JP3761001B2 - Contactless information card and IC - Google Patents

Contactless information card and IC Download PDF

Info

Publication number
JP3761001B2
JP3761001B2 JP32517095A JP32517095A JP3761001B2 JP 3761001 B2 JP3761001 B2 JP 3761001B2 JP 32517095 A JP32517095 A JP 32517095A JP 32517095 A JP32517095 A JP 32517095A JP 3761001 B2 JP3761001 B2 JP 3761001B2
Authority
JP
Japan
Prior art keywords
circuit
resonance
output voltage
information card
resonance circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP32517095A
Other languages
Japanese (ja)
Other versions
JPH09147070A (en
Inventor
繁 有沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP32517095A priority Critical patent/JP3761001B2/en
Priority to GB9624042A priority patent/GB2307379B/en
Publication of JPH09147070A publication Critical patent/JPH09147070A/en
Priority to HK98114783A priority patent/HK1013485A1/en
Application granted granted Critical
Publication of JP3761001B2 publication Critical patent/JP3761001B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/0701Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips at least one of the integrated circuit chips comprising an arrangement for power management
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/0701Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips at least one of the integrated circuit chips comprising an arrangement for power management
    • G06K19/0715Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips at least one of the integrated circuit chips comprising an arrangement for power management the arrangement including means to regulate power transfer to the integrated circuit
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/0723Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips the record carrier comprising an arrangement for non-contact communication, e.g. wireless communication circuits on transponder cards, non-contact smart cards or RFIDs
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07BTICKET-ISSUING APPARATUS; FARE-REGISTERING APPARATUS; FRANKING APPARATUS
    • G07B15/00Arrangements or apparatus for collecting fares, tolls or entrance fees at one or more control points
    • G07B15/02Arrangements or apparatus for collecting fares, tolls or entrance fees at one or more control points taking into account a variable factor such as distance or time, e.g. for passenger transport, parking systems or car rental systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Business, Economics & Management (AREA)
  • Finance (AREA)
  • Near-Field Transmission Systems (AREA)
  • Channel Selection Circuits, Automatic Tuning Circuits (AREA)

Description

【0001】
【目次】
以下の順序で本発明を説明する。
発明の属する技術分野
従来の技術
発明が解決しようとする課題
課題を解決するための手段
発明の実施の形態
(1)第1実施例(図1〜図3)
(2)第2実施例(図4)
(3)他の実施例
発明の効果
【0002】
【産業上の利用分野】
本発明は自動改札システム等、非接触型カードシステムに使用される情報カードに関するものである。
【0003】
【従来の技術】
現在運用されている自動改札システムにおいては、利用者が自動改札機に挿入する定期券の情報を磁気ヘツドで接触的に読み取る方法が採用されている。このため利用者は、改札を通るたびに定期券をケース等から取り出して自動改札機に挿入する必要があり面倒であつた。
そこで本件出願人は、このような手間のない使い勝手に優れた非接触型のカードシステムを先に提案している。
【0004】
この非接触型カードシステムによれば、非接触で情報をやり取り(データ通信等)できるので、これを上述のような自動改札システムに適用した場合、利用者は定期券をケースに収納したままの状態で自動改札機を出入りすることが可能となり便利である。参考までに先に提案した非接触型カードシステムを図5に示す。ここで非接触型カードシステム1は上述の自動改札機に相当するリード/ライタ2と上述の定期券に相当する情報カード3とによつて構成され、電磁波を媒体として電力を供給すると共にデータ等を読み書きするようになされている。
【0005】
まずリーダ/ライタ2が情報カード3から情報を読み出す場合の内部動作を図6を用いて説明する。ただし図6は、情報カード3の情報の読み出しに関連する回路と、情報カード内で発生する過電圧を抑圧する過電圧保護に関連する回路のみを抜粋して示した回路図である。
まず読み取り側であるリーダ/ライタ2はキヤリア発生器2Aで所望のキヤリア信号を発生し、これを電圧制御型アンプ4で増幅した後、ループアンテナ9から磁界として放出する。
【0006】
このとき情報カード3がループアンテナ9と十分に電磁誘導を引き起こす範囲内に位置すると、電力エネルギーがリーダ/ライタ2から情報カード3に供給されることになる。すると当然のことながらループアンテナ9と電圧制御型アンプ4の出力抵抗R1に電流が流れ、出力抵抗R1分の電圧降下によりキヤリア出力レベルが下がることになる。
この出力レベルの降下度合いは、情報カード3側のループアンテナ9とコンデンサC3及びC4とが形成する共振回路の共振状態によつて異なる。
【0007】
従つて情報カード3側で読み出し情報に応じてFET11をオン/オフし、共振状態を変化させれば、リーダ/ライタ2内のループアンテナ9を駆動するキヤリアレベルが情報カード3の読み出し情報に応じて変化することになる。
このキヤリアレベルの変動を包絡線検波用ダイオードD1によつて検波すればデータを読み出すことが可能となる。
【0008】
なお情報カード3はループアンテナ9に近接しすぎた場合、ループアンテナ9の両端に非常に大きなキヤリア振幅が発生して内部回路を破壊するおそれがあるため、かかる過電圧から内部回路を保護する過電圧保護回路が設けられている。過電圧保護回路はループアンテナ9の両端に発生した振幅レベルがダイオード群12A及び12Bの積み上げ電圧を越えた場合、ダイオード群12A及び12Bに非常に大きな電流を流して電圧の上昇を抑制するようになされている。
【0009】
【発明が解決しようとする課題】
ところで先に提案した非接触型カードシステムにおいては、次に示すような問題点があつた。
まず一つ目の問題点として、前述の非接触型カードシステムの読み出し方式の場合、情報カード3とリーダ/ライタ2とがループアンテナ9及び10の間で相互誘導を生じる距離にあるにもかかわらず、データの読み出しができない領域が原理的に生じるといつた問題があつた。
【0010】
この理由を図7に示す。この図表は、情報カード3側の並列共振回路(ループアンテナ10及びコンデンサC3)のうち容量を変化させた場合にリーダ/ライタ2側のループアンテナ9の両端に発生するキヤリア振幅レベルがどのように変化するかを情報カード3とリーダ/ライタ2との間の距離別に示したものである。この図表によると、中距離領域においては、共振容量を変化させてもループアンテナ9の両端に表れるキヤリア振幅レベルに変化が生じないことが分かる。従つて中距離領域では情報カード3からデータを読み出すことができないのである。
【0011】
また二つ目の問題点として、データ読み出し不可能領域の発生状況は情報カード3上に設けられた並列共振回路(ループアンテナ10及びコンデンサC3)の同調周波数のずれに非常に敏感であり、同調ずれが生じた場合、データ読み出し不可能領域の発生位置と範囲が激しくバラ付くため量産には不向きであるという点である。
さらに三つ目の問題点として、前述した非接触型カードシステム1で用いた過電圧保護回路方式の場合、確実な過電圧保護と長距離データ受信とを両立することが情報カード3にとつて困難であるという点である。すなわち密着位置から非常に遠方の位置に至る広範囲において通信できるようなシステムに対応することが困難であつた。
【0012】
その理由は、以下の通りである。すなわち非常に遠方の位置まで通信できるようにする場合、リーダ/ライタ2側から非常に強力な磁界を放出する必要があるが、近接時には情報カード3の受信電力がそれに応じて極度に大きくなるので過電圧保護部の動作を強化しなければならない。具体的には、抵抗素子R2の値を小さくし、過電圧保護回路へ流入する電流を極めて大きくすることによつて、過電圧の抑圧を図ることになるが、抵抗素子R2の値を小さくすることは、ループアンテナ10で受信した電圧の振幅変動成分を著しく抑圧することにつながる。ところが本方式のデータ伝送方式は、振幅変調で行なわれるので、当然のことながら振幅変動成分が失われると、受信データを復調できなくなつてしまう。
【0013】
本発明は以上の点を考慮してなされたもので、読み取り装置側から情報カードにようやく電力供給できるような遠方から極近接距離に至るまでの全ての領域で、過電圧に対して情報カードを確実に保護しつつデータを双方向通信できる情報カードを提案しようとするものである。
【0014】
【課題を解決するための手段】
かかる課題を解決するため本発明においては、通信先装置から放出された電磁波によって内部回路を駆動させる電力が供給されると共に、通信先装置とのデータ通信を振幅変調によって行う非接触型情報カードであって、通信先装置からの電磁波を受信するループアンテナを含む共振回路と、共振回路からの出力を整流する整流回路と、共振回路の共振周波数を変化させる共振周波数可変部と、共振回路及び整流回路を順次介して出力される直流の出力電圧に対して、通信先装置へ送信するデータに応じたオン/オフ制御をするFETにより共振回路にかかる負荷を変化させる負荷可変部とを有し、共振周波数可変部は、共振回路及び整流回路を順次介して出力電圧が印加され、当該印加された出力電圧の増加に応じて共振回路の共振周波数を変化させることにより、内部回路に過電圧がかからないように出力電圧を制限するようにする。
【0015】
共振回路及び整流回路を順次介して出力される直流の出力電圧に対して、通信先装置へ送信するデータに応じたオン/オフ動作を実行することにより、共振回路にかかる負荷を変化させるようにしたので、通信先装置及び非接触型情報カード間の距離に関わらず通信先装置は非接触型情報カードから送信されたデータを安定して受信することができる。
【0016】
さらに、共振回路及び整流回路を順次介して印加された出力電圧の増加に応じて共振回路の共振周波数を変化させることにより、内部回路に過電圧がかからないように出力電圧を制限するようにしたので、通信先装置から振幅変調されて送信されたデータを受信する場合にこのデータの振幅変化成分を抑圧することなく過電圧保護を実現することができる。
【0017】
【発明の実施の形態】
以下図面について、本発明の一実施例を詳述する。
【0018】
(1)第1実施例
図5との対応部分に同一符号を付して示す図1に、本発明に係る情報カード23のうちフロントエンド部分の回路構成例を示す。
図1に示す情報カード23の場合、並列共振回路をループアンテナ10、コンデンサC3、C4及び可変容量素子C23とで構成する点が異なつている。なお並列共振回路の一端は接地されており、他端はダイオードD2のアノード側に接続されている。
【0019】
またダイオードD2のカソード側と電圧可変容量素子C23間には純抵抗素子R23が接続されており、ダイオードD2により整流された電圧を可変容量素子C23に制御電圧として印加するようになされている。
なおダイオードD2のカソード側は純抵抗素子R24がFET24のドレイン・ソースを通して対接地されており、このFET24を読み出しデータに応じてオン/オフ制御することにより並列共振回路の負荷抵抗値を可変し、共振周波数を変化させるようになされている。
【0020】
以上の構成において、リーダ/ライタ2によつて情報カード23の情報を読み出す際の方法(すなわちリード方法)と、情報カード23がリーダ/ライタ2に対して極近接したときに情報カード23内で発生する過電圧を抑圧する過電圧保護方法について説明する。
まずかかる構成の情報カード23について、リーダ/ライタ2側から情報を読み出す時の動作原理を説明する。
【0021】
リーダ/ライタ2は、キヤリア発生器2Aで発生させられた所望の周波数のキヤリアを電圧制御型アンプ4で所望のレベルに増幅し、これをループアンテナ9から磁界として放出する。ここで情報カード23がループアンテナ9と十分に電磁誘導を引き起こす範囲内に位置すると、電力エネルギーがリーダ/ライタ2側から情報カード23側に供給されることになる。
【0022】
すると当然のことながらループアンテナ9と電圧制御型アンプ4の出力抵抗R1に電流が流れ、出力抵抗R1分の電圧降下によりキヤリア出力レベルが下がることになる。この出力レベルの降下度合いは、情報カード23側のダイオードD2のカソード側と対接地間の負荷抵抗の値により決定される。従つて情報カード23の読み出し情報でFET24をオン/オフしてダイオードD2のカソード側と対接地間の負荷抵抗の値を変化させれば、リーダ/ライタ2内のループアンテナ9を駆動するキヤリアレベルが情報カード23の読み出し情報により変化することになる。このキヤリアレベル変動を包絡線検波用のダイオードD1により検波することで、データの読み出しが行なわれる。
【0023】
ところがこのように負荷抵抗の値を変化させた場合、リーダ/ライタ2のキヤリア振幅の変化は図2に示すように、情報カード23内のループアンテナ10とコンデンサC3の共振状態によらないことが分かる。従つて情報カード23がリーダ/ライタ2側のループアンテナ9と電磁誘導が生じる距離内にある限り全領域内においてデータを読み出すことが可能となる。
【0024】
また量産時に同調周波数が若干ずれたとしても、読み出し特性への影響はほとんどなく、量産時のバラツキも抑えられる。さらに、今回提案した情報カード23の情報読み出し方式は、いかなる形態の整流回路とも非常に相性が良く、IC化する際等に生じる様々な制約条件下においても動作させることが可能である。
図3に様々なタイプの整流検波回路を用いたときの使用例を示す。
【0025】
続いて情報カード3の過電圧保護回路の動作原理について説明する。本方式の動作原理は、情報カード23がリーダ/ライタ2のループアンテナ9と非常に近接した場合、情報カード23側の受信レベルに応じて共振周波数をずらし、受信効率を下げることにより過電圧を保護するといつたものである。本情報カード23では、純抵抗素子R23によつて受信後整流された電圧が可変容量素子C23に印加され、受信レベルに応じて容量を変化させるように動作する。これにより周波数がずれ、受信効率を下げることが可能なようになつている。
【0026】
具体的な動作は、次のようになる。情報カード23がリーダ/ライタ2のループアンテナ9に対して極度に近接した場合、当然のことながら情報カード23のループアンテナ10で受信する電力エネルギーも増大する。この受信電圧は可変容量素子C23に純抵抗素子R23を通して印加されているから受信電圧で共振がずらされるということになる。
共振周波数がずらされるということは、当然のことながら受信効率が下がることにつながる。
【0027】
従つて情報カード23のループアンテナ10で受信する電圧が抑制され、過電圧保護が達成される。この過電圧保護方法によれば、ループアンテナ10で受信した振幅変化成分を抑圧することはないので、振幅変調された書き込みデータの情報を情報カード23側で失うこともなく、確実な過電圧保護が可能となる。
この方式は、当然ながら他の過電圧保護回路と併用することも可能である。
【0028】
以上の構成によれば、並列共振回路を構成する容量素子として印加電圧によつて容量が変化する可変容量素子C23を用い、当該可変容量素子C23に受信後整流した後の電圧を印加するようにしたことにより、受信される電圧が過大になるようなことがあつても当該電圧によつて可変容量素子C23の容量が変化して受信効率を下げ、受信される電圧が過大にならないようにできる非接触型情報カードを得ることができる。従つてリーダ/ライタ2との間で電磁誘導作用を生じ得る範囲内であれば確実に過電圧保護を行いつつ、どの領域内でも安定してデータを読み出し又は書き込むことができる情報カードを得ることができる。
【0029】
(2)第2実施例
次に図1との対応部分に同一符号を付して示す図4に本発明に係る情報カードの第2の実施例を示す。
この情報カード33と第1の実施例において説明した情報カード23との違いは、整流回路と可変容量素子の接続方法が異なる点だけであり、それ以外は情報カード23と全く同様の構成を有している。
【0030】
この場合、可変容量素子の接続経路を交流的に考えると、平滑用コンデンサC5は十分に大きく、ループアンテナ10と抵抗素子R33の接続点側はグランドレベルなのでコンデンサC4と可変容量素子C23とコンデンサC3と並列接続されているのと等価である。従つて情報カード33は第1の実施例に示す情報カード23と全く同様に動作することになる。従つてこの場合も可変容量素子の容量変化により共振周波数を変化させることができる。
またこの実施例では整流・検波ダイオードとして対接地型のダイオードを用いるため回路上様々な制約を受けるIC化に非常に好都合である。
【0031】
以上の構成によれば、並列共振回路を構成する容量素子として印加電圧によつて容量が変化する可変容量素子C23を用い、当該可変容量素子C23に受信後整流した後の電圧を印加するようにしたことにより、受信される電圧が過大になるようなことがあつても当該電圧によつて可変容量素子C23の容量が変化して受信効率を下げ、受信される電圧が過大にならないようにすることができる非接触型情報カードを得ることができる。従つてリーダ/ライタ2との間で電磁誘導作用を生じる範囲内であれば確実に過電圧保護を行いつつ、どの領域内でも安定してデータを読み出し又は書き込むことができる情報カードを得ることができる。
【0032】
(3)他の実施例
なお上述の実施例においては、情報カードを図1、図3及び図4に示すように構成する場合について述べたが、本発明はこれに限らず、これら以外の接続についても適用し得る。また共振周波数を可変容量素子の容量を変化させて制御する場合について述べたが、本発明はこれに限らず、他の手段を用いて制御しても良い。
【0033】
【発明の効果】
上述のように本発明によれば、共振回路及び整流回路を順次介して出力される直流の出力電圧に対して、通信先装置へ送信するデータに応じたオン/オフ動作を実行することにより、共振回路にかかる負荷を変化させるようにしたので、通信先装置及び非接触型情報カード間の距離に関わらず通信先装置は非接触型情報カードから送信されたデータを安定して受信することができる。さらに、共振回路及び整流回路を順次介して印加された出力電圧の増加に応じて共振回路の共振周波数を変化させることにより、内部回路に過電圧がかからないように出力電圧を制限するようにしたので、通信先装置から振幅変調されて送信されたデータを受信する場合にこのデータの振幅変化成分を抑圧することなく過電圧保護を実現することができる。この結果、過電圧保護を実現しつつ通信先装置との間でデータを安定して送受することができる非接触型情報カードを実現することができる。
【0034】
また整流手段の出力と対接地間に設けた制御手段によつて、共振回路の負荷状態を読出データに応じて電気的に制御するようにしたことにより、読み取り装置と電時誘導を生じる範囲内であれば、位置関係によらず情報を確実に読み取ることができる非接触型情報カードを得ることができる。
【図面の簡単な説明】
【図1】本発明に係る情報カードの構成例を示す接続図である。
【図2】非接触型情報カードの共振回路のうち負荷抵抗とリーダ/ライタ側のループアンテナのドライブ電圧との関係を示す特性曲線図である。
【図3】様々な回路構成の整流回路を本発明に係る情報カードに組み合わせる場合の適用例を示す回路図である。
【図4】本発明に係る情報カードの構成例を示す接続図である。
【図5】非接触型カードシステムの一般構成を示すブロツク図である。
【図6】非接触型カードシステムのうち情報カードの情報の読み出しに関連する回路部分と、情報カード内で発生する過電圧を抑圧する過電圧保護に関連する回路部分のみを抜粋して示した略線的接続図である。
【図7】非接触型情報カードの共振回路のうち共振コンデンサの容量とリーダ/ライタ側のループアンテナのドライブ電圧との関係を示す特性曲線図である。
【符号の説明】
1……非接触型カードシステム、2……リーダ/ライタ、3、23、33……情報カード、8……プリント基板、9、10……ループアンテナ。
[0001]
【table of contents】
The present invention will be described in the following order.
DETAILED DESCRIPTION OF THE INVENTION Means for Solving the Problems to be Solved by the Prior Art Invention Embodiment (1) First Example (FIGS. 1 to 3)
(2) Second embodiment (FIG. 4)
(3) Effects of other embodiments of the invention
[Industrial application fields]
The present invention relates to an information card used in a contactless card system such as an automatic ticket gate system.
[0003]
[Prior art]
In an automatic ticket gate system currently in operation, a method is adopted in which information on a commuter pass inserted by a user into an automatic ticket gate is read by a magnetic head. For this reason, every time the user passes the ticket gate, it is necessary to take out the commuter pass from the case or the like and insert it into the automatic ticket gate.
Therefore, the present applicant has previously proposed such a contactless card system excellent in ease of use.
[0004]
According to this contactless card system, information can be exchanged without contact (data communication, etc.). When this is applied to the automatic ticket gate system as described above, the user can keep the commuter pass in the case. It is convenient because it is possible to enter and exit the automatic ticket gate in the state. FIG. 5 shows the contactless card system previously proposed for reference. The non-contact card system 1 is composed of a reader / writer 2 corresponding to the above-described automatic ticket checker and an information card 3 corresponding to the above-mentioned commuter pass. Has been made to read and write.
[0005]
First, the internal operation when the reader / writer 2 reads information from the information card 3 will be described with reference to FIG. However, FIG. 6 is a circuit diagram showing only a circuit related to reading of information from the information card 3 and a circuit related to overvoltage protection for suppressing an overvoltage generated in the information card.
First, the reader / writer 2 on the reading side generates a desired carrier signal by the carrier generator 2A, amplifies it by the voltage control type amplifier 4, and then releases it from the loop antenna 9 as a magnetic field.
[0006]
At this time, if the information card 3 is positioned within a range that causes sufficient electromagnetic induction with the loop antenna 9, power energy is supplied from the reader / writer 2 to the information card 3. Then, as a matter of course, a current flows through the loop antenna 9 and the output resistor R1 of the voltage control type amplifier 4, and the carrier output level decreases due to a voltage drop corresponding to the output resistor R1.
The degree of the output level drop varies depending on the resonance state of the resonance circuit formed by the loop antenna 9 on the information card 3 side and the capacitors C3 and C4.
[0007]
Therefore, if the FET 11 is turned on / off according to the read information on the information card 3 side and the resonance state is changed, the carrier level for driving the loop antenna 9 in the reader / writer 2 corresponds to the read information of the information card 3. Will change.
If this carrier level fluctuation is detected by the envelope detection diode D1, the data can be read out.
[0008]
If the information card 3 is too close to the loop antenna 9, a very large carrier amplitude may be generated at both ends of the loop antenna 9 to destroy the internal circuit. Therefore, the overvoltage protection that protects the internal circuit from the overvoltage. A circuit is provided. When the amplitude level generated at both ends of the loop antenna 9 exceeds the accumulated voltage of the diode groups 12A and 12B, the overvoltage protection circuit allows a very large current to flow through the diode groups 12A and 12B to suppress an increase in voltage. ing.
[0009]
[Problems to be solved by the invention]
However, the previously proposed contactless card system has the following problems.
First, as a first problem, in the case of the above-described non-contact card system reading method, although the information card 3 and the reader / writer 2 are at a distance that causes mutual induction between the loop antennas 9 and 10. First, there was a problem when an area where data could not be read out was generated in principle.
[0010]
The reason is shown in FIG. This chart shows how the carrier amplitude levels generated at both ends of the loop antenna 9 on the reader / writer 2 side when the capacitance of the parallel resonance circuit (loop antenna 10 and capacitor C3) on the information card 3 side is changed are shown. The change is shown for each distance between the information card 3 and the reader / writer 2. According to this chart, it can be seen that, in the middle distance region, the carrier amplitude levels appearing at both ends of the loop antenna 9 do not change even if the resonance capacitance is changed. Therefore, data cannot be read from the information card 3 in the middle distance area.
[0011]
The second problem is that the data unreadable area is very sensitive to the tuning frequency shift of the parallel resonant circuit (the loop antenna 10 and the capacitor C3) provided on the information card 3. When a shift occurs, the generation position and range of the data unreadable area vary greatly, and this is not suitable for mass production.
As a third problem, in the case of the overvoltage protection circuit system used in the contactless card system 1 described above, it is difficult for the information card 3 to achieve both reliable overvoltage protection and long distance data reception. It is a point. That is, it has been difficult to cope with a system that can communicate over a wide range from the contact position to a very far position.
[0012]
The reason is as follows. That is, in order to enable communication to a very far position, it is necessary to emit a very strong magnetic field from the reader / writer 2 side, but the reception power of the information card 3 becomes extremely large in response to the proximity. The operation of the overvoltage protection unit must be strengthened. More specifically, by reducing the value of the resistance element R2 and extremely increasing the current flowing into the overvoltage protection circuit, the overvoltage can be suppressed. However, the value of the resistance element R2 can be reduced. As a result, the amplitude fluctuation component of the voltage received by the loop antenna 10 is significantly suppressed. However, since the data transmission method of the present method is performed by amplitude modulation, if the amplitude fluctuation component is lost, it is not possible to demodulate received data.
[0013]
The present invention has been made in consideration of the above points. The information card is surely protected against overvoltage in all areas from a far distance to a very close distance where power can be finally supplied to the information card from the reader side. An information card that can communicate data bidirectionally while protecting it is proposed.
[0014]
[Means for Solving the Problems]
In order to solve such a problem, the present invention provides a non-contact information card that supplies power for driving an internal circuit by electromagnetic waves emitted from a communication destination device and performs data communication with the communication destination device by amplitude modulation. A resonance circuit including a loop antenna that receives electromagnetic waves from a communication destination device, a rectification circuit that rectifies an output from the resonance circuit, a resonance frequency variable unit that changes a resonance frequency of the resonance circuit, a resonance circuit, and rectification A load variable unit that changes a load applied to the resonance circuit by an FET that performs on / off control according to data to be transmitted to a communication destination device with respect to a DC output voltage that is sequentially output through the circuit; The resonance frequency variable unit is applied with an output voltage sequentially through a resonance circuit and a rectifier circuit, and the resonance frequency of the resonance circuit according to an increase in the applied output voltage. By changing, so as to limit the output voltage not to apply an overvoltage to the internal circuit.
[0015]
The load applied to the resonance circuit is changed by executing an on / off operation corresponding to the data transmitted to the communication destination device with respect to the DC output voltage that is sequentially output through the resonance circuit and the rectifier circuit. Therefore, regardless of the distance between the communication destination device and the contactless information card, the communication destination device can stably receive the data transmitted from the contactless information card.
[0016]
Furthermore, since the resonance frequency of the resonance circuit is changed according to the increase in the output voltage applied through the resonance circuit and the rectifier circuit sequentially, the output voltage is limited so that no overvoltage is applied to the internal circuit. When receiving data that is amplitude-modulated and transmitted from the communication destination device, it is possible to realize overvoltage protection without suppressing the amplitude change component of this data.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings.
[0018]
(1) First Embodiment FIG. 1 in which parts corresponding to those in FIG. 5 are given the same reference numerals shows an example of the circuit configuration of the front end portion of the information card 23 according to the present invention.
The information card 23 shown in FIG. 1 is different in that a parallel resonant circuit is configured by a loop antenna 10, capacitors C3 and C4, and a variable capacitance element C23. One end of the parallel resonance circuit is grounded, and the other end is connected to the anode side of the diode D2.
[0019]
A pure resistance element R23 is connected between the cathode side of the diode D2 and the voltage variable capacitance element C23, and a voltage rectified by the diode D2 is applied to the variable capacitance element C23 as a control voltage.
The cathode side of the diode D2 has a pure resistance element R24 grounded through the drain / source of the FET 24. By turning on / off the FET 24 in accordance with the read data, the load resistance value of the parallel resonance circuit is varied, The resonance frequency is changed.
[0020]
In the above configuration, the method for reading information from the information card 23 by the reader / writer 2 (ie, the reading method) and the information card 23 in the information card 23 when it is in close proximity to the reader / writer 2. An overvoltage protection method for suppressing the generated overvoltage will be described.
First, the principle of operation for reading information from the reader / writer 2 side of the information card 23 having such a configuration will be described.
[0021]
The reader / writer 2 amplifies the carrier having a desired frequency generated by the carrier generator 2 </ b> A to a desired level by the voltage control type amplifier 4, and emits it from the loop antenna 9 as a magnetic field. Here, when the information card 23 is positioned within a range that sufficiently causes electromagnetic induction with the loop antenna 9, electric power energy is supplied from the reader / writer 2 side to the information card 23 side.
[0022]
Then, as a matter of course, a current flows through the loop antenna 9 and the output resistor R1 of the voltage control type amplifier 4, and the carrier output level decreases due to a voltage drop corresponding to the output resistor R1. The degree of decrease in the output level is determined by the value of the load resistance between the cathode side of the diode D2 on the information card 23 side and the ground. Accordingly, the carrier level for driving the loop antenna 9 in the reader / writer 2 can be changed by changing the load resistance value between the cathode side of the diode D2 and the ground with the FET 24 turned on / off by the read information of the information card 23. Will change depending on the information read from the information card 23. Data is read by detecting this carrier level fluctuation by the envelope detection diode D1.
[0023]
However, when the value of the load resistance is changed in this way, the change in the carrier amplitude of the reader / writer 2 does not depend on the resonance state of the loop antenna 10 and the capacitor C3 in the information card 23 as shown in FIG. I understand. Therefore, as long as the information card 23 is within a distance where electromagnetic induction is generated from the loop antenna 9 on the reader / writer 2 side, data can be read out in the entire area.
[0024]
Even if the tuning frequency is slightly shifted during mass production, there is almost no influence on the readout characteristics, and variations during mass production can be suppressed. Furthermore, the information reading method of the information card 23 proposed this time is very compatible with any form of rectifier circuit, and can be operated under various constraint conditions that occur when an IC is formed.
FIG. 3 shows examples of use when various types of rectification detection circuits are used.
[0025]
Next, the operation principle of the overvoltage protection circuit of the information card 3 will be described. The principle of operation of this method is that when the information card 23 is very close to the loop antenna 9 of the reader / writer 2, the resonance frequency is shifted according to the reception level on the information card 23 side, and the overvoltage is protected by lowering the reception efficiency. Then when. The information card 23 operates such that the voltage rectified after reception by the pure resistance element R23 is applied to the variable capacitance element C23 and the capacitance is changed according to the reception level. As a result, the frequency shifts and the reception efficiency can be lowered.
[0026]
The specific operation is as follows. When the information card 23 is extremely close to the loop antenna 9 of the reader / writer 2, the power energy received by the loop antenna 10 of the information card 23 naturally increases. Since this reception voltage is applied to the variable capacitance element C23 through the pure resistance element R23, the resonance is shifted by the reception voltage.
The fact that the resonance frequency is shifted leads to a decrease in reception efficiency as a matter of course.
[0027]
Therefore, the voltage received by the loop antenna 10 of the information card 23 is suppressed, and overvoltage protection is achieved. According to this overvoltage protection method, since the amplitude change component received by the loop antenna 10 is not suppressed, information on the amplitude-modulated write data is not lost on the information card 23 side, and reliable overvoltage protection is possible. It becomes.
Of course, this method can also be used in combination with other overvoltage protection circuits.
[0028]
According to the above configuration, the variable capacitance element C23 whose capacitance changes with the applied voltage is used as the capacitance element constituting the parallel resonance circuit, and the voltage after rectification after reception is applied to the variable capacitance element C23. As a result, even if the received voltage becomes excessive, the capacitance of the variable capacitance element C23 is changed by the voltage and the reception efficiency is lowered, so that the received voltage does not become excessive. A contactless information card can be obtained. Accordingly, it is possible to obtain an information card capable of stably reading and writing data in any region while reliably performing overvoltage protection as long as it is within a range in which electromagnetic induction can occur with the reader / writer 2. it can.
