JP6894661B2 - Generator - Google Patents

Generator Download PDF

Info

Publication number
JP6894661B2
JP6894661B2 JP2015023223A JP2015023223A JP6894661B2 JP 6894661 B2 JP6894661 B2 JP 6894661B2 JP 2015023223 A JP2015023223 A JP 2015023223A JP 2015023223 A JP2015023223 A JP 2015023223A JP 6894661 B2 JP6894661 B2 JP 6894661B2
Authority
JP
Japan
Prior art keywords
stator salient
stator
circumferential direction
salient pole
poles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015023223A
Other languages
Japanese (ja)
Other versions
JP2016146713A (en
Inventor
和男 島
和男 島
深見 正
正 深見
岳志 藤原
岳志 藤原
拓郎 神部
拓郎 神部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimano Inc
Original Assignee
Shimano Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimano Inc filed Critical Shimano Inc
Priority to JP2015023223A priority Critical patent/JP6894661B2/en
Priority to CN201610010634.4A priority patent/CN105871091B/en
Priority to DE102016201853.1A priority patent/DE102016201853A1/en
Publication of JP2016146713A publication Critical patent/JP2016146713A/en
Application granted granted Critical
Publication of JP6894661B2 publication Critical patent/JP6894661B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/14Stator cores with salient poles
    • H02K1/146Stator cores with salient poles consisting of a generally annular yoke with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/22Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating around the armatures, e.g. flywheel magnetos
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62JCYCLE SADDLES OR SEATS; AUXILIARY DEVICES OR ACCESSORIES SPECIALLY ADAPTED TO CYCLES AND NOT OTHERWISE PROVIDED FOR, e.g. ARTICLE CARRIERS OR CYCLE PROTECTORS
    • B62J6/00Arrangement of optical signalling or lighting devices on cycles; Mounting or supporting thereof; Circuits therefor
    • B62J6/06Arrangement of lighting dynamos or drives therefor
    • B62J6/12Dynamos arranged in the wheel hub
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/16Stator cores with slots for windings
    • H02K1/165Shape, form or location of the slots
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2201/00Specific aspects not provided for in the other groups of this subclass relating to the magnetic circuits
    • H02K2201/03Machines characterised by aspects of the air-gap between rotor and stator

Description

本発明は、自転車のハブダイナモ等に用いられる発電機に関する。 The present invention relates to a generator used for a bicycle hub dynamo or the like.

自転車のハブダイナモは、車輪と同程度の速度で回転子が回転するため、ローラーダイナモと比べて回転子の回転速度が遅くなり易く、低速走行時の誘導起電力が不十分になる傾向がある。そこで、ハブダイナモには、回転子の回転速度が小さい場合でも高周波数の交流電力が得られるように工夫したものが好適に用いられる。 Since the rotor of a bicycle hub dynamo rotates at the same speed as the wheels, the rotation speed of the rotor tends to be slower than that of the roller dynamo, and the induced electromotive force at low speeds tends to be insufficient. .. Therefore, as the hub dynamo, a hub dynamo devised so that high-frequency AC power can be obtained even when the rotation speed of the rotor is low is preferably used.

この一例として、特許文献1には、クローポール型発電機が提案されている。この発電機は、固定子と、固定子の外周側に配置される回転子とを備える。回転子は周方向に並べて配置される複数の磁石を有し、各磁石は固定子と対向する磁極が周方向に交互に異なる磁極となる。固定子は軸方向両側に配置される一対の固定子コアを備える。各固定子コアは互いに近づく側に向けて延びる複数の爪部を有し、別々の固定子コアの爪部が周方向に交互に位置するように設けられる。各固定子コアの爪部は回転子の各磁石の径方向内側に配置され、その磁石により周方向に交互に異なる極性が生じるように励磁される。固定子には磁石から各固定子コアの爪部を介して磁束が通過する位置に電機子コイルが配置される。 As an example of this, Patent Document 1 proposes a claw pole type generator. This generator includes a stator and a rotor arranged on the outer peripheral side of the stator. The rotor has a plurality of magnets arranged side by side in the circumferential direction, and each magnet has magnetic poles facing the stator that are alternately different in the circumferential direction. The stator comprises a pair of stator cores arranged on both sides in the axial direction. Each stator core has a plurality of claws extending toward the side approaching each other, and the claws of the separate stator cores are provided so as to be alternately positioned in the circumferential direction. The claws of each stator core are arranged inside each magnet of the rotor in the radial direction, and the magnets are excited so that different polarities are alternately generated in the circumferential direction. An armature coil is arranged in the stator at a position where magnetic flux passes from the magnet through the claw portion of each stator core.

この発電機では、回転子の回転により各固定子コアの爪部に対する磁石の相対位置が変わり、これに伴い各爪部の極性が切り替わることで、電機子コイルを鎖交する主磁束の向きが反転し、電機子コイルに誘導起電力が生じる。このとき得られる交流電力は、磁石の極数に比例する大きさの周波数となるため、磁石の極数に応じた高周波数の交流電力を得やすくなっている。 In this generator, the relative position of the magnet with respect to the claws of each stator core changes due to the rotation of the rotor, and the polarity of each claw is switched accordingly, so that the direction of the main magnetic flux interlinking the armature coil is changed. It reverses and an induced electromotive force is generated in the armature coil. Since the AC power obtained at this time has a frequency proportional to the number of poles of the magnet, it is easy to obtain a high frequency AC power corresponding to the number of poles of the magnet.

特開2007−49839号公報Japanese Unexamined Patent Publication No. 2007-94839

近年、自転車の意匠性の向上を図るため、ハブの外径寸法の小型化が要求されており、これに伴い、ハブダイナモの外径寸法の小型化が望まれている。クローポール型発電機では、異なる極性に励磁される各固定子コアの爪部が周方向に交互に並ぶように構成される。よって、ハブダイナモの外径寸法が小さくなるにつれて、隣り合う爪部間の距離が過度に小さくなる。この結果、異なる極性に励磁された爪部の間に磁束が通り易くなり、電機子コイルを鎖交しない漏れ磁束が増大し易くなる。従って、クローポール型発電機では、外径寸法の低減に伴い漏れ磁束が増大し、十分な誘導起電力を得にくいという問題点があった。 In recent years, in order to improve the design of bicycles, it has been required to reduce the outer diameter of the hub, and along with this, it is desired to reduce the outer diameter of the hub dynamo. In the claw pole type generator, the claws of the stator cores excited to have different polarities are arranged alternately in the circumferential direction. Therefore, as the outer diameter of the hub dynamo becomes smaller, the distance between adjacent claws becomes excessively small. As a result, the magnetic flux easily passes between the claws excited to have different polarities, and the leakage flux that does not interlink the armature coil tends to increase. Therefore, the claw pole type generator has a problem that the leakage flux increases as the outer diameter dimension is reduced, and it is difficult to obtain a sufficient induced electromotive force.

本発明は、このような課題に鑑みてなされており、その目的の1つは、回転子の回転速度が小さい場合でも高周波数の交流電力を得やすく、更には外径寸法の小型化に適した発電機を提供することにある。 The present invention has been made in view of such a problem, and one of the objects thereof is that it is easy to obtain high-frequency AC power even when the rotation speed of the rotor is small, and further, it is suitable for miniaturization of the outer diameter dimension. It is to provide a generator.

本発明のある態様に係る発電機は、固定子と、固定子の外周側又は内周側に配置される回転子と、を備え、回転子は、固定子と対向する磁極が周方向に交互に異なる磁極となる複数の磁石を有し、固定子は、周方向に間隔を空けて複数の第1溝部が形成される固定子コアと、複数の第1溝部間に巻き回される電機子コイルと、を有し、固定子コアは、一つの第1溝部と、周方向の一方に隣り合う第1溝部との間に配置される第1固定子突極部と、一つの第1溝部と、周方向の他方に隣り合う第1溝部との間に配置される第2固定子突極部と、を有し、回転子が回転するとき、第1固定子突極部及び第2固定子突極部のそれぞれと対向する磁石の磁極が異なる第1状態と、第1固定子突極部及び第2固定子突極部のそれぞれと対向する磁石の磁極が第1状態とは反転した磁極となる第2状態とが交互に切り替わるように、磁石、第1固定子突極部及び第2固定子突極部の位置が定められる。 A generator according to an aspect of the present invention includes a stator and a rotor arranged on the outer peripheral side or the inner peripheral side of the stator, and the rotor has magnetic poles facing the stator alternately in the circumferential direction. The stator has a plurality of magnets having different magnetic poles, and the stator is an stator core in which a plurality of first grooves are formed at intervals in the circumferential direction and an armature wound between the plurality of first grooves. The stator core has a coil, and the stator core has a first stator salient pole portion arranged between one first groove portion and a first groove portion adjacent to one in the circumferential direction, and one first groove portion. And a second stator salient pole portion arranged between the first groove portion adjacent to the other in the circumferential direction, and when the rotor rotates, the first stator salient pole portion and the second fixing The first state in which the magnetic poles of the magnets facing each of the child salient poles are different, and the magnetic poles of the magnets facing each of the first stator salient pole and the second stator salient pole are reversed from the first state. The positions of the magnet, the first stator salient pole portion and the second stator salient pole portion are determined so that the second state of the magnetic poles is alternately switched.

本発明によれば、回転子の回転速度が小さい場合でも高周波数の交流電力を得やすく、更には外径寸法の小型化に適した発電機を得られる。 According to the present invention, it is easy to obtain high-frequency AC power even when the rotation speed of the rotor is small, and it is possible to obtain a generator suitable for miniaturization of the outer diameter dimension.

第1実施形態に係る自転車用発電機が搭載される自転車を示す部分側面図である。It is a partial side view which shows the bicycle on which the bicycle generator which concerns on 1st Embodiment is mounted. 第1実施形態に係る自転車のハブや周囲の構成を示す前面図である。It is a front view which shows the structure of the hub and the surroundings of the bicycle which concerns on 1st Embodiment. 第1実施形態に係る自転車用発電機を示す断面図である。It is sectional drawing which shows the generator for a bicycle which concerns on 1st Embodiment. 第1実施形態に係る自転車用発電機の電機子コイルを示す断面図である。It is sectional drawing which shows the armature coil of the bicycle generator which concerns on 1st Embodiment. 第1実施形態に係る磁石、固定子突極部の位置関係を示す図である。It is a figure which shows the positional relationship of the magnet and the stator salient pole part which concerns on 1st Embodiment. 第1実施形態に係る発電機の電気角が零である状態を示す図である。It is a figure which shows the state which the electric angle of the generator which concerns on 1st Embodiment is zero. 第1実施形態に係る発電機の電気角がπ/2である状態を示す図である。It is a figure which shows the state which the electric angle of the generator which concerns on 1st Embodiment is π / 2. 第1実施形態に係る発電機の電気角がπである状態を示す図である。It is a figure which shows the state which the electric angle of the generator which concerns on 1st Embodiment is π. 第1実施形態に係る発電機の電気角が3π/2である状態を示す図である。It is a figure which shows the state which the electric angle of the generator which concerns on 1st Embodiment is 3π / 2. 第2実施形態に係る発電機の断面図である。It is sectional drawing of the generator which concerns on 2nd Embodiment. 第2実施形態に係る発電機の電機子コイルを示す断面図である。It is sectional drawing which shows the armature coil of the generator which concerns on 2nd Embodiment. 第2実施形態に係る発電機の電気角が零である状態を示す図である。It is a figure which shows the state which the electric angle of the generator which concerns on 2nd Embodiment is zero. 第2実施形態に係る発電機の電気角がπ/2である状態を示す図である。It is a figure which shows the state which the electric angle of the generator which concerns on 2nd Embodiment is π / 2. 第2実施形態に係る発電機の電気角がπである状態を示す図である。It is a figure which shows the state which the electric angle of the generator which concerns on 2nd Embodiment is π. 第2実施形態に係る発電機の電気角が3π/2である状態を示す図である。It is a figure which shows the state which the electric angle of the generator which concerns on 2nd Embodiment is 3π / 2.

以下、各実施形態の説明では、同一の構成要素に同一の符号を付し、重複する説明を省略する。また、各図面では、説明の便宜のため、構成要素の一部を適宜省略する。 Hereinafter, in the description of each embodiment, the same components are designated by the same reference numerals, and duplicate description will be omitted. Further, in each drawing, for convenience of explanation, some of the components are omitted as appropriate.

[第1の実施の形態]
図1は第1実施形態に係る自転車用発電機10(以下、単に発電機10という)が搭載される自転車12を示す部分側面図である。自転車12は、メインフレーム14のヘッドチューブ16に回転可能に支持されるフロントフォーク18と、フロントフォーク18に取り付けられるハブ軸20とを備える。ハブ軸20には車輪としての前輪22が回転自在に支持される。前輪22の横側には前照灯24が設置され、これには発電機10により得られた電力が供給される。
[First Embodiment]
FIG. 1 is a partial side view showing a bicycle 12 on which a bicycle generator 10 (hereinafter, simply referred to as a generator 10) according to the first embodiment is mounted. The bicycle 12 includes a front fork 18 rotatably supported by the head tube 16 of the main frame 14, and a hub shaft 20 attached to the front fork 18. A front wheel 22 as a wheel is rotatably supported on the hub shaft 20. A headlight 24 is installed on the side of the front wheel 22, and the electric power obtained by the generator 10 is supplied to the headlight 24.

前輪22はハブ軸20に軸受け(図示せず)を介して回転自在に支持される筒状のハブ26と、ハブ26の外周部に取り付けられる複数のスポーク28と、各スポーク28の外周部に取り付けられるリム30とを更に有する。リム30にはタイヤ32が取り付けられる。 The front wheel 22 has a tubular hub 26 rotatably supported by a hub shaft 20 via a bearing (not shown), a plurality of spokes 28 attached to the outer peripheral portion of the hub 26, and an outer peripheral portion of each spoke 28. It also has a rim 30 to be attached. A tire 32 is attached to the rim 30.

図2は自転車12のハブ26や周囲の構成を示す前面図である。ハブ26以外の構成は二点鎖線で示す。ハブ26内にはハブダイナモとなる発電機10が収容される。ハブ軸20の軸方向の両端部には雄ねじ34が形成される。ハブ軸20は、各雄ねじ34に螺合したナット36の締め付けにより、ハブ26とともにフロントフォーク18に固定される。 FIG. 2 is a front view showing the configuration of the hub 26 and the surroundings of the bicycle 12. Configurations other than the hub 26 are shown by alternate long and short dash lines. A generator 10 serving as a hub dynamo is housed in the hub 26. Male threads 34 are formed at both ends of the hub shaft 20 in the axial direction. The hub shaft 20 is fixed to the front fork 18 together with the hub 26 by tightening the nuts 36 screwed into each male screw 34.

図3は発電機10の断面図である。本図は後述する回転子40の回転中心の軸線方向に直交する断面図であり、図2のA−A線断面でもある。なお、本図ではハブ26を省略する。また、以下の説明では、後述する固定子38及び回転子40の各構成要素の位置関係を説明するうえで、「軸方向」、「周方向」、「径方向」の用語を使うことがある。このうち「軸方向」は回転子40の回転中心の軸線方向を意味し、「周方向」、「径方向」のそれぞれは回転子40の回転中心に関して周方向、径方向を意味する。 FIG. 3 is a cross-sectional view of the generator 10. This figure is a cross-sectional view orthogonal to the axial direction of the rotation center of the rotor 40, which will be described later, and is also a cross-sectional view taken along the line AA of FIG. In this figure, the hub 26 is omitted. Further, in the following description, the terms "axial direction", "circumferential direction", and "diameter direction" may be used in explaining the positional relationship of each component of the stator 38 and the rotor 40, which will be described later. .. Of these, the "axial direction" means the axial direction of the rotation center of the rotor 40, and the "circumferential direction" and the "diameter direction" mean the circumferential direction and the radial direction with respect to the rotation center of the rotor 40, respectively.

発電機10は、ハブ軸20に対して固定される固定子38と、ハブ軸20に対して回転自在に支持される回転子40とを備える。発電機10は、固定子38の外周側に回転子40が配置されるアウターロータ型発電機である。また、発電機10は同期発電機である。回転子40は、前輪22の一部であるハブ26と一体に回転可能に設けられる。回転子40は前輪22の回転に連動して回転可能となる。 The generator 10 includes a stator 38 fixed to the hub shaft 20 and a rotor 40 rotatably supported by the hub shaft 20. The generator 10 is an outer rotor type generator in which the rotor 40 is arranged on the outer peripheral side of the stator 38. Further, the generator 10 is a synchronous generator. The rotor 40 is rotatably provided integrally with the hub 26 which is a part of the front wheel 22. The rotor 40 can rotate in conjunction with the rotation of the front wheels 22.

回転子40は、全体として環状をなす。回転子40は、環状基部42を含む回転子コア46と、回転子40の周方向に並べて配置される複数の磁石48とを有する。磁石48は、固定子38と対向する側にある環状基部42の内周面に接着等により接合される。回転子コア46には、環状基部42の内周側に複数の突極部が設けられていない。 The rotor 40 forms an annular shape as a whole. The rotor 40 has a rotor core 46 including an annular base 42, and a plurality of magnets 48 arranged side by side in the circumferential direction of the rotor 40. The magnet 48 is bonded to the inner peripheral surface of the annular base 42 on the side facing the stator 38 by adhesion or the like. The rotor core 46 is not provided with a plurality of salient poles on the inner peripheral side of the annular base 42.

磁石48は永久磁石である。磁石48は後述の電機子コイル60の界磁に用いる。磁石48は径方向が着磁方向となる。本図では磁石48内でS極からN極に向かう方向を矢印Cで示す。磁石48は周方向に沿って延びる板状に設けられる。磁石48は、固定子38と径方向に対向する磁極が周方向に交互に異なる磁極となるように複数設けられる。各磁石48は、固定子38と径方向に対向する内周部の周長w1が同等の大きさとなるように構成される。ここでの「同等」とは、完全に同一である場合と、略同一である場合とを含む。「同等」の解釈は以下も同様である。 The magnet 48 is a permanent magnet. The magnet 48 is used for the field of the armature coil 60 described later. The radial direction of the magnet 48 is the magnetizing direction. In this figure, the direction from the south pole to the north pole in the magnet 48 is indicated by an arrow C. The magnet 48 is provided in a plate shape extending along the circumferential direction. A plurality of magnets 48 are provided so that the magnetic poles facing the stator 38 in the radial direction are alternately different magnetic poles in the circumferential direction. Each magnet 48 is configured so that the peripheral length w1 of the inner peripheral portion facing the stator 38 in the radial direction has the same size. The term "equivalent" here includes the case where they are completely the same and the case where they are substantially the same. The interpretation of "equivalent" is the same as follows.

磁石48は所定の角度λ(以下、磁極ピッチともいう)と同等の角度で周方向にずらした位置に配置される。本例では、磁石48は合計20個設けられ、固定子38と対向する磁極も合計20個設けられる。つまり、これらは偶数個設けられる。また、磁極ピッチλは18°(=360°/20)となる。この磁極ピッチλは発電機10の電気角πに相当し、回転子40が磁極ピッチλ×2だけ回転すると、後述のように、電機子コイル60により一周期分の交流電力が生じる。 The magnet 48 is arranged at a position shifted in the circumferential direction at an angle equivalent to a predetermined angle λ (hereinafter, also referred to as magnetic pole pitch). In this example, a total of 20 magnets 48 are provided, and a total of 20 magnetic poles facing the stator 38 are also provided. That is, an even number of these is provided. Further, the magnetic pole pitch λ is 18 ° (= 360 ° / 20). This magnetic pole pitch λ corresponds to the electric angle π of the generator 10, and when the rotor 40 rotates by the magnetic pole pitch λ × 2, the armature coil 60 generates AC power for one cycle as described later.

固定子38は、全体として環状をなす。固定子38は、周方向に間隔を空けて複数の第1溝部52が形成される固定子コア50を有する。回転子コア46や固定子コア50は、回転子40の軸方向に複数の金属板を積層して構成される。この金属板は電磁鋼板等の軟磁性体を素材とする。 The stator 38 forms an annular shape as a whole. The stator 38 has a stator core 50 in which a plurality of first groove portions 52 are formed at intervals in the circumferential direction. The rotor core 46 and the stator core 50 are configured by laminating a plurality of metal plates in the axial direction of the rotor 40. This metal plate is made of a soft magnetic material such as an electromagnetic steel plate.

各第1溝部52は周方向に同等の角度をずらした位置に配置される。本例では、第1溝部52は合計4個設けられる。第1溝部52は、回転子40と対向する側である径方向外側から反対側の径方向内側に窪むように形成される。 Each of the first groove portions 52 is arranged at a position shifted by an equivalent angle in the circumferential direction. In this example, a total of four first groove portions 52 are provided. The first groove portion 52 is formed so as to be recessed from the radial outer side on the side facing the rotor 40 to the radial inner side on the opposite side.

固定子38は、第1溝部52の他に、各第1溝部52のそれぞれの底側に隣接する弧状の磁路接続部54と、第1溝部52に対して周方向両側に隣接する磁路部56A、56Bとを有する。磁路接続部54は各磁路部56A、56Bを周方向に接続する。磁路部56A、56Bは、周方向に一つおきに配置される第1溝部52の周方向の一方(図中時計回り方向)に隣接する第1磁路部56Aと、周方向の他方(図中反時計回り方向)に隣接する第2磁路部56Bとを有する。第1磁路部56Aと第2磁路部56Bは周方向に交互に配置され、本例では、第1磁路部56Aは2個、第2磁路部56Bは2個設けられる。 In addition to the first groove portion 52, the stator 38 includes an arc-shaped magnetic path connecting portion 54 adjacent to the bottom side of each first groove portion 52, and a magnetic path adjacent to both sides in the circumferential direction with respect to the first groove portion 52. It has parts 56A and 56B. The magnetic path connecting portion 54 connects the magnetic path portions 56A and 56B in the circumferential direction. The magnetic path portions 56A and 56B are one of the first magnetic path portions 56A adjacent to one of the circumferential directions (clockwise in the figure) of the first groove portions 52 arranged every other in the circumferential direction, and the other in the circumferential direction (the other in the circumferential direction). It has a second magnetic path portion 56B adjacent to the counterclockwise direction in the figure). The first magnetic path portion 56A and the second magnetic path portion 56B are alternately arranged in the circumferential direction. In this example, two first magnetic path portions 56A and two second magnetic path portions 56B are provided.

磁路部56A、56Bには、回転子40と対向する側である径方向外側に向けて突出する複数の固定子突極部62A、62Bが設けられる。各固定子突極部62A、62Bは磁石48に対して所定のギャップを空けて配置される。各固定子突極部62A、62Bの回転子40と径方向に対向する先端部の周長w2は、磁石48の内周部周長w1より小さくなるように構成される。 The magnetic path portions 56A and 56B are provided with a plurality of stator salient pole portions 62A and 62B that project outward in the radial direction on the side facing the rotor 40. The stator salient poles 62A and 62B are arranged with a predetermined gap with respect to the magnet 48. The peripheral length w2 of the tip portion of the stator salient poles 62A and 62B facing the rotor 40 in the radial direction is configured to be smaller than the inner peripheral peripheral length w1 of the magnet 48.

固定子突極部62A、62Bは、第1磁路部56Aに設けられる2つの第1固定子突極部62Aと、第2磁路部56Bに設けられる2つの第2固定子突極部62Bとを有する。第1固定子突極部62A及び第2固定子突極部62Bは、周方向に1つおきに配置される第1溝部52(たとえば、図中上側の第1溝部52と下側の第1溝部52)に応じた位置に配置される。詳細には、第1固定子突極部62Aは、周方向に1つおきに配置される一つの第1溝部52(たとえば、図中上側の第1溝部52)と周方向の一方(時計回り方向)に隣り合う第1溝部52(たとえば、図中右側の第1溝部52)との間の周方向範囲内に配置される。第2固定子突極部62Bは、一つの第1溝部52と周方向の他方(反時計回り方向)に隣り合う第1溝部52(たとえば、図中左側の第1溝部52)との間の周方向範囲内に配置される。本例では、2つの第1固定子突極部62Aと2つの第2固定子突極部62Bが周方向に交互に設けられ、それぞれ合計4個ずつ設けられる。 The stator salient poles 62A and 62B have two first stator salient poles 62A provided in the first magnetic path 56A and two second stator salient poles 62B provided in the second magnetic path 56B. And have. The first stator salient pole portion 62A and the second stator salient pole portion 62B are arranged in every other first groove portion 52 in the circumferential direction (for example, the first groove portion 52 on the upper side in the drawing and the first groove portion 52 on the lower side in the drawing. It is arranged at a position corresponding to the groove portion 52). Specifically, the first stator salient pole 62A has one first groove 52 (for example, the first groove 52 on the upper side in the drawing) and one of the circumferential directions (clockwise) arranged every other in the circumferential direction. It is arranged within the circumferential range between the first groove 52 (for example, the first groove 52 on the right side in the drawing) adjacent to the first groove 52 (direction). The second stator salient pole portion 62B is located between one first groove portion 52 and the first groove portion 52 (for example, the first groove portion 52 on the left side in the drawing) adjacent to the other in the circumferential direction (counterclockwise direction). It is placed within the circumferential range. In this example, two first stator salient poles 62A and two second stator salient poles 62B are provided alternately in the circumferential direction, and a total of four are provided respectively.

1つの第1磁路部56Aに設けられる複数の第1固定子突極部62A間や、1つの第2磁路部56Bに設けられる複数の第2固定子突極部62B間には第2溝部64が形成される。第2溝部64は回転子40と対向する側である径方向外側から反対側の径方向内側に向けて窪むように形成される。第2溝部64の径方向寸法は第1溝部52の径方向寸法より小さくなる。この結果、各磁路部56A、56Bは第2溝部64の底側に隣接する部分での径方向寸法が磁路接続部54より大きくなる。これにより、後述のように、各磁路部56A、56Bのそれぞれに電機子コイル60を巻き回すうえで、各磁路部56A、56Bの強度を確保し易くなる。 The second between the plurality of first stator salient poles 62A provided in one first magnetic path portion 56A and the plurality of second stator salient poles 62B provided in one second magnetic path portion 56B. A groove 64 is formed. The second groove portion 64 is formed so as to be recessed from the radial outer side on the side facing the rotor 40 to the radial inner side on the opposite side. The radial dimension of the second groove portion 64 is smaller than the radial dimension of the first groove portion 52. As a result, the radial dimensions of the magnetic path portions 56A and 56B at the portions adjacent to the bottom side of the second groove portion 64 are larger than those of the magnetic path connecting portion 54. As a result, as will be described later, when the armature coil 60 is wound around each of the magnetic path portions 56A and 56B, it becomes easy to secure the strength of the magnetic path portions 56A and 56B.

また、各磁路部56A、56Bは、回転子40と対向する側である径方向外側に向かうにつれて周方向の幅が大きくなるように形成される。これにより、各磁路部56A、56Bのそれぞれに電機子コイル60を巻き回すうえで、電機子コイル60が各磁路部56A、56Bから径方向外側に外れ難くなる。 Further, the magnetic path portions 56A and 56B are formed so that the width in the circumferential direction increases toward the outer side in the radial direction on the side facing the rotor 40. As a result, when the armature coil 60 is wound around each of the magnetic path portions 56A and 56B, the armature coil 60 is less likely to come off from the magnetic path portions 56A and 56B in the radial direction.

なお、第1溝部52は、第1固定子突極部62Aと第2固定子突極部62Bとを周方向に隔てるために設けられる。また、第2溝部64は、複数の第1固定子突極部62Aのそれぞれや、複数の第2固定子突極部62Bのそれぞれを周方向に隔てるために設けられる。 The first groove portion 52 is provided to separate the first stator salient pole portion 62A and the second stator salient pole portion 62B in the circumferential direction. Further, the second groove portion 64 is provided to separate each of the plurality of first stator salient poles 62A and each of the plurality of second stator salient poles 62B in the circumferential direction.

図4は発電機10の電機子コイル60を示す断面図である。本図では回転子40の軸方向の一方(紙面手前側)での電機子コイル60の巻き方向Bを併せて示す。固定子38は、複数の第1溝部52間に巻き回される電機子コイル60を更に有する。電機子コイル60は、周方向に隣り合う第1溝部52間に設けられる第1磁路部56A、第2磁路部56Bの何れかに巻き回される。このとき、電機子コイル60は、複数の第1固定子突極部62A、又は、複数の第2固定子突極部62Bを周方向に跨ぐように巻き回される。電機子コイル60は、このような複数の第1固定子突極部62A、又は、複数の第2固定子突極部62Bを周方向両側、軸方向両側から取り囲むように巻き回される。 FIG. 4 is a cross-sectional view showing the armature coil 60 of the generator 10. In this figure, the winding direction B of the armature coil 60 in one of the axial directions of the rotor 40 (the front side of the paper surface) is also shown. The stator 38 further includes an armature coil 60 that is wound between the plurality of first groove portions 52. The armature coil 60 is wound around either the first magnetic path portion 56A or the second magnetic path portion 56B provided between the first groove portions 52 adjacent to each other in the circumferential direction. At this time, the armature coil 60 is wound so as to straddle the plurality of first stator salient poles 62A or the plurality of second stator salient poles 62B in the circumferential direction. The armature coil 60 is wound so as to surround such a plurality of first stator salient poles 62A or a plurality of second stator salient poles 62B from both sides in the circumferential direction and both sides in the axial direction.

このように第1固定子突極部62Aや第2固定子突極部62Bを隔てるために設けられる第1溝部52の空間を利用して、ここに電機子コイル60を収めているため、電機子コイル60の分だけ径方向での厚さ寸法が抑えられる。 Since the armature coil 60 is housed in the space of the first groove 52 provided to separate the first stator salient pole portion 62A and the second stator salient pole portion 62B in this way, the armature is electric. The thickness dimension in the radial direction can be suppressed by the amount of the child coil 60.

電機子コイル60は周方向に隣り合う第1溝部52間に集中巻きで巻き回されるが、他の第1溝部52を経由するように分布巻きで巻き回されてもよい。周方向に隣り合う電機子コイル60は互いに逆向きの巻き方向Bで巻き回されるが、同方向に巻き回されてもよい。 The armature coil 60 is wound in a concentrated winding between the first groove portions 52 adjacent to each other in the circumferential direction, but may be wound in a distributed winding so as to pass through another first groove portion 52. The armature coils 60 adjacent to each other in the circumferential direction are wound in the winding directions B opposite to each other, but they may be wound in the same direction.

電機子コイル60には、後述のように、回転子40が回転するとき、同相の交流電力が生じる。各電機子コイル60は電気的に並列に接続され、その出力端は図示しない整流回路に接続され、整流回路には単相の交流電力が出力される。整流回路は交流電力を整流、平滑等して直流電力に変換したうえで、これを外部電気機器としての前照灯24(図1参照)に供給する。なお、各電機子コイル60は電気的に直列に接続されてもよい。 As will be described later, the armature coil 60 generates in-phase AC power when the rotor 40 rotates. Each armature coil 60 is electrically connected in parallel, its output end is connected to a rectifier circuit (not shown), and single-phase AC power is output to the rectifier circuit. The rectifier circuit rectifies and smoothes AC power to convert it into DC power, and then supplies this to the headlight 24 (see FIG. 1) as an external electric device. The armature coils 60 may be electrically connected in series.

図5は磁石48、固定子突極部62A、62Bの位置関係を示す図である。本図では、複数の磁石48、固定子突極部62A、62Bのうちの一部を区別するため、それぞれの符号の末尾に(a)等のアルファベットを付して示す。以下の図でも同様に示す場合がある。 FIG. 5 is a diagram showing the positional relationship between the magnet 48 and the stator salient poles 62A and 62B. In this figure, in order to distinguish a part of the plurality of magnets 48 and the stator salient poles 62A and 62B, alphabets such as (a) are added to the end of each code. The same may be shown in the following figure.

1つの第1磁路部56Aに設けられる複数の第1固定子突極部62Aは、各磁石48の磁極ピッチλとの関係で、λ×2と同等の角度で周方向にずらした位置に配置される。1つの第2磁路部56Bに設けられる複数の第2固定子突極部62Bも、λ×2と同等の角度で周方向にずらした位置に配置される。また、第1固定子突極部62Aの近傍にて周方向に隣り合う他の第2固定子突極部62Bはλ×3と同等の角度で周方向にずらした位置に配置される。 The plurality of first stator salient pole portions 62A provided in one first magnetic path portion 56A are positioned at positions shifted in the circumferential direction at an angle equivalent to λ × 2 in relation to the magnetic pole pitch λ of each magnet 48. Be placed. A plurality of second stator salient poles 62B provided in one second magnetic path portion 56B are also arranged at positions shifted in the circumferential direction at an angle equivalent to λ × 2. Further, the other second stator salient poles 62B adjacent to each other in the circumferential direction in the vicinity of the first stator salient pole 62A are arranged at positions shifted in the circumferential direction at an angle equivalent to λ × 3.

これにより、第1固定子突極部62Aは、nを1以上の自然数としたとき、他の第1固定子突極部62Aに対して、λ×2nと同等の角度で周方向にずらした位置に配置される。たとえば、第1固定子突極部62A(a)は、その時計方向に隣り合う他の第1固定子突極部62A(b)に対してλ×2で周方向にずれており、その反時計方向に隣り合う他の第1固定子突極部62A(f)に対してλ×8(=λ×3+λ×2+λ×3)で周方向にずれている。第2固定子突極部62Bも同様に、他の第2固定子突極部62Bに対して、λ×2nと同等の角度で周方向にずらした位置に配置される。 As a result, the first stator salient pole 62A is displaced in the circumferential direction at an angle equivalent to λ × 2n with respect to the other first stator salient pole 62A when n is a natural number of 1 or more. Placed in position. For example, the first stator salient pole portion 62A (a) is displaced in the circumferential direction by λ × 2 with respect to the other first stator salient pole portion 62A (b) adjacent to the clockwise direction, and the opposite of the first stator salient pole portion 62A (a). It is displaced in the circumferential direction by λ × 8 (= λ × 3 + λ × 2 + λ × 3) with respect to the other first stator salient poles 62A (f) adjacent to each other in the clockwise direction. Similarly, the second stator salient pole portion 62B is also arranged at a position shifted in the circumferential direction at an angle equivalent to λ × 2n with respect to the other second stator salient pole portion 62B.

また、第2固定子突極部62Bは、第1固定子突極部62Aに対して、λ×(2n+1)と同等の角度で周方向にずらした位置に配置される。たとえば、第2固定子突極部62B(h)は、その時計方向に隣り合う第1固定子突極部62A(a)に対してλ×3でずれており、その反時計方向に隣り合う第1固定子突極部62A(f)に対してλ×5(=λ×2+λ×3)でずれている。 Further, the second stator salient pole portion 62B is arranged at a position shifted in the circumferential direction at an angle equivalent to λ × (2n + 1) with respect to the first stator salient pole portion 62A. For example, the second stator salient pole portion 62B (h) is displaced by λ × 3 with respect to the first stator salient pole portion 62A (a) adjacent to the clockwise direction, and is adjacent to the first stator salient pole portion 62B (h) in the counterclockwise direction. It deviates from the first stator salient pole portion 62A (f) by λ × 5 (= λ × 2 + λ × 3).

以上の発電機10の動作を図6〜図9を用いて説明する。各図は回転子40が電気角でπ/2ずつ方向Pに回転したときの状態を示す。また、図6、図8では回転子コア46等を流れる磁束のうち、主磁束の流れを主に示し、漏れ磁束の流れは省略する。また、図7、図9では、漏れ磁束の流れを示す。以下では図6の位置関係にあるときの電気角が零であり、図7〜図9では電気角がπ/2、π、3π/2であるとする。また、便宜的に、一つの磁石48(a)に「○」印を付して示す。 The operation of the generator 10 described above will be described with reference to FIGS. 6 to 9. Each figure shows a state when the rotor 40 is rotated in the direction P by π / 2 at an electric angle. Further, in FIGS. 6 and 8, among the magnetic fluxes flowing through the rotor core 46 and the like, the flow of the main magnetic flux is mainly shown, and the flow of the leakage flux is omitted. Further, FIGS. 7 and 9 show the flow of the leakage flux. In the following, it is assumed that the electric angle is zero when the positional relationship is shown in FIG. 6, and that the electric angles are π / 2, π, and 3π / 2 in FIGS. 7 to 9. For convenience, one magnet 48 (a) is marked with a “◯”.

図6に示すように、電気角が零のとき、各固定子突極部62A、62Bは、その近傍の磁石48と径方向に対向し、磁石48に対して周方向の全幅に亘り重なる位置にある。このとき、第1固定子突極部62Aと対向する磁石48の磁極はN極となり、第2固定子突極部62Bと対向する磁石48の磁極はS極となる。つまり、第1固定子突極部62Aと第2固定子突極部62Bが対向する磁石48の磁極は異なるものとなる。 As shown in FIG. 6, when the electric angle is zero, the stator salient poles 62A and 62B face each other in the radial direction with the magnet 48 in the vicinity thereof, and overlap the magnet 48 over the entire width in the circumferential direction. It is in. At this time, the magnetic pole of the magnet 48 facing the first stator salient pole portion 62A is the N pole, and the magnetic pole of the magnet 48 facing the second stator salient pole portion 62B is the S pole. That is, the magnetic poles of the magnet 48 on which the first stator salient pole portion 62A and the second stator salient pole portion 62B face each other are different.

これにより、各第1固定子突極部62Aには、径方向外側に対向する磁石48から径方向内側に向かう磁束が流れ、各第2固定子突極部62Bには、径方向外側に対向する磁石48に向かう磁束が流れる。この結果、一つの第1溝部52を挟んだ周方向両側の第1固定子突極部62A及び第2固定子突極部62Bを通る閉ループの磁路Mpが形成される。たとえば、磁石48(b)は、第1固定子突極部62A(a)→磁路接続部54(a)→第2固定子突極部62B(h)を経由して磁石48(s)に至り、更に回転子コア46を経由して元の磁石48(b)に戻る磁路Mpを形成する。 As a result, a magnetic flux flowing inward in the radial direction from the magnet 48 facing the outer side in the radial direction flows through each of the first stator salient poles 62A, and the magnetic flux is opposed to the outer side in the radial direction in each of the second stator salient poles 62B. A magnetic flux flows toward the magnet 48. As a result, a closed-loop magnetic path Mp is formed that passes through the first stator salient poles 62A and the second stator salient poles 62B on both sides of the first groove 52 in the circumferential direction. For example, the magnet 48 (b) passes through the first stator salient pole portion 62A (a) → the magnetic path connecting portion 54 (a) → the second stator salient pole portion 62B (h), and then the magnet 48 (s). Further, a magnetic path Mp that returns to the original magnet 48 (b) via the rotor core 46 is formed.

この磁路Mpは各電機子コイル60内を径方向に鎖交するように形成される。このとき、周方向に隣り合う第1溝部52間には複数の第1固定子突極部62A又は複数の第2固定子突極部62Bの何れかが設けられる。このため、その複数の固定子突極部62A、62Bを周方向に跨ぐ電機子コイル60内には別々の磁石48から生じた磁束を同じ向きにして鎖交させることができる。 The magnetic path Mp is formed so as to interlink in each armature coil 60 in the radial direction. At this time, either a plurality of first stator salient poles 62A or a plurality of second stator salient poles 62B are provided between the first groove portions 52 adjacent to each other in the circumferential direction. Therefore, the magnetic fluxes generated from the different magnets 48 can be interlocked in the armature coil 60 straddling the plurality of stator salient poles 62A and 62B in the circumferential direction in the same direction.

図7に示すように、電気角がπ/2のとき、各固定子突極部62A、62Bは、その近傍の周方向に隣り合う2つの磁石48と径方向に対向し、各磁石48に対して周方向の半幅に亘り重なる位置にある。これら2つの磁石48の磁極はN極、S極となる。 As shown in FIG. 7, when the electric angle is π / 2, the stator salient poles 62A and 62B face each magnet 48 in the radial direction with two magnets 48 adjacent to each other in the circumferential direction in the vicinity thereof. On the other hand, it is in a position where it overlaps over half the width in the circumferential direction. The magnetic poles of these two magnets 48 are the north pole and the south pole.

この結果、周方向に隣り合う一方の磁石48から他方の磁石48に向けて、これらに対向する各固定子突極部62A、62Bや回転子コア46を経由して折り返すような閉ループの磁路Mpが形成される。この磁路Mpは各電機子コイル60を鎖交しないように形成される。 As a result, a closed-loop magnetic path that folds back from one magnet 48 adjacent to each other in the circumferential direction toward the other magnet 48 via the stator salient poles 62A and 62B and the rotor core 46 facing each other. Mp is formed. This magnetic path Mp is formed so as not to interlink each armature coil 60.

図8に示すように、電気角がπのとき、各固定子突極部62Aは、その近傍の磁石48と径方向に対向し、その磁石48に対して周方向の全幅に亘り重なる位置にある。このとき、第1固定子突極部62Aと対向する磁石48の磁極はS極となり、第2固定子突極部62Bと対向する磁石48の磁極はN極となる。つまり、第1固定子突極部62Aと第2固定子突極部62Bが対向する磁石48の磁極は、電気角が零のときとは反転した磁極となる。 As shown in FIG. 8, when the electric angle is π, each stator salient pole portion 62A faces the magnet 48 in the vicinity thereof in the radial direction and overlaps the magnet 48 over the entire width in the circumferential direction. is there. At this time, the magnetic pole of the magnet 48 facing the first stator salient pole portion 62A is the S pole, and the magnetic pole of the magnet 48 facing the second stator salient pole portion 62B is the N pole. That is, the magnetic poles of the magnet 48 in which the first stator salient pole portion 62A and the second stator salient pole portion 62B face each other are magnetic poles that are inverted from those when the electric angle is zero.

これにより、各第2固定子突極部62Bには、径方向外側に対向する磁石48から径方向内側に向かう磁束が流れ、各第1固定子突極部62Aには、径方向外側に対向する磁石48に向かう磁束が流れる。この結果、一つの第1溝部52を挟んだ周方向両側の第1固定子突極部62A及び第2固定子突極部62Bを通る閉ループの磁路Mpが形成される。たとえば、磁石48(r)は、第2固定子突極部62B(h)→磁路接続部54(a)→第1固定子突極部62A(a)を経由して磁石48(a)に至り、更に回転子コア46を経由して元の磁石48(r)に戻る磁路Mpを形成する。 As a result, magnetic flux flowing inward in the radial direction from the magnet 48 facing the outer side in the radial direction flows through each of the second stator salient poles 62B, and faces outward in the radial direction in each of the first stator salient poles 62A. A magnetic flux flows toward the magnet 48. As a result, a closed-loop magnetic path Mp is formed that passes through the first stator salient poles 62A and the second stator salient poles 62B on both sides of the first groove 52 in the circumferential direction. For example, the magnet 48 (r) passes through the second stator salient pole portion 62B (h) → the magnetic path connecting portion 54 (a) → the first stator salient pole portion 62A (a), and then the magnet 48 (a). Further, a magnetic path Mp that returns to the original magnet 48 (r) via the rotor core 46 is formed.

この磁路Mpは各電機子コイル60内を径方向に鎖交するように形成される。このとき、磁路Mpは、電気角が零のとき(図6参照)と比べて、電機子コイル60を鎖交する向きが逆向きとなる。 The magnetic path Mp is formed so as to interlink in each armature coil 60 in the radial direction. At this time, in the magnetic path Mp, the direction in which the armature coil 60 is interlaced is opposite to that in the case where the electric angle is zero (see FIG. 6).

図9に示すように、電気角が3π/2のとき、各固定子突極部62Aは、その近傍の周方向に隣り合う2つの磁石48と径方向に対向し、各磁石48に対して周方向の半幅に亘り重なる位置にある。これら2つの磁石48の磁極はN極、S極となる。 As shown in FIG. 9, when the electric angle is 3π / 2, each stator salient pole portion 62A faces the two magnets 48 adjacent to each other in the circumferential direction in the radial direction in the vicinity thereof, and with respect to each magnet 48. It is in a position where it overlaps over half the width in the circumferential direction. The magnetic poles of these two magnets 48 are the north pole and the south pole.

以上のような、電気角が零の状態を第1状態とし、πの状態を第2状態とする。この場合、第1固定子突極部62Aと対向する磁石48の磁極と、第2固定子突極部62Bと対向する磁石48の磁極とは、第1状態、第2状態のいずれのときでも、異なる磁極となる。また、これらの磁極は、第2状態では第1状態とは反転した磁極となる。 The state where the electric angle is zero as described above is defined as the first state, and the state where π is defined as the second state. In this case, the magnetic pole of the magnet 48 facing the first stator salient pole portion 62A and the magnetic pole of the magnet 48 facing the second stator salient pole portion 62B can be in either the first state or the second state. , Different magnetic poles. Further, these magnetic poles are the magnetic poles that are inverted from the first state in the second state.

図6に示すように、一つの電機子コイル60(たとえば、電機子コイル60(b))内では、第1状態のとき、径方向の一方(内側)に向けて鎖交する磁路Mpが形成される。また、図8に示すように、一つの電機子コイル60内では、第2状態のとき、径方向の他方(外側)に向けて鎖交する磁路Mpが形成される。また、一つの電機子コイル60に対して周方向に隣り合う他の電機子コイル60(たとえば、電機子コイル60(a))内では、図6に示すように、第1状態のとき、径方向の他方(外側)に向けて鎖交する磁路Mpが形成される。また、図8に示すように、他の電機子コイル60内では、第2状態のとき、径方向の一方(内側)に向けて鎖交する磁路Mpが形成される。つまり、第1状態と第2状態との間で切り替わると、各電機子コイル60内を鎖交する磁束の径方向での向きが反転するように切り替わり、各電機子コイル60に交流の誘導起電力が生じる。このとき、各電機子コイル60内で形成される磁路Mpの変化の仕方は同様となり、各電機子コイル60では同相の交流電力が生じる。このように、発電機10では、第1状態と第2状態とが交互に切り替わるように、複数の磁石48、複数の固定子突極部62A、62Bの位置が定められる。 As shown in FIG. 6, in one armature coil 60 (for example, armature coil 60 (b)), in the first state, magnetic paths Mp interlinking in one radial direction (inside) are formed. It is formed. Further, as shown in FIG. 8, in one armature coil 60, a magnetic path Mp interlinking toward the other (outside) in the radial direction is formed in the second state. Further, in another armature coil 60 (for example, armature coil 60 (a)) adjacent to one armature coil 60 in the circumferential direction, as shown in FIG. 6, in the first state, the diameter is A magnetic path Mp interlinking toward the other (outside) of the direction is formed. Further, as shown in FIG. 8, in the other armature coil 60, a magnetic path Mp that interlinks in one (inside) direction in the radial direction is formed in the second state. That is, when switching between the first state and the second state, the direction of the magnetic flux interlinking in each armature coil 60 in the radial direction is reversed, and alternating current is induced in each armature coil 60. Power is generated. At this time, the way of changing the magnetic path Mp formed in each armature coil 60 is the same, and AC power of the same phase is generated in each armature coil 60. In this way, in the generator 10, the positions of the plurality of magnets 48 and the plurality of stator salient poles 62A and 62B are determined so that the first state and the second state are alternately switched.

以上の発電機10の作用効果を説明する。
一般に、発電機の周波数f(Hz)は、回転子の回転速度N(r/min)と、発電機の極数Pとの間で下記の式(1)の関係を満たす。ここでの発電機の極数Pとは、本実施形態では磁石48の数(20個)となる。
N=120×f/P ・・・ (1)
The operation and effect of the above generator 10 will be described.
Generally, the frequency f (Hz) of the generator satisfies the relationship of the following equation (1) between the rotation speed N (r / min) of the rotor and the number of poles P of the generator. The number of poles P of the generator here is the number of magnets 48 (20 magnets) in this embodiment.
N = 120 × f / P ・ ・ ・ (1)

本発明者は、図3に示す構造を用いて解析をした。この解析では、回転子40の回転速度Nを120(r/min)とし、各電機子コイル60により発電される電力の周波数f(Hz)を求め、磁石48の数に応じた周波数fの電力が得られるか確認した。この結果、周波数fは20(Hz)であることが求められ、式(1)より、磁石48の数が発電機の極数となることが確認された。 The present inventor analyzed using the structure shown in FIG. In this analysis, the rotation speed N of the rotor 40 is set to 120 (r / min), the frequency f (Hz) of the power generated by each armature coil 60 is obtained, and the power of the frequency f corresponding to the number of magnets 48 is obtained. I checked if I could get it. As a result, the frequency f was required to be 20 (Hz), and it was confirmed from the equation (1) that the number of magnets 48 was the number of poles of the generator.

従って、本実施形態に係る発電機10では、磁石48の数が増えるほど誘導起電力の周波数が増大し、回転子40の回転速度が小さい場合でも高周波数の交流電力を得やすくなる。なお、誘導起電力の電圧は、電機子コイル60を鎖交する磁束と周波数の積に比例することから、高周波数の交流電力を得られるということは、それだけ高電圧の交流電力を得られることになる。 Therefore, in the generator 10 according to the present embodiment, the frequency of the induced electromotive force increases as the number of magnets 48 increases, and even when the rotation speed of the rotor 40 is small, it becomes easy to obtain high frequency AC power. Since the voltage of the induced electromotive force is proportional to the product of the magnetic flux interlinking the armature coil 60 and the frequency, the fact that a high frequency AC power can be obtained means that a high voltage AC power can be obtained. become.

また、第1固定子突極部62Aや第2固定子突極部62Bが第1溝部52を挟んだ位置に設けられ、これらの間隔を離し易くなる。よって、磁石48によりこれらが異なる極性に励磁されても、第1固定子突極部62Aと第2固定子突極部62Bの間での漏れ磁束の発生を抑え易くなる。このため、これらの間での漏れ磁束の発生を抑えつつ、発電機10の回転子40や固定子38の外径寸法を小型化し易くなる。なお、このような第1固定子突極部62Aや第2固定子突極部62Bの間での漏れ磁束の発生を抑えられるということは、電機子コイル60を鎖交する磁束の低減を抑えられ、発電機10により十分な出力の電圧を得やすくなることになる。 Further, the first stator salient pole portion 62A and the second stator salient pole portion 62B are provided at positions sandwiching the first groove portion 52, and it becomes easy to separate them. Therefore, even if these are excited to different polarities by the magnet 48, it becomes easy to suppress the generation of leakage flux between the first stator salient pole portion 62A and the second stator salient pole portion 62B. Therefore, it becomes easy to reduce the outer diameter dimension of the rotor 40 and the stator 38 of the generator 10 while suppressing the generation of the leakage flux between them. The fact that the generation of leakage flux between the first stator salient pole portion 62A and the second stator salient pole portion 62B can be suppressed means that the reduction of the magnetic flux interlinking the armature coil 60 is suppressed. Therefore, it becomes easy to obtain a sufficient output voltage by the generator 10.

このように第1固定子突極部62Aや第2固定子突極部62Bを隔てるために設けられる第1溝部52の空間を利用して、ここに電機子コイル60を収めているため、電機子コイル60の分だけ径方向での厚さ寸法が抑えられる。 Since the armature coil 60 is housed in the space of the first groove 52 provided to separate the first stator salient pole portion 62A and the second stator salient pole portion 62B in this way, the armature is electric. The thickness dimension in the radial direction can be suppressed by the amount of the child coil 60.

また、たとえば、特開2012−182961号に記載のような、固定子の複数の突極部のそれぞれに電機子コイルを巻き回す三相交流発電機では、回転子の磁極数の増大に伴い電機子コイルの数が増大し、それだけ高コストや組み立て性の低下を招く。この点、本実施形態では、高周波数の交流電力を得るうえで、電機子コイル60の数を増やさずに磁石48の数を増やすだけでよいため、それだけ部品数を削減でき、低コストにしつつ良好な組み立て性を得られる。 Further, for example, in a three-phase AC generator in which an armature coil is wound around each of a plurality of salient poles of a stator as described in Japanese Patent Application Laid-Open No. 2012-182961, an electric machine is used as the number of magnetic poles of the rotor increases. The number of child coils increases, which leads to high cost and reduced assemblability. In this respect, in the present embodiment, in order to obtain high-frequency AC power, it is only necessary to increase the number of magnets 48 without increasing the number of armature coils 60, so that the number of parts can be reduced and the cost can be reduced. Good assembleability can be obtained.

また、従来のクローポール型発電機では、回転子の磁石から各固定子コアの爪部に流れる磁束は、爪部内で軸方向に向きを変えたうえで爪部の根元部に向けて流れる。この爪部の磁路方向(軸方向)と直交する磁路断面積は、爪部の径方向の厚みや周長に応じて定まる。ここで、発電機の軸長を変えずに外径寸法を小型化した場合、固定子コアの爪部は、軸長が変わらずに周方向に細くなり、磁石と対向するギャップ面が細くなるうえ、径方向の厚みが小さくなる結果、爪部の根元部での磁路断面積が小さくなる。よって、固定子コアの爪部がギャップ面で受け取った磁束は、磁路断面積が小さい爪部の根元部に集中し易くなり、根元部で磁気飽和が発生し易くなる。この結果、電機子コイルを鎖交する磁束が流れにくくなり、発電機により十分な出力の電圧を得にくくなる。 Further, in the conventional claw pole type generator, the magnetic flux flowing from the magnet of the rotor to the claw portion of each stator core changes the direction in the axial direction in the claw portion and then flows toward the root portion of the claw portion. The magnetic path cross-sectional area orthogonal to the magnetic path direction (axial direction) of the claw portion is determined according to the radial thickness and the peripheral length of the claw portion. Here, when the outer diameter dimension is miniaturized without changing the shaft length of the generator, the claw portion of the stator core becomes thinner in the circumferential direction without changing the shaft length, and the gap surface facing the magnet becomes thinner. Moreover, as a result of the decrease in the thickness in the radial direction, the magnetic path cross-sectional area at the base of the claw portion becomes small. Therefore, the magnetic flux received by the claw portion of the stator core at the gap surface tends to be concentrated on the root portion of the claw portion having a small magnetic path cross-sectional area, and magnetic saturation is likely to occur at the root portion. As a result, it becomes difficult for the magnetic flux interlinking the armature coil to flow, and it becomes difficult for the generator to obtain a sufficient output voltage.

この点、本実施形態に係る発電機10では、固定子コア50の固定子突極部62A、62Bには、軸方向ではなく径方向に向けて磁束が流れる。この固定子突極部62A、62Bの磁路方向(径方向)と直交する磁路断面積は、固定子突極部62A、62Bの軸長や周長に応じて定まり、発電機10の外径寸法を小型化した場合でも変化しにくい。このため、発電機10の外径寸法を小型化した場合でも、固定子コア50の軸長を長くすることにより固定子突極部62A、62Bの磁路断面積を確保できる。よって、発電機10の外径寸法を小型化した場合でも、固定子突極部62A、62Bの磁気飽和の発生を抑えられ、電機子コイル60を鎖交する磁束の減少を抑え、発電機10により十分な出力の電圧を得やすくなる。 In this regard, in the generator 10 according to the present embodiment, the magnetic flux flows through the stator salient poles 62A and 62B of the stator core 50 in the radial direction instead of the axial direction. The magnetic path cross-sectional area orthogonal to the magnetic path direction (diameter direction) of the stator salient poles 62A and 62B is determined according to the axial length and the peripheral length of the stator salient poles 62A and 62B, and is outside the generator 10. It does not change easily even when the diameter is reduced. Therefore, even when the outer diameter of the generator 10 is reduced, the magnetic path cross-sectional areas of the stator salient poles 62A and 62B can be secured by increasing the axial length of the stator core 50. Therefore, even when the outer diameter of the generator 10 is miniaturized, the generation of magnetic saturation of the stator salient poles 62A and 62B can be suppressed, the decrease of the magnetic flux interlinking the armature coil 60 can be suppressed, and the generator 10 can be suppressed. This makes it easier to obtain a sufficient output voltage.

また、周方向に隣り合う第1溝部52間には複数の第1固定子突極部62A、又は、複数の第2固定子突極部62Bが設けられ、それらを周方向に跨ぐように巻き回される電機子コイル60内には、その複数の固定子突極部62A、62Bを通して別々の磁石48から生じた磁束を同じ向きにして鎖交させることができる。よって、電機子コイル60内に単数の磁石48から生じた磁束を鎖交させるよりも、電機子コイル60内での磁束の変化量を大きくでき、それだけ高電圧の交流電力を得やすくなる。 Further, a plurality of first stator salient poles 62A or a plurality of second stator salient poles 62B are provided between the first groove portions 52 adjacent to each other in the circumferential direction, and they are wound so as to straddle them in the circumferential direction. In the armature coil 60 to be rotated, magnetic fluxes generated from different magnets 48 can be interlocked in the same direction through the plurality of stator salient poles 62A and 62B. Therefore, the amount of change in the magnetic flux in the armature coil 60 can be increased as compared with interlinking the magnetic flux generated from the single magnet 48 in the armature coil 60, and it becomes easier to obtain high-voltage AC power.

また、各第1固定子突極部62Aは他の第1固定子突極部62Aに対してλ×2nと同等の角度でずれ、各第2固定子突極部62Bは第1固定子突極部62Aに対してλ×(2n+1)と同等の角度でずれる。よって、磁石48に対する各固定子突極部62A、62Bの相対位置が揃えられ、各磁石48から生じる磁束により形成される磁路Mpの変化の仕方を合わせられ、各電機子コイル60により同相の交流電力を得やすくできる。 Further, each first stator salient pole portion 62A is displaced from the other first stator salient pole portion 62A at an angle equivalent to λ × 2n, and each second stator salient pole portion 62B is displaced from the other first stator salient pole portion 62B by the first stator protrusion. It deviates from the pole 62A at an angle equivalent to λ × (2n + 1). Therefore, the relative positions of the stator salient poles 62A and 62B with respect to the magnet 48 are aligned, the way of changing the magnetic path Mp formed by the magnetic flux generated from each magnet 48 is matched, and the armature coils 60 are in phase with each other. It is possible to easily obtain AC power.

また、固定子コア50や回転子コア46を複数の金属板を積層して構成できるため、主磁束が通る部分での渦電流による鉄損を大きく抑えられる。 Further, since the stator core 50 and the rotor core 46 can be formed by laminating a plurality of metal plates, iron loss due to eddy current in a portion through which the main magnetic flux passes can be greatly suppressed.

[第2の実施の形態]
図10は第2実施形態に係る発電機10を示す断面図であり、図11は発電機10の電機子コイル60を示す断面図である。回転子40の磁石48は、図3の例では、合計20個設けられたが、本例では合計22個設けられる。磁極ピッチλは約16.36°(=360°/22)となる。第1固定子突極部62A、第2固定子突極部62Bは、図3の例では、第1磁路部56A、第2磁路部56Bに2つずつ設けられたが、本例では5つずつ設けられる。このように、磁石48、固定子突極部62A、62Bの数は特に限られない。
[Second Embodiment]
FIG. 10 is a cross-sectional view showing the generator 10 according to the second embodiment, and FIG. 11 is a cross-sectional view showing the armature coil 60 of the generator 10. In the example of FIG. 3, a total of 20 magnets 48 of the rotor 40 are provided, but in this example, a total of 22 magnets are provided. The magnetic pole pitch λ is about 16.36 ° (= 360 ° / 22). In the example of FIG. 3, two first stator salient poles 62A and two second stator salient poles 62B are provided in the first magnetic path portion 56A and the second magnetic path portion 56B, but in this example, they are provided. Five each are provided. As described above, the number of magnets 48 and stator salient poles 62A and 62B is not particularly limited.

以上の発電機10の動作を図12〜図15を用いて説明する。各図は回転子40が電気角でπ/2ずつ方向Pに回転したときの状態を示す。図12、図14では、回転子コア46等を流れる磁束のうち、主磁束の流れを主に示し、漏れ磁束の流れは省略する。また、図13、図15では、漏れ磁束の流れを示す。以下では図12の位置関係にあるときの電気角が零であり、図13〜図15では電気角がπ/2、π、3π/2であるとする。 The operation of the generator 10 described above will be described with reference to FIGS. 12 to 15. Each figure shows a state when the rotor 40 is rotated in the direction P by π / 2 at an electric angle. In FIGS. 12 and 14, among the magnetic fluxes flowing through the rotor core 46 and the like, the flow of the main magnetic flux is mainly shown, and the flow of the leakage flux is omitted. Further, FIGS. 13 and 15 show the flow of the leakage flux. In the following, it is assumed that the electric angle is zero when the positional relationship is shown in FIG. 12, and that the electric angles are π / 2, π, and 3π / 2 in FIGS. 13 to 15.

図12に示すように、電気角が零のとき、各固定子突極部62A、62Bは、その近傍の磁石48と径方向に対向し、その磁石48に対して周方向の全幅に亘り重なる位置にある。これにより、第1実施形態と同様に、一つの第1溝部52を挟んだ周方向両側の第1固定子突極部62A及び第2固定子突極部62Bを通る閉ループの磁路Mpが形成される。 As shown in FIG. 12, when the electric angle is zero, the stator salient poles 62A and 62B face the magnet 48 in the vicinity in the radial direction and overlap the magnet 48 over the entire width in the circumferential direction. In position. As a result, as in the first embodiment, a closed loop magnetic path Mp passing through the first stator salient poles 62A and the second stator salient poles 62B on both sides in the circumferential direction sandwiching the first groove 52 is formed. Will be done.

図13に示すように、電気角がπ/2のとき、各固定子突極部62A、62Bは、その近傍の周方向に隣り合う2つの磁石48と径方向に対向し、各磁石48に対して周方向の半幅に亘り重なる位置にある。これにより、第1実施形態と同様に、周方向に隣り合う一方の磁石48から他方の磁石48に向けて、これらに対向する各固定子突極部62A、62Bや回転子コア46を経由して折り返すような閉ループの磁路Mpが形成される。 As shown in FIG. 13, when the electric angle is π / 2, the stator salient poles 62A and 62B face each magnet 48 in the radial direction with two magnets 48 adjacent to each other in the circumferential direction in the vicinity thereof. On the other hand, it is in a position where it overlaps over half the width in the circumferential direction. As a result, as in the first embodiment, one magnet 48 adjacent to each other in the circumferential direction is directed toward the other magnet 48 via the stator salient poles 62A and 62B and the rotor core 46 facing each other. A closed-loop magnetic path Mp that folds back is formed.

図14に示すように、電気角がπのとき、各固定子突極部62A、62Bは、その近傍の磁石48と径方向に対向し、その磁石48に対して周方向の全幅に亘り重なる位置にある。これにより、第1実施形態と同様に、一つの第1溝部52を挟んだ周方向両側の第1固定子突極部62A及び第2固定子突極部62Bを通る閉ループの磁路Mpが形成される。 As shown in FIG. 14, when the electric angle is π, the stator salient poles 62A and 62B face the magnet 48 in the vicinity in the radial direction and overlap the magnet 48 over the entire width in the circumferential direction. In position. As a result, as in the first embodiment, a closed loop magnetic path Mp passing through the first stator salient poles 62A and the second stator salient poles 62B on both sides in the circumferential direction sandwiching the first groove 52 is formed. Will be done.

図15に示すように、電気角が3π/2のとき、各固定子突極部62A、62Bは、その近傍の周方向に隣り合う2つの磁石48と径方向に対向し、各磁石48に対して周方向の半幅に亘り重なる位置にある。これにより、電気角がπ/2のときと同様の磁路Mpが形成される。 As shown in FIG. 15, when the electric angle is 3π / 2, the stator salient poles 62A and 62B face each magnet 48 in the radial direction with two magnets 48 adjacent to each other in the circumferential direction in the vicinity thereof. On the other hand, it is in a position where it overlaps over half the width in the circumferential direction. As a result, a magnetic path Mp similar to that when the electric angle is π / 2 is formed.

図12に示すように、一つの電機子コイル60(たとえば、電機子コイル60(b))内では、第1状態のとき、径方向の一方(内側)に向けて鎖交する磁路Mpが形成される。また、図14に示すように、一つの電機子コイル60内では、第2状態のとき、径方向の他方(外側)に向けて鎖交する磁路Mpが形成される。また、一つの電機子コイル60に対して周方向に隣り合う他の電機子コイル60(たとえば、電機子コイル60(a))内では、図12に示すように、第1状態のとき、径方向の他方(外側)に向けて鎖交する磁路Mpが形成される。また、図14に示すように、他の電機子コイル60内では、第2状態のとき、径方向の一方(内側)に向けて鎖交する磁路Mpが形成される。第1実施形態と同様、第1状態と第2状態との間で切り替わると、各電機子コイル60内を鎖交する磁束の径方向での向きが反転するように切り替わり、各電機子コイル60に交流の誘導起電力が生じる。このとき、各電機子コイル60内で形成される磁路Mpの変化の仕方は同様となり、各電機子コイル60内では同相の交流電力が生じる。 As shown in FIG. 12, in one armature coil 60 (for example, armature coil 60 (b)), in the first state, magnetic paths Mp interlinking toward one (inside) in the radial direction are formed. It is formed. Further, as shown in FIG. 14, in one armature coil 60, a magnetic path Mp interlinking toward the other (outside) in the radial direction is formed in the second state. Further, in another armature coil 60 (for example, armature coil 60 (a)) adjacent to one armature coil 60 in the circumferential direction, as shown in FIG. 12, in the first state, the diameter is A magnetic path Mp interlinking toward the other (outside) of the direction is formed. Further, as shown in FIG. 14, in the other armature coil 60, a magnetic path Mp that interlinks in one (inside) direction in the radial direction is formed in the second state. Similar to the first embodiment, when switching between the first state and the second state, the direction of the magnetic flux interlinking in each armature coil 60 in the radial direction is reversed, and each armature coil 60 is switched. Induced electromotive force of alternating current is generated in. At this time, the way of changing the magnetic path Mp formed in each armature coil 60 is the same, and in-phase AC power is generated in each armature coil 60.

以上の発電機10においても、本発明者は、図10に示す構造を用いて解析をした。この解析では、回転子40の回転速度Nを120(r/min)とし、各電機子コイル60により発電される電力の周波数f(Hz)を求め、磁石48の数(22個)に応じた周波数fの電力が得られるか確認した。この結果、周波数fは22(Hz)であることが求められ、式(1)より、磁石48の数が発電機の極数となることが確認された。 The present inventor also analyzed the above generator 10 using the structure shown in FIG. In this analysis, the rotation speed N of the rotor 40 is set to 120 (r / min), the frequency f (Hz) of the power generated by each armature coil 60 is obtained, and it corresponds to the number of magnets 48 (22 magnets). It was confirmed whether the power of the frequency f could be obtained. As a result, the frequency f was required to be 22 (Hz), and it was confirmed from the equation (1) that the number of magnets 48 was the number of poles of the generator.

従って、本実施形態に係る発電機10によっても、第1実施形態と同様、磁石48の数が増えるほど誘導起電力の周波数が増大し、回転子40の回転速度が小さい場合でも高周波数の交流電力を得やすくなる。この他の点でも、第1実施形態と同様の作用効果を得られる。 Therefore, also in the generator 10 according to the present embodiment, as in the first embodiment, the frequency of the induced electromotive force increases as the number of magnets 48 increases, and even when the rotation speed of the rotor 40 is small, a high frequency alternating current It becomes easier to obtain power. In other respects as well, the same effect as that of the first embodiment can be obtained.

以上、実施の形態に基づき本発明を説明したが、実施の形態は、本発明の原理、応用を示すにすぎない。また、実施の形態には、請求の範囲に規定された本発明の思想を逸脱しない範囲において、多くの変形例や配置の変更が可能である。 Although the present invention has been described above based on the embodiments, the embodiments merely show the principles and applications of the present invention. Further, in the embodiment, many modifications and arrangements can be changed without departing from the idea of the present invention defined in the claims.

発電機10は自転車用発電機を例に説明したが、その用途はこれに限られない。また、発電機10は、自転車用発電機10とする場合、自転車12の回転部の回転に連動して回転子40が回転可能であればよい。ここでの回転部は、車輪としての前輪22を例に説明したが、ハブシェル、クランクの他、リアディレイラー(チェーンテンショナー)のプーリー等でもよい。また、発電機10は、ハブダイナモではなくローラーダイナモ等として構成されてもよい。発電機10はアウターロータ型発電機を例示したが、固定子38の内周側に回転子40が配置されるインナーロータ型発電機でもよい。 The generator 10 has been described by taking a bicycle generator as an example, but its use is not limited to this. Further, when the generator 10 is a bicycle generator 10, it is sufficient that the rotor 40 can rotate in conjunction with the rotation of the rotating portion of the bicycle 12. Although the front wheel 22 as a wheel has been described as an example of the rotating portion here, the pulley of the rear derailleur (chain tensioner) may be used in addition to the hub shell and the crank. Further, the generator 10 may be configured as a roller dynamo or the like instead of a hub dynamo. Although the generator 10 is an outer rotor type generator, it may be an inner rotor type generator in which the rotor 40 is arranged on the inner peripheral side of the stator 38.

10…発電機、12…自転車、22…前輪(回転部)、26…ハブ、38…固定子、40…回転子、48…磁石、50…固定子コア、52…第1溝部、60…電機子コイル、62A…第1固定子突極部、62B…第2固定子突極部。 10 ... Generator, 12 ... Bicycle, 22 ... Front wheel (rotating part), 26 ... Hub, 38 ... Stator, 40 ... Rotor, 48 ... Magnet, 50 ... Stator core, 52 ... First groove, 60 ... Electric Child coil, 62A ... 1st stator salient pole, 62B ... 2nd stator salient pole.

Claims (5)

固定子と、
前記固定子の外周側に配置される回転子と、を備え、
前記回転子は、前記固定子と対向する磁極が周方向に交互に異なる磁極となる複数の磁石を有し、
前記固定子は、周方向に間隔を空けて複数の第1溝部が形成される固定子コアと、前記複数の第1溝部間に巻き回される電機子コイルと、を有し、
前記固定子コアは、一つの前記第1溝部と、周方向の一方に隣り合う第1溝部との間に配置される複数の第1固定子突極部と、前記一つの第1溝部と、周方向の他方に隣り合う第1溝部との間に配置される複数の第2固定子突極部と、を有し、
前記回転子が回転するとき、前記第1固定子突極部及び前記第2固定子突極部のそれぞれと対向する磁石の磁極が異なる第1状態と、前記第1固定子突極部及び前記第2固定子突極部のそれぞれと対向する磁石の磁極が第1状態とは反転した磁極となる第2状態とが交互に切り替わるように、前記磁石、前記第1固定子突極部及び前記第2固定子突極部の位置が定められ、
前記複数の磁石には、前記第1状態にあるとき、隣り合う前記第1固定子突極部と対向する第1極性の個別の磁石と、隣り合う前記第2固定子突極部と対向する前記第1極性とは異なる第2極性の個別の磁石とが含まれ、
前記電機子コイルは、数の前記第1固定子突極部を周方向に跨ぐように巻き回される第1電機子コイルと、複数の前記第2固定子突極部を周方向に跨ぐように巻き回される第2電機子コイルとがあり、
前記複数の第1固定子突極部のうち周方向両端側の第1固定子突極部は、一つの前記第1電機子コイルが接触する側面を有し、
前記第1固定子突極部の前記側面は、前記第1固定子突極部の先端部から前記第1溝部の底側まで直線状に延び、
前記複数の第2固定子突極部のうち周方向両端側の第2固定子突極部は、一つの前記第2電機子コイルが接触する側面を有し、
前記第2固定子突極部の前記側面は、前記第2固定子突極部の先端部から前記第1溝部の底側まで直線状に延びることを特徴とする発電機。
Stator and
A rotor arranged on the outer peripheral side of the stator is provided.
The rotor has a plurality of magnets in which the magnetic poles facing the stator are alternately different magnetic poles in the circumferential direction.
The stator has a stator core in which a plurality of first groove portions are formed at intervals in the circumferential direction, and an armature coil wound between the plurality of first groove portions.
The stator core includes a plurality of first stator salient poles arranged between one first groove portion and one adjacent first groove portion in the circumferential direction, and the one first groove portion. It has a plurality of second stator salient poles arranged between the first groove portions adjacent to the other in the circumferential direction.
When the rotor rotates, the first state in which the magnetic poles of the magnets facing the first stator salient pole portion and the second stator salient pole portion are different, and the first stator salient pole portion and the said The magnet, the first stator salient pole portion and the said The position of the second stator salient pole is determined,
The plurality of magnets have an individual magnet having a first polarity facing the adjacent first stator salient poles and facing the adjacent second stator salient poles when in the first state. Includes separate magnets of second polarity that are different from the first polarity,
The armature coil straddles the first armature coil Ru wound so as to straddle the first stator salient pole of multiple circumferentially, a plurality of the second stator salient pole portions in the circumferential direction There is a second armature coil that is wound like this,
Of the plurality of first stator salient poles, the first stator salient poles on both ends in the circumferential direction have a side surface on which one of the first armature coils comes into contact.
The side surface of the first stator salient pole portion extends linearly from the tip end portion of the first stator salient pole portion to the bottom side of the first groove portion.
Of the plurality of second stator salient poles, the second stator salient poles on both ends in the circumferential direction have a side surface on which one of the second armature coils comes into contact.
Wherein the side surface of the second stator salient pole portion, the generator characterized by Rukoto extends linearly from the tip of the second stator salient pole portion to the bottom side of the first groove.
前記複数の磁石は、所定の角度λと同等の角度で周方向にずらした位置に配置され、
前記第1固定子突極部は、他の第1固定子突極部に対してλ×2n(nは1以上の自然数)と同等の角度で周方向にずらした位置に配置され、
前記第2固定子突極部は、前記第1固定子突極部に対してλ×(2n+1)と同等の角度で周方向にずらした位置に配置されることを特徴とする請求項1に記載の発電機。
The plurality of magnets are arranged at positions shifted in the circumferential direction at an angle equivalent to a predetermined angle λ.
The first stator salient pole portion is arranged at a position shifted in the circumferential direction at an angle equivalent to λ × 2n (n is a natural number of 1 or more) with respect to the other first stator salient pole portion.
The second stator salient pole section to claim 1, characterized in that it is arranged at a position shifted in the circumferential direction with equal angles with lambda × respect to the first stator salient pole (2n + 1) The generator described.
前記固定子コアは、前記回転子の回転中心の軸線方向に複数の金属板を積層して構成されることを特徴とする請求項1または2に記載の発電機。 The generator according to claim 1 or 2 , wherein the stator core is formed by laminating a plurality of metal plates in the axial direction of the rotation center of the rotor. 転車の回転部の回転に連動して前記回転子が回転可能な自転車用発電機であることを特徴とする請求項1からのいずれかに記載の発電機。 Generator according to any one of claims 1-3, wherein the rotor in conjunction with the rotation of the rotating portion of the bicycle is characterized in that it is a generator for a rotatable bicycle. 転車のハブダイナモであることを特徴とする請求項に記載の発電機。 Generator according to claim 4, characterized in that a hub dynamo bicycle.
JP2015023223A 2015-02-09 2015-02-09 Generator Active JP6894661B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015023223A JP6894661B2 (en) 2015-02-09 2015-02-09 Generator
CN201610010634.4A CN105871091B (en) 2015-02-09 2016-01-08 Generator
DE102016201853.1A DE102016201853A1 (en) 2015-02-09 2016-02-08 generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015023223A JP6894661B2 (en) 2015-02-09 2015-02-09 Generator

Publications (2)

Publication Number Publication Date
JP2016146713A JP2016146713A (en) 2016-08-12
JP6894661B2 true JP6894661B2 (en) 2021-06-30

Family

ID=56498291

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015023223A Active JP6894661B2 (en) 2015-02-09 2015-02-09 Generator

Country Status (3)

Country Link
JP (1) JP6894661B2 (en)
CN (1) CN105871091B (en)
DE (1) DE102016201853A1 (en)

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0648341A (en) * 1992-07-31 1994-02-22 Isonic:Kk Dynamo for bicycle
JP3280158B2 (en) * 1994-04-27 2002-04-30 株式会社安川電機 DC brushless motor
JP3704857B2 (en) * 1997-01-20 2005-10-12 三菱電機株式会社 Reluctance motor
JP2001238421A (en) * 2000-02-22 2001-08-31 Moric Co Ltd Single-phase multipolar magnet type generator for vehicle
JP2002044918A (en) * 2000-07-27 2002-02-08 Matsushita Electric Ind Co Ltd Two-phase reluctance motor
JP4250878B2 (en) * 2001-08-08 2009-04-08 パナソニック株式会社 Vernier type brushless motor
JP4114372B2 (en) * 2002-03-08 2008-07-09 松下電器産業株式会社 Electric motor
JP2003284305A (en) * 2002-03-20 2003-10-03 Japan Servo Co Ltd Three-phase brushless motor with inductor type core armature
JP4235431B2 (en) * 2002-10-21 2009-03-11 デンソートリム株式会社 Single-phase magnet generator
JP4556457B2 (en) * 2004-03-19 2010-10-06 パナソニック株式会社 Brushless motor
JP4111966B2 (en) 2005-08-10 2008-07-02 三洋電機株式会社 Bicycle dynamo and bicycle lighting device equipped with the bicycle dynamo
CN2825352Y (en) * 2005-08-15 2006-10-11 杨光明 Boosting device for electricity generation driven by wheel
JP4922600B2 (en) * 2005-11-17 2012-04-25 株式会社ミツバ Switched reluctance motor
JP2012182961A (en) * 2011-03-03 2012-09-20 Sanyo Electric Co Ltd Hub dynamo for bicycle
US8922087B1 (en) * 2013-08-26 2014-12-30 Norman P Rittenhouse High efficiency low torque ripple multi-phase permanent magnet machine

Also Published As

Publication number Publication date
DE102016201853A1 (en) 2016-08-11
JP2016146713A (en) 2016-08-12
CN105871091A (en) 2016-08-17
CN105871091B (en) 2019-06-28

Similar Documents

Publication Publication Date Title
US9071118B2 (en) Axial motor
JP2007288864A (en) Ac generator for tandem type vehicle
JP6569396B2 (en) Rotating electric machine
JP6241444B2 (en) Magnetless rotating electric machine
JP6561692B2 (en) Rotating electric machine
JP2014100054A (en) Transverse flux electric motor
JP2012050219A (en) Flat type coreless motor and flat type core loess vibration motor
CN103532328B (en) Electric rotating machine
JP6788957B2 (en) Generator
JP6358158B2 (en) Rotating electric machine
JP6894661B2 (en) Generator
JP6308076B2 (en) Rotating electric machine
JP2012019605A (en) Permanent magnet rotating electrical machine
JP2012125021A (en) Axial gap rotating machine
JP2018201314A (en) Power generation device for bicycle
JP5708566B2 (en) Electromagnetic coupling
JP2013215028A (en) Single-phase induction motor
WO2014157049A1 (en) Magnetic power generator
JP6766574B2 (en) Rotating electric machine
JP6638615B2 (en) Synchronous rotating electric machine
JP2016167898A (en) Synchronous drive motor
JP5869322B2 (en) Generator
JP2019058039A (en) Rotary electric machine
JP2013233844A (en) Hub dynamo
JP2013027130A (en) Resolver

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171214

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20171214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180814

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190319

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190514

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20191023

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200122

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20200122

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20200131

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20200204

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20200221

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20200303

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20201006

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20210112

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210315

C302 Record of communication

Free format text: JAPANESE INTERMEDIATE CODE: C302

Effective date: 20210317

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20210406

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20210511

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20210511

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210604

R150 Certificate of patent or registration of utility model

Ref document number: 6894661

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150