment of the required reactive fluid, and is stored in the reactive fluid or reacts with the reactive fluid before the base material enters the build chamber.

図1は、本発明の一実施形態に係る付加製造装置10の概略図である。図1に示されるように、付加製造装置10は移動可能な製造プラットフォーム(図示省略)を有するビルドチャンバー100を備え、対象体90はその上で製造される。付加製造装置10はエネルギー発生システム50及びコントローラー40を更に備える。実施形態において、反応性流体60または複数の反応性流体60’、60’’が付加製造装置10のビルドチャンバー100内に導入される際に基材70に接触させ、エネルギー発生システム50により生成されるエネルギーが使用されて対象体90が作成される。反応性流体60が基材70に接触すると、基材の表面が要求される結果に応じて調整されて調整された基材75(図示省略)となる。基材70の表面の前記調整は、化学的調整、塗布及び/或いは反応性流体60の吸着作用の結果であってもよい。必要に応じて、付加製造装置には不活性ガス80が導入される。対象体90には多種類の形式がある。コントローラー40は制御信号42を発生システム50に伝送させると共に制御信号44をビルドチャンバー100に伝送させ、調整された基材75の加熱及び幾つかの実施形態における溶融を制御させて対象体90を形成させる。これら制御信号42、44はデータファイル30を使用して生成されることができる。 FIG. 1 is a schematic view of an additional manufacturing apparatus 10 according to an embodiment of the present invention. As shown in FIG. 1, the additional manufacturing apparatus 10 includes a build chamber 100 having a movable manufacturing platform (not shown), on which the object 90 is manufactured. The additional manufacturing apparatus 10 further includes an energy generation system 50 and a controller 40. In an embodiment, the reactive fluid 60 or a plurality of reactive fluids 60', 60'' are brought into contact with the substrate 70 as it is introduced into the build chamber 100 of the addition manufacturing apparatus 10 and generated by the energy generation system 50. Energy is used to create the object 90. When the reactive fluid 60 comes into contact with the base material 70, the surface of the base material becomes the base material 75 (not shown) adjusted and adjusted according to the required result. The adjustment of the surface of the substrate 70 may be the result of chemical adjustment, coating and / or adsorption of the reactive fluid 60. If necessary, the inert gas 80 is introduced into the additional manufacturing apparatus. The object 90 has many types. The controller 40 transmits the control signal 42 to the generation system 50 and the control signal 44 to the build chamber 100 to control the heating of the adjusted base material 75 and the melting in some embodiments to form the object 90. Let me. These control signals 42, 44 can be generated using the data file 30.

操作者により設定された値がコンピューターによりフィードされて基材70に接触させる反応性ガスの量及び種類が設定される。これにより、操作者が製造プロセス期間中における対象体90内の各層の化学的概要(profile)を設計可能になる。これにより、沈積している多層の沈積手順または沈積進行に基づいて導入される少なくとも1つの反応性ガス(60、60’及び/或いは60’’)の異なる供給条件と繰り返し条件とが確定され、変更される。 The value set by the operator is fed by the computer to set the amount and type of the reactive gas to be brought into contact with the base material 70. This allows the operator to design a chemical profile of each layer within the object 90 during the manufacturing process. This establishes different supply and repeat conditions for at least one reactive gas (60, 60'and / or 60'') to be introduced based on the depositing multi-layer deposition procedure or deposition progression. Be changed.

図1の付加製造装置10の説明は、実施される異なった環境に応じて異ならせるべき物理的及び/或いは構造的な限定を暗示するものではない。例えば、他の実施形態において、図2及び図3に示されるように、反応性ガスは異なる時間に基材に接触させる。例えば、図2に示される一実施形態において、反応性流体260及び基材270は供給ライン272において相互に接触させ、これにより基材270の表面上で発生する化学反応のためにより長い時間が提供される。基材及び反応性ガス260の混合物が加熱工程で曝されることも有益であり、よって、供給ライン272は前記ビルドチャンバーに導入される前に外部エネルギー源を消費させる(図示省略)。さらに、上述したように、調整される基材(図示省略)が続いてビルドチャンバー200に導入され、対象体290がその中で製造される。他の実施形態は図3に示されるように、これは基材表面の化学性を調整させることによる利点のみを示すのではなく、前記基材を反応性流体370で保存すると共に輸送させることにより幾つかの基材の安全性、操作性、及び輸送性の向上を達成させることも示す。例えば、微小粒子または低酸素粉末は爆発性があり、反応性流体370中に懸濁されることによりこれら前記材料の操作性及び安全性が大幅に高まる。下記表1は反応性流体の複数の例及び付加製造プロセス中に金属材料と反応する箇所を提供する。 The description of the additional manufacturing apparatus 10 of FIG. 1 does not imply physical and / or structural limitations that should be different depending on the different environments in which it is performed. For example, in other embodiments, the reactive gas is brought into contact with the substrate at different times, as shown in FIGS. 2 and 3. For example, in one embodiment shown in FIG. 2, the reactive fluid 260 and the substrate 270 are brought into contact with each other at supply line 272, which provides a longer time for the chemical reaction that occurs on the surface of the substrate 270. Will be done. It is also beneficial that the mixture of substrate and reactive gas 260 is exposed in the heating step, thus causing the supply line 272 to consume an external energy source before being introduced into the build chamber (not shown). Further, as described above, the adjusted substrate (not shown) is subsequently introduced into the build chamber 200, in which the object 290 is manufactured. Other embodiments, as shown in FIG. 3, show not only the benefits of adjusting the chemical properties of the substrate surface, but also by storing and transporting the substrate in a reactive fluid 370. It is also shown to achieve improved safety, operability, and transportability of some substrates. For example, microparticles or hypoxic powders are explosive and are suspended in the reactive fluid 370, which greatly enhances the operability and safety of these materials. Table 1 below provides multiple examples of reactive fluids and locations that react with metallic materials during the addition manufacturing process.

Figure 0006895974
Figure 0006895974

図1に示される付加製造装置10は従来のレーザー焼結または溶融システムが調整されることにより構築される。異なる実施形態では、反応性ガスが使用されてこれらシステムの不活性ガスを代替させることにより達成される。 The additional manufacturing apparatus 10 shown in FIG. 1 is constructed by adjusting a conventional laser sintering or melting system. In different embodiments, reactive gases are used to replace the inert gases in these systems.

粉末材料を使用すると共に従来のレーザー付加製造プロセスにより部材を製造する最大の難題の1つは、粉末材料の表面と空気及び/或いは酸素との高い反応性である。このため、部材の製造期間中に残留応力及び欠陥が生じる。前述のように、反応性流体が金属粉末に接触することで、不純物、隙間、または含有物に起因する残留応力の量が減少し、且つこれにより高純度の金属、部材、或いは製品が得られると考えられている。また、付加製造装置の操作者は反応性流体を使用することで各層の機械的/化学的性質を調整可能であり、これは製造される対象体の表面を含み、これにより幾何学的自由度及びプロセスの安定性を別途提供する。なお、使用される材料の有効性が高まり、例えば、回収、浪費の減少、安全性の向上、操作性、及び酸化粉末の輸送性の向上を達成させる。 One of the biggest challenges in using powdered materials and manufacturing components by conventional laser addition manufacturing processes is the high reactivity of the powdered material surface with air and / or oxygen. Therefore, residual stresses and defects occur during the manufacturing period of the member. As mentioned above, the contact of the reactive fluid with the metal powder reduces the amount of residual stress due to impurities, crevices, or inclusions, which results in high purity metals, components, or products. It is believed that. In addition, the operator of the additive manufacturing equipment can adjust the mechanical / chemical properties of each layer by using a reactive fluid, which includes the surface of the object to be manufactured, thereby providing geometric flexibility. And process stability is provided separately. It should be noted that the effectiveness of the materials used is increased, for example, recovery, reduction of waste, improvement of safety, operability, and improvement of transportability of oxidized powder are achieved.

上述のように、装置10は幅広い種類の材料を処理可能であり、限定されないが以下に説明するものを含む。 As mentioned above, the apparatus 10 is capable of processing a wide variety of materials and includes, but is not limited to, those described below.

アルミニウム及びその合金。基材70は純アルミニウムまたはアルミニウム合金である。基材70は純アルミニウム及び少なくとも1つのアルミニウム合金の粒子の混合物、或いは多種類のアルミニウム合金の混合物でもよい。アルミニウム基材70の成分についての制限はないが、粉末材料の粒子に対して十分な金属形式を含むアルミニウムにより本体上にアルミニウムの被覆膜(enveloping film)が形成されなければならない。 Aluminum and its alloys. The base material 70 is pure aluminum or an aluminum alloy. The base material 70 may be a mixture of pure aluminum and particles of at least one aluminum alloy, or a mixture of many kinds of aluminum alloys. There are no restrictions on the composition of the aluminum substrate 70, but an aluminum coating film must be formed on the body with aluminum that contains a sufficient metallic form for the particles of the powder material.

基材70はニッケル及びニッケル合金(ニッケルを基礎にする超合金を含む)でもよく、銅及び銅合金でもよい。基材70は耐火性金属でもよく、貴金属及び半金属及び/或いは高い酸化能力を有する材料を含み、例えば、銅、鉄、チタン、ルテニウム、カドミウム、亜鉛、ロジウム、カリウム、ナトリウム、ニッケル、ビスマス、スズ、バリウム、ゲルマニウム、リチウム、ストロンチウム、マグネシウム、ベリリウム、鉛、カルシウム、モリブデン、タングステン、コバルト、インジウム、シリコン、ガリウム、鉄、ジルコニウム、クロミウム、ホウ素、マンガン、アルミニウム、ランタン、ネオジム、ニオブ、バナジウム、イットリウム、及び/或いはスカンジウムを含む。 The base material 70 may be nickel and a nickel alloy (including a nickel-based superalloy), or copper and a copper alloy. The substrate 70 may be a refractory metal and includes noble and semi-metals and / or materials with high oxidizing capacity, such as copper, iron, titanium, ruthenium, cadmium, zinc, rhodium, potassium, sodium, nickel, bismuth, etc. Tin, barium, germanium, lithium, strontium, magnesium, beryllium, lead, calcium, molybdenum, tungsten, cobalt, indium, silicon, gallium, iron, zirconium, chromium, boron, manganese, aluminum, lantern, neodymium, niobium, vanadium, Includes yttrium and / or scandium.

基材70は金属ガラスまたは非結晶金属化合物、非結晶構造を有する三元、四元、または更に高い高次金属合金でもよく、例えば、Ti-Al-Fe及びTi-Al-N等のアルミニウムチタン基合金、Zr-Cu-Al-Ni等のジルコニウム基合金、Pd-Ni-P 等のパラジウム基合金、鉄、ホウ素、シリコン、炭素、リン、ニッケル、コバルト、クロミウム、窒素、チタン、ジルコニウム、バナジウム、及びニオブの組み合わせを含む鉄基合金でもよい。これら前記金属ガラスの製造において、ホウ素、リン、シリコン、炭素、及び/或いはあらゆる元素がジボラン、リン化水素、メタン等の反応性流体に使用されて装置10内に添加される。本発明が応用されてIn-Ga-Zn-O及びZn-Rh-O等の非結晶金属酸化物が形成される。酸化物には酸素または過酸化水素等の反応性流体が使用されて装置10内に形成される。 The base material 70 may be a metallic glass or a non-crystalline metal compound, a ternary, quaternary, or higher order metal alloy having a non-crystalline structure, for example, aluminum titanium such as Ti-Al-Fe and Ti-Al-N. Base alloys, zirconium base alloys such as Zr-Cu-Al-Ni, palladium base alloys such as Pd-Ni-P, iron, boron, silicon, carbon, phosphorus, nickel, cobalt, chromium, nitrogen, titanium, zirconium, vanadium It may be an iron-based alloy containing a combination of, and niobium. In the production of these metallic glasses, boron, phosphorus, silicon, carbon, and / or any element is used in a reactive fluid such as diborane, hydrogen phosphate, methane and added into the apparatus 10. The present invention is applied to form amorphous metal oxides such as In-Ga-Zn-O and Zn-Rh-O. A reactive fluid such as oxygen or hydrogen peroxide is used as the oxide to be formed in the apparatus 10.