[0029]
(2) Second Embodiment Next, the second embodiment of the information card according to the present invention is shown in FIG.
The only difference between the information card 33 and the information card 23 described in the first embodiment is that the connection method of the rectifier circuit and the variable capacitance element is different. is doing.
[0030]
In this case, considering the connection path of the variable capacitance element in an alternating manner, the smoothing capacitor C5 is sufficiently large and the connection point side of the loop antenna 10 and the resistance element R33 is at the ground level. Is equivalent to being connected in parallel. Therefore, the information card 33 operates in exactly the same manner as the information card 23 shown in the first embodiment. Therefore, also in this case, the resonance frequency can be changed by changing the capacitance of the variable capacitance element.
In this embodiment, since a grounded type diode is used as the rectifying / detecting diode, it is very convenient to make an IC subject to various restrictions on the circuit.
[0031]
According to the above configuration, the variable capacitance element C23 whose capacitance changes with the applied voltage is used as the capacitance element constituting the parallel resonance circuit, and the voltage after rectification after reception is applied to the variable capacitance element C23. As a result, even if the received voltage becomes excessive, the capacitance of the variable capacitance element C23 is changed by the voltage to reduce the reception efficiency, so that the received voltage does not become excessive. A non-contact information card that can be obtained can be obtained. Accordingly, it is possible to obtain an information card capable of stably reading and writing data in any region while reliably performing overvoltage protection as long as it is within a range in which electromagnetic induction action occurs between the reader / writer 2. .
[0032]
(3) Other Embodiments In the above-described embodiments, the case where the information card is configured as shown in FIG. 1, FIG. 3 and FIG. 4 has been described. Can also be applied. Further, although the case where the resonance frequency is controlled by changing the capacitance of the variable capacitance element has been described, the present invention is not limited to this and may be controlled using other means.
[0033]
【The invention's effect】
As described above, according to the present invention, an on / off operation corresponding to data to be transmitted to the communication destination device is performed on the direct-current output voltage that is sequentially output through the resonance circuit and the rectifier circuit. Since the load applied to the resonance circuit is changed, the communication destination device can stably receive the data transmitted from the non-contact information card regardless of the distance between the communication destination device and the non-contact information card. it can. Furthermore, since the resonance frequency of the resonance circuit is changed according to the increase in the output voltage applied through the resonance circuit and the rectifier circuit sequentially, the output voltage is limited so that no overvoltage is applied to the internal circuit. When receiving data that is amplitude-modulated and transmitted from the communication destination device, it is possible to realize overvoltage protection without suppressing the amplitude change component of this data. As a result, it is possible to realize a contactless information card that can stably transmit and receive data to and from a communication destination device while realizing overvoltage protection.
[0034]
Also, the control means provided between the output of the rectifying means and the ground is electrically controlled in accordance with the read data by the control means provided in the range where the reading device and the electric induction are generated. If so, it is possible to obtain a non-contact information card capable of reliably reading information regardless of the positional relationship.
[Brief description of the drawings]
FIG. 1 is a connection diagram showing a configuration example of an information card according to the present invention.
FIG. 2 is a characteristic curve diagram showing the relationship between the load resistance and the drive voltage of the loop antenna on the reader / writer side in the resonance circuit of the non-contact type information card.
FIG. 3 is a circuit diagram showing an application example when a rectifier circuit having various circuit configurations is combined with the information card according to the present invention.
FIG. 4 is a connection diagram showing a configuration example of an information card according to the present invention.
FIG. 5 is a block diagram showing a general configuration of a contactless card system.
FIG. 6 is a schematic diagram illustrating only a circuit portion related to reading information of an information card and a circuit portion related to overvoltage protection for suppressing an overvoltage generated in the information card in the non-contact card system. FIG.
FIG. 7 is a characteristic curve diagram showing the relationship between the capacity of a resonant capacitor and the drive voltage of the loop antenna on the reader / writer side in the resonance circuit of the non-contact type information card.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Non-contact type card system, 2 ... Reader / writer, 3, 23, 33 ... Information card, 8 ... Printed circuit board, 9, 10 ... Loop antenna.

Claims (4)

通信先装置から放出された電磁波によって内部回路を駆動させる電力が供給されると共に、上記通信先装置とのデータ通信を振幅変調によって行う非接触型情報カードであって、
上記通信先装置からの電磁波を受信するループアンテナを含む共振回路と、
上記共振回路からの出力を整流する整流回路と、
上記共振回路の共振周波数を変化させる共振周波数可変部と、
上記共振回路及び上記整流回路を順次介して出力される直流の出力電圧に対して、上記通信先装置へ送信するデータに応じたオン/オフ制御をするFETにより上記共振回路にかかる負荷を変化させる負荷可変部と
を有し、
上記共振周波数可変部は、
上記共振回路及び上記整流回路を順次介して上記出力電圧が印加され、当該印加された出力電圧の増加に応じて上記共振回路の共振周波数を変化させることにより、上記内部回路に過電圧がかからないように上記出力電圧を制限する
ことを特徴とする非接触型情報カード。
A non-contact information card for supplying power for driving an internal circuit by electromagnetic waves emitted from a communication destination device and performing data communication with the communication destination device by amplitude modulation,
A resonance circuit including a loop antenna that receives electromagnetic waves from the communication destination device;
A rectifier circuit for rectifying the output from the resonant circuit;
A resonance frequency variable section for changing the resonance frequency of the resonance circuit;
The load applied to the resonance circuit is changed by the FET that performs on / off control according to the data transmitted to the communication destination device with respect to the DC output voltage that is sequentially output through the resonance circuit and the rectifier circuit. A load variable section, and
The resonance frequency variable unit is
The output voltage is applied sequentially through the resonance circuit and the rectifier circuit, and the resonance frequency of the resonance circuit is changed according to the increase of the applied output voltage, so that no overvoltage is applied to the internal circuit. A non-contact type information card characterized by limiting the output voltage.
上記共振周波数可変部は、上記共振回路に対して並列接続された可変容量回路を有し、
上記可変容量回路は、上記共振回路及び上記整流回路を順次介して上記出力電圧が印加され、当該印加された出力電圧の増加に応じて容量を変化させることにより上記共振回路の共振周波数を変化させる
ことを特徴とする請求項1に記載の非接触型情報カード。
The resonance frequency variable unit has a variable capacitance circuit connected in parallel to the resonance circuit,
The variable capacitance circuit is applied with the output voltage sequentially through the resonance circuit and the rectifier circuit, and changes the resonance frequency of the resonance circuit by changing the capacitance according to the increase of the applied output voltage. The non-contact type information card according to claim 1.
通信先装置から放出された電磁波を受信するループアンテナを含む共振回路に接続され、上記電磁波によって内部回路を駆動させる電力が供給されると共に、上記共振回路を介して振幅変調により上記通信先装置とのデータ通信を行うICであって、
上記共振回路からの出力を整流する整流回路と、
上記共振回路の共振周波数を変化させる共振周波数可変部と、
上記共振回路及び上記整流回路を順次介して出力される直流の出力電圧に対して、上記通信先装置へ送信するデータに応じたオン/オフ制御をするFETにより上記共振回路にかかる負荷を変化させる負荷可変部と
を有し、
上記共振周波数可変部は、
上記共振回路及び上記整流回路を順次介して上記出力電圧が印加され、当該印加された出力電圧の増加に応じて上記共振回路の共振周波数を変化させることにより、上記内部回路に過電圧がかからないように上記出力電圧を制限する
ことを特徴とするIC。
Connected to a resonance circuit including a loop antenna that receives an electromagnetic wave emitted from a communication destination device, is supplied with electric power for driving an internal circuit by the electromagnetic wave, and is connected to the communication destination device by amplitude modulation via the resonance circuit. IC that performs data communication of
A rectifier circuit for rectifying the output from the resonant circuit;
A resonance frequency variable section for changing the resonance frequency of the resonance circuit;
The load applied to the resonance circuit is changed by the FET that performs on / off control according to the data transmitted to the communication destination device with respect to the DC output voltage that is sequentially output through the resonance circuit and the rectifier circuit. A load variable section, and
The resonance frequency variable unit is
The output voltage is applied sequentially through the resonance circuit and the rectifier circuit, and the resonance frequency of the resonance circuit is changed according to the increase of the applied output voltage, so that no overvoltage is applied to the internal circuit. An IC characterized by limiting the output voltage.
上記共振周波数可変部は、上記共振回路に対して並列接続された可変容量回路を有し、
上記可変容量回路は、上記共振回路及び上記整流回路を順次介して上記出力電圧が印加され、当該印加された出力電圧の増加に応じて容量を変化させることにより上記共振回路の共振周波数を変化させる
ことを特徴とする請求項3に記載のIC。
The resonance frequency variable unit has a variable capacitance circuit connected in parallel to the resonance circuit,
The variable capacitance circuit is applied with the output voltage sequentially through the resonance circuit and the rectifier circuit, and changes the resonance frequency of the resonance circuit by changing the capacitance according to the increase of the applied output voltage. The IC according to claim 3.
JP32517095A 1995-11-20 1995-11-20 Contactless information card and IC Expired - Fee Related JP3761001B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP32517095A JP3761001B2 (en) 1995-11-20 1995-11-20 Contactless information card and IC
GB9624042A GB2307379B (en) 1995-11-20 1996-11-19 Non-contact type information card
HK98114783A HK1013485A1 (en) 1995-11-20 1998-12-22 Non-contact type information card

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32517095A JP3761001B2 (en) 1995-11-20 1995-11-20 Contactless information card and IC

Publications (2)

Publication Number Publication Date
JPH09147070A JPH09147070A (en) 1997-06-06
JP3761001B2 true JP3761001B2 (en) 2006-03-29

Family

ID=18173800

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32517095A Expired - Fee Related JP3761001B2 (en) 1995-11-20 1995-11-20 Contactless information card and IC

Country Status (3)

Country Link
JP (1) JP3761001B2 (en)
GB (1) GB2307379B (en)
HK (1) HK1013485A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102217161A (en) * 2008-10-30 2011-10-12 温科·昆茨 Method and circuit for transmitting and receiving radio waves with a single oscillatory circuit antenna
US10333354B2 (en) 2016-03-01 2019-06-25 Rohm Co., Ltd. Contactless communication medium and electronic device using the same

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1105414C (en) * 1997-02-03 2003-04-09 索尼公司 Equipment and method for transmitting electric power
US5815355A (en) * 1997-10-06 1998-09-29 Atmel Corporation Modulation compensated clamp circuit
DE19745310C2 (en) * 1997-10-14 1999-10-21 Temic Semiconductor Gmbh Modulation method for data transmission from a transponder to a read / write device and an arrangement for carrying out the modulation method
WO1999038109A1 (en) * 1998-01-24 1999-07-29 Marconi Communications Limited Transaction system
JP3484349B2 (en) * 1998-07-23 2004-01-06 Necエレクトロニクス株式会社 Voltage regulator
DE19950580A1 (en) * 1999-10-20 2001-05-31 Infineon Technologies Ag Surge protection arrangement
US6777829B2 (en) * 2002-03-13 2004-08-17 Celis Semiconductor Corporation Rectifier utilizing a grounded antenna
JP4197417B2 (en) 2002-09-11 2008-12-17 パナソニック株式会社 Semiconductor integrated circuit and non-contact information medium
JP4455079B2 (en) * 2004-01-30 2010-04-21 富士通マイクロエレクトロニクス株式会社 Power circuit
US7132946B2 (en) * 2004-04-08 2006-11-07 3M Innovative Properties Company Variable frequency radio frequency identification (RFID) tags
US20050288739A1 (en) * 2004-06-24 2005-12-29 Ethicon, Inc. Medical implant having closed loop transcutaneous energy transfer (TET) power transfer regulation circuitry
CN101228630B (en) * 2005-05-30 2011-10-05 株式会社半导体能源研究所 Semiconductor device
JP5127161B2 (en) * 2005-05-30 2013-01-23 株式会社半導体エネルギー研究所 Semiconductor device
JP4921466B2 (en) 2005-07-12 2012-04-25 マサチューセッツ インスティテュート オブ テクノロジー Wireless non-radiative energy transfer
US7825543B2 (en) 2005-07-12 2010-11-02 Massachusetts Institute Of Technology Wireless energy transfer
JP4759053B2 (en) * 2006-05-31 2011-08-31 株式会社日立製作所 Non-contact type electronic device and semiconductor integrated circuit device mounted thereon
JP2008067488A (en) * 2006-09-07 2008-03-21 Ricoh Co Ltd Rectifying circuit
EP1909384A3 (en) * 2006-10-06 2015-11-25 Semiconductor Energy Laboratory Co., Ltd. Rectifier circuit with variable capacitor, semiconductor device using the circuit, and driving method therefor
CN101682216B (en) * 2007-03-27 2013-06-26 麻省理工学院 Wireless energy transfer
US8965461B2 (en) * 2008-05-13 2015-02-24 Qualcomm Incorporated Reverse link signaling via receive antenna impedance modulation
US8878393B2 (en) 2008-05-13 2014-11-04 Qualcomm Incorporated Wireless power transfer for vehicles
WO2010039967A1 (en) 2008-10-01 2010-04-08 Massachusetts Institute Of Technology Efficient near-field wireless energy transfer using adiabatic system variations
CN102171811B (en) * 2008-10-03 2014-01-01 株式会社半导体能源研究所 Semiconductor device
US20100201312A1 (en) 2009-02-10 2010-08-12 Qualcomm Incorporated Wireless power transfer for portable enclosures
US8854224B2 (en) 2009-02-10 2014-10-07 Qualcomm Incorporated Conveying device information relating to wireless charging
US9312924B2 (en) 2009-02-10 2016-04-12 Qualcomm Incorporated Systems and methods relating to multi-dimensional wireless charging
JP5554937B2 (en) * 2009-04-22 2014-07-23 パナソニック株式会社 Contactless power supply system
JP5515701B2 (en) * 2009-12-04 2014-06-11 ソニー株式会社 Power transmission device, power reception device, and power transmission control method
JP5476194B2 (en) * 2010-04-08 2014-04-23 Necトーキン株式会社 Non-contact power transmission and communication system, power transmission device and power reception device
WO2013076353A1 (en) * 2011-11-25 2013-05-30 Nokia Corporation Over-load protection of radio receivers
US9906064B2 (en) * 2014-09-22 2018-02-27 Qualcomm Technologies International, Ltd. Receiver circuit
JP6890379B2 (en) * 2016-02-17 2021-06-18 株式会社Fuji Non-contact power supply device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ZA89871B (en) * 1988-02-04 1990-10-31 Magelian Corp Aust Pty Ltd Shunt regulator
DE4004196C1 (en) * 1990-02-12 1991-04-11 Texas Instruments Deutschland Gmbh, 8050 Freising, De Transponder transferring stored measurement data to interrogator - operates without battery using capacitor charged by rectified HF pulses
NL9301169A (en) * 1993-07-05 1995-02-01 Nedap Nv Fast communication to a programmable identification label.

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102217161A (en) * 2008-10-30 2011-10-12 温科·昆茨 Method and circuit for transmitting and receiving radio waves with a single oscillatory circuit antenna
CN102217161B (en) * 2008-10-30 2014-07-09 ams国际有限公司 Method and circuit for transmitting and receiving radio waves with a single oscillatory circuit antenna
US10333354B2 (en) 2016-03-01 2019-06-25 Rohm Co., Ltd. Contactless communication medium and electronic device using the same

Also Published As

Publication number Publication date
GB2307379A (en) 1997-05-21
HK1013485A1 (en) 1999-08-27
GB2307379B (en) 1999-09-29
GB9624042D0 (en) 1997-01-08
JPH09147070A (en) 1997-06-06

Similar Documents

Publication Publication Date Title
JP3761001B2 (en) Contactless information card and IC
KR100370456B1 (en) Contactless Information Card
JP3784271B2 (en) Semiconductor integrated circuit and non-contact type information medium equipped with the same
JP4315530B2 (en) Detection circuit for contactless IC card device
US6777829B2 (en) Rectifier utilizing a grounded antenna
US6533178B1 (en) Device for contactless transmission of data
US5847447A (en) Capcitively coupled bi-directional data and power transmission system
US5966404A (en) Reader/writer for performing efficient transmission/reception with no-battery information storage medium
JP2003233780A (en) Data communication device
AU2003220174A2 (en) Integrated circuit with enhanced coupling
JP3649374B2 (en) Antenna device and card-like storage medium
JP2006180491A (en) Electromagnetic transponder with no autonomous power supply
JP3968948B2 (en) Detection of distance from electromagnetic transponder
JP3824451B2 (en) Non-contact IC card presence / absence detection circuit
JP4171582B2 (en) Control device for impedance introduced to antenna of electronic label
JPH06325229A (en) Portable information recording medium
JPH1166260A (en) Non-contact ic card wound with antenna coil in plural planes
JPH10256957A (en) Device and system for transmitting power
JP2005293597A (en) Semiconductor integrated circuit and contactless type information medium with it mounted
JP3449621B2 (en) Reader / writer device for non-contact IC card system
JP3873350B2 (en) Non-contact IC card
JP4015268B2 (en) Reader / writer
JP4260165B2 (en) Non-contact IC card presence / absence detection circuit
JP3194715B2 (en) Reader / writer device for non-contact IC card system
JP4666738B2 (en) Non-contact IC card reader / writer device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050401

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050531

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050812

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051011

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051128

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20051202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060104

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100120

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees