JP6892143B2 - Temperature and humidity measurement structure in compressed pneumatic circuit - Google Patents
Temperature and humidity measurement structure in compressed pneumatic circuit Download PDFInfo
- Publication number
- JP6892143B2 JP6892143B2 JP2019193177A JP2019193177A JP6892143B2 JP 6892143 B2 JP6892143 B2 JP 6892143B2 JP 2019193177 A JP2019193177 A JP 2019193177A JP 2019193177 A JP2019193177 A JP 2019193177A JP 6892143 B2 JP6892143 B2 JP 6892143B2
- Authority
- JP
- Japan
- Prior art keywords
- compressed air
- temperature
- humidity
- pressure vessel
- pipe
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000005259 measurement Methods 0.000 title claims description 38
- 239000000463 material Substances 0.000 claims description 5
- 238000011144 upstream manufacturing Methods 0.000 claims description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 15
- 230000008859 change Effects 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 239000003921 oil Substances 0.000 description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- 239000012510 hollow fiber Substances 0.000 description 4
- 230000007257 malfunction Effects 0.000 description 4
- 230000009471 action Effects 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 239000010802 sludge Substances 0.000 description 3
- 230000005856 abnormality Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 238000009833 condensation Methods 0.000 description 2
- 230000005494 condensation Effects 0.000 description 2
- 238000007599 discharging Methods 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 244000005700 microbiome Species 0.000 description 2
- 238000005057 refrigeration Methods 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- 208000032368 Device malfunction Diseases 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 229920003217 poly(methylsilsesquioxane) Polymers 0.000 description 1
- 230000010349 pulsation Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000003507 refrigerant Substances 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
Images
Landscapes
- Compressor (AREA)
- Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
Description
本発明は、圧縮空気圧回路における温度及び湿度測定構造に関し、詳しくは、圧縮空気圧回路において圧縮空気の温度及び湿度を圧力下にて測定するための構造に関するものである。 The present invention relates to a temperature and humidity measuring structure in a compressed air pressure circuit, and more particularly to a structure for measuring the temperature and humidity of compressed air in a compressed air pressure circuit under pressure.
空気圧縮機により生成された圧縮空気は、食品加工やレンズなど精密機器の仕上げ加工、清掃等の末端、その他各種用途に使用されている。かかる圧縮空気の用途によっては、空気圧縮機から圧縮空気が吐出されるまでの空気圧回路の中間に、各種機器が配設されている。例えば、水分の持ち出しが厳禁である用途に使用される場合には、空気圧回路の中間においてエアドライヤを介する構成が採られており、さらにエアドライヤの後段において除去しきれなかった水分や油分、スラッジや微生物を除去すべく、樹脂製若しくは紙製で網状乃至中空糸膜状のエアフィルタ、若しくは、活性炭を包んだエアフィルタを配設する態様が採られている。 The compressed air generated by the air compressor is used for food processing, finishing of precision equipment such as lenses, cleaning, and other various purposes. Depending on the use of the compressed air, various devices are arranged in the middle of the pneumatic circuit until the compressed air is discharged from the air compressor. For example, when it is used in an application where it is strictly prohibited to take out water, a configuration is adopted through an air dryer in the middle of the pneumatic circuit, and further, water, oil, sludge and microorganisms that could not be completely removed in the subsequent stage of the air dryer are adopted. In order to remove the above, an air filter made of resin or paper and having a net-like or hollow fiber membrane-like shape or an air filter wrapped with activated carbon is arranged.
ところで、上記のような圧縮空気圧回路の構成では、空気圧縮機が吐出する熱を帯びた圧縮空気が配管路で冷却されるなどして、加圧下飽和水蒸気量が下がることで、ドレンが発生し得る。かかる飽和水蒸気量は、温度に比例して上下すると共に、圧力に比例して上下するもので、かかる飽和水蒸気量は、図5のJIS規格による表に示すように、公知の事実である。そして、飽和水蒸気量が限界となって結露する境界温度のことを、一般に露点温度という。そこで、温度と湿度が判れば、当該温度における飽和水蒸気量と湿度との比較から、結露(ドレン)が発生し得る状態にあるか否かについて判別することが可能となる。 By the way, in the configuration of the compressed air pressure circuit as described above, the heated compressed air discharged by the air compressor is cooled in the piping line, and the amount of saturated water vapor under pressure decreases, so that drainage occurs. obtain. The saturated water vapor amount fluctuates in proportion to the temperature and also in the pressure, and the saturated water vapor amount is a known fact as shown in the table according to the JIS standard of FIG. The boundary temperature at which the amount of saturated water vapor becomes the limit and dew condensation occurs is generally called the dew point temperature. Therefore, if the temperature and humidity are known, it is possible to determine whether or not dew condensation (drain) can occur by comparing the saturated water vapor amount and the humidity at the temperature.