本発明には多種類の反応性流体が選択される。例えば、水素、一酸化炭素、ギ酸、アンモニア、ヒドラジン、モノメチルヒドラジン、1,2-ジメチルヒドラジン等の還元剤、メタン、エタン、プロパン、ブタン、ペンタン、ヘキサン、ヘプタン、及び更に高い高次炭化水素化合物等の飽和炭化水素化合物、アセチレン、プロピレン、ブテン異性体、及びエチレン等の不飽和炭化水素化合物等の浸炭剤(carbonizing agent/carbiding agent)、二酸化炭素、酸素、四フッ化炭素、フルオロホルムン、メチレンジフルオリド、フルオロメタン、過酸化水素、オゾン、亜酸化窒素、一酸化窒素、二酸化窒素、三フッ化窒素、フッ素等の酸化剤、モノメチルアミン、ジメチルアミン、トリメチルアミン、アンモニア、ヒドラジン、モノメチルヒドラジン、1,2-ジメチルヒドラジン等の窒化剤、ジボラン、トリメチルホウ素、テトラメチルジボラン、三塩化ホウ素、三フッ化ホウ素等のほう化剤、硫化水素、メタンチオール、エタンチオール、プロパンチオール、ブタンチオール、ペンタンチオール、ジアルキルスルフィド等の硫化剤、リン化水素、tert-ブチルホスフィン、トリエチルホスフィン、トリメチルホスフィン、塩化ホスホリル、トリフルオロホスフィン、トリクロロホスフィン等のリン化剤、モノシラン、ジシラン、高次シラン、アルキルシラン、テトラエトキシシラン、フルオロシラン、クロロシラン、アミノシラン等のシラン化剤、セレン化水素、アルキルセレニド等のセレン化剤、プラズマ及び超臨界流体、六フッ化タングステン、トリメチルアルミニウム、テトラエチルアルミニウム、トリメチルガリウム、テトラエチルガリウム、テトラクロロチタン、遷移金属化合物、タングステン化剤、及びそれらの組み合わせ等の他の反応性流体が挙げられる。 Many types of reactive fluids are selected for the present invention. For example, reducing agents such as hydrogen, carbon monoxide, formic acid, ammonia, hydrazine, monomethylhydrazine, 1,2-dimethylhydrazine, methane, ethane, propane, butane, pentane, hexane, heptane, and higher order hydrocarbon compounds. Saturated hydrocarbon compounds such as acetylene, propylene, butene isomers, and carbonizing agents / carving agents such as unsaturated hydrocarbon compounds such as ethylene, carbon dioxide, oxygen, carbon tetrafluoride, fluoroformun, etc. Oxidants such as methylenedifluoride, fluoromethane, hydrogen peroxide, ozone, nitrogen peroxide, nitrogen monoxide, nitrogen dioxide, nitrogen trifluoride, fluorine, monomethylamine, dimethylamine, trimethylamine, ammonia, hydrazine, monomethylhydrazine, Nitrides such as 1,2-dimethylhydrazine, boring agents such as diborane, trimethylboron, tetramethyldiborane, boron trichloride, boron trifluoride, hydrogen sulfide, methanethiol, ethanethiol, propanethiol, butanethiol, pentane. Sulfurizing agents such as thiol and dialkyl sulfide, hydrogen phosphide, tert-butylphosphine, triethylphosphine, trimethylphosphine, phosphoryl chloride, trifluorophosphine, phosphorinating agents such as trichlorophosphine, monosilane, disilane, higher silane, alkylsilane, Silane agents such as tetraethoxysilane, fluorosilane, chlorosilane, aminosilane, selenium agents such as hydrogen selenium, alkylselenide, plasma and supercritical fluids, tungsten hexafluoride, trimethylaluminum, tetraethylaluminum, trimethylgallium, tetraethyl. Other reactive fluids such as gallium, tetrachlorotitanium, transition metal compounds, tungstate agents, and combinations thereof.

他に定義がない限り、ここで使用される全ての技術及び科学的名詞は本発明が属する技術分野における従来の技術者が熟知している意味を持つ。本発明について説明したものに類似するか同等の多くの方法及び材料が本発明の実施に使用されるが、但し、幾つかの実施形態に係る材料及び方法についてここで説明する。本発明の幾つかの実施形態により、明確に説明するが、然しながら従来の技術者ならばその内の多くの調整及び改変を実行可能である。更なる説明がなくとも、従来の技術者ならば本発明の説明に従って本発明を最大限活用することができると考えられる。 Unless otherwise defined, all technical and scientific nouns used herein have meanings familiar to conventional engineers in the technical field to which the present invention belongs. Many methods and materials similar to or equivalent to those described for the present invention are used in the practice of the present invention, provided that materials and methods according to some embodiments are described herein. Although some embodiments of the present invention will be articulated, many modifications and modifications thereof can be made by conventional technicians. It is considered that a conventional engineer can make maximum use of the present invention according to the description of the present invention without further explanation.

幾つかの実施形態を記載することで、本発明の実施形態の精神を逸脱せずに、従来の技術者が多様な調整、代替となる構造、及び同等のものを使用することを可能にする。また、本発明について不必要な混乱を避けるため、多くの従来のプロセス及び部材についてはここでは説明しない。よって、上述の説明は本発明の範疇を制限するものではない。 By describing some embodiments, it is possible for conventional engineers to use various adjustments, alternative structures, and equivalents without departing from the spirit of the embodiments of the present invention. .. Also, many conventional processes and components are not described herein to avoid unnecessary confusion about the present invention. Therefore, the above description does not limit the scope of the present invention.

数値の範囲が提供される場合、前後の文中で別途明確な指示がない限り、前記範囲の上限と下限との間との各介在値(前後の文中で別途明確な指示がない限り、下限の単位の十分の一までとする)も具体的に記載されていることを理解すべきである。記載されたあらゆる数値の間の各小さい範囲または記載された範囲内の介在値及び前記記載された範囲内のあらゆる他の記載された数値または介在値も含まれる。これら小さい範囲の上限及び下限は前記範囲内に独立して含まれるか排除され、且つ各範囲も本発明に含まれ、その内の1つ、2つ、または0個の限界値は小さい範囲内に含まれ、且つ前記記載された範囲内の特別に排除された限界値により制限される。記載された範囲が1つまたは2つの限界値を含む場合、これらの含まれる限界値の内の1つまたは2つが排除された範囲も含まれる。 When a range of numbers is provided, each intervening value between the upper and lower limits of the range (unless otherwise explicitly stated in the preceding and following sentences, the lower limit, unless otherwise specified in the preceding and following sentences). It should be understood that (up to one tenth of the unit) is also specifically stated. Also included are intervening values within each small range or stated range between all the stated values and any other stated numerical value or intervening value within the stated range. The upper and lower limits of these small ranges are included or excluded independently within the above range, and each range is also included in the present invention, and one, two, or zero limit values thereof are within the small range. And limited by specially excluded limits within the range described above. If the stated range contains one or two limits, it also includes a range in which one or two of these included limits are excluded.

前後の文中で別途明確な指示がない限り、本発明及び特許出願範囲で述べる「一」または「前記」とは複数の指示対象を含む。よって、例えば、「一プロセス」とは複数のそのようなプロセスを含み、「誘電材料」は1つまたは複数の誘電材料及び従来の技術者が熟知する同等のもの等を含む。 Unless otherwise specified in the preceding and following sentences, "one" or "above" described in the present invention and the scope of patent application includes a plurality of referents. Thus, for example, "one process" includes a plurality of such processes, and "dielectric material" includes one or more dielectric materials and equivalents familiar to conventional engineers.

また、本発明で使用する「含む」または「備える」とは記載された特徴、全体、部材、或いは工程の存在についての説明であり、但し、1つまたは複数の他の特徴、全体、部材、工程、行動、或いはグループが加えられることを禁止するものではない。 Also, as used in the present invention, "including" or "providing" is a description of the existence of the described feature, whole, member, or process, provided that one or more other features, whole, member, etc. It does not prohibit the addition of processes, actions or groups.

10 付加製造装置
210 付加製造装置
310 付加製造装置
30 データファイル
230 データファイル
330 データファイル
40 コントローラー
240 コントローラー
340 コントローラー
42 制御信号
44 制御信号
50 エネルギー発生システム
250 エネルギー発生システム
350 エネルギー発生システム
60 反応性流体
60’ 反応性流体
60’’ 反応性流体
260 反応性流体
260’ 反応性流体
260’’ 反応性流体
70 基材
270 基材
80 不活性ガス
280 不活性ガス
380 不活性ガス
90 対象体
290 対象体
390 対象体
100 ビルドチャンバー
200 ビルドチャンバー
300 ビルドチャンバー
272 供給ライン
370 反応性流体/基材
370’ 反応性流体/基材
370’’ 反応性流体/基材
10 Additional manufacturing equipment 210 Additional manufacturing equipment 310 Additional manufacturing equipment 30 Data file 230 Data file 330 Data file 40 Controller 240 Controller 340 Controller 42 Control signal 44 Control signal 50 Energy generation system 250 Energy generation system 350 Energy generation system 60 Reactive fluid 60 'Reactive fluid 60'' Reactive fluid 260 Reactive fluid 260' Reactive fluid 260'' Reactive fluid 70 Base material 270 Base material 80 Inactive gas 280 Inactive gas 380 Inactive gas 90 Object 290 Object 390 Object 100 Build chamber 200 Build chamber 300 Build chamber 272 Supply line 370 Reactive fluid / base material 370'Reactive fluid / base material 370'' Reactive fluid / base material

Claims (28)

製造プラットフォーム上に対象体を製造する付加製造法であって、
1つまたは複数の反応性流体により(i)前記少なくとも1つの反応性流体により求められる化学性に調整される表面を有する少なくとも1つの基材及び(ii)前記1つまたは複数の第一の反応性流体に対して不純物で汚染された表面を有する少なくとも1つの基材の第一数量が製造プラットフォームに沈積され、製造プラットフォームは、ビルドチャンバー内に配置される工程と、
前記第一の反応性流体のうち1つまたは複数が前記ビルドチャンバーに導入されることにより前記基材の前記表面が求められる化学性に調整されて不純物のない化学的に調整された表面を有する調整された反応性の基材が生成されると共に前記少なくとも1つの基材の全体にエネルギーが応用されることにより第一層または基板が生成される工程と、
第二数量の前記少なくとも1つの基材が沈積されることにより、前記基板上に少なくとも他の一層が形成され、1つまたは複数の他の反応性流体が前記ビルドチャンバーに導入される工程と、
前記1つまたは複数の他の反応性流体は、
(i) 前記1つまたは複数の反応性流体と同一であり、且つ
(ii) 前記1つまたは複数の反応性流体によって求められる化学性に調整される表面を有する基材に反応性であり、
(iii) 前記1つまたは複数の反応性流体によって求められる化学性に調整される表面を有する前記少なくとも1つの基材の表面に位置する不純物に無反応性である、又は、
(iv) 前記1つまたは複数の反応性流体とも前記1つまたは複数の反応性流体によって求められる化学性に調整される表面を有する基材に反応性である1つまたは複数の他の反応性流体とも異なり、不純物によって汚染された前記表面を有する前記少なくとも1つの基材に反応性であると共に、前記不純物にも反応性であり、
前記第一層又は前記基板に沈積された少なくとも他の一層の全体にエネルギーが応用されることにより、前記少なくとも他の一層が前記第一層又は前記基板に溶融され、
前記対象体の製造が完成するまで先行して形成される層上には他の数量の前記少なくとも1つの基材が継続的に形成され、前記1つまたは複数の他の反応性流体が前記ビルドチャンバーに導入され、前記形成された層の全体にエネルギーが応用される工程とを含むことを特徴とする付加製造法。
An additional manufacturing method that manufactures an object on a manufacturing platform.
The one or more reactive fluid (i) at least one having at least one surface which is adjusted to the chemical resistance required by the reactive fluid substrate及beauty (ii) said one or more first the first quantity of at least one substrate for the reaction fluid having a contaminated surface impurities are deposited manufacturing platform, production platform, a step disposed in the build chamber,
By introducing one or more of the first reactive fluids into the build chamber, the surface of the substrate is adjusted to the required chemical properties and has an impurity-free, chemically adjusted surface. A step in which a conditioned reactive substrate is produced and energy is applied to the entire at least one substrate to form a first layer or substrate.
A step of depositing a second quantity of the at least one substrate to form at least another layer on the substrate and introducing one or more other reactive fluids into the build chamber.
The one or more other reactive fluids
(I) is identical to the one or more reactive fluid, Ri and (ii) the one or more reactive der the substrate having a surface which is adjusted to the chemical resistance required by the reaction fluid ,
(Iii) a non-reactive impurities located on the one or more of the at least one surface of the substrate that have a surface which is adjusted to the chemical resistance required by the reaction fluid, or,
(Iv) the one or more least reactive flow body one that is reactive to a substrate having a surface which is adjusted to the chemical resistance required by the one or more reactive fluid or more other reaction Unlike sexual fluids, it is reactive with at least one substrate having the surface contaminated with impurities and is also reactive with the impurities.
By applying energy to the entire first layer or at least the other layer deposited on the substrate, the at least the other layer is melted in the first layer or the substrate.
The other quantity of the at least one substrate is continuously formed on the layer formed in advance until the production of the object is completed, and the one or more other reactive fluids are added to the build. An additional manufacturing method comprising a step of being introduced into a chamber and applying energy to the entire formed layer.
前記1つまたは複数の他の反応性流体に反応性である前記少なくとも1つの基材の表面の不純物として水素で構成されるグループから選択されることを特徴とする請求項1に記載の付加製造法。 The addition production according to claim 1, wherein the additive production is selected from the group composed of hydrogen as an impurity on the surface of the at least one substrate which is reactive with the one or a plurality of other reactive fluids. Law. 前記調整される反応性基材により前記基板の前記第一層及び少なくとも他の一層の少なくとも1つの微細構造の欠点が減少し、且つ前記少なくとも1つの微細構造の欠点として不純物、微小亀裂、多孔性で構成されるグループから選択されることを特徴とする請求項1に記載の付加製造法。 The adjusted reactive substrate reduces the drawbacks of at least one microstructure of the first layer and at least the other layer of the substrate, and the drawbacks of the at least one microstructure include impurities, microcracks and porosity. The additional manufacturing method according to claim 1, wherein the method is selected from a group composed of. 前記少なくとも1つの調整される反応性基材の調整される前記表面により前記基材の位相、結晶構造、及び冶金構造の内の1つが改良されることを特徴とする請求項1に記載の付加製造法。 The addition according to claim 1, wherein the adjusted surface of the at least one adjusted reactive substrate improves one of the phase, crystal structure, and metallurgical structure of the substrate. Manufacturing method. 前記少なくとも1つの調整される反応性基材の調整される前記表面により製造される前記対象体の磁性が調整されることを特徴とする請求項1に記載の付加製造法。 The addition manufacturing method according to claim 1, wherein the magnetism of the object produced by the adjusted surface of the at least one adjusted reactive substrate is adjusted. 前記少なくとも1つの調整される反応性基材の調整される前記表面により前記製造される対象体の残留応力性質が調整されることを特徴とする請求項1に記載の付加製造法。 The addition manufacturing method according to claim 1, wherein the prepared surface of the at least one adjusted reactive substrate adjusts the residual stress property of the object to be manufactured. 前記少なくとも1つの反応性基材として粉末材料、プラズマ、柱体、ワイヤー、または流体で構成されるグループから選択されることを特徴とする請求項1に記載の付加製造法。 The addition manufacturing method according to claim 1, wherein the at least one reactive base material is selected from a group composed of a powder material, plasma, a prism, a wire, or a fluid. 前記粉末材料は金属粉末材料であることを特徴とする請求項7に記載の付加製造法。 The addition manufacturing method according to claim 7, wherein the powder material is a metal powder material. 前記金属粉末材料は金属ガラス材料または非結晶金属化合物材料であることを特徴とする請求項8に記載の付加製造法。 The addition manufacturing method according to claim 8, wherein the metal powder material is a metallic glass material or an amorphous metal compound material. 前記金属粉末材料はアルミニウム、ニッケル、鉄、チタン、銅、耐火性金属、及びそれらの合金で構成されるグループから選択され、酸化しやすく、前記酸化は空気及び/或いは酸素と前記表面とが反応することにより発生することを特徴とする請求項8に記載の付加製造法。 The metal powder material is selected from a group composed of aluminum, nickel, iron, titanium, copper, fire-resistant metals, and alloys thereof, and is easily oxidized, and the oxidation reacts with air and / or oxygen and the surface. The additional manufacturing method according to claim 8, wherein the metal is generated by the above-mentioned method. 前記金属粉末材料は湿気を吸いやすいことを特徴とする請求項8に記載の付加製造法。 The addition manufacturing method according to claim 8, wherein the metal powder material easily absorbs moisture. 前記少なくとも1つの他の反応性流体としてガス、プラズマ、超臨界流体、及びそれらの組み合わせで構成されるグループから選択されることを特徴とする請求項1に記載の付加製造法。 The addition manufacturing method according to claim 1, wherein the at least one other reactive fluid is selected from a group composed of gas, plasma, supercritical fluid, and a combination thereof. 前記少なくとも1つの反応性流体として還元剤、浸炭剤(carbonizing agents)、酸化剤、窒化剤、ほう化剤、硫化剤、リン化剤、シラン化剤、セレン化剤、タングステン化剤、炭化剤(carbonizer agents)、及びそれらの組み合わせで構成されるグループから選択されることを特徴とする請求項12に記載の付加製造法。 As the at least one reactive fluid, a reducing agent, a carbonizing agent, an oxidizing agent, a nitriding agent, a boring agent, a sulfurizing agent, a phosphoring agent, a silicifying agent, a selenium agent, a tungstenizing agent, and a carbonizing agent ( The addition manufacturing method according to claim 12, wherein the carbonizer agents ) and a group composed of a combination thereof are selected. レーザー切断により製造される前記対象体に新しい表面が形成され、前記新しい表面が前記少なくとも1つの反応性流体に曝される工程を更に含むことを特徴とする請求項1に記載の付加製造法。 The addition manufacturing method according to claim 1, further comprising a step of forming a new surface on the object manufactured by laser cutting and exposing the new surface to the at least one reactive fluid. 前記応用されるエネルギーは電子ビーム処理であることを特徴とする請求項1に記載の付加製造法。 The addition manufacturing method according to claim 1, wherein the applied energy is electron beam processing. 前記新しい表面の部分または全ては前記反応性流体により求められる化学性に調整可能であることを特徴とする請求項12に記載の付加製造法。 The addition manufacturing method according to claim 12 , wherein any or all of the new surface portions can be adjusted to the chemistry required by the reactive fluid. 求められる化学性に調整可能な前記表面は前記反応性流体により塗布されることを特徴とする請求項1に記載の付加製造法。 The addition manufacturing method according to claim 1, wherein the surface that can be adjusted to the required chemistry is applied by the reactive fluid. 求められる化学性に調整可能な前記表面は前記反応性流体が吸収されることにより生成されることを特徴とする請求項1に記載の付加製造法。 The addition manufacturing method according to claim 1, wherein the surface that can be adjusted to the required chemistry is formed by absorption of the reactive fluid. 製造プラットフォーム上に対象体を製造する付加製造法であって、
少なくとも1つの調整される基材がビルドチャンバーに入る前に、求められる化学性を有する前記少なくとも1つの調整される基材が形成され、前記一又は複数の反応性流体は前記1つまたは複数の反応性流体によって求められる化学性に調整可能な表面を有する前記少なくとも1つの基材に対して反応性であり、
前記少なくとも1つの調整される基材が前記製造プラットフォームを有する前記ビルドチャンバーに導入される工程と、
第一数量の前記少なくとも1つの調整される基材が前記製造プラットフォームに応用されると共に前記第一数量の前記少なくとも1つの調整される基材にエネルギーが応用され、前記少なくとも1つの調整される基材の複数の粒子が第一層または基板に溶融される工程と、
前記基板上に沈積される少なくとも1つの第二数量の前記少なくとも1つの調整される基材にエネルギーが応用され、前記第二数量の前記少なくとも1つの調整される基材の粒子が前記基板に溶融され、前記基板上に少なくとも他の一層が形成される工程と、
前記対象体の製造が完成するまで前記基板上には調整される基材の各層が継続的に形成される工程とを含むことを特徴とする付加製造法。
An additional manufacturing method that manufactures an object on a manufacturing platform.
Prior to the entry of at least one conditioned substrate into the build chamber, the at least one conditioned substrate having the required chemistry is formed and the one or more reactive fluids are said one or more. Reactive with at least one substrate having a chemically adjustable surface required by the reactive fluid.
The step of introducing the at least one adjusted substrate into the build chamber having the manufacturing platform.
A first quantity of said at least one adjusted substrate is applied to the manufacturing platform and energy is applied to the first quantity of said at least one adjusted substrate to apply the energy to the at least one adjusted substrate. The process of melting multiple particles of material into the first layer or substrate,
Energy is applied to at least one second quantity of the at least one adjusted substrate deposited on the substrate, and the particles of the second quantity of the at least one adjusted substrate are melted into the substrate. And at least another layer is formed on the substrate.
An additional manufacturing method comprising a step of continuously forming each layer of a base material to be adjusted on the substrate until the manufacturing of the target body is completed.
前記一又は複数の基材の調整される前記表面により前記第一層及び少なくとも他の一層の少なくとも1つの微細構造の欠点が減少し、且つ前記少なくとも1つの微細構造の欠点として不純物、微小亀裂、及び多孔性で構成されるグループから選択されることを特徴とする請求項19に記載の付加製造法。 The adjusted surface of the one or more substrates reduces the defects of at least one microstructure of the first layer and at least the other layer, and the drawbacks of the at least one microstructure include impurities, microcracks, etc. The addition manufacturing method according to claim 19, wherein the method is selected from the group composed of the porous material and the porous material. 前記少なくとも1つの調整される基材の調整される前記表面により前記基材の位相、結晶構造、及び冶金構造の内の1つが改良されることを特徴とする請求項19に記載の付加製造法。 The addition manufacturing method according to claim 19, wherein the adjusted surface of the at least one adjusted substrate improves one of the phase, crystal structure, and metallurgical structure of the substrate. .. 前記少なくとも1つの調整される基材の調整される前記表面により前記製造対象体の磁性が調整されることを特徴とする請求項19に記載の付加製造法。 The additional manufacturing method according to claim 19, wherein the magnetism of the manufacturing object is adjusted by the adjusted surface of the at least one adjusted base material. 前記少なくとも1つの調整される基材の調整される前記表面により前記製造対象体の残留応力性質が調整されることを特徴とする請求項19に記載の付加製造法。 The addition manufacturing method according to claim 19, wherein the residual stress property of the manufacturing object is adjusted by the adjusted surface of the at least one adjusted base material. 製造プラットフォーム上に増強される機械的強度を有する対象体を製造する付加製造法であって、
水素を除去させるガスに少なくとも1つの反応性基材が保存され、水素を含まない基材が形成され、前記水素を除去させるガスとしてCO、CO、フッ化炭素化合物またはそれらの混合物で構成されるグループから選択される工程と、
前記水素を含まない基材が製造プラットフォームを有するビルドチャンバーに導入される工程と、
第一数量の前記水素を含まない基材が前記製造プラットフォームに応用されると共に前記第一数量の前記水素を含まない基材にエネルギーが応用され、前記第一数量の前記水素を含まない基材が第一層または基板として溶融される工程とを含むことを特徴とする付加製造法。
An additional manufacturing method that manufactures an object with enhanced mechanical strength on a manufacturing platform.
At least one reactive base material is stored in the gas that removes hydrogen, a base material that does not contain hydrogen is formed, and the gas that removes hydrogen is composed of CO, CO 2 , a fluorocarbon compound, or a mixture thereof. Processes selected from the group and
The process of introducing the hydrogen-free substrate into a build chamber having a manufacturing platform, and
The first quantity of the hydrogen-free substrate is applied to the manufacturing platform, and energy is applied to the first quantity of the hydrogen-free substrate, so that the first quantity of the hydrogen-free substrate is applied. An additional manufacturing method comprising a step of melting as a first layer or a substrate.
前記応用されるエネルギーは熱拡散であることを特徴とする請求項24に記載の付加製造法。 The addition manufacturing method according to claim 24 , wherein the applied energy is thermal diffusion. 前記基板上に沈積される少なくとも1つの第二数量の基材にエネルギーが応用され、前記第二数量の前記基材が前記基板に溶融され、前記基板上に少なくとも他の一層が形成される工程と、
前記対象体の製造が完成するまで前記基板上には基材の各層が継続的に形成される工程とを含むことを特徴とする請求項24に記載の付加製造法。
A step in which energy is applied to at least one second quantity of substrate deposited on the substrate, the second quantity of the substrate is melted into the substrate, and at least another layer is formed on the substrate. When,
The additional manufacturing method according to claim 24 , wherein each layer of the base material is continuously formed on the substrate until the manufacturing of the target body is completed.
前記水素を含まない基材により前記第一層及び少なくとも他の一層の少なくとも1つの微細構造の欠点として不純物、微小亀裂、及び多孔性で構成されるグループから選択されることを特徴とする請求項26に記載の付加製造法。 Claims, characterized in that it is selected from the first layer and the at least other impurities as more of at least one of the disadvantages of the microstructure, the group consisting of microcracks, and porosity by substrate not including the hydrogen 26. The additional manufacturing method. 前記水素を含まない基材により前記製造される対象体の残留応力性質が調整されることを特徴とする請求項26に記載の付加製造法。 The addition manufacturing method according to claim 26 , wherein the residual stress property of the manufactured object is adjusted by the hydrogen-free base material.
JP2018534824A 2015-12-28 2016-12-23 Addition manufacturing using reactive fluids and products made using this Active JP6895974B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201562271901P 2015-12-28 2015-12-28
US62/271,901 2015-12-28
PCT/US2016/068490 WO2017117041A1 (en) 2015-12-28 2016-12-23 Use of reactive fluids in additive manufacturing and the products made therefrom

Publications (3)

Publication Number Publication Date
JP2019502825A JP2019502825A (en) 2019-01-31
JP2019502825A5 JP2019502825A5 (en) 2019-03-14
JP6895974B2 true JP6895974B2 (en) 2021-06-30

Family

ID=59086109

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018534824A Active JP6895974B2 (en) 2015-12-28 2016-12-23 Addition manufacturing using reactive fluids and products made using this

Country Status (8)

Country Link
US (1) US20170182558A1 (en)
EP (1) EP3397400B1 (en)
JP (1) JP6895974B2 (en)
CN (1) CN108602090A (en)
ES (1) ES2949692T3 (en)
SG (1) SG11201804950PA (en)
TW (1) TWI658920B (en)
WO (1) WO2017117041A1 (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10106880B2 (en) * 2013-12-31 2018-10-23 The United States Of America, As Represented By The Secretary Of The Navy Modifying the surface chemistry of a material
CN107199337B (en) * 2016-03-16 2020-05-01 华邦电子股份有限公司 Method for forming metal wire structure
BE1025340B1 (en) * 2017-06-30 2019-02-04 Phoenix Contact Gmbh & Co. Kg Method for producing a copper-containing component by means of selective laser sintering
GB201719370D0 (en) 2017-11-22 2018-01-03 Johnson Matthey Plc Component produced by additive manufacturing
CN112004679A (en) * 2017-12-08 2020-11-27 欧瑞康增材制造有限责任公司 Assisted fused deposition modeling
EP4219131A1 (en) * 2017-12-26 2023-08-02 Braskem America, Inc. High performance polyolefin for material extrusion
WO2019156674A1 (en) 2018-02-09 2019-08-15 Hewlett-Packard Development Company, L.P. Three-dimensional printing systems
CN112135705B (en) * 2018-03-27 2022-06-14 西门子能源美国公司 Method and system for additive manufacturing or repair by in situ manufacturing and feeding of a sintering line
US11031161B2 (en) * 2018-05-11 2021-06-08 GM Global Technology Operations LLC Method of manufacturing a bulk nitride, carbide, or boride-containing material
US11426818B2 (en) 2018-08-10 2022-08-30 The Research Foundation for the State University Additive manufacturing processes and additively manufactured products
CN113195127A (en) * 2018-12-14 2021-07-30 速尔特技术有限公司 Additive manufacturing system for creating objects from powder using high-throughput laser for two-dimensional printing
EP3670030A1 (en) * 2018-12-19 2020-06-24 Linde GmbH Method and system for generating a three-dimensional workpiece
CN111992711B (en) * 2019-05-10 2022-08-16 天津大学 Method for improving tensile property of titanium alloy additive manufacturing by adding Nb powder
US11724340B2 (en) * 2019-05-23 2023-08-15 Saudi Arabian Oil Company Additive manufacturing of MLD-enhanced drilling tools
EP3834962A1 (en) * 2019-12-09 2021-06-16 Linde GmbH Method and system for generating a three-dimensional workpiece
CN112941491A (en) * 2019-12-11 2021-06-11 王玉漫 Three-dimensional printing method for different Hermitian-grade materials
CN113463093A (en) * 2021-07-06 2021-10-01 广西大学 Device and process method for synthesizing composite coating in situ by using chemical vapor deposition to assist laser cladding
US20230093910A1 (en) * 2021-09-30 2023-03-30 Entegris, Inc. Additive manufactured articles having passivated surfaces and related methods
US20240025108A1 (en) * 2022-07-20 2024-01-25 Battelle Savannah River Alliance, Llc In situ chemical modification during additive manufacturing

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4863538A (en) 1986-10-17 1989-09-05 Board Of Regents, The University Of Texas System Method and apparatus for producing parts by selective sintering
US5076869A (en) 1986-10-17 1991-12-31 Board Of Regents, The University Of Texas System Multiple material systems for selective beam sintering
US4944817A (en) 1986-10-17 1990-07-31 Board Of Regents, The University Of Texas System Multiple material systems for selective beam sintering
US5017753A (en) 1986-10-17 1991-05-21 Board Of Regents, The University Of Texas System Method and apparatus for producing parts by selective sintering
US5182170A (en) * 1989-09-05 1993-01-26 Board Of Regents, The University Of Texas System Method of producing parts by selective beam interaction of powder with gas phase reactant
DE4022960C1 (en) * 1990-07-19 1991-08-01 Ralph 5600 Wuppertal De Ippendorf
DE10306886A1 (en) * 2003-02-18 2004-09-02 Daimlerchrysler Ag Three dimensional object manufacture comprises forming adhesive coated particle layers on top of one another, subjecting each layer to ionizing particles before activating adhesive and smoothing with a blade
US7491431B2 (en) * 2004-12-20 2009-02-17 Nanogram Corporation Dense coating formation by reactive deposition
WO2007010598A1 (en) * 2005-07-19 2007-01-25 Homs Engineering Inc. Process for producing stent and powder sintering apparatus
EP2231351A4 (en) * 2007-12-06 2012-03-21 Arcam Ab Apparatus and method for producing a three-dimensional object.
US9283593B2 (en) 2011-01-13 2016-03-15 Siemens Energy, Inc. Selective laser melting / sintering using powdered flux
JP6101707B2 (en) * 2011-12-28 2017-03-22 ア−カム アーベー Method and apparatus for improving resolution of three-dimensional article by additive manufacturing method
EP2700459B1 (en) * 2012-08-21 2019-10-02 Ansaldo Energia IP UK Limited Method for manufacturing a three-dimensional article
US10124408B2 (en) * 2012-11-01 2018-11-13 General Electric Company Additive manufacturing method and apparatus
US9714318B2 (en) * 2013-07-26 2017-07-25 Stratasys, Inc. Polyglycolic acid support material for additive manufacturing systems
US9327448B2 (en) * 2013-08-02 2016-05-03 Northwestern University Methods for fabricating three-dimensional metallic objects via additive manufacturing using metal oxide pastes
US20150125333A1 (en) * 2013-11-05 2015-05-07 Gerald J. Bruck Below surface laser processing of a fluidized bed
WO2015106113A1 (en) * 2014-01-09 2015-07-16 United Technologies Corporation Material and processes for additively manufacturing one or more parts
US9321677B2 (en) 2014-01-29 2016-04-26 Corning Incorporated Bendable glass stack assemblies, articles and methods of making the same
US20160214176A1 (en) * 2014-05-12 2016-07-28 Siemens Energy, Inc. Method of inducing porous structures in laser-deposited coatings
US10507638B2 (en) * 2015-03-17 2019-12-17 Elementum 3D, Inc. Reactive additive manufacturing
CN104801703B (en) * 2015-03-26 2016-08-24 成都新柯力化工科技有限公司 A kind of flexible metal powder for 3 D-printing and its preparation method and application method
US10105798B2 (en) * 2015-11-05 2018-10-23 Honeywell International Inc. Surface improvement of additively manufactured articles produced with aluminum alloys
JP6797642B2 (en) * 2015-12-10 2020-12-09 キヤノン株式会社 Raw material powder processing method and three-dimensional model manufacturing method

Also Published As

Publication number Publication date
EP3397400A4 (en) 2019-07-31
WO2017117041A1 (en) 2017-07-06
EP3397400A1 (en) 2018-11-07
TW201729984A (en) 2017-09-01
CN108602090A (en) 2018-09-28
JP2019502825A (en) 2019-01-31
SG11201804950PA (en) 2018-07-30
ES2949692T3 (en) 2023-10-02
TWI658920B (en) 2019-05-11
US20170182558A1 (en) 2017-06-29
EP3397400B1 (en) 2023-06-14

Similar Documents

Publication Publication Date Title
JP6895974B2 (en) Addition manufacturing using reactive fluids and products made using this
TWI677582B (en) Fabrication of metallic parts by additive manufacturing and tungsten heavy metal alloy powders therefor
DE60210267T2 (en) DEVICE AND METHOD FOR THE SOLIDAGE APPLICATION AND COMPRESSION OF POWDER PARTICLES BY MEANS OF HIGH SPEED AND THERMALLY PLASTIC FORMING
Lassègue et al. Laser powder bed fusion (L-PBF) of Cu and CuCrZr parts: Influence of an absorptive physical vapor deposition (PVD) coating on the printing process
US20230144822A1 (en) Method and apparatus for manufacturing 3d metal parts
US10576541B2 (en) Structured powder particles for feedstock improvement for laser based additive manufacturing
KR20120068865A (en) Method and device for manufacturing titanium objects
US20140186205A1 (en) Method and apparatus for reconditioning oxidized powder
EP3972764B1 (en) Additive manufacturing of mld-enhanced drilling tools
EP3096907B1 (en) Nanoparticle enhancement for additive manufacturing
CN104401968A (en) Method for preparing stereo graphene based on 3D printing of foam metal
EP3766604A1 (en) Method and device for purging an additive manufacturing space
WO2019065605A1 (en) Metal molding production apparatus and metal molding production method
KR102307862B1 (en) Method of manufacturing metal/ceramic core/shell powder for 3D printing
Stepien et al. Pure copper: Advanced additive manufacturing
Horii et al. Freeform fabrication of Ti–Al alloys by 3D micro-welding
US20200131616A1 (en) Oxidation resistant coating and methods of manufacturing thereof
JP6720400B1 (en) Additive manufacturing system, additive manufacturing method
EP3290134A1 (en) Method for additive manufacturing
WO2021173968A1 (en) Methods to create structures with engineered internal features, pores, and/or connected channels utilizing cold spray particle deposition
EP3797902A1 (en) Method and system for atmosphere in additive manufacture
WO2021058134A1 (en) Additive manufacturing process gas for lightweight metals
Silvestri et al. Exploring Potentialities of Direct Laser Deposition: Thin-Walled Structures
VOLOKITIN et al. PROGRESS IN ADDITIVE MANUFACTURING.
Ibrahim Plasma Transferred Arc Additive Manufacturing Using 17-4 Precipitation Hardened Stainless Steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180831

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190130

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20190612

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190612

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20190612

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191029

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200326

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200929

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210129

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20210129

C11 Written invitation by the commissioner to file amendments

Free format text: JAPANESE INTERMEDIATE CODE: C11

Effective date: 20210210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210312

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20210316

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20210317

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210520

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210608

R150 Certificate of patent or registration of utility model

Ref document number: 6895974

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150