JP6890379B2 - Non-contact power supply device - Google Patents

Non-contact power supply device Download PDF

Info

Publication number
JP6890379B2
JP6890379B2 JP2016027939A JP2016027939A JP6890379B2 JP 6890379 B2 JP6890379 B2 JP 6890379B2 JP 2016027939 A JP2016027939 A JP 2016027939A JP 2016027939 A JP2016027939 A JP 2016027939A JP 6890379 B2 JP6890379 B2 JP 6890379B2
Authority
JP
Japan
Prior art keywords
power
power receiving
power supply
circuit
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016027939A
Other languages
Japanese (ja)
Other versions
JP2017147849A (en
Inventor
加藤 進一
進一 加藤
慎二 瀧川
慎二 瀧川
壮志 野村
壮志 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2016027939A priority Critical patent/JP6890379B2/en
Publication of JP2017147849A publication Critical patent/JP2017147849A/en
Application granted granted Critical
Publication of JP6890379B2 publication Critical patent/JP6890379B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、電磁結合方式でかつ共振現象を利用して非接触給電を行う非接触給電装置に関する。 The present invention relates to a non-contact power feeding device that uses an electromagnetic coupling method and uses a resonance phenomenon to perform non-contact power feeding.

多数の部品が装着された基板を生産する基板生産機として、はんだ印刷機、電子部品装着機、リフロー機、基板検査機などがある。これらの設備を連結して基板生産ラインを構成することが一般的になっている。さらに、モジュール化された同じ大きさの基板生産機を列設して基板生産ラインを構成する場合も多い。モジュール化された基板生産機を用いることにより、ラインの組み替え時やラインを長大化する増設時の段取り替え作業が容易になり、フレキシブルな基板生産ラインが実現される。 As a board production machine that produces a board on which a large number of parts are mounted, there are a solder printing machine, an electronic component mounting machine, a reflow machine, a board inspection machine, and the like. It has become common to connect these facilities to form a substrate production line. Further, in many cases, modularized board production machines of the same size are arranged in a row to form a board production line. By using a modularized board production machine, the setup change work at the time of line rearrangement or expansion at the time of lengthening the line becomes easy, and a flexible board production line is realized.

近年、基板生産ラインの各基板生産機で使用する機材や部材を、基板生産ラインに沿って移動する移動体に搬送させ、省力化および自動化を推進することが検討されている。さらに、移動体への給電手段として、非接触給電装置が考えられている。なお、非接触給電装置の用途は、基板生産ラインに限定されず、他の製品を生産する組立ラインや加工ライン、電動車両の走行中給電など幅広い分野にわたっている。この種の非接触給電装置では、給電素子および受電素子にそれぞれコイルを用いる電磁結合方式が多用される。さらに、給電コイルおよび受電コイルの少なくとも一方に共振用コンデンサを接続し、共振現象を利用して給電効率を高めることも行われている(いわゆる磁界共鳴方式)。電磁結合方式の非接触給電装置に関する技術例として、特許文献1〜3を例示する。 In recent years, it has been studied to promote labor saving and automation by transporting equipment and members used in each substrate production machine of a substrate production line to a moving body moving along the substrate production line. Further, a non-contact power feeding device is considered as a power feeding means for the moving body. The application of the non-contact power feeding device is not limited to the substrate production line, but extends to a wide range of fields such as an assembly line and a processing line for producing other products, and a running power supply for an electric vehicle. In this type of non-contact power feeding device, an electromagnetic coupling method in which a coil is used for each of the power feeding element and the power receiving element is often used. Further, a resonance capacitor is connected to at least one of the power feeding coil and the power receiving coil to improve the power feeding efficiency by utilizing the resonance phenomenon (so-called magnetic field resonance method). Patent Documents 1 to 3 are exemplified as technical examples of the electromagnetic coupling type non-contact power feeding device.

特許文献1に開示された非接触給電システムは、車両に搭載された二次コイルおよび受電回路と、駐停車区域に配置された一次コイルおよび給電回路とを備える。さらに、この非接触給電システムは、システム内の所定位置の電圧値または電流値を検出する手段と、電圧値または電流値が所定範囲にあるか否かを判定する手段とを備え、否であるときに電力供給を停止して報知する。実施形態の説明によれば、車両側の受電装置(受電ユニット)は、二次コイルおよび受電回路に加えて制御部、通信部、および電圧検出部を備える。また、駐停車区域側の給電装置(給電ユニット)は、一次コイルおよび給電回路に加えて、制御部、通信部、および報知部を備える。そして、受電装置で過電圧が発生すると、対向する通信部を用いて給電装置に過電圧通信を行い、給電回路を停止させるとともに、報知部で視覚または聴覚により報知する。 The non-contact power feeding system disclosed in Patent Document 1 includes a secondary coil and a power receiving circuit mounted on a vehicle, and a primary coil and a power feeding circuit arranged in a parking / stopping area. Further, this non-contact power feeding system includes means for detecting a voltage value or a current value at a predetermined position in the system, and means for determining whether or not the voltage value or the current value is within a predetermined range. Sometimes the power supply is stopped to notify. According to the description of the embodiment, the power receiving device (power receiving unit) on the vehicle side includes a control unit, a communication unit, and a voltage detection unit in addition to the secondary coil and the power receiving circuit. Further, the power supply device (power supply unit) on the parking / stopping area side includes a control unit, a communication unit, and a notification unit in addition to the primary coil and the power supply circuit. Then, when an overvoltage is generated in the power receiving device, overvoltage communication is performed with the power feeding device using the opposite communication unit, the power feeding circuit is stopped, and the notification unit visually or audibly notifies the power supply circuit.

また、特許文献2に開示された過電圧保護付の非接触給電装置は、1次側回路(給電ユニット)の1次コイルから2次側回路(受電ユニット)の2次コイルに電力を供給するものであり、2次側回路に過電圧保護部が設けられている。この過電圧保護部は、2次側回路について過電圧発生を検出すると、2次コイルを短絡して保護する。このとき、1次コイル側は、短絡による電流または電圧の変化を検出して、電源をオフとする。これに類似した受電ユニット側の過電圧保護の技術例は、特許文献3にも開示されている。 Further, the non-contact power feeding device with overvoltage protection disclosed in Patent Document 2 supplies power from the primary coil of the primary side circuit (power feeding unit) to the secondary coil of the secondary side circuit (power receiving unit). Therefore, an overvoltage protection unit is provided in the secondary circuit. When the overvoltage protection unit detects the occurrence of overvoltage in the secondary circuit, it short-circuits the secondary coil to protect it. At this time, the primary coil side detects a change in current or voltage due to a short circuit and turns off the power supply. A technical example of overvoltage protection on the power receiving unit side similar to this is also disclosed in Patent Document 3.

特開2013−172507号公報Japanese Unexamined Patent Publication No. 2013-172507 特開2012−44762号公報Japanese Unexamined Patent Publication No. 2012-44762 特開2015−29404号公報JP-A-2015-290404

ところで、特許文献1の技術例では、過電圧通信を行うための通信部が受電装置および給電装置にそれぞれ必要となる。このため、受電装置および給電装置が大形化する。また、過電圧通信を行った後でないと給電回路を停止できない。このため、受電装置では、過電圧状態の継続時間が長引いて大きなストレスとなり、信頼性が低下する。 By the way, in the technical example of Patent Document 1, a communication unit for performing overvoltage communication is required for the power receiving device and the power feeding device, respectively. Therefore, the power receiving device and the power feeding device become large in size. In addition, the power supply circuit cannot be stopped until after overvoltage communication has been performed. For this reason, in the power receiving device, the duration of the overvoltage state is prolonged, which causes great stress and lowers the reliability.

これに対して、特許文献2、3の技術例では、受電装置側で過電圧を検出したときに、通信を介することなく受電装置側で短時間のうちに保護することが可能であり、信頼性の面で優れている。しかしながら、2次コイルを短絡して保護すると、受電装置の電気負荷は直ちに停止してしまうため、必ずしも好ましいとは言えない。つまり、過電圧発生を検出した後に、過電圧を低下させてごく短時間だけでも電気負荷の動作を継続できると、信頼性が高められる。 On the other hand, in the technical examples of Patent Documents 2 and 3, when an overvoltage is detected on the power receiving device side, it is possible to protect the overvoltage on the power receiving device side in a short time without using communication, and the reliability is high. It is excellent in terms of. However, if the secondary coil is short-circuited and protected, the electric load of the power receiving device is immediately stopped, which is not always preferable. That is, if the operation of the electric load can be continued even for a very short time by lowering the overvoltage after detecting the occurrence of the overvoltage, the reliability is improved.

また、特許文献2、3の技術例では、受電装置側での保護が終了した後に、給電装置側の給電回路を停止させる。このため、非接触給電装置は自動復旧できずに停止状態が継続し、復旧操作に人手がかかる。実際には、受電装置側の過電圧は、装置始動時や、受電装置と給電装置との位置関係がずれているとき、あるいは位置関係が変化しつつあるときなどに一時的に発生するケースが多い。つまり、一時的な過電圧の発生は、故障に起因するものではないので、保護することは必要であっても、非接触給電装置の全体を停止する必要は無い。 Further, in the technical examples of Patent Documents 2 and 3, the power supply circuit on the power supply device side is stopped after the protection on the power receiving device side is completed. For this reason, the non-contact power supply device cannot be automatically restored and remains in a stopped state, which requires manpower for the restoration operation. In reality, the overvoltage on the power receiving device side often occurs temporarily when the device is started, when the positional relationship between the power receiving device and the power feeding device is deviated, or when the positional relationship is changing. .. That is, since the temporary overvoltage is not caused by a failure, it is not necessary to stop the entire non-contact power feeding device even if it is necessary to protect it.

本発明は、上記背景技術の問題点に鑑みてなされたものであり、受電ユニット側に過電圧保護回路を備えるとともに通信部を不要として、小形化を実現しつつ動作信頼性の高い非接触給電装置を提供することを解決すべき課題とする。 The present invention has been made in view of the above-mentioned problems of the background technology, and is a non-contact power feeding device having an overvoltage protection circuit on the power receiving unit side and eliminating the need for a communication unit to realize miniaturization and high operation reliability. Is an issue to be solved.

上記課題を解決する本発明の非接触給電装置は、給電ユニットと複数の受電ユニットと、過電圧保護回路とを備えた非接触給電装置であって、前記給電ユニットは、給電コイルと、前記給電コイルに交流電力を供給する交流電源と、を備え、複数の前記受電ユニットは、出力側が一つにまとめられて共通の電気負荷に接続されるとともに、前記出力側から前記電気負荷に受電電圧を出力し、前記受電ユニットの各々は、前記給電コイルに対向すると電磁結合して非接触で交流電力を受け取る受電コイルと、前記受電コイルに並列接続されて受電側共振回路を形成する受電側共振用コンデンサと、前記受電コイルが受け取った交流電力を変換して前記出力側に前記受電電圧を生成する受電回路と、を備え、前記過電圧保護回路は、前記電気負荷の直前に設けられて前記受電電圧を検出する電圧検出回路と、前記受電ユニットの各々に設けられて前記受電側共振用コンデンサに直列接続されたスイッチと、記電圧検出回路で検出された前記受電電圧が過電圧状態を判定する閾値電圧を超過した場合に、前記受電ユニットの各々に設けられた前記スイッチを開路操作して前記受電側共振用コンデンサを切り離すスイッチ操作回路と、を含み、前記受電側共振回路の受電側共振周波数を変移させることにより前記受電電圧を低下させる
また、非接触給電装置は、給電ユニットと受電ユニットを備えた非接触給電装置であって、前記給電ユニットは、給電コイルと、前記給電コイルに交流電力を供給する交流電源と、を備え、前記受電ユニットは、前記給電コイルに対向すると電磁結合して非接触で交流電力を受け取る受電コイルと、前記受電コイルに並列接続されて受電側共振回路を形成する受電側共振用コンデンサと、前記受電コイルが受け取った交流電力を変換して受電電圧を生成し、電気負荷に出力する受電回路と、前記受電電圧が過電圧状態を判定する閾値電圧を超過した場合に、前記受電側共振回路の受電側共振周波数を変移させることにより前記受電電圧を低下させる過電圧保護回路と、を備え、前記過電圧保護回路は、前記受電電圧を検出する電圧検出回路と、前記受電側共振用コンデンサに直列接続されたスイッチと、前記電圧検出回路で検出された前記受電電圧が前記閾値電圧を超過した場合に、前記スイッチを開路操作して前記受電側共振用コンデンサを切り離すスイッチ操作回路と、を含み、前記スイッチ操作回路は、前記スイッチを開路操作してから所定時間が経過した後、前記受電電圧が前記閾値電圧以下に低下した場合に前記スイッチを閉路操作して自動復旧を行う、ように構成してもよい。
The non-contact power supply device of the present invention that solves the above problems is a non-contact power supply device including a power supply unit, a plurality of power receiving units, and an overvoltage protection circuit, and the power supply unit includes a power supply coil and the power supply. The plurality of power receiving units are provided with an AC power supply that supplies AC power to the coil, and the output side is integrated into one and connected to a common electric load, and the received voltage is applied to the electric load from the output side. Each of the power receiving units outputs and receives AC power in a non-contact manner by electromagnetically coupling when facing the power feeding coil, and is connected in parallel to the power receiving coil to form a power receiving side resonance circuit for power receiving side resonance. comprising a capacitor, and a power receiving circuit that constitutes the raw said incoming voltage to the output side converts AC power the power receiving coil has received, the overvoltage protection circuit, the power receiving disposed directly in front of the electric load determining a voltage detection circuit for detecting a voltage, a switch connected in series to the power receiving side resonant capacitor provided on each of the power receiving unit, the receiving voltage detected in the previous SL voltage detecting circuit overvoltage conditions If you exceed the threshold voltage, the said switch provided on each of the receiving unit and open operating seen including and a switch operation circuit for disconnecting the power receiving resonance capacitor, the power receiving side resonance of the power reception side resonance circuit The received voltage is lowered by shifting the frequency .
Further, the non-contact power supply device is a non-contact power supply device including a power supply unit and a power receiving unit, and the power supply unit includes a power supply coil and an AC power supply for supplying AC power to the power supply coil. The power receiving unit includes a power receiving coil that is electromagnetically coupled when facing the power feeding coil and receives AC power in a non-contact manner, a power receiving side resonance capacitor that is connected in parallel to the power receiving coil to form a power receiving side resonance circuit, and the power receiving coil. Converts the AC power received by the coil to generate a power receiving voltage and outputs it to an electric load. When the power receiving voltage exceeds the threshold voltage for determining an overvoltage state, the power receiving side resonance of the power receiving side resonance circuit The overvoltage protection circuit includes an overvoltage protection circuit that lowers the received voltage by shifting the frequency, and the overvoltage protection circuit includes a voltage detection circuit that detects the received voltage and a switch connected in series to the receiving side resonance capacitor. The switch operation circuit includes a switch operation circuit that opens the switch to disconnect the power receiving side resonance capacitor when the received voltage detected by the voltage detection circuit exceeds the threshold voltage. After a predetermined time has elapsed since the switch was opened, the switch may be closed to perform automatic recovery when the received voltage drops below the threshold voltage.

本発明の非接触給電装置において、受電ユニットの過電圧保護回路は、過電圧状態を判定した場合に、受電側共振回路の受電側共振周波数を変移させる。これにより、受電側共振周波数が交流電源の周波数から大きく外れて受電電圧が低下し、過電圧状態が解消されて保護される。したがって、通信部を経由して給電ユニットの交流電源を停止する必要が無く、短時間での保護が可能となり、動作信頼性が高い。また、受電電圧は、低下しつつも継続して電気負荷に出力されるので、動作信頼性が高い。 In the non-contact power feeding device of the present invention, the overvoltage protection circuit of the power receiving unit shifts the power receiving side resonance frequency of the power receiving side resonance circuit when the overvoltage state is determined. As a result, the resonance frequency on the power receiving side deviates greatly from the frequency of the AC power supply, the power receiving voltage drops, and the overvoltage state is eliminated and protected. Therefore, it is not necessary to stop the AC power supply of the power supply unit via the communication unit, protection is possible in a short time, and operation reliability is high. Further, since the received voltage is continuously output to the electric load while decreasing, the operation reliability is high.

第1実施形態の非接触給電装置の構成を模式的に説明する図である。It is a figure which schematically explains the structure of the non-contact power feeding apparatus of 1st Embodiment. 非接触給電装置の給電性能の周波数特性を定性的に示した図である。It is a figure which qualitatively showed the frequency characteristic of the power feeding performance of a non-contact power feeding device. 非接触給電装置の過電圧保護の動作を模式的に説明するタイムチャートの図である。It is a figure of the time chart which schematically explains the operation of the overvoltage protection of a non-contact power supply device. 非接触給電装置の過電流保護回路の動作を模式的に説明するタイムチャートの図である。It is a figure of the time chart which schematically explains the operation of the overcurrent protection circuit of a non-contact power supply device. 第2実施形態の非接触給電装置の過電圧保護の動作を説明するタイムチャートの図である。It is a figure of the time chart explaining the operation of the overvoltage protection of the non-contact power feeding apparatus of 2nd Embodiment. 第3実施形態の非接触給電装置の構成を模式的に説明する図である。It is a figure which schematically explains the structure of the non-contact power feeding apparatus of 3rd Embodiment. 正対時給電部の構成を模式的に説明する図6のZ方向から見た部分拡大側面図である。It is a partially enlarged side view seen from the Z direction of FIG. 6 which schematically explains the structure of the front-facing power feeding part.

(1.第1実施形態の非接触給電装置1の構成)
本発明の第1実施形態の非接触給電装置1について、図1〜図4を参考にして説明する。図1は、第1実施形態の非接触給電装置1の構成を模式的に説明する図である。図1中の破線の矢印は、制御の流れを示している。第1実施形態の非接触給電装置1は、給電ユニット1Sと受電ユニット1Rを備える。給電ユニット1Sは、定位置に配置される。受電ユニット1Rは、給電ユニット1Sに対して位置の変更が可能とされている。図示されるように、給電ユニット1Sに対して受電ユニット1Rが対向位置に配置されると、非接触給電装置1は電磁結合方式の非接触給電を行う。
(1. Configuration of non-contact power feeding device 1 of the first embodiment)
The non-contact power feeding device 1 according to the first embodiment of the present invention will be described with reference to FIGS. 1 to 4. FIG. 1 is a diagram schematically illustrating a configuration of the non-contact power feeding device 1 of the first embodiment. The dashed arrow in FIG. 1 indicates the control flow. The non-contact power feeding device 1 of the first embodiment includes a power feeding unit 1S and a power receiving unit 1R. The power supply unit 1S is arranged at a fixed position. The position of the power receiving unit 1R can be changed with respect to the power feeding unit 1S. As shown in the figure, when the power receiving unit 1R is arranged at a position facing the power feeding unit 1S, the non-contact power feeding device 1 performs the electromagnetic coupling type non-contact power feeding.

給電ユニット1Sは、交流電源2、給電側共振用コンデンサ35、給電コイル31、および過電流保護回路7を備える。詳述すると、交流電源2の高圧出力端子21は、給電側共振用コンデンサ35の一端に接続されている。給電側共振用コンデンサ35の他端は、給電コイル31の一端に接続されている。給電コイル31の他端は、過電流保護回路7の一端に接続されている。過電流保護回路7の他端は、交流電源2の低圧出力端子22に接続されている。上記した接続により、環状の給電回路が構成されている。 The power supply unit 1S includes an AC power supply 2, a power supply side resonance capacitor 35, a power supply coil 31, and an overcurrent protection circuit 7. More specifically, the high-voltage output terminal 21 of the AC power supply 2 is connected to one end of the feeding side resonance capacitor 35. The other end of the feeding side resonance capacitor 35 is connected to one end of the feeding coil 31. The other end of the power feeding coil 31 is connected to one end of the overcurrent protection circuit 7. The other end of the overcurrent protection circuit 7 is connected to the low voltage output terminal 22 of the AC power supply 2. The above-mentioned connection constitutes an annular power supply circuit.

交流電源2は、給電コイル31に交流電力を供給する。交流電源2は、例えば、直流電圧を供給する直流電源部と、直流電圧を交流変換する公知のブリッジ回路とを用いて構成できる。交流電源2の周波数f0として、数10kHz〜数100kHzのオーダーを例示でき、これに限定されない。 The AC power supply 2 supplies AC power to the power supply coil 31. The AC power supply 2 can be configured by using, for example, a DC power supply unit that supplies a DC voltage and a known bridge circuit that converts the DC voltage into an AC. As the frequency f0 of the AC power supply 2, the order of several tens of kHz to several hundreds of kHz can be exemplified, and the frequency is not limited to this.

給電側共振用コンデンサ35および給電コイル31は、給電側共振回路を構成している。給電側共振回路は、交流電源2からみて直列共振回路となっている。給電側共振回路の給電側共振周波数fsは、次の式1で求められる。ただし、πは円周率、LSは給電コイル31のインダクタンス値、CSは給電側共振用コンデンサ35の静電容量値である。
fs=1/2π(LS・CS)0.5 ……………………………式1
The feeding side resonance capacitor 35 and the feeding coil 31 form a feeding side resonance circuit. The power supply side resonance circuit is a series resonance circuit when viewed from the AC power supply 2. The feeding side resonance frequency fs of the feeding side resonance circuit is obtained by the following equation 1. However, π is the circumference ratio, LS is the inductance value of the feeding coil 31, and CS is the capacitance value of the feeding side resonance capacitor 35.
fs = 1 / 2π (LS / CS) 0.5 …………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………

過電流保護回路7は、給電コイル31に流れる給電電流ISを検出して、過電流状態を判定する閾値電流IFと大小比較する。過電流保護回路7は、所定の故障判定時間TFにわたって給電電流ISが閾値電流IFを超過した場合に、交流電源2に停止信号Soffを出力する。これにより、交流電源2は停止する。なお、故障判定時間TFは、後述する復帰時間TRよりも長く設定されている。 The overcurrent protection circuit 7 detects the feed current IS flowing through the feed coil 31 and compares the magnitude with the threshold current IF for determining the overcurrent state. The overcurrent protection circuit 7 outputs a stop signal Soff to the AC power supply 2 when the feed current IS exceeds the threshold current IF over a predetermined failure determination time TF. As a result, the AC power supply 2 is stopped. The failure determination time TF is set longer than the recovery time TR described later.

受電ユニット1Rは、受電コイル41、受電側共振用コンデンサ45、受電回路5、および過電圧保護回路6を備える。受電回路5は、整流回路50および平滑コンデンサ56を含む。過電圧保護回路6は、電圧検出回路61、スイッチ62、およびスイッチ操作回路63を含む。 The power receiving unit 1R includes a power receiving coil 41, a power receiving side resonance capacitor 45, a power receiving circuit 5, and an overvoltage protection circuit 6. The power receiving circuit 5 includes a rectifier circuit 50 and a smoothing capacitor 56. The overvoltage protection circuit 6 includes a voltage detection circuit 61, a switch 62, and a switch operation circuit 63.

受電コイル41の一端411は、受電側共振用コンデンサ45の一端、および整流回路50の入力第1端子51に接続されている。受電コイル41の他端412は、スイッチ62の他端、および整流回路50の入力第2端子52に接続されている。受電側共振用コンデンサ45の他端は、スイッチ62の一端に接続されている。整流回路50の出力第1端子53および出力第2端子54は、平滑コンデンサ56、電圧検出回路61、ならびに電気負荷ELの各一端および各他端に接続されている。上記した接続により、受電回路が構成されている。 One end 411 of the power receiving coil 41 is connected to one end of the power receiving side resonance capacitor 45 and the input first terminal 51 of the rectifier circuit 50. The other end 412 of the power receiving coil 41 is connected to the other end of the switch 62 and the input second terminal 52 of the rectifier circuit 50. The other end of the power receiving side resonance capacitor 45 is connected to one end of the switch 62. The output first terminal 53 and the output second terminal 54 of the rectifier circuit 50 are connected to each one end and each other end of the smoothing capacitor 56, the voltage detection circuit 61, and the electric load EL. The power receiving circuit is configured by the above connection.

受電コイル41は、給電コイル31に対向すると電磁結合して非接触で交流電力を受け取る。受電コイル41および受電側共振用コンデンサ45は、受電側共振回路を構成している。受電側共振回路は、電気負荷ELの側からみて並列共振回路となっている。受電側共振回路の受電側共振周波数frは、次の式2で求められる。ただし、πは円周率、LRは受電コイル41のインダクタンス値、CRは受電側共振用コンデンサ45の静電容量値である。
fr=1/2π(LR・CR)0.5 ……………………………式2
When the power receiving coil 41 faces the power feeding coil 31, it electromagnetically couples and receives AC power in a non-contact manner. The power receiving coil 41 and the power receiving side resonance capacitor 45 form a power receiving side resonance circuit. The power receiving side resonance circuit is a parallel resonance circuit when viewed from the side of the electric load EL. The power receiving side resonance frequency fr of the power receiving side resonance circuit is obtained by the following equation 2. However, π is the circumference ratio, LR is the inductance value of the power receiving coil 41, and CR is the capacitance value of the power receiving side resonance capacitor 45.
fr = 1 / 2π (LR / CR) 0.5 ……………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………

整流回路50は、4個の整流ダイオードをブリッジ接続した公知の全波整流回路とされている。整流回路50および平滑コンデンサ56は、直流の受電電圧VRを生成して、電気負荷ELに出力する。電気負荷ELは、受電ユニット1R上で仕事を行うものであり、その種類や消費電力などは限定されない。電気負荷ELは、受電ユニット1Rを移動させる電動駆動源を含んでいてもよい。また、受電電圧VRのレベルを調整して電気負荷ELに出力するDCDCコンバータなども、電気負荷ELの一部に含めて考えることができる。 The rectifier circuit 50 is a known full-wave rectifier circuit in which four rectifier diodes are bridge-connected. The rectifier circuit 50 and the smoothing capacitor 56 generate a DC power receiving voltage VR and output it to the electric load EL. The electric load EL works on the power receiving unit 1R, and its type and power consumption are not limited. The electric load EL may include an electric drive source for moving the power receiving unit 1R. Further, a DCDC converter that adjusts the level of the received voltage VR and outputs the output to the electric load EL can be considered as a part of the electric load EL.

電圧検出回路61は、受電電圧VRを検出して、スイッチ操作回路63に出力する。スイッチ操作回路63は、受電電圧VRと、過電圧状態を判定する閾値電圧VFとを大小比較する。スイッチ操作回路63は、受電電圧VRが閾値電圧VFを超過した場合、スイッチ62に開路信号Sopenを出力する。これにより、スイッチ62は開路操作される。スイッチ62は、通常の運転時には閉路されて使用され、開路操作されると受電側共振用コンデンサ45を受電回路から切り離す。これにより、式2に示された受電側共振周波数frは変移する。 The voltage detection circuit 61 detects the received voltage VR and outputs it to the switch operation circuit 63. The switch operation circuit 63 compares the magnitude of the received voltage VR with the threshold voltage VF for determining the overvoltage state. When the received voltage VR exceeds the threshold voltage VF, the switch operation circuit 63 outputs the opening signal Sopen to the switch 62. As a result, the switch 62 is opened. The switch 62 is used with the circuit closed during normal operation, and disconnects the power receiving side resonance capacitor 45 from the power receiving circuit when the circuit is opened. As a result, the power receiving side resonance frequency fr shown in Equation 2 shifts.

また、スイッチ操作回路63は、スイッチ62を開路操作してからの経過時間を計時するタイマを有している。スイッチ操作回路63は、経過時間が所定の復帰時間TRに達すると、受電電圧VRと閾値電圧VFとの大小比較を再開する。そして、閾値電圧VFを超過していた受電電圧VRが閾値電圧VF以下に低下した場合に、開路信号Sopenを解消する。これにより、スイッチ62は閉路操作され、受電側共振用コンデンサ45は受電コイル41に再び並列接続される。なお、復帰時間TRは、過電流保護回路7の故障判定時間TFよりも短く設定されている。 Further, the switch operation circuit 63 has a timer that measures the elapsed time from the opening operation of the switch 62. When the elapsed time reaches a predetermined recovery time TR, the switch operation circuit 63 restarts the magnitude comparison between the received voltage VR and the threshold voltage VF. Then, when the received voltage VR exceeding the threshold voltage VF drops to the threshold voltage VF or less, the opening signal Sopen is canceled. As a result, the switch 62 is closed, and the power receiving side resonance capacitor 45 is reconnected to the power receiving coil 41 in parallel. The recovery time TR is set shorter than the failure determination time TF of the overcurrent protection circuit 7.

電圧検出回路61は、例えば、直列接続された複数の抵抗で受電電圧VRを分圧して検出する抵抗分圧回路とすることができる。スイッチ操作回路63は、例えば、受電電圧VRの分圧値をディジタル電圧値に変換するAD変換器と、ディジタル電圧値に所定の演算処理を施しかつスイッチ62を制御する電子制御装置と、を組み合わせて構成できる。スイッチ62には、例えば、スイッチング機能を有する電力用半導体や電磁式の開閉リレーなどを用いることができる。 The voltage detection circuit 61 can be, for example, a resistance voltage divider circuit that divides and detects the received voltage VR with a plurality of resistors connected in series. The switch operation circuit 63 is a combination of, for example, an AD converter that converts a divided value of the received voltage VR into a digital voltage value, and an electronic control device that performs predetermined arithmetic processing on the digital voltage value and controls the switch 62. Can be configured. For the switch 62, for example, a power semiconductor having a switching function, an electromagnetic open / close relay, or the like can be used.

図2は、非接触給電装置1の給電性能の周波数特性を定性的に示した図である。図2の横軸は周波数f、縦軸は受電電圧VRを示している。図示されるように、給電性能の周波数特性は、受電側共振周波数frおよび給電側共振周波数fsにピークを有する二山特性となっている。そして、受電側共振周波数frと給電側共振周波数fsとの間の周波数において、受電電圧VRは、比較的高くかつ安定している。交流電源2の周波数f0は、この受電側共振周波数frと給電側共振周波数fsとの間に定められている。これにより、周波数変動の影響を受けにくく、かつ比較的高い受電電圧VRが得られる。なお、受電側共振周波数frと給電側共振周波数fsの大小関係は、逆になっていてもよい。 FIG. 2 is a diagram qualitatively showing the frequency characteristics of the power feeding performance of the non-contact power feeding device 1. The horizontal axis of FIG. 2 shows the frequency f, and the vertical axis shows the received voltage VR. As shown in the figure, the frequency characteristic of the power feeding performance is a bimodal characteristic having peaks at the power receiving side resonance frequency fr and the power feeding side resonance frequency fs. The power receiving voltage VR is relatively high and stable at a frequency between the power receiving side resonance frequency fr and the feeding side resonance frequency fs. The frequency f0 of the AC power supply 2 is defined between the power receiving side resonance frequency fr and the feeding side resonance frequency fs. As a result, a relatively high receiving voltage VR that is not easily affected by frequency fluctuations can be obtained. The magnitude relationship between the power receiving side resonance frequency fr and the feeding side resonance frequency fs may be reversed.

(2.第1実施形態の非接触給電装置1の動作および作用)
次に、第1実施形態の非接触給電装置1の動作および作用について説明する。図3は、非接触給電装置1の過電圧保護の動作を模式的に説明するタイムチャートの図である。図3の横軸は時間tの経過を表し、上段のグラフは受電電圧VR、下段のグラフは給電電流ISをそれぞれ示している。
(2. Operation and operation of the non-contact power feeding device 1 of the first embodiment)
Next, the operation and operation of the non-contact power feeding device 1 of the first embodiment will be described. FIG. 3 is a diagram of a time chart schematically explaining the operation of overvoltage protection of the non-contact power feeding device 1. The horizontal axis of FIG. 3 represents the passage of time t, the upper graph shows the received voltage VR, and the lower graph shows the feeding current IS.

図3の時刻t1以前において、受電ユニット1Rは、給電ユニット1Sに対向する適正位置にあって、非接触給電が良好に行われている。このときの受電電圧VR=Vn、給電電流IS=Inである。時刻t1の時点で、何らかの原因によって受電電圧VRが上昇し始め、同時に給電電流ISも増加し始めている。 Before the time t1 in FIG. 3, the power receiving unit 1R is at an appropriate position facing the power feeding unit 1S, and non-contact power feeding is satisfactorily performed. At this time, the received voltage VR = Vn and the feeding current IS = In. At time t1, the received voltage VR begins to increase for some reason, and at the same time, the feeding current IS also begins to increase.

受電電圧VRが上昇する一番目の原因として、受電ユニット1Rの位置変化が考えられる。つまり、給電ユニット1Sに対する受電ユニット1Rの相対位置が変化しつつあると、受電電圧VRが一時的に上昇し得る。二番目の原因として、電気負荷ELの急峻な変動が考えられる。例えば、電気負荷ELにモータを含んでいる場合、モータの回転数変化に応じて、受電電圧VRが一時的に上昇し得る。三番目の原因として、回路部品の故障が考えられる。例えば、給電側共振用コンデンサ35、給電コイル31、受電コイル41、および受電側共振用コンデンサ45のいずれかが故障すると、受電電圧VRが永続的に上昇し得る。実際には、三番目の原因は稀であり、一番目または二番目の原因による場合が多い。 The first cause of the increase in the power receiving voltage VR is considered to be a change in the position of the power receiving unit 1R. That is, if the relative position of the power receiving unit 1R with respect to the power feeding unit 1S is changing, the power receiving voltage VR may temporarily increase. The second cause is considered to be a steep fluctuation of the electric load EL. For example, when the electric load EL includes a motor, the received voltage VR may temporarily increase in response to a change in the rotation speed of the motor. The third cause is the failure of circuit components. For example, if any of the power feeding side resonance capacitor 35, the power feeding coil 31, the power receiving coil 41, and the power receiving side resonance capacitor 45 fails, the power receiving voltage VR can be permanently increased. In practice, the third cause is rare and is often due to the first or second cause.

時刻t2に、受電電圧VRが閾値電圧VFを超過すると、スイッチ操作回路63によってスイッチ62が開路操作される。これにより、受電側共振周波数frが変移し、受電電圧VRは上昇から低下に転じる。このとき、受電コイル41と電気負荷ELとの間の閉じた回路は活きているので、電気負荷ELに流れる電流は、瞬時には無くならない。仮に、スイッチ62の開路操作が行われないと、受電電圧VRは、破線Vxに示されるように増加し続けるので、リスクが生じる。一方、給電電流ISは、時刻t2以降も増加し続け、時刻t3には閾値電流IFを超過する。 When the received voltage VR exceeds the threshold voltage VF at time t2, the switch 62 is opened by the switch operation circuit 63. As a result, the resonance frequency fr on the power receiving side shifts, and the power receiving voltage VR changes from rising to falling. At this time, since the closed circuit between the power receiving coil 41 and the electric load EL is active, the current flowing through the electric load EL does not disappear instantly. If the switch 62 is not opened, the received voltage VR continues to increase as shown by the broken line Vx, which poses a risk. On the other hand, the feed current IS continues to increase after the time t2, and exceeds the threshold current IF at the time t3.

時刻t4において、低下する受電電圧VRは、良好なときの電圧値Vnを下回る。スイッチ62を開路操作した時刻t2から復帰時間TRが経過した後の時刻t5に、スイッチ操作回路63は、受電電圧VRと閾値電圧VFとの大小比較を再開する。このとき、受電電圧VRが閾値電圧VF以下に低下しているので、スイッチ操作回路63によってスイッチ62が閉路操作される。これにより、受電側共振周波数frが回復し、受電電圧VRは低下から上昇に転じる。仮に、スイッチ62の閉路操作が行われないと、受電電圧VRは破線Vyに示されるように低下するので、自動復旧されない。 At time t4, the decreasing received voltage VR is lower than the good voltage value Vn. At time t5 after the return time TR has elapsed from the time t2 when the switch 62 is opened, the switch operation circuit 63 resumes the magnitude comparison between the received voltage VR and the threshold voltage VF. At this time, since the received voltage VR is lowered to the threshold voltage VF or less, the switch 62 is closed by the switch operation circuit 63. As a result, the resonance frequency fr on the power receiving side is recovered, and the power receiving voltage VR changes from a decrease to an increase. If the switch 62 is not closed, the received voltage VR drops as shown by the broken line Vy, so that it is not automatically restored.

ここで、受電電圧VRの上昇が一番目または二番目の原因によるとき、時刻t5の時点で当該の原因は解消されている場合が多い。この場合、受電電圧VRは、良好なときの電圧値Vnへと落ち着いてゆく。また、時刻t5以降、給電電流ISは、増加から減少に転じて、良好なときの電流値Inへと落ち着いてゆく。つまり、一番目または二番目の原因による受電電圧VRの一時的な上昇に対し、過電圧保護回路6は、受電電圧VRを低下させて保護を行い、さらに自動復旧を行う。 Here, when the increase in the received voltage VR is due to the first or second cause, the cause is often eliminated at the time t5. In this case, the received voltage VR settles down to the voltage value Vn when it is good. Further, after the time t5, the feeding current IS changes from an increase to a decrease and settles down to a good current value In. That is, the overvoltage protection circuit 6 lowers the received voltage VR to protect it against a temporary rise in the received voltage VR due to the first or second cause, and further performs automatic recovery.

一方、受電電圧VRの上昇が三番目の原因によるとき、時刻t5の時点で当該の原因は解消されない。この場合、受電電圧VRは、破線Vzに示されるように再び急峻に上昇する。このため、時刻t6に、受電電圧VRが閾値電圧VFを超過すると、再度スイッチ62が開路操作される。また、時刻t5以降も、破線Izで示されるように給電電流ISは閾値電流IFを超過したままとなる。ここで、時刻t3から時刻t6の間、給電電流ISが閾値電流IFを超過しているが、未だ故障判定時間TFには達していない。したがって、過電流保護回路7は、時刻t6の時点では、停止信号Soffを出力しない。 On the other hand, when the increase in the received voltage VR is caused by the third cause, the cause is not eliminated at the time t5. In this case, the received voltage VR rises sharply again as shown by the broken line Vz. Therefore, when the received voltage VR exceeds the threshold voltage VF at time t6, the switch 62 is opened again. Further, even after the time t5, the feed current IS continues to exceed the threshold current IF as shown by the broken line Iz. Here, between the time t3 and the time t6, the feed current IS exceeds the threshold current IF, but the failure determination time TF has not yet been reached. Therefore, the overcurrent protection circuit 7 does not output the stop signal Soff at the time t6.

図4は、非接触給電装置1の過電流保護回路7の動作を模式的に説明するタイムチャートの図である。図4は、三番目の原因によって、図3と同じ時刻t1に受電電圧VRが上昇し始め、同時に給電電流ISが増加し始めた場合を例示している。図4の横軸の時間tの経過は、図3よりも長いスパンで示されている。三番目の原因が発生していると、時刻t3以降に、給電電流ISは閾値電流IFを超過したままとなる。そして、スイッチ62の開路操作および閉路操作が数回繰り返されて、故障判定時間TFが経過する。時刻t3から故障判定時間TFが経過した後の時刻t8に、過電流保護回路7は、停止信号Soffを出力する。これにより、交流電源2は停止し、給電電流ISは流れなくなる。 FIG. 4 is a diagram of a time chart schematically explaining the operation of the overcurrent protection circuit 7 of the non-contact power feeding device 1. FIG. 4 illustrates a case where the received voltage VR starts to increase at the same time t1 as in FIG. 3 and the feed current IS starts to increase at the same time due to the third cause. The passage of time t on the horizontal axis of FIG. 4 is shown by a span longer than that of FIG. If the third cause occurs, the feed current IS will continue to exceed the threshold current IF after time t3. Then, the opening operation and the closing operation of the switch 62 are repeated several times, and the failure determination time TF elapses. The overcurrent protection circuit 7 outputs the stop signal Soff at the time t8 after the failure determination time TF has elapsed from the time t3. As a result, the AC power supply 2 is stopped, and the power supply current IS does not flow.

本第1実施形態では、従来技術と比較して、次に示す固有の作用が生じる。すなわち、第1の作用として、時刻t2から時刻t4の間、電気負荷ELは動作し続けることが可能となっている。例えば、電気負荷ELの前段にDC/DCコンバータを含む場合、低下しつつある受電電圧VRでも、一時的には電気負荷ELを駆動できる。これに対して、従来技術では、時刻t2に受電コイル41の両端を短絡して保護するため、電気負荷ELに作用する受電電圧VRは瞬時に無くなる。 In the first embodiment, the following unique actions occur as compared with the prior art. That is, as the first action, the electric load EL can continue to operate from the time t2 to the time t4. For example, when a DC / DC converter is included in front of the electric load EL, the electric load EL can be temporarily driven even with a receiving voltage VR that is decreasing. On the other hand, in the prior art, since both ends of the power receiving coil 41 are short-circuited and protected at time t2, the power receiving voltage VR acting on the electric load EL disappears instantly.

第2の作用として、一番目または二番目の原因による受電電圧VRの一時的な上昇に対して、保護を行いつつ、自動復旧を行える。これに対して、従来技術では、受電ユニット1Rの側で受電電圧VRの上昇を検出すると、交流電源2を停止して保護するので、自動復旧は行われず、復旧操作に人手がかかる。また、三番目の原因、すなわち回路部品の故障による受電電圧VRの永続的な上昇に対して、従来技術と同様に、交流電源2を停止して、非接触給電装置1の全体を確実に保護できる。 As the second action, automatic recovery can be performed while protecting against a temporary increase in the received voltage VR due to the first or second cause. On the other hand, in the prior art, when an increase in the receiving voltage VR is detected on the power receiving unit 1R side, the AC power supply 2 is stopped and protected, so that automatic recovery is not performed and the recovery operation requires manpower. Further, against the third cause, that is, the permanent increase in the received voltage VR due to the failure of the circuit component, the AC power supply 2 is stopped to reliably protect the entire non-contact power supply device 1 as in the prior art. it can.

(3.第1実施形態の非接触給電装置1の態様および効果)
第1実施形態の非接触給電装置1は、給電ユニット1Sと受電ユニット1Rを備えた非接触給電装置1であって、給電ユニット1Sは、給電コイル31と、給電コイル31に交流電力を供給する交流電源2と、を備え、受電ユニット1Rは、給電コイル31に対向すると電磁結合して非接触で交流電力を受け取る受電コイル41と、受電コイルに接続されて受電側共振回路を形成する受電側共振用コンデンサ45と、受電コイル41が受け取った交流電力を変換して受電電圧VRを生成し、電気負荷ELに出力する受電回路5と、受電電圧VRが過電圧状態を判定する閾値電圧VFを超過した場合に、受電側共振回路の受電側共振周波数frを変移させる過電圧保護回路6と、を備えた。
(3. Aspects and effects of the non-contact power feeding device 1 of the first embodiment)
The non-contact power supply device 1 of the first embodiment is a non-contact power supply device 1 including a power supply unit 1S and a power reception unit 1R, and the power supply unit 1S supplies AC power to the power supply coil 31 and the power supply coil 31. The power receiving unit 1R includes an AC power supply 2 and is connected to a power receiving coil 41 to form a power receiving side resonance circuit by being connected to the power receiving coil and a power receiving coil 41 which is electromagnetically coupled to receive AC power when facing the power feeding coil 31. The resonance capacitor 45, the power receiving circuit 5 that converts the AC power received by the power receiving coil 41 to generate the power receiving voltage VR and outputs it to the electric load EL, and the power receiving voltage VR exceed the threshold voltage VF for determining the overvoltage state. In this case, an overvoltage protection circuit 6 for shifting the power receiving side resonance frequency fr of the power receiving side resonance circuit is provided.

第1実施形態の非接触給電装置1において、受電ユニット1Rの過電圧保護回路6は、過電圧状態を判定した場合に、受電側共振回路の受電側共振周波数frを変移させる。これにより、受電側共振周波数frが交流電源2の周波数f0から大きく外れて受電電圧VRが低下し、過電圧状態が解消されて保護される。したがって、従来技術の如く通信部を経由して交流電源2を停止する必要が無く、短時間での保護が可能となり、動作信頼性が高い。また、従来技術で用いられる通信部を不要としたので、受電ユニット1Rおよび給電ユニット1Sの小形化が実現される。さらに、受電電圧VRは、低下しつつも継続して電気負荷ELに出力されるので、動作信頼性が高い。 In the non-contact power feeding device 1 of the first embodiment, the overvoltage protection circuit 6 of the power receiving unit 1R shifts the power receiving side resonance frequency fr of the power receiving side resonance circuit when the overvoltage state is determined. As a result, the resonance frequency fr on the power receiving side deviates greatly from the frequency f0 of the AC power supply 2, the power receiving voltage VR drops, and the overvoltage state is eliminated and protected. Therefore, unlike the prior art, it is not necessary to stop the AC power supply 2 via the communication unit, protection is possible in a short time, and operation reliability is high. Further, since the communication unit used in the prior art is not required, the power receiving unit 1R and the power feeding unit 1S can be miniaturized. Further, since the received voltage VR is continuously output to the electric load EL while decreasing, the operation reliability is high.

さらに、受電側共振用コンデンサ45は、受電コイル41に並列接続されて並列共振回路を形成し、過電圧保護回路6は、受電電圧VRを検出する電圧検出回路61と、受電側共振用コンデンサ45を切り離し可能なスイッチ62と、電圧検出回路61で検出された受電電圧VRが閾値電圧VFを超過した場合に、スイッチ62を開路操作して受電側共振用コンデンサ45を切り離すスイッチ操作回路63と、を含む。これによれば、受電側共振周波数frを変移させるためにコイルやコンデンサを別途追加する必要がないので、コストの増加が抑制される。 Further, the power receiving side resonance capacitor 45 is connected in parallel to the power receiving coil 41 to form a parallel resonance circuit, and the overvoltage protection circuit 6 includes a voltage detection circuit 61 for detecting the power receiving voltage VR and a power receiving side resonance capacitor 45. A detachable switch 62 and a switch operation circuit 63 that opens the switch 62 to disconnect the power receiving side resonance capacitor 45 when the received voltage VR detected by the voltage detection circuit 61 exceeds the threshold voltage VF. Including. According to this, since it is not necessary to add a coil or a capacitor separately in order to shift the power receiving side resonance frequency fr, the increase in cost is suppressed.

さらに、スイッチ操作回路63は、閾値電圧VFを超過していた受電電圧VRが閾値電圧VF以下に低下した場合、所定の復帰時間TRが経過した後に、スイッチ62を閉路操作して受電側共振用コンデンサ45を受電コイル41に再び並列接続する。これによれば、受電ユニット1Rの位置変化や電気負荷ELの急峻な変動などに起因する受電電圧VRの一時的な上昇に対して、保護を行いつつ、自動復旧を行える。また、回路部品の故障などによる受電電圧VRの永続的な上昇に対しても、保護を行える。 Further, when the received voltage VR exceeding the threshold voltage VF drops to the threshold voltage VF or less, the switch operation circuit 63 closes the switch 62 after the predetermined recovery time TR elapses to perform the power receiving side resonance. The capacitor 45 is reconnected to the power receiving coil 41 in parallel again. According to this, automatic recovery can be performed while protecting against a temporary increase in the power receiving voltage VR caused by a change in the position of the power receiving unit 1R or a sudden change in the electric load EL. In addition, it is possible to protect against a permanent increase in the received voltage VR due to a failure of a circuit component or the like.

さらに、給電ユニット1Sは、給電コイル31に流れる給電電流ISが過電流状態を判定する閾値電流IFを超過した場合に、交流電源2を停止する過電流保護回路7をさらに備えた。これによれば、交流電源2を停止することにより、非接触給電装置1の全体を確実に保護できる。 Further, the power supply unit 1S further includes an overcurrent protection circuit 7 that stops the AC power supply 2 when the power supply current IS flowing through the power supply coil 31 exceeds the threshold current IF for determining the overcurrent state. According to this, by stopping the AC power supply 2, the entire non-contact power feeding device 1 can be reliably protected.

さらに、給電ユニット1Sは、復帰時間TRよりも長い所定の故障判定時間TFにわたって、給電コイル31に流れる給電電流ISが過電流状態を判定する閾値電流IFを超過した場合に、交流電源2を停止する過電流保護回路7をさらに備えた。これによれば、受電電圧VRの一時的な上昇では交流電源2を停止せず、回路部品の故障などによる受電電圧VRの永続的な上昇に対してのみ交流電源2を停止する。したがって、受電ユニット1Rで過電圧が発生したときに、可能であれば自動復旧を行い、自動復旧できないときにのみ交流電源2を停止するので、動作信頼性が極めて高い。 Further, the power supply unit 1S stops the AC power supply 2 when the power supply current IS flowing through the power supply coil 31 exceeds the threshold current IF for determining the overcurrent state over a predetermined failure determination time TF longer than the recovery time TR. The overcurrent protection circuit 7 is further provided. According to this, the AC power supply 2 is not stopped when the received voltage VR temporarily rises, and the AC power supply 2 is stopped only when the received voltage VR rises permanently due to a failure of a circuit component or the like. Therefore, when an overvoltage occurs in the power receiving unit 1R , automatic recovery is performed if possible, and the AC power supply 2 is stopped only when automatic recovery is not possible, so that the operation reliability is extremely high.

さらに、給電ユニット1Sは、給電コイル31に接続されて給電側共振回路を形成する給電側共振用コンデンサ35をさらに備え、交流電源2の周波数f0は、受電側共振回路の受電側共振周波数frと、給電側共振回路の給電側共振周波数fsとの間に定められている。これによれば、給電性能の周波数特性に示されるように、周波数変動の影響を受けにくく、かつ比較的高い受電電圧VRを得ることができる。 Further, the power feeding unit 1S further includes a power feeding side resonance capacitor 35 connected to the power feeding coil 31 to form a power feeding side resonance circuit, and the frequency f0 of the AC power supply 2 is the power receiving side resonance frequency fr of the power receiving side resonance circuit. , It is defined between the feeding side resonance frequency fs of the feeding side resonance circuit. According to this, as shown in the frequency characteristics of the power feeding performance, it is possible to obtain a relatively high power receiving voltage VR that is not easily affected by frequency fluctuations.

(4.第2実施形態の非接触給電装置)
次に、第2実施形態の非接触給電装置について、第1実施形態と異なる点を主に説明する。第2実施形態において、過電圧保護回路を構成するスイッチ操作回路の構成が第1実施形態と異なり、その他の部分の構成は第1実施形態と同じである。第2実施形態のスイッチ操作回路は、受電電圧VRを所定の閾値電圧VFと大小比較する比較回路と、受電電圧VRが閾値電圧VFを超過したときスイッチ62に開路信号Sopenを出力する制御回路とが組み合わされて構成される。第2実施形態のスイッチ操作回路は、タイマを有さないので、復帰時間TRに基づく動作を行わない。
(4. Non-contact power feeding device of the second embodiment)
Next, the non-contact power feeding device of the second embodiment will be mainly described as being different from the first embodiment. In the second embodiment, the configuration of the switch operation circuit constituting the overvoltage protection circuit is different from that of the first embodiment, and the configuration of other parts is the same as that of the first embodiment. The switch operation circuit of the second embodiment includes a comparison circuit that compares the received voltage VR with a predetermined threshold voltage VF, and a control circuit that outputs a circuit opening signal Sopen to the switch 62 when the received voltage VR exceeds the threshold voltage VF. Are combined and configured. Since the switch operation circuit of the second embodiment does not have a timer, it does not operate based on the return time TR.

図5は、第2実施形態の非接触給電装置の過電圧保護の動作を説明するタイムチャートの図である。図5の時刻t11以前において、受電ユニット1Rは、給電ユニット1Sに対向する適正位置にあって、非接触給電が良好に行われている。このときの受電電圧VR=Vn、給電電流IS=Inである。時刻t11の時点で、何らかの原因によって受電電圧VRが上昇し始め、同時に給電電流ISも増加し始める。 FIG. 5 is a diagram of a time chart illustrating the operation of overvoltage protection of the non-contact power feeding device of the second embodiment. Before the time t11 in FIG. 5, the power receiving unit 1R is at an appropriate position facing the power feeding unit 1S, and non-contact power feeding is satisfactorily performed. At this time, the received voltage VR = Vn and the feeding current IS = In. At time t11, the received voltage VR starts to increase for some reason, and at the same time, the feeding current IS also starts to increase.

時刻t12に、受電電圧VRが閾値電圧VFを超過すると、スイッチ操作回路によってスイッチ62が開路操作される。これにより、受電側共振周波数frが変移し、受電電圧VRは閾値電圧VFをオーバーシュートした後、低下し始める。仮に、スイッチ62の開路操作が行われないと、受電電圧VRは、破線Vxに示されるように増加し続けるので、リスクが生じる。 When the received voltage VR exceeds the threshold voltage VF at time t12, the switch 62 is opened by the switch operation circuit. As a result, the resonance frequency fr on the power receiving side shifts, and the power receiving voltage VR overshoots the threshold voltage VF and then begins to decrease. If the switch 62 is not opened, the received voltage VR continues to increase as shown by the broken line Vx, which poses a risk.

時刻t13に、受電電圧VRが閾値電圧VF以下まで低下すると、スイッチ操作回路によってスイッチ62が閉路操作される。これにより、受電側共振周波数frが回復する。ここで、受電電圧VRの上昇が一番目または二番目の原因によるとき、時刻t13の時点で当該の原因は解消されている場合が多い。この場合、受電電圧VRは、さらに低下して良好なときの電圧値Vnに落ち着く。 When the received voltage VR drops below the threshold voltage VF at time t13, the switch 62 is closed by the switch operation circuit. As a result, the power receiving side resonance frequency fr is restored. Here, when the increase in the received voltage VR is due to the first or second cause, the cause is often eliminated at the time t13. In this case, the received voltage VR further decreases and settles at the voltage value Vn when it is good.

一方、受電電圧VRの上昇が三番目の原因によるとき、時刻t13の時点で当該の原因は解消されない。この場合、受電電圧VRは、破線Vzに示されるように、閾値電圧VFをアンダーシュートした後、再び上昇する。このため、時刻t14に受電電圧VRが閾値電圧VFを超過すると、再度スイッチ62が開路操作される。原因がいずれの場合であっても、電気負荷ELは動作し続けることが可能となっている。 On the other hand, when the increase in the received voltage VR is caused by the third cause, the cause is not eliminated at the time t13. In this case, the received voltage VR undershoots the threshold voltage VF and then rises again, as shown by the broken line Vz. Therefore, when the received voltage VR exceeds the threshold voltage VF at time t14, the switch 62 is opened again. Regardless of the cause, the electric load EL can continue to operate.

上記したように、第2実施形態でも、一番目または二番目の原因による受電電圧VRの一時的な上昇に対し、過電圧保護回路は、受電電圧VRを低下させて保護を行い、さらに自動復旧を行う。また、第2実施形態においても、故障判定時間TFにわたって、給電電流ISが閾値電流IFを超過した場合に、過電流保護回路7は、交流電源2を停止して、非接触給電装置の全体を保護する。 As described above, also in the second embodiment, the overvoltage protection circuit lowers the received voltage VR to protect against a temporary increase in the received voltage VR due to the first or second cause, and further performs automatic recovery. Do. Further, also in the second embodiment, when the power supply current IS exceeds the threshold current IF over the failure determination time TF, the overcurrent protection circuit 7 stops the AC power supply 2 and supplies the entire non-contact power supply device. Protect.

(5.第3実施形態の非接触給電装置1A)
次に、第3実施形態の非接触給電装置1Aについて、第1および第2実施形態と異なる点を主に説明する。図6は、第3実施形態の非接触給電装置1Aの構成を模式的に説明する図である。第3実施形態の非接触給電装置1Aは、基板生産ライン9に適用される。図示されるように、基板生産ライン9は、複数台の基板生産機91、92が列設されて構成されている。図6の左右方向は、基板生産機91、92の列設方向であり、後述する移動体99の移動方向でもある。
(5. Non-contact power feeding device 1A of the third embodiment)
Next, the non-contact power feeding device 1A of the third embodiment will be mainly described as being different from the first and second embodiments. FIG. 6 is a diagram schematically illustrating the configuration of the non-contact power feeding device 1A of the third embodiment. The non-contact power feeding device 1A of the third embodiment is applied to the substrate production line 9. As shown in the figure, the substrate production line 9 is configured by arranging a plurality of substrate production machines 91 and 92 in a row. The left-right direction in FIG. 6 is the rowing direction of the substrate producing machines 91 and 92, and is also the moving direction of the moving body 99 described later.

各基板生産機91、92は、モジュール化されており、列設方向の幅寸法が互いに等しい。基板生産機91、92は列設位置の順序変更、およびモジュール化された他の基板生産機との入れ替えが可能とされている。基板生産機91、92の列設台数は限定されず、後から列設台数を増やすモジュール増設対応も可能になっている。基板生産機91、92として電子部品装着機を例示でき、これに限定されない。 The substrate production machines 91 and 92 are modularized, and the width dimensions in the rowing direction are equal to each other. The board production machines 91 and 92 can change the order of the row arrangement positions and can be replaced with other modularized board production machines. The number of board production machines 91 and 92 in a row is not limited, and it is possible to add modules to increase the number of boards in a row later. Examples of the substrate production machines 91 and 92 include electronic component mounting machines, and the present invention is not limited thereto.

基板生産機91、92の前方には、列設方向に延在する図略のガイドレールが配設されている。移動体99は、ガイドレールに沿って移動方向に移動する。移動体99は、各基板生産機91、92で使用する機材や部材を図略の保管庫から搬入し、使用後の機材や部材を保管庫に戻す役割を担っている。 In front of the substrate production machines 91 and 92, guide rails (not shown) extending in the rowing direction are arranged. The moving body 99 moves in the moving direction along the guide rail. The mobile body 99 has a role of carrying in the equipment and members used in the substrate production machines 91 and 92 from the storage of the drawings, and returning the used equipment and parts to the storage.

第3実施形態の非接触給電装置1Aは、各基板生産機91、92の前側にそれぞれ給電ユニット1Sが設けられ、移動体99に2組の受電ユニット1Rが設けられて構成されている。図6に示されるように、2組の受電ユニット1Rは、受電回路5の出力側が一つにまとめられて、共通の電気負荷ELに給電する。また、2組の受電ユニット1Rを保護する過電圧保護回路6Aは、一体化された電圧検出回路61およびスイッチ操作回路63を共有するとともに、スイッチ62をユニットごとに有する。 The non-contact power feeding device 1A of the third embodiment is configured by providing a power feeding unit 1S on the front side of each of the board producing machines 91 and 92, and providing two sets of power receiving units 1R on the mobile body 99. As shown in FIG. 6, in the two sets of power receiving units 1R, the output sides of the power receiving circuit 5 are combined into one to supply power to a common electric load EL. Further, the overvoltage protection circuit 6A that protects the two sets of power receiving units 1R shares an integrated voltage detection circuit 61 and switch operation circuit 63, and has a switch 62 for each unit.

ここで、複数の給電コイル31および2個の受電コイル41の移動方向の長さ、および移動方向に隣り合う相互離間距離は、非接触給電が安定して行われるように設定されている。つまり、移動体99の位置に関係なく常に、給電コイル31と少なくとも1個の受電コイル41とが正対状態になる。正対状態とは、給電コイル31の移動方向の長さの範囲内に受電コイル41の移動方向の長さの全体が対向する状態を意味する。正対状態にある受電コイル41は、単独でも電気負荷ELを駆動できるだけの受電容量を有する。 Here, the lengths of the plurality of power feeding coils 31 and the two power receiving coils 41 in the moving direction and the mutual separation distances adjacent to each other in the moving direction are set so that non-contact power feeding is stably performed. That is, regardless of the position of the moving body 99, the power feeding coil 31 and at least one power receiving coil 41 are always in a facing state. The facing state means a state in which the entire length of the power receiving coil 41 in the moving direction faces each other within the range of the length of the power feeding coil 31 in the moving direction. The power receiving coil 41 in the facing state has a power receiving capacity capable of driving the electric load EL by itself.

さらに、第3実施形態の非接触給電装置1Aには、正対時給電部8が設けられている。図7は、正対時給電部8の構成を模式的に説明する図6のZ方向から見た部分拡大側面図である。正対時給電部8は、正対状態検出部を構成するセンサ81、82、ドッグ88、および交流電源2の電源スイッチ23などで構成されている。 Further, the non-contact power feeding device 1A of the third embodiment is provided with a front-facing power feeding unit 8. FIG. 7 is a partially enlarged side view of FIG. 6 as viewed from the Z direction, which schematically describes the configuration of the front-facing power feeding unit 8. The face-to-face power supply unit 8 includes sensors 81, 82, dog 88, and a power switch 23 of the AC power supply 2 that form a face-to-face state detection unit.

図7に示されるように、センサ81、82は、1個の給電コイル31に2個ずつ設けられる。センサ81、82は、給電コイル31の移動方向の両端から受電コイル41の移動方向の長さLR分だけ中央に寄った位置に配置されている。ドッグ88は、細長い板状の部材であり、移動体99の側面98から突出して設けられている。ドッグ88は、2個の受電コイル41の相互に離れた遠方端同士を結んで延在している。 As shown in FIG. 7, two sensors 81 and 82 are provided on one feeding coil 31. The sensors 81 and 82 are arranged at positions closer to the center by the length LR of the power receiving coil 41 in the moving direction from both ends of the power feeding coil 31 in the moving direction. The dog 88 is an elongated plate-shaped member, and is provided so as to project from the side surface 98 of the moving body 99. The dog 88 extends by connecting the distant ends of the two power receiving coils 41 that are separated from each other.

センサ81、82は、検出光の遮断を検出するタイプのセンサである。センサ81、82には、安価な汎用品を用いることができる。図7に示されるように、センサ81、82は、本体部84、投光部85、および受光部86からなる。投光部85および受光部86は、本体部84から突設され、相互に離隔している。投光部85と受光部86との間には、ドッグ88が進入および退出できるように配置されている。 The sensors 81 and 82 are types of sensors that detect the blocking of the detection light. Inexpensive general-purpose products can be used for the sensors 81 and 82. As shown in FIG. 7, the sensors 81 and 82 include a main body portion 84, a light emitting portion 85, and a light receiving portion 86. The light projecting unit 85 and the light receiving unit 86 are projected from the main body unit 84 and are separated from each other. A dog 88 is arranged between the light emitting unit 85 and the light receiving unit 86 so that the dog 88 can enter and exit.

投光部85は、受光部86に向けて検出光を照射する。受光部86は、検出光が遮断された遮断状態と、検出光が到達した受光状態とを区別して検出する。ドッグ88が投光部85と受光部86との間に進入すると、遮断状態になる。ドッグ88が投光部85と受光部86との間から退出すると、受光状態になる。2個のセンサ81、82の本体部84は、それぞれ交流電源2の電源スイッチ23に接続されている。 The light emitting unit 85 irradiates the detection light toward the light receiving unit 86. The light receiving unit 86 distinguishes between a blocking state in which the detection light is blocked and a light receiving state in which the detection light has reached. When the dog 88 enters between the light emitting unit 85 and the light receiving unit 86, it is in a cutoff state. When the dog 88 exits between the light emitting unit 85 and the light receiving unit 86, it enters a light receiving state. The main body 84 of the two sensors 81 and 82 is connected to the power switch 23 of the AC power supply 2, respectively.

ドッグ88は、受電コイル41が正対状態にあるとき、センサ81、82に進入して、センサ81、82を作動する。これにより、センサ81、82の受光部66は、遮断状態を検出し、本体部64は、投入指令Ponを電源スイッチ23に指令する。2個のセンサ81、82の少なくとも一方の投入指令Ponが発生していると、電源スイッチ23が投入されて交流電源2が動作する。したがって、交流電源2は、給電コイル31が正対状態になるときにのみ動作するので、電源効率が高い。 When the power receiving coil 41 is in a facing state, the dog 88 enters the sensors 81 and 82 and operates the sensors 81 and 82. As a result, the light receiving unit 66 of the sensors 81 and 82 detects the cutoff state, and the main body unit 64 commands the power switch 23 to turn on command Pon. When at least one of the two sensors 81 and 82 is turned on, the power switch 23 is turned on and the AC power supply 2 operates. Therefore, the AC power supply 2 operates only when the power supply coil 31 is in a facing state, so that the power supply efficiency is high.

なお、投入指令Ponが発生していても、過電流保護回路7の停止信号Soffが入力されると、電源スイッチ23は遮断されて交流電源2が停止する。つまり、給電機能よりも保護機能が優先して動作する。また、正対時給電部8の故障時などに、移動体99が遠くに離隔しているにも拘わらず交流電源2が動作して、閾値電流IFを超える給電電流ISが給電コイル31に流れることが生じ得る。この場合、過電流保護回路7が動作して、当該の給電ユニット1Sが保護される。 Even if the ON command Pon is generated, when the stop signal Soff of the overcurrent protection circuit 7 is input, the power switch 23 is shut off and the AC power supply 2 is stopped. That is, the protection function has priority over the power supply function. Further, in the event of a failure of the front-facing power supply unit 8, the AC power supply 2 operates even though the moving body 99 is far away, and a power supply current IS exceeding the threshold current IF flows through the power supply coil 31. Can happen. In this case, the overcurrent protection circuit 7 operates to protect the power supply unit 1S.

第3実施形態の非接触給電装置1Aにおいて、給電ユニット1Sは、基板生産ライン9を構成する複数の基板生産機91、92にそれぞれ同数個ずつ設けられ、受電ユニット1Rは、複数の基板生産機91、92の列設方向に移動する移動体99に設けられている。 In the non-contact power feeding device 1A of the third embodiment, the same number of power feeding units 1S are provided in each of the plurality of board producing machines 91 and 92 constituting the board production line 9, and the power receiving unit 1R is a plurality of board producing machines. It is provided on the moving body 99 that moves in the rowing direction of 91 and 92.

これによれば、基板生産機91、92の列設位置の順序変更、およびモジュール化された他の基板生産機との入れ替え、ならびに、列設台数が増設されるモジュール増設対応の全ての場合に、非接触給電装置1Aは、良好な受電状態が確保される。加えて、過電圧保護回路6による短時間での保護、および自動復旧の機能が確保される。したがって、基板生産ライン9のライン構成の変更時やモジュール増設対応時に、非接触給電装置1に関する段取り替え作業は簡素である。 According to this, in all cases of changing the order of the row arrangement positions of the board production machines 91 and 92, replacing them with other modularized board production machines, and supporting the addition of modules in which the number of rows is increased. The non-contact power feeding device 1A ensures a good power receiving state. In addition, the overvoltage protection circuit 6 ensures a short-time protection and an automatic recovery function. Therefore, when the line configuration of the board production line 9 is changed or when the module is added, the setup change work related to the non-contact power feeding device 1 is simple.

(6.実施形態の応用および変形)
なお、過電圧保護回路6の詳細な構成は、適宜変更することができる。例えば、過電圧保護回路6は、受電電圧VRの過電圧状態を検出して過電圧信号を出力する過電圧検出回路と、スイッチ62と、過電圧信号を増幅した駆動電圧をスイッチ62に出力する増幅回路とで構成できる。また、受電側共振周波数frを変移させるため、受電コイル41および受電側共振用コンデンサ45以外のコイルやコンデンサを受電回路に付加し、スイッチで切り離すように構成してもよい。本発明は、その他にも様々な応用や変形が可能である。
(6. Application and modification of the embodiment)
The detailed configuration of the overvoltage protection circuit 6 can be changed as appropriate. For example, the overvoltage protection circuit 6 includes an overvoltage detection circuit that detects an overvoltage state of the received voltage VR and outputs an overvoltage signal, a switch 62, and an amplifier circuit that outputs a drive voltage obtained by amplifying the overvoltage signal to the switch 62. it can. Further, in order to change the power receiving side resonance frequency fr, a coil or a capacitor other than the power receiving coil 41 and the power receiving side resonance capacitor 45 may be added to the power receiving circuit and disconnected by a switch. The present invention can be applied to various other applications and modifications.

本発明の非接触給電装置は、第3実施形態で説明した基板生産ライン9以外にも、他の製品を生産する組立ラインや加工ライン、電動車両の走行中給電など幅広い分野に利用可能である。 The non-contact power feeding device of the present invention can be used in a wide range of fields such as an assembly line for producing other products, a processing line, and a running power supply for an electric vehicle, in addition to the substrate production line 9 described in the third embodiment. ..

1、1A:非接触給電装置
2:交流電源 23:電源スイッチ
31:給電コイル 35:給電側共振用コンデンサ
41:受電コイル 45:受電側共振用コンデンサ
5受電回路 50:整流回路 56:平滑コンデンサ
6、6A:過電圧保護回路 61:電圧検出回路
62:スイッチ 63:スイッチ操作回路
7:過電流保護回路
8:正対時給電部 81、82:センサ 88:ドッグ
9:基板生産ライン 91、92:基板生産機 99:移動体
EL:電気負荷 IS:給電電流 IF:閾値電流
VR:受電電圧 VF:閾値電圧
TF:故障判定時間 TR:復帰時間
fs:給電側共振周波数 fr:受電側共振周波数
f0:交流電源の周波数
1, 1A: Non-contact power supply device 2: AC power supply 23: Power switch 31: Power supply coil 35: Power supply side resonance capacitor 41: Power receiving coil 45: Power receiving side resonance capacitor 5 Power receiving circuit 50: Rectifier circuit 56: Smoothing capacitor 6 , 6A: Overvoltage protection circuit 61: Voltage detection circuit 62: Switch 63: Switch operation circuit 7: Overcurrent protection circuit 8: Direct current power supply 81, 82: Sensor 88: Dog 9: Board production line 91, 92: Board Production machine 99: Mobile EL: Electric load IS: Feed current IF: Threshold current VR: Power receiving voltage VF: Threshold voltage TF: Failure judgment time TR: Recovery time fs: Power feeding side resonance frequency fr: Power receiving side resonance frequency f0: AC Power supply frequency

Claims (8)

給電ユニットと複数の受電ユニットと、過電圧保護回路とを備えた非接触給電装置であって、
前記給電ユニットは、給電コイルと、前記給電コイルに交流電力を供給する交流電源と、を備え、
複数の前記受電ユニットは、出力側が一つにまとめられて共通の電気負荷に接続されるとともに、前記出力側から前記電気負荷に受電電圧を出力し、
前記受電ユニットの各々は、
前記給電コイルに対向すると電磁結合して非接触で交流電力を受け取る受電コイルと、
前記受電コイルに並列接続されて受電側共振回路を形成する受電側共振用コンデンサと、
前記受電コイルが受け取った交流電力を変換して前記出力側に前記受電電圧を生成する受電回路と、を備え、
前記過電圧保護回路は、
前記電気負荷の直前に設けられて前記受電電圧を検出する電圧検出回路と、
前記受電ユニットの各々に設けられて前記受電側共振用コンデンサに直列接続されたスイッチと、
記電圧検出回路で検出された前記受電電圧が過電圧状態を判定する閾値電圧を超過した場合に、前記受電ユニットの各々に設けられた前記スイッチを開路操作して前記受電側共振用コンデンサを切り離すスイッチ操作回路と、を含み、前記受電側共振回路の受電側共振周波数を変移させることにより前記受電電圧を低下させる
非接触給電装置。
A non-contact power feeding device including a power feeding unit, a plurality of power receiving units, and an overvoltage protection circuit.
The power supply unit includes a power supply coil and an AC power source that supplies AC power to the power supply coil.
The output side of the plurality of power receiving units is combined into one and connected to a common electric load, and the power receiving voltage is output from the output side to the electric load.
Each of the power receiving units
A power receiving coil that receives AC power in a non-contact manner by electromagnetically coupling when facing the power feeding coil.
A power receiving side resonance capacitor that is connected in parallel to the power receiving coil to form a power receiving side resonance circuit,
And a power receiving circuit that constitutes the raw said incoming voltage to the output side converts AC power the power receiving coil has received,
The overvoltage protection circuit
A voltage detection circuit provided immediately before the electric load to detect the received voltage, and
A switch provided in each of the power receiving units and connected in series to the power receiving side resonance capacitor,
When the receiving voltage detected in the previous SL voltage detection circuit exceeds the threshold voltage determining overvoltage conditions, separating the power reception side resonance capacitor the switch provided on each of the power receiving unit to open operation seen including a switch operation circuit, and reduces the voltage received by shift the reception side resonance frequency of the receiving resonance circuit,
Non-contact power supply device.
前記スイッチ操作回路は、前記閾値電圧を超過していた前記受電電圧が前記閾値電圧以下に低下した場合に、前記スイッチを閉路操作して前記受電側共振用コンデンサを前記受電コイルに再び並列接続する請求項1に記載の非接触給電装置。 When the received voltage that exceeds the threshold voltage drops below the threshold voltage, the switch operation circuit closes the switch to reconnect the power receiving side resonance capacitor in parallel to the power receiving coil. The non-contact power feeding device according to claim 1. 前記スイッチ操作回路は、前記スイッチを開路操作してから所定時間が経過した後、前記受電電圧が前記閾値電圧以下に低下した場合に前記スイッチを閉路操作して自動復旧を行う請求項1に記載の非接触給電装置。 The switch operation circuit according to claim 1, wherein when a predetermined time elapses after the switch is opened and the received voltage drops below the threshold voltage, the switch is closed to automatically recover the switch. Non-contact power supply device. 給電ユニットと受電ユニットを備えた非接触給電装置であって、
前記給電ユニットは、給電コイルと、前記給電コイルに交流電力を供給する交流電源と、を備え、
前記受電ユニットは、
前記給電コイルに対向すると電磁結合して非接触で交流電力を受け取る受電コイルと、
前記受電コイルに並列接続されて受電側共振回路を形成する受電側共振用コンデンサと、
前記受電コイルが受け取った交流電力を変換して受電電圧を生成し、電気負荷に出力する受電回路と、
前記受電電圧が過電圧状態を判定する閾値電圧を超過した場合に、前記受電側共振回路の受電側共振周波数を変移させることにより前記受電電圧を低下させる過電圧保護回路と、を備え、
前記過電圧保護回路は、
前記受電電圧を検出する電圧検出回路と、
前記受電側共振用コンデンサに直列接続されたスイッチと、
前記電圧検出回路で検出された前記受電電圧が前記閾値電圧を超過した場合に、前記スイッチを開路操作して前記受電側共振用コンデンサを切り離すスイッチ操作回路と、を含み、
前記スイッチ操作回路は、前記スイッチを開路操作してから所定時間が経過した後、前記受電電圧が前記閾値電圧以下に低下した場合に前記スイッチを閉路操作して自動復旧を行う
非接触給電装置。
A non-contact power supply device equipped with a power supply unit and a power reception unit.
The power supply unit includes a power supply coil and an AC power source that supplies AC power to the power supply coil.
The power receiving unit is
A power receiving coil that receives AC power in a non-contact manner by electromagnetically coupling when facing the power feeding coil.
A power receiving side resonance capacitor that is connected in parallel to the power receiving coil to form a power receiving side resonance circuit,
A power receiving circuit that converts the AC power received by the power receiving coil to generate a power receiving voltage and outputs it to an electric load.
When the received voltage exceeds the threshold voltage for determining the overvoltage state, the overvoltage protection circuit for lowering the received voltage by shifting the receiving side resonance frequency of the receiving side resonance circuit is provided.
The overvoltage protection circuit
A voltage detection circuit that detects the received voltage and
A switch connected in series to the power receiving side resonance capacitor,
Includes a switch operation circuit that opens the switch to disconnect the power receiving side resonance capacitor when the received voltage detected by the voltage detection circuit exceeds the threshold voltage.
The switch operation circuit closes the switch and automatically recovers the switch when a predetermined time elapses after the switch is opened and the received voltage drops below the threshold voltage.
Non-contact power supply device.
前記給電ユニットは、前記給電コイルに流れる給電電流が過電流状態を判定する閾値電流を超過した場合に、前記交流電源を停止する過電流保護回路をさらに備えた請求項1〜4のいずれか一項に記載の非接触給電装置。 Any one of claims 1 to 4, wherein the power supply unit further includes an overcurrent protection circuit that stops the AC power supply when the power supply current flowing through the power supply coil exceeds a threshold current for determining an overcurrent state. The non-contact power supply according to the section. 前記給電ユニットは、前記所定時間よりも長い所定の故障判定時間にわたって、前記給電コイルに流れる給電電流が過電流状態を判定する閾値電流を超過した場合に、前記交流電源を停止する過電流保護回路をさらに備えた請求項3または4に記載の非接触給電装置。 The power supply unit is an overcurrent protection circuit that stops the AC power supply when the power supply current flowing through the power supply coil exceeds a threshold current for determining an overcurrent state over a predetermined failure determination time longer than the predetermined time. The non-contact power feeding device according to claim 3 or 4, further comprising. 前記給電ユニットは、前記給電コイルに接続されて給電側共振回路を形成する給電側共振用コンデンサをさらに備え、
前記交流電源の周波数は、前記受電側共振回路の前記受電側共振周波数と、前記給電側共振回路の給電側共振周波数との間に定められている請求項1〜6のいずれか一項に記載の非接触給電装置。
The feeding unit further includes a feeding side resonance capacitor connected to the feeding coil to form a feeding side resonance circuit.
The frequency of the AC power supply is described in any one of claims 1 to 6 defined between the power receiving side resonance frequency of the power receiving side resonance circuit and the power feeding side resonance frequency of the power feeding side resonance circuit. Non-contact power supply device.
前記給電ユニットは、基板生産ラインを構成する複数の基板生産機にそれぞれ同数個ずつ設けられ、前記受電ユニットは、前記複数の基板生産機の列設方向に移動する移動体に設けられた請求項1〜7のいずれか一項に記載の非接触給電装置。 The claim that the power supply unit is provided in the same number of each of a plurality of board production machines constituting the board production line, and the power receiving unit is provided in a moving body moving in the rowing direction of the plurality of board production machines. The non-contact power feeding device according to any one of 1 to 7.
JP2016027939A 2016-02-17 2016-02-17 Non-contact power supply device Active JP6890379B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016027939A JP6890379B2 (en) 2016-02-17 2016-02-17 Non-contact power supply device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016027939A JP6890379B2 (en) 2016-02-17 2016-02-17 Non-contact power supply device

Publications (2)

Publication Number Publication Date
JP2017147849A JP2017147849A (en) 2017-08-24
JP6890379B2 true JP6890379B2 (en) 2021-06-18

Family

ID=59682459

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016027939A Active JP6890379B2 (en) 2016-02-17 2016-02-17 Non-contact power supply device

Country Status (1)

Country Link
JP (1) JP6890379B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101946027B1 (en) * 2018-05-24 2019-02-11 (주)그린파워 A wireless electric power receiving device and charging system having a overvoltage protection means and the control method for electric vehicles
KR102190575B1 (en) * 2018-08-02 2020-12-14 디자인 주식회사 Method and apparatus for protecting overloads in wireless power receiver
WO2020039570A1 (en) * 2018-08-24 2020-02-27 株式会社Fuji Non-contact power-feeding device, and transportation device provided with same
CN117597537A (en) * 2021-06-30 2024-02-23 阿特密斯株式会社 Gas storage container, base and gas storage system

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3761001B2 (en) * 1995-11-20 2006-03-29 ソニー株式会社 Contactless information card and IC
JP2001268823A (en) * 2000-03-16 2001-09-28 Aichi Electric Co Ltd Non-contact feeder system
JP4536496B2 (en) * 2003-12-19 2010-09-01 株式会社半導体エネルギー研究所 Semiconductor device and driving method of semiconductor device
US8830637B2 (en) * 2010-08-31 2014-09-09 Texas Instruments Incorporated Methods and apparatus to clamp overvoltages for alternating current systems
JP5903624B2 (en) * 2012-03-09 2016-04-13 パナソニックIpマネジメント株式会社 Non-contact power transmission device driving method and non-contact power transmission device
WO2013145403A1 (en) * 2012-03-26 2013-10-03 株式会社村田製作所 Electric-field-coupled wireless electric power transmission system, and power receiving device using same
US9608454B2 (en) * 2012-12-03 2017-03-28 WIPQTUS Inc. Wireless power system with a self-regulating wireless power receiver
JP6110236B2 (en) * 2013-07-02 2017-04-05 ルネサスエレクトロニクス株式会社 Power receiving device and non-contact power feeding system
WO2015115285A1 (en) * 2014-01-30 2015-08-06 ソニー株式会社 Power reception apparatus, power reception control method, non-contact power supply system, and electronic apparatus

Also Published As

Publication number Publication date
JP2017147849A (en) 2017-08-24

Similar Documents

Publication Publication Date Title
JP6890379B2 (en) Non-contact power supply device
JP5396446B2 (en) In-vehicle power supply
CN102570434A (en) Power converter
CN103477559A (en) Gate drive device
KR101206215B1 (en) Electronic magnetic contactor
JP2011035134A (en) Light-emitting device driving circuit
JP5282067B2 (en) Power factor correction circuit and start-up operation control method thereof
WO2012011357A1 (en) Power supply device
CN109560529B (en) Power supply circuit and audio equipment
JP2016010290A (en) Power conversion device, converter and control method of power conversion device
WO2017150711A1 (en) Power supply system, power transmission circuit and power receiving circuit
CN107996015B (en) Non-contact power supply device
KR102251590B1 (en) Non-contact feeder system
WO2017150712A1 (en) Power feed system, power transmission circuit, and power-receiving circuit
JP6446317B2 (en) In-vehicle control device
KR20150070590A (en) Circuit for driving synchronous rectifier and power supply apparatus including the same
CN107086774A (en) Dc-dc
JP2007209072A (en) In-vehicle switching power supply
JP6536791B2 (en) POWER CONVERTER AND CONTROL METHOD OF POWER CONVERTER
US20200294744A1 (en) Coil control device of electronic magnetic contactor
JP2010089860A (en) Boosting control device of lifting magnet
KR101117949B1 (en) Small Transfer Switches
JP5753067B2 (en) Security communication equipment
JP6857665B2 (en) Non-contact power supply device
JP2018099001A (en) Transmission equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191023

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200526

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210106

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20210215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210511

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210525

R150 Certificate of patent or registration of utility model

Ref document number: 6890379

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150