飽和水蒸気量は、既述のように、圧力によっても上下する。すなわち、圧力が上がれば、その分だけ飽和水蒸気量も上昇する。図5に示す飽和水蒸気量は、大気圧下での数値を示すもので、本発明のように圧縮空気圧回路における圧縮された空気中では、大気圧下よりも同温度下における飽和水蒸気量が上昇することとなる。図6に示す表は、大気圧下と加圧下における露点温度の比較・換算表である。これを用いることで、圧縮空気の温度から、大気圧の場合の露点温度に変換し、図5に示す表を用いて飽和水蒸気量を割り出すことが可能である。 As described above, the amount of saturated water vapor also fluctuates depending on the pressure. That is, as the pressure increases, the amount of saturated water vapor increases accordingly. The saturated water vapor amount shown in FIG. 5 shows a numerical value under atmospheric pressure, and in the compressed air in the compressed pneumatic circuit as in the present invention, the saturated water vapor amount at the same temperature is higher than that under atmospheric pressure. Will be done. The table shown in FIG. 6 is a comparison / conversion table of dew point temperatures under atmospheric pressure and pressurization. By using this, it is possible to convert the temperature of compressed air to the dew point temperature in the case of atmospheric pressure, and to determine the saturated water vapor amount using the table shown in FIG.
従来の圧縮空気圧回路の構成として、特開2010−84736号公報(特許文献1)にかかる「空気圧縮機のドレン排出方法及びドレン排出機構」の技術提案が公知となっている。具体的には、空気圧縮機の運転環境の変化に伴うドレン発生量の変化に対応して、ドレンの効率的な排出を行うことを目的とするもので、圧縮空気圧回路に吸入される吸入空気の温度や湿度を実測することで、単位時間あたりのドレン発生量を算出し、ドレン発生量とドレン排出量とを一致させる態様を採用するものである。 As a configuration of a conventional compressed air pressure circuit, a technical proposal of "a drain discharge method and a drain discharge mechanism of an air compressor" according to Japanese Patent Application Laid-Open No. 2010-84736 (Patent Document 1) is known. Specifically, the purpose is to efficiently discharge the drain in response to the change in the amount of drain generated due to the change in the operating environment of the air compressor, and the intake air sucked into the compressed pneumatic circuit. By actually measuring the temperature and humidity of the above, the amount of drainage generated per unit time is calculated, and a mode is adopted in which the amount of drainage generated and the amount of drainage discharged are matched.
しかしながら、圧縮空気は、各種機器や配管路を経ることで常時温度変化を伴うものであり、また、各種機器や配管路におけるドレンの発生及び排出がなされることで、測定する場所によって湿度も変化するものである。上記特許文献1にかかる技術提案は、圧縮空気自体の温度や湿度を測定するものではなく、圧縮空気圧回路に吸入される外気の温度や湿度を測定するものであるため、各種機器を介して圧縮空気圧回路を流れる圧縮空気の測定箇所によって変化する温度や湿度に対応し得るものではなく、その結果、正確な露点を計測することは困難であって、あくまでドレン発生量を推定し得るにとどまるもので、ドレン発生量とドレン排出量とが必ずしも一致し得るとはいえないものであった。
However, compressed air is constantly subject to temperature changes as it passes through various devices and piping lines, and the humidity also changes depending on the measurement location due to the generation and discharge of drainage in various devices and piping lines. Is what you do. Since the technical proposal according to
本出願人は、外気の状態(温度や湿度)からは圧縮空気圧回路におけるドレン発生量の予測が困難であるという問題点に着目し、圧縮空気の流れにストレスを与えずに圧縮空気中の温度及び湿度を測定することによって、ドレンが発生し得る状態にあるか否かについて判別することができないものかとの着想の下、配管路を流れる圧縮空気を分岐させて温度と湿度を測定した後、再び配管路に合流させる測定構造を開発し、本発明における「圧縮空気圧回路における温度及び湿度測定構造」の提案に至るものである。 The applicant paid attention to the problem that it is difficult to predict the amount of drainage generated in the compressed air pressure circuit from the state of the outside air (temperature and humidity), and the temperature in the compressed air without stressing the flow of the compressed air. After measuring the temperature and humidity by branching the compressed air flowing through the pipeline, based on the idea that it is not possible to determine whether or not drainage can occur by measuring the humidity. We have developed a measurement structure that joins the piping line again, and have come up with the proposal of "temperature and humidity measurement structure in a compressed pneumatic circuit" in the present invention.
本発明は上記問題点に鑑み、圧縮空気圧回路において、圧縮空気の流れにストレスを与えずに圧縮空気中の温度及び湿度を測定することによって、ドレンが発生し得る状態にあるか否かについて判別し得る温度及び湿度測定構造の提供を図ることを課題とする。 In view of the above problems, the present invention determines whether or not drainage can occur by measuring the temperature and humidity in the compressed air without giving stress to the flow of the compressed air in the compressed air pressure circuit. An object of the present invention is to provide a possible temperature and humidity measurement structure.
上記課題を解決するため、本発明は、圧縮空気が空気圧縮機により生成されてから配管路並びに各種機器を介して最終的に吐出口から吐出されるまでの圧縮空気圧回路において、各種機器間に配設された配管路の上流側に分岐管が接続されると共に、下流側に合流管が接続され、該分岐管には流入管の一端が接続されると共に、該合流管には流出管の一端が接続され、該流入管の他端は圧力容器の流入口に接続されると共に、該流出管の他端は圧力容器の流出口に接続され、該圧力容器内には温度及び湿度を測定する測定器具が備えられて成り、各種機器間に配設された配管路内の圧縮空気の一部が分岐管により流入管を介して圧力容器内へ流入されると共に、圧力容器内の圧縮空気は流出管を介して合流管から配管路へ戻されることで、配管路内の圧縮空気の圧力と圧力容器内の圧縮空気の圧力とを均一に保った状態で、該圧力容器内の温度及び湿度を測定することにより、圧縮空気の温度及び湿度を圧力下にて測定する手段を採用する。 In order to solve the above problems, the present invention provides between various devices in a compressed air pressure circuit from when compressed air is generated by an air compressor to when it is finally discharged from a discharge port via a pipe line and various devices. A branch pipe is connected to the upstream side of the arranged pipe path, a merging pipe is connected to the downstream side, one end of the inflow pipe is connected to the branch pipe, and an outflow pipe is connected to the merging pipe. One end is connected, the other end of the inflow pipe is connected to the inlet of the pressure vessel, and the other end of the outflow pipe is connected to the outlet of the pressure vessel, and the temperature and humidity are measured inside the pressure vessel. A part of the compressed air in the piping line arranged between various devices is flowed into the pressure vessel through the inflow pipe by the branch pipe, and the compressed air in the pressure vessel is provided. Is returned from the merging pipe to the piping line via the outflow pipe, so that the pressure of the compressed air in the piping line and the pressure of the compressed air in the pressure vessel are kept uniform, and the temperature inside the pressure vessel and the temperature inside the pressure vessel are maintained. By measuring the humidity, a means for measuring the temperature and humidity of the compressed air under pressure is adopted.
また、本発明は、前記圧力容器の所定箇所、あるいは、流入管もしくは流出管の所定中間箇所に、圧縮空気の圧力を計測する圧力計が装備されて成る手段を採る。 Further, the present invention employs a means in which a pressure gauge for measuring the pressure of compressed air is provided at a predetermined location of the pressure vessel or a predetermined intermediate portion of the inflow pipe or the outflow pipe.
さらに、本発明は、前記圧力容器の少なくとも一部が、容器内部を目視可能な透明もしくは半透明素材により形成されて成る手段を採る。 Further, the present invention employs a means in which at least a part of the pressure vessel is formed of a transparent or translucent material in which the inside of the vessel is visible.
またさらに、本発明は、前記測定器具が温度及び湿度を測定可能なセンサであり、該センサで測定された温度及び湿度の測定値をデジタル表示する表示部が圧力容器の外部に備えられて成る手段を採る。 Furthermore, in the present invention, the measuring instrument is a sensor capable of measuring temperature and humidity, and a display unit for digitally displaying the measured values of temperature and humidity measured by the sensor is provided outside the pressure vessel. Take measures.
さらにまた、本発明は、前記表示部に日付及び時刻を表示する機能が備えられて成る手段を採る。 Furthermore, the present invention employs a means comprising the function of displaying the date and time on the display unit.
そしてまた、本発明は、記録部を備え、日付及び時刻と共に温度及び湿度の測定値が所定時間ごとに自動記録される手段を採る。 Further, the present invention also includes a recording unit, and adopts a means for automatically recording the measured values of temperature and humidity together with the date and time at predetermined time intervals.
そしてさらに、本発明は、前記圧力容器に、ドレントラップが備えられて成る手段を採る。 Further, the present invention employs a means in which the pressure vessel is provided with a drain trap.
本発明にかかる圧縮空気圧回路における温度及び湿度測定構造によれば、配管路を流れる圧縮空気を分岐させて温度と湿度を測定した後、再び配管路に合流させる測定構造を採用することで、圧縮空気の流れにストレスを与えずに圧縮空気中の温度及び湿度を正確に測定することが可能であり、その測定結果により圧縮空気についてドレンが発生し得る状態にあるか否かを容易に判別することができる、といった優れた効果を奏する。 According to the temperature and humidity measurement structure in the compressed air pressure circuit according to the present invention, compression is performed by adopting a measurement structure in which the compressed air flowing through the piping line is branched, the temperature and humidity are measured, and then the compressed air is rejoined into the piping line. It is possible to accurately measure the temperature and humidity in the compressed air without giving stress to the air flow, and it is easy to determine from the measurement results whether or not the compressed air is in a state where drainage can occur. It has an excellent effect such as being able to do it.
本発明にかかる圧縮空気圧回路における温度及び湿度測定構造は、各種機器間に配設された配管路内の圧縮空気の一部が分岐管により流入管を介して圧力容器内へ流入されると共に、圧力容器内の圧縮空気は流出管を介して合流管から配管路へ戻されることで、配管路内の圧縮空気の圧力と圧力容器内の圧縮空気の圧力とを均一に保った状態で、該圧力容器内の温度及び湿度を測定することにより、圧縮空気の温度及び湿度を圧力下にて測定することを最大の特徴とする。
以下、本発明にかかる圧縮空気圧回路における温度及び湿度測定構造の実施形態を、図面に基づいて説明する。
In the temperature and humidity measurement structure in the compressed air pressure circuit according to the present invention, a part of the compressed air in the piping line arranged between various devices is flowed into the pressure vessel through the inflow pipe by the branch pipe, and at the same time. The compressed air in the pressure vessel is returned from the merging pipe to the piping line via the outflow pipe, so that the pressure of the compressed air in the piping line and the pressure of the compressed air in the pressure vessel are kept uniform. The biggest feature is to measure the temperature and humidity of compressed air under pressure by measuring the temperature and humidity inside the pressure vessel.
Hereinafter, embodiments of the temperature and humidity measurement structure in the compressed pneumatic circuit according to the present invention will be described with reference to the drawings.
なお、本発明にかかる圧縮空気圧回路における温度及び湿度測定構造は、以下に述べる実施形態に特に限定されるものではなく、本発明の技術的思想の範囲内、すなわち同一の作用効果を発揮できる形状や寸法、材質等の範囲内で適宜変更することができる。 The temperature and humidity measurement structure in the compressed pneumatic circuit according to the present invention is not particularly limited to the embodiments described below, and is within the scope of the technical idea of the present invention, that is, a shape capable of exhibiting the same action and effect. It can be changed as appropriate within the range of dimensions, materials, etc.
図1及び図2は、本発明にかかる圧縮空気圧回路における温度及び湿度測定構造の実施形態を示す説明図であり、図1は圧縮空気圧回路の全体概略を示し、図2(a)は圧力容器30の正面図、図2(b)は(a)のA−A´断面図である。
本発明にかかる圧縮空気圧回路における温度及び湿度測定構造は、圧縮空気が空気圧縮機により生成されてから配管路並びに各種機器を介して最終的に吐出口から吐出されるまでの圧縮空気圧回路において、圧縮空気の温度及び湿度を圧力下にて測定するための構造である。
1 and 2 are explanatory views showing an embodiment of a temperature and humidity measurement structure in the compressed pneumatic circuit according to the present invention, FIG. 1 shows an overall outline of the compressed pneumatic circuit, and FIG. 2 (a) shows a pressure vessel. 30 is a front view, FIG. 2 (b) is a cross-sectional view taken along the line AA'of (a).
The temperature and humidity measurement structure in the compressed air pressure circuit according to the present invention is the compressed air pressure circuit from the time when the compressed air is generated by the air compressor until the compressed air is finally discharged from the discharge port through the piping line and various devices. It is a structure for measuring the temperature and humidity of compressed air under pressure.
はじめに、本発明にかかる圧縮空気圧回路について説明する。
本発明にかかる圧縮空気圧回路は、主に空気圧縮機1と配管路2で構成されている。配管路2の末端には、最終的に圧縮空気を吐出するための吐出口3が備えられる。配管路2における空気圧縮機1から吐出口3までの所定中間箇所には、必要に応じて一乃至複数の各種機器が配設されている。
First, the compressed pneumatic circuit according to the present invention will be described.
The compressed pneumatic circuit according to the present invention is mainly composed of an
空気圧縮機1は、空気を圧縮して所定気圧以上の圧縮空気を生成する機械であって、該圧縮空気を生成するための構造によって、往復式や回転式、遠心式など種々の方式が存在する。本発明で使用する空気圧縮機1の方式については、特に限定はなく、いずれの方式・構造のものでも使用することが可能である。該空気圧縮機1には、生成された圧縮空気を送気するための配管路2が接続される。
The
配管路2は、圧縮空気を送気するための中空管から成り、空気圧縮機1から吐出口3まで圧縮空気を送気すべく配設される。尚、配管路2の所定中間箇所には一乃至複数の各種機器が配設されることから、具体的には、空気圧縮機1から各種機器へ圧縮空気を送気すべく配設されると共に、各種機器から先へ圧縮空気を送気すべく配設される。
The
配管路2に配設される各種機器は、圧縮空気の用途によって種々決定されるもので、特に限定されるものではないが、常法的に配設される機器として、例えば圧縮空気を冷却するアフタークーラー4や、圧縮空気を貯留するためのエアタンク5、圧縮空気を乾燥させるためのエアドライヤ6、圧縮空気中の異物(油分やスラッジなど)を取り除くためのエアフィルタ7、圧縮空気中のドレンを取り除くための遠心分離機8などが存する。尚、説明の関係上、各種機器には吐出口3が含められる場合がある。
The various devices arranged in the
アフタークーラー4は、空気圧縮機1で生成された高温の圧縮空気を冷却するための熱交換用の機器であって、冷却方式により、空冷式や水冷式などが存在する。本発明で使用するアフタークーラー4は、空冷式や水冷式のいずれかを問うものではなく、特に限定されるものではない。
The
エアタンク5は、圧縮空気を一時的に貯留するための貯蔵庫であって、圧縮空気の脈動の平準化や、一時的に多量の圧縮空気が消費された場合の急激な圧力降下を抑制するために備えられるものである。
The
エアドライヤ6は、圧縮空気を乾燥させ水分を取り除くための機器であって、水分の除去方式により、冷凍式や中空糸膜式、吸着式などが存在する。本発明で使用するエアドライヤ6は、冷凍式や中空糸膜式、吸着式のいずれかを問うものではなく、特に限定されるものではないが、一般に繁用されているのは、冷凍式のエアドライヤ6である。冷凍式のエアドライヤ6は、冷媒の蒸発潜熱を利用して、圧縮空気を冷却し、含有水分を凝縮して除去するための装置であって、比較的安価に導入することができる。
The
エアフィルタ7は、圧縮空気中の水分や油分、スラッジや微生物を除去するためのフィルタであって、樹脂製若しくは紙製で網状乃至中空糸膜状のエアフィルタ、若しくは、活性炭を包んだエアフィルタが用いられる。該エアフィルタ7は、エアドライヤ6の後段に配設されるのが一般的である。
The
遠心分離機8は、圧縮空気中の水分・油分を除去するための分離装置であって、ハウジング内に入った圧縮空気は、デフレクタを通ることによって発生した遠心力によって空気中の油水分や固形物をハウジング内壁に叩き付けて落下させ、エアのみ中央部に備えられるカートリッジを介して取り出される構造を有している。該遠心分離器8は、空気圧縮機1とエアドライヤ6とを繋ぐ配管路2の所定中間箇所に配設されたり、あるいは、エアドライヤ6とエアフィルタ7とを繋ぐ配管路2の所定中間箇所に配設される。
The
空気圧縮機1や各種機器には、必要に応じて発生したドレンを排出するためのドレントラップ10が接続されている。ドレントラップ10は、その排出方法により電磁式やフロート式などが存在する。本発明で使用するドレントラップ10は、電磁式とフロート式とを問うものではなく、特に限定されるものでないが、スプリングスナップアクション方式、若しくは、マグネットスナップアクション方式のフロート式ドレントラップを採用することにより、所定量のドレンが貯留された段階で、該ドレンを機械的に自動で外部へ排出することが可能となり、ドレン排出の確実性が担保されることとなる。
A
次に、本発明にかかる温度及び湿度測定構造について説明する。
各種機器間に配設された配管路2には、分岐管20および合流管22が接続されている。かかる分岐管20および合流管22は、三方向に分岐した圧縮空気を送気するための中空管であって、例えば略T字状や略Y字状に形成されている。分岐管20は、配管路2内の圧縮空気の一部を分岐して流入管24へ送気すべく配設される。また、合流管22は、流出管26を送気されてきた圧縮空気を配管路2へ戻すべく配設される。
Next, the temperature and humidity measurement structure according to the present invention will be described.
A
分岐管20および合流管22の配管路2に対する接続態様について、圧縮空気の分岐と合流の構成上、配管路2における上流側に分岐管20が接続されると共に、下流側に合流管22が接続される態様となる。但し、各種機器をまたいで分岐管20と合流管22を配設する態様は採用し得ない。仮に、各種機器の前段に分岐管20を接続し、後段に合流管22を接続した場合、分岐した圧縮空気が当該機器を経ずに配管路2へ合流することとなってしまうからである。
Regarding the connection mode of the
分岐管20には流入管24の一端が接続されると共に、該流入管24の他端は圧力容器30の流入口32に接続される。すなわち、流入管24は、圧縮空気を送気するための中空管であって、配管路2から分岐管20を介して分岐された圧縮空気を圧力容器30へ送気すべく配設される。
One end of the
圧力容器30は、圧縮空気の温度及び湿度を測定するための中空容器であって、図2に示す様に、流入管24から送気されてきた圧縮空気を流入するための流入口32、並びに、容器内の圧縮空気を流出管26へ流出するための流出口34が備えられている。該圧力容器30の形状について、特に限定はないが、圧縮空気の圧力への耐性等を考慮し、略円筒形状であることが好ましい。尚、図面では、圧力容器30の構造について、略円筒形状の中空筒体30aの両側端を閉塞蓋30bで閉塞して構成する態様について図示しているが、かかる構造態様に限定するものではなく、全てを一体成型する態様や、一方端が予め閉塞して成形された中空筒体30aの他方の開放された端部のみを閉塞蓋30bで閉塞する構造なども考え得る。
The
圧力容器30の内部には、測定器具40が備えられている。かかる測定器具40は、配管路2から流入管24を介して圧力容器30内へ流入した圧縮空気の温度及び湿度を測定するためのものであって、具体的には、温度計及び湿度計が圧力容器30内に収容されている。かかる温度計及び湿度計は、別体で夫々収容される態様のほか、一体型の温湿度計が収容される態様であってもよい。また、図1(a)の様な温度や湿度を示すメモリを目視で確認するアナログ式のほか、図1(b)及び図2の様なセンサで測定した値を表示パネルにデジタル表示するデジタル式のものであってもよい。
A measuring
ところで、圧力容器30の材質については、特に限定はないが、容器内部を目視可能とすべく、少なくとも一部が透明もしくは半透明のガラスや合成樹脂素材により形成されて成る。容器内部を目視可能とすることで、温度及び湿度の測定値を即座に目視確認することができると共に、圧力容器30に流入した圧縮空気の状態や容器内の異変等を目視で直接確認することが可能となり、例えば容器内にドレンが発生している様な場合について、瞬時に判別し得ることとなる。
Incidentally, for the material of the
圧力容器30内には、測定器具40と併せて、日付や時刻を知らせるデジタル時計などの日時を表示する媒体を備えることが好ましい。かかる態様を採ることで、測定日時と温度及び湿度の測定値を同時に目視確認可能であって、測定結果の記録及び管理が容易となる。このとき、測定器具40がデジタル式のものであれば、測定値と共に日付及び時刻を表示パネルにデジタル表示する態様が考え得る。
It is preferable that the
合流管22には流出管26の一端が接続されると共に、該流出管26の他端は圧力容器30の流出口34に接続される。すなわち、流出管26は、圧縮空気を送気するための中空管であって、圧力容器30から流出された圧縮空気を合流管22を介して配管路2へ戻すべく配設される。
One end of the
圧力容器30内の圧縮空気の圧力、より詳しくは、分岐管20から流入管24、圧力容器30、流出管26を経て合流管22に至るまでの圧縮空気の圧力を計測すべく、圧力容器30の所定箇所、あるいは、流入管24もしくは流出管24の所定中間箇所に、圧力計36が装備される態様が考え得る。かかる態様を採用することで、圧力容器30内の圧縮空気の圧力を監視することが可能となり、配管路2内の圧縮空気の圧力と圧力容器30内の圧縮空気の圧力とを均一に保つのに資する。圧力計36は、常法のものを使用すれば足り、特に限定はない。該圧力計36を装備する箇所は、分岐管20から流入管24、圧力容器30、流出管26を経て合流管22に至るまでの間であれば、特に限定するものではないが、取り付け容易性などに鑑み、例えば圧力容器30における流入口32や流出口34の近傍、流入管24の他端(流入口32)近傍、流出管24の他端(流出口34)近傍などが考え得る。
The
圧力容器30において、ドレントラップ10を備える態様が考え得る。圧力容器30は、配管路2から分岐されているとはいえ、圧縮空気が送気される流路であることには変わりはなく、容器内にてドレンが発生し貯留することも想定される。容器内にドレンが貯留されたままであると、該容器内のセンサ42の誤作動を招いて正確な温度や湿度の測定が阻害される可能性があると共に、センサ42自体の故障の原因ともなりかねない。そこで、容器内にて発生したドレンを排出すべく、圧力容器30にもドレントラップ10を設ける態様が望ましい。
A mode in which the
尚、圧力容器30は、測定値を目視し易い様に、机上に載置するなどして使用される。このとき、図示の様に、圧力容器30の所定箇所に脚部38を備え、目視し易い高さ位置まで嵩上げする態様が考え得る。
The
以上の各構成要素から、本発明にかかる圧縮空気圧回路における温度及び湿度測定構造は構成される。本発明における圧縮空気の本流の流れは、以下のとおりとなる。すなわち、空気圧縮機1により生成された圧縮空気は、まず配管路2を通ってアフタークーラー4やエアタンク5、エアドライヤ6、エアフィルタ7、遠心分離機8等の各種機器に送気される。その後、圧縮空気は、各種機器から配管路2を介して最終的に吐出口3へ送気され、各種用途に用いられる。
From each of the above components, the temperature and humidity measurement structure in the compressed pneumatic circuit according to the present invention is constructed. The mainstream flow of compressed air in the present invention is as follows. That is, the compressed air generated by the
本発明における圧縮空気の支流の流れは、以下のとおりである。すなわち、配管路2を通過する本流の圧縮空気は、該配管路2に接続されている分岐管20で一部が支流へ分岐され、流入管24を介して流入口32から圧力容器30内に流入する。そして、圧力容器30内を通過する際に温度及び湿度の測定が行われ、流出口34から流出管に流出し、その後合流管22を介して配管路2を通過する本流の圧縮空気へと戻される。
The tributary flow of compressed air in the present invention is as follows. That is, a part of the compressed air of the main stream passing through the
以上のように、本発明にかかる圧縮空気圧回路における温度及び湿度測定構造によれば、配管路2を流れる圧縮空気を分岐させて圧力容器30にて温度と湿度を測定した後、再び配管路2に合流させる測定構造を採用することで、配管路2内の圧縮空気の圧力と圧力容器30内の圧縮空気の圧力とを均一に保って、圧縮空気の流れにストレスを与えずに圧縮空気中の温度及び湿度を正確に測定することが可能であり、その測定結果により圧縮空気についてドレンが発生し得る状態にあるか否かを容易に判別することができる、といった優れた作用効果を発揮するものである。
As described above, according to the temperature and humidity measurement structure in the compressed air pressure circuit according to the present invention, the compressed air flowing through the
尚、本発明にかかる分岐管20から流入管24、圧力容器30、流出管26を経て合流管22に至るまでの温度及び湿度測定構造については、一の圧縮空気圧回路に一乃至複数の温度及び湿度測定構造を配設し得るものである。図1(a)では二基、図1(b)では一基の温度及び湿度測定構造を配設した場合について示している。すなわち、圧縮空気圧回路に装備される各種機器の数によって、該機器間に存する配管路2の数も決定され、何れの機器間においても本発明にかかる温度及び湿度測定構造を配設することが可能であると共に、圧縮空気の流れにストレスを与えることなく配設し得ることから、複数の温度及び湿度測定構造を配設しても、圧縮空気圧回路全体に及ぼす影響はほとんどない。
Regarding the temperature and humidity measurement structure from the
次に、図3及び図4により、本発明にかかる圧縮空気圧回路における温度及び湿度測定構造の他の実施形態について説明する。上記実施例1と同様の部分は説明を省略する。
図3及び図4は、本発明にかかる圧縮空気圧回路における温度及び湿度測定構造の実施形態を示す説明図であり、図3は圧縮空気圧回路の全体概略を示し、図4は圧力容器30の正面図を示している。
Next, another embodiment of the temperature and humidity measurement structure in the compressed pneumatic circuit according to the present invention will be described with reference to FIGS. 3 and 4. The description of the same part as that of the first embodiment will be omitted.
3 and 4 are explanatory views showing an embodiment of a temperature and humidity measurement structure in the compressed pneumatic circuit according to the present invention, FIG. 3 shows an overall outline of the compressed pneumatic circuit, and FIG. 4 shows the front surface of the
上記実施例1では、測定器具40について、温度や湿度を示すメモリを目視で確認するアナログ式の温度計や湿度計、あるいは、センサで測定した値を表示パネルにデジタル表示するデジタル式の温度計や湿度計を採用し、かかる測定器具40を圧力容器30の内部に収容する態様について説明した。しかしながら、圧力容器30内は、絶えず圧縮空気による圧力が存する状態であり、温度計や湿度計によっては、耐圧性の問題から故障や不具合が生じかねず、正確な測定が阻害されることも想定し得る。
In the first embodiment, the measuring
そこで、圧力容器30の内部に温度計や湿度計をそのまま収容する態様ではなく、温度や湿度を測定し得るセンサ42のみを測定器具40として収容し、該センサ42で測定した温度及び湿度を圧力容器30の外部で表示する態様が考え得る。
Therefore, instead of accommodating a thermometer or a hygrometer as it is inside the
すなわち、本実施形態にかかる圧力容器30の内部には、測定器具40としてセンサ42が備えられている。かかるセンサ42は、配管路2から流入管24を介して圧力容器30内へ流入した圧縮空気の温度及び湿度を測定するためのものであって、その測定値は、センサコード44を介して圧力容器30の外部に存する表示部46に送られ、該表示部46にてデジタル表示される。
That is, a
表示部46は、センサ42における温度及び湿度の測定値をデジタル表示する機能だけでなく、日付及び時刻を表示する機能を備えていることが望ましい。かかる日付及び時刻を温度及び湿度の測定値と共に表示することで、測定日時と測定値を同時に目視確認可能であって、測定結果の記録及び管理が容易となる。
It is desirable that the
図示してはいないが、センサ42における圧力容器30内部の圧縮空気の温度及び湿度の測定値について、自動で記録するための記録部を備える態様が考え得る。該記録部は、ハードディスクなどの記録媒体であって、センサ42による測定値をはじめ、表示部46に表示される内容をそのまま記録することが可能であり、日付及び時刻と共にセンサコード44を介して送られてくる温度及び湿度の測定値が、所定時間ごとに自動記録される態様となっている。また、圧力計36による圧力容器30内の圧縮空気の圧力についても、同時に記録される態様とすることも可能である。かかる構成態様を採用することで、管理者の記録及び管理負担の軽減に資する。
Although not shown, it is conceivable that the
尚、表示部46への表示内容や記録部への記録内容に基づき、圧縮空気の正常や異常、状況変化等を監視し、ドレン発生確率を自動計算して、必要に応じて警報や通知を発する監視制御部を備える態様も考え得る。かかる警報や通知の手段は、音によるものや識別灯の変化、メール送信など、あらゆる手段を採り得る。
In addition, based on the content displayed on the
以上のように、本発明にかかる圧縮空気圧回路における温度及び湿度測定構造によれば、圧力容器30の内部に温度と湿度を測定し得るセンサ42を備えることで、圧力下における機器の故障や不具合といった問題が生じることなく、圧縮空気中の温度及び湿度を正確且つ確実に測定することが可能である、といった優れた作用効果を発揮するものである。
As described above, according to the temperature and humidity measurement structure in the compressed air pressure circuit according to the present invention, by providing the
尚、本発明にかかる分岐管20から流入管24、圧力容器30、流出管26を経て合流管22に至るまでの温度及び湿度測定構造については、上記実施例1と同様、一の圧縮空気圧回路に一乃至複数の温度及び湿度測定構造を配設し得るものであり、図3では、四基の温度及び湿度測定構造を配設した場合について示している。
The temperature and humidity measurement structure from the
本発明は、食品加工やレンズなど精密機器の仕上げ加工、清掃等の末端のほか、圧縮空気を使用するあらゆる分野において採用することが可能である。したがって、本発明にかかる「圧縮空気圧回路における温度及び湿度測定構造」の産業上の利用可能性は大であると思料する。 The present invention can be used in all fields where compressed air is used, as well as in food processing, finishing processing of precision equipment such as lenses, cleaning, and the like. Therefore, it is considered that the industrial applicability of the "temperature and humidity measurement structure in the compressed pneumatic circuit" according to the present invention is great.
1 空気圧縮機
2 配管路
3 吐出口
4 アフタークーラー
5 エアタンク
6 エアドライヤ
7 エアフィルタ
8 遠心分離機
10 ドレントラップ
20 分岐管
22 合流管
24 流入管
26 流出管
30 圧力容器
30a 中空筒体
30b 閉塞蓋
32 流入口
34 流出口
36 圧力計
38 脚部
40 測定器具
42 センサ
44 センサコード
46 表示部
1
Claims (6)
各種機器間に配設された配管路の上流側に分岐管が接続されると共に、下流側に合流管が接続され、
該分岐管には流入管の一端が接続されると共に、該合流管には流出管の一端が接続され、
該流入管の他端は圧力容器の流入口に接続されると共に、該流出管の他端は圧力容器の流出口に接続され、
該圧力容器の少なくとも一部が、容器内部を目視可能な透明もしくは半透明素材により形成され、
該圧力容器内には温度及び湿度を測定する測定器具が備えられて成り、
各種機器間に配設された配管路内の圧縮空気の一部が分岐管により流入管を介して圧力容器内へ流入されると共に、圧力容器内の圧縮空気は流出管を介して合流管から配管路へ戻されることで、配管路内の圧縮空気の圧力と圧力容器内の圧縮空気の圧力とを均一に保った状態で、該圧力容器内の温度及び湿度を測定することにより、圧縮空気の温度及び湿度を圧力下にて測定することを特徴とする圧縮空気圧回路における温度及び湿度測定構造。 In a compressed air pressure circuit from when compressed air is generated by an air compressor to when it is finally discharged from a discharge port via a piping line and various devices.
A branch pipe is connected to the upstream side of the piping line arranged between various devices, and a confluence pipe is connected to the downstream side.
One end of the inflow pipe is connected to the branch pipe, and one end of the outflow pipe is connected to the merge pipe.
The other end of the inflow pipe is connected to the inlet of the pressure vessel, and the other end of the outflow pipe is connected to the outlet of the pressure vessel.
At least a part of the pressure vessel is made of a transparent or translucent material that allows the inside of the vessel to be seen.
The pressure vessel is equipped with measuring instruments for measuring temperature and humidity.
A part of the compressed air in the piping line arranged between various devices flows into the pressure vessel through the inflow pipe by the branch pipe, and the compressed air in the pressure vessel flows from the confluence pipe through the outflow pipe. By returning to the piping path, the pressure of the compressed air in the piping path and the pressure of the compressed air in the pressure vessel are kept uniform, and the temperature and humidity in the pressure vessel are measured to measure the compressed air. A temperature and humidity measuring structure in a compressed air pressure circuit, which measures the temperature and humidity of a compressed air pressure vessel under pressure.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019193177A JP6892143B2 (en) | 2019-10-24 | 2019-10-24 | Temperature and humidity measurement structure in compressed pneumatic circuit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019193177A JP6892143B2 (en) | 2019-10-24 | 2019-10-24 | Temperature and humidity measurement structure in compressed pneumatic circuit |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2021067222A JP2021067222A (en) | 2021-04-30 |
JP6892143B2 true JP6892143B2 (en) | 2021-06-23 |
Family
ID=75636903
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019193177A Active JP6892143B2 (en) | 2019-10-24 | 2019-10-24 | Temperature and humidity measurement structure in compressed pneumatic circuit |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6892143B2 (en) |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6073479A (en) * | 1998-11-13 | 2000-06-13 | General Electric Company | Dewpoint sensor |
KR20050045989A (en) * | 2002-07-19 | 2005-05-17 | 셀레리티 그룹 아이엔씨 | Flow sensor |
JP2007114166A (en) * | 2005-10-18 | 2007-05-10 | Fukuhara Co Ltd | Dew-point measuring method and dew-point instrument |
JP6035582B2 (en) * | 2013-10-30 | 2016-11-30 | 株式会社デンソー | Air flow measurement device and method for manufacturing the same |
-
2019
- 2019-10-24 JP JP2019193177A patent/JP6892143B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2021067222A (en) | 2021-04-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8676436B2 (en) | Method for monitoring the oil system of a turbomachine | |
CN103712053B (en) | There is the steam trap monitor of diagnosis | |
CN107709938A (en) | Fluid consumption meter with noise transducer | |
ES2344152T3 (en) | PROCEDURE FOR PERMANENT MONITORING OF PIPES AND DRIVING SYSTEMS THAT CARRY FLUID MEANS AT PRESSURE. | |
CN101495848B (en) | Leakage seeker | |
CN102575969B (en) | Utilize the leakage tester of pressure | |
KR102373745B1 (en) | Method for determining the degree of wear of a valve, and apparatus for carrying out said method | |
JP6892143B2 (en) | Temperature and humidity measurement structure in compressed pneumatic circuit | |
CN104748306B (en) | The antifreeze method and device of monoblock in air-conditioning system | |
JP6835373B1 (en) | Drain amount measurement system generated in compressed pneumatic circuit | |
JP2005345046A (en) | Degradation diagnosis system of heat source instrument | |
KR101392960B1 (en) | Pressure measuring unit for air filter change time detector of air conditioning system | |
JP7185926B2 (en) | Structure for measuring temperature and humidity in compressed air circuits | |
KR101000817B1 (en) | Digital flow meter | |
KR101102247B1 (en) | Strainer Status Indicator | |
JP2005532523A (en) | Method and apparatus for detecting flash gas | |
KR100702219B1 (en) | Cooling Apparatus having a Sensing Function of filter Pollution for a Controller | |
JP7033335B2 (en) | Sensor tube structure for temperature and humidity measurement in compressed pneumatic circuit | |
JP3796706B2 (en) | Water pipe leakage monitor | |
JP2015224749A (en) | Steam valve driving device, steam valve | |
WO2022121850A1 (en) | Refrigeration appliance water filter having embedded water leakage sensor | |
KR101128301B1 (en) | Strainer Status Indicator | |
JPH06500168A (en) | Differential float means and sensor means having same | |
CN108593150A (en) | A kind of hot and cold scale detection device | |
KR20120080948A (en) | Water purifier with self-examination function |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20191024 |
|
A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20200828 |
|
A975 | Report on accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A971005 Effective date: 20200902 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20201027 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20201221 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210224 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20210420 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20210520 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6892143 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |