JP6890084B2 - High voltage potential plasma generator and ion source - Google Patents

High voltage potential plasma generator and ion source Download PDF

Info

Publication number
JP6890084B2
JP6890084B2 JP2017228978A JP2017228978A JP6890084B2 JP 6890084 B2 JP6890084 B2 JP 6890084B2 JP 2017228978 A JP2017228978 A JP 2017228978A JP 2017228978 A JP2017228978 A JP 2017228978A JP 6890084 B2 JP6890084 B2 JP 6890084B2
Authority
JP
Japan
Prior art keywords
voltage potential
plasma generation
generation container
potential plasma
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017228978A
Other languages
Japanese (ja)
Other versions
JP2019102162A (en
Inventor
竹内 猛
猛 竹内
晶子 角谷
晶子 角谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Energy Systems and Solutions Corp
Original Assignee
Toshiba Corp
Toshiba Energy Systems and Solutions Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Energy Systems and Solutions Corp filed Critical Toshiba Corp
Priority to JP2017228978A priority Critical patent/JP6890084B2/en
Publication of JP2019102162A publication Critical patent/JP2019102162A/en
Application granted granted Critical
Publication of JP6890084B2 publication Critical patent/JP6890084B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Plasma Technology (AREA)
  • Electron Sources, Ion Sources (AREA)

Description

本発明の実施形態は、高電圧部を内部に有する真空槽を用いる高電圧電位プラズマ生成装置およびイオン源に関する。 An embodiment of the present invention relates to a high voltage potential plasma generator and an ion source using a vacuum chamber having a high voltage portion inside.

高電圧部を内部に有する真空槽を用いるプラズマ発生装置及びイオン源の場合、プラズマ生成される高電圧部と真空槽内壁との間ではプラズマを介在して電気的短絡を起こすため高電圧部からプラズマが漏れ出ることがないような高電圧プラズマ生成室の形態となる。 In the case of a plasma generator and an ion source that use a vacuum chamber having a high voltage section inside, the high voltage section causes an electrical short circuit between the high voltage section where plasma is generated and the inner wall of the vacuum chamber via plasma. The form of the high-voltage plasma generation chamber is such that plasma does not leak out.

特開2009−37764号公報JP-A-2009-37764

上述の密閉した高電圧プラズマ生成室では、高電圧部からプラズマが漏れ出ることがないようにするためその内部を積極的に大きな排気口を設けての真空排気ができない。そのため、一定の特性を有したプラズマを連続し安定に生成することが困難である。一方、密閉容器に排気口を設けると上述したように、プラズマを介して高電圧部と真空槽内壁とで電気的短絡を引き起こしてしまう。 In the above-mentioned closed high-voltage plasma generation chamber, in order to prevent plasma from leaking from the high-voltage portion, it is not possible to positively provide a large exhaust port inside the chamber for vacuum exhaust. Therefore, it is difficult to continuously and stably generate plasma having certain characteristics. On the other hand, if the exhaust port is provided in the closed container, as described above, an electrical short circuit is caused between the high voltage portion and the inner wall of the vacuum chamber via the plasma.

本発明の目的は、プラズマによる短絡を抑制するため経路を長くとり、簡素化された排気経路を有する高電圧電位プラズマ生成装置およびイオン源を得ることにある。 An object of the present invention is to obtain a high voltage potential plasma generator and an ion source having a long path to suppress a short circuit due to plasma and having a simplified exhaust path.

本実施形態に係る高電圧電位プラズマ生成装置は、真空槽の内部に絶縁材を介して設置され内部が真空排気される高電圧電位プラズマ生成容器と、この高電圧電位プラズマ生成容器内に設置されプラズマ成分材料となるターゲットとから構成され、前記高電圧電位プラズマ生成容器内部と前記真空槽内部とは屈曲した排気経路によって連通され、前記屈曲した排気経路は、前記高電圧電位プラズマ生成容器の開口部と所定の間隙を形成してこの高電圧電位プラズマ生成容器に配置される高電圧電位プラズマ生成容器蓋によって形成され、前記高電圧電位プラズマ生成容器蓋は、この高電圧電位プラズマ生成容器蓋の内面または前記高電圧電位プラズマ生成容器に取り付けられる位置調節装置によって前記高電圧電位プラズマ生成容器の前記開口部と所定の間隙を形成していることを特徴とする。
さらに本実施形態に係る高電圧電位プラズマ生成装置は、真空槽の内部に絶縁材を介して設置され内部が真空排気される高電圧電位プラズマ生成容器と、この高電圧電位プラズマ生成容器内に設置されプラズマ成分材料となるターゲットとから構成され、前記高電圧電位プラズマ生成容器内部と前記真空槽内部とは屈曲した排気経路によって連通され、前記屈曲した排気経路は、真空槽の内部に絶縁材を介して設置され内部が真空排気される開口部が形成された高電圧電位プラズマ生成容器と、前記高電圧電位プラズマ生成容器にステージ台支柱を介して所定の間隙を形成して設置される高電圧ステージと、によって形成されることを特徴とする。
The high-voltage potential plasma generator according to the present embodiment is installed in a high-voltage potential plasma generation container that is installed inside the vacuum chamber via an insulating material and whose inside is vacuum-exhausted, and in the high-voltage potential plasma generation container. It is composed of a target as a plasma component material, and the inside of the high voltage potential plasma generation container and the inside of the vacuum chamber are communicated by a bent exhaust path, and the bent exhaust path is an opening of the high voltage potential plasma generation container. The high-voltage potential plasma generation container lid is formed by forming a predetermined gap with the portion and arranged in the high-voltage potential plasma generation container, and the high-voltage potential plasma generation container lid is the high-voltage potential plasma generation container lid of the high-voltage potential plasma generation container lid. It is characterized in that a predetermined gap is formed with the opening of the high voltage potential plasma generation container by an inner surface or a position adjusting device attached to the high voltage potential plasma generation container.
Further, the high-voltage potential plasma generator according to the present embodiment is installed in a high-voltage potential plasma generation container which is installed inside the vacuum chamber via an insulating material and whose inside is vacuum-exhausted, and in the high-voltage potential plasma generation container. It is composed of a target that becomes a plasma component material, and the inside of the high voltage potential plasma generation container and the inside of the vacuum chamber are communicated by a bent exhaust path, and the bent exhaust path has an insulating material inside the vacuum chamber. A high-voltage potential plasma generation container having an opening formed through which the inside is vacuum-exhausted, and a high-voltage potential plasma generation container installed with a predetermined gap formed through a stage stand column in the high-voltage potential plasma generation container. It is characterized by being formed by a stage.

本実施形態に係るイオン源は、上記高電圧電位プラズマ生成装置にイオン引き出し電極を接続あるいは内部から支持することを特徴とする。 The ion source according to the present embodiment is characterized in that an ion extraction electrode is connected to or internally supported by the high voltage potential plasma generator.

本発明の実施形態は、上述した課題を解決するためになされたものであり、高電圧電位プラズマ生成容器内部から接地電位である真空槽までの排気経路を長くとることができ、排気経路の容積を増加させることができるので高電圧電位プラズマ生成装置内部で生成された高密度プラズマは、高電圧電位プラズマ生成容器から真空槽内部に到達するまでにはプラズマ密度も十分に低くなるあるいはイオン電子再結合により中性化される。よって高電圧電位プラズマ生成容器と接地電位である真空槽内壁面との間の短絡を防ぐことが出来る。 The embodiment of the present invention has been made to solve the above-mentioned problems, and it is possible to take a long exhaust path from the inside of the high-voltage potential plasma generation container to the vacuum chamber which is the ground potential, and the volume of the exhaust path is large. The high-density plasma generated inside the high-voltage potential plasma generator becomes sufficiently low in plasma density or ion electron regeneration by the time it reaches the inside of the vacuum chamber from the high-voltage potential plasma generator. Neutralized by binding. Therefore, it is possible to prevent a short circuit between the high voltage potential plasma generation container and the inner wall surface of the vacuum chamber which is the ground potential.

実施例1に係る高電圧電位プラズマ生成装置を示す側面図。The side view which shows the high voltage potential plasma generation apparatus which concerns on Example 1. FIG. 実施例2に係る高電圧電位プラズマ生成装置を示す側面図。The side view which shows the high voltage potential plasma generation apparatus which concerns on Example 2. FIG. 実施例3に係る高電圧電位プラズマ生成装置を示す平断面図。FIG. 5 is a plan sectional view showing a high voltage potential plasma generator according to the third embodiment. 実施例4に係るイオン源を示す側面図。The side view which shows the ion source which concerns on Example 4. FIG.

(実施例1)
本発明の実施例1について図1を参照して説明する。図1において、高電圧電位プラズマ生成装置40を構成する真空槽1の内部には絶縁材である絶縁碍子2を介して高電圧部9に接続された高電圧電位プラズマ生成容器3が設置されている。この高電圧電位プラズマ生成容器3にはプラズマ成分材料となるターゲット4が設置され、その表面にプラズマ生成点5が形成される。なお、ターゲット4は固体だけでなくガスも考えられる。
(Example 1)
Example 1 of the present invention will be described with reference to FIG. In FIG. 1, a high-voltage potential plasma generation container 3 connected to a high-voltage portion 9 via an insulating porcelain 2 which is an insulating material is installed inside the vacuum chamber 1 constituting the high-voltage potential plasma generation device 40. There is. A target 4 serving as a plasma component material is installed in the high-voltage potential plasma generation container 3, and a plasma generation point 5 is formed on the surface thereof. The target 4 may be not only a solid but also a gas.

プラズマ生成点5についてはターゲット4の固体表面への真空槽1の外部から導かれたレーザーの集光によるプラズマ生成、または同様に真空槽1の外部から導かれたマイクロ波のガス蒸気の電離作用によるプラズマ生成などで形成される。高電圧電位プラズマ生成容器3の上部には、その内面に位置調節装置であるフック7が数点箇所取り付けられ、高電圧電位プラズマ生成容器3の開口部に直線的に繋がる通路を遮断する屈曲した排気経路(迷路構造)30として所定の間隙を周囲に形成して高電圧電位プラズマ生成容器蓋6が置かれる。このフック7は、高電圧電位プラズマ生成容器蓋6の内側ではなく高電圧電位プラズマ生成容器3の外側壁または開口部に取り付けられる構成としてもよい。プラズマが生成される高電圧電位プラズマ生成容器3内部は排気経路8で真空排気される。そして、このフック7の大きさおよび長さを変えることのできる位置調節装置であればよく、ボルトとナットのような形でも代用することができる。このフック7の位置調整によって、高電圧電位プラズマ生成容器3の開口部と高電圧電位プラズマ生成容器蓋6によって形成される間隙からなる排気経路の容積は調整することができる。 Regarding the plasma generation point 5, plasma generation by condensing a laser guided from the outside of the vacuum chamber 1 onto the solid surface of the target 4, or ionization of microwave gas vapor guided from the outside of the vacuum chamber 1 in the same manner. It is formed by plasma generation by. On the upper part of the high-voltage potential plasma generation container 3, hooks 7, which are position adjusting devices, are attached at several points on the inner surface thereof, and are bent to block a passage linearly connected to the opening of the high-voltage potential plasma generation container 3. A high-voltage potential plasma generation container lid 6 is placed by forming a predetermined gap around the exhaust path (maze structure) 30. The hook 7 may be attached to the outer wall or opening of the high-voltage potential plasma generation container 3 instead of the inside of the high-voltage potential plasma generation container lid 6. The inside of the high-voltage potential plasma generation container 3 in which plasma is generated is evacuated through the exhaust path 8. Any position adjusting device that can change the size and length of the hook 7 may be used, and shapes such as bolts and nuts can be substituted. By adjusting the position of the hook 7, the volume of the exhaust path including the opening of the high-voltage potential plasma generation container 3 and the gap formed by the high-voltage potential plasma generation container lid 6 can be adjusted.

以上のように高電圧電位プラズマ生成容器3内部でターゲット4から生成された高密度プラズマは、その高電圧電位プラズマ生成容器3と高電圧電位プラズマ生成容器蓋6との間隙を介し排気経路が長くなり、高電圧電位プラズマ生成容器3から真空槽1内部に到達するまでにはプラズマ密度も十分に低くなるあるいはイオン電子再結合により中性化される。よって高電圧電位プラズマ生成容器3と接地電位である真空槽1内壁面との間の短絡を防ぐことが出来る。また高電圧電位プラズマ生成容器3の壁(高電圧電位)と高電圧電位プラズマ生成容器蓋6との間の隙間は高電圧プラズマ生成容器3の開口部外周全ての領域に渡るので排気効率を向上させることができる。 As described above, the high-density plasma generated from the target 4 inside the high-voltage potential plasma generation container 3 has a long exhaust path through the gap between the high-voltage potential plasma generation container 3 and the high-voltage potential plasma generation container lid 6. Therefore, the plasma density becomes sufficiently low or neutralized by ion-electron recombination by the time the high-voltage potential plasma generation container 3 reaches the inside of the vacuum chamber 1. Therefore, it is possible to prevent a short circuit between the high voltage potential plasma generation container 3 and the inner wall surface of the vacuum chamber 1 which is the ground potential. Further, since the gap between the wall (high voltage potential) of the high voltage potential plasma generation container 3 and the lid 6 of the high voltage potential plasma generation container 3 extends over the entire outer periphery of the opening of the high voltage plasma generation container 3, the exhaust efficiency is improved. Can be made to.

なお、高電圧電位プラズマ生成容器3の開口部を上部とした実施例で説明したがこの開口部は側面または底部に設けることも可能である。 Although described in the embodiment in which the opening of the high-voltage potential plasma generation container 3 is at the top, this opening can also be provided on the side surface or the bottom.

(実施例2)
本発明の実施例2について、図2を参照して説明する。なお、図2において図1と同一部分には同一符号を付してその構成の説明は省略する。
(Example 2)
Example 2 of the present invention will be described with reference to FIG. In FIG. 2, the same parts as those in FIG. 1 are designated by the same reference numerals, and the description of the configuration will be omitted.

図2において、高電圧電位プラズマ生成装置41を構成する真空槽1の内部に絶縁碍子2を介して下部に開口部13が形成された高電圧電位プラズマ生成容器10が設置されている。高電圧電位プラズマ生成容器10の内側底部にはステージ台支柱11を介して高電圧ステージ12が設置される。高電圧電位プラズマ生成容器10、高電圧ステージ台12とステージ台支柱11は同電位に設定されている。高電圧ステージ台12のステージ上にはプラズマ成分材料となるターゲット4が設置され、その表面にプラズマ生成点5が形成される。ターゲット4は固体だけでなくガスも考えられる。 In FIG. 2, a high-voltage potential plasma generation container 10 having an opening 13 formed at a lower portion via an insulator 2 is installed inside a vacuum chamber 1 constituting the high-voltage potential plasma generation device 41. A high-voltage stage 12 is installed at the inner bottom of the high-voltage potential plasma generation container 10 via a stage stand column 11. The high-voltage potential plasma generation container 10, the high-voltage stage stand 12, and the stage stand support 11 are set to have the same potential. A target 4, which is a plasma component material, is installed on the stage of the high-voltage stage table 12, and a plasma generation point 5 is formed on the surface thereof. The target 4 can be not only a solid but also a gas.

プラズマ生成点5についてはターゲット4の固体表面への真空槽1の外部から導かれたレーザーの集光によるプラズマ生成、または同様に真空槽1の外部から導かれたマイクロ波のガス蒸気の電離作用によるプラズマ生成などで形成される。プラズマが生成される高電圧電位プラズマ生成容器10内部は排気経路8で真空排気される。実施例2は実施例1の屈曲した排気経路(迷路構造)31となる排気経路8を高電圧電位プラズマ生成容器10の底部の設けた形態である。 Regarding the plasma generation point 5, plasma generation by condensing a laser guided from the outside of the vacuum chamber 1 onto the solid surface of the target 4, or ionization of microwave gas vapor guided from the outside of the vacuum chamber 1 in the same manner. It is formed by plasma generation by. The inside of the high-voltage potential plasma generation container 10 in which plasma is generated is evacuated through the exhaust path 8. The second embodiment is a form in which the exhaust path 8 serving as the bent exhaust path (maze structure) 31 of the first embodiment is provided at the bottom of the high voltage potential plasma generation container 10.

以上のように高電圧電位プラズマ生成容器10内部の高密度プラズマは、ステージ台支柱11により高電圧ステージ12と高電圧電位プラズマ生成容器10の底板との間を介して、底板開口部13から排気される。 As described above, the high-voltage plasma inside the high-voltage potential plasma generation container 10 is exhausted from the bottom plate opening 13 by the stage stand column 11 via the high-voltage stage 12 and the bottom plate of the high-voltage potential plasma generation container 10. Will be done.

上記の排気経路8を介することで高密度プラズマは、高電圧電位プラズマ生成容器10、高電圧ステージ台12などから構成される高電圧部から真空槽1内部に到達するまでにはプラズマ密度も十分に低くなるあるいはイオン電子再結合により中性化される。そのため高電圧電位プラズマ生成容器10、高電圧ステージ台12などから構成される高電圧部と接地電位である真空槽1内壁面との間の短絡を防ぐことが出来る。また高電圧電位プラズマ生成容器10の壁(高電圧電位)と高電圧ステージ16との間の隙間は高電圧電位プラズマ生成容器13の内周全ての領域に渡るので排気効率を向上させることができる。 Through the exhaust path 8 described above, the high-voltage plasma has a sufficient plasma density to reach the inside of the vacuum chamber 1 from the high-voltage portion composed of the high-voltage potential plasma generation container 10, the high-voltage stage stand 12, and the like. It becomes low or neutralized by ionic electron recombination. Therefore, it is possible to prevent a short circuit between the high voltage portion including the high voltage potential plasma generation container 10, the high voltage stage base 12, and the inner wall surface of the vacuum chamber 1 which is the ground potential. Further, since the gap between the wall (high voltage potential) of the high voltage potential plasma generation container 10 and the high voltage stage 16 extends over the entire inner circumference of the high voltage potential plasma generation container 13, the exhaust efficiency can be improved. ..

なお、高電圧電位プラズマ生成容器3の開口部を下部とした実施例で説明したがこの開口部は側面または上部に設けることも可能である。 Although described in the embodiment in which the opening of the high voltage potential plasma generation container 3 is set as the lower part, this opening can also be provided on the side surface or the upper part.

(実施例3)
本発明の実施例3を図3を参照して説明する。図3は実施例1あるいは実施例2を上から見た平断面図を示している。なお、図3において図1および図2と同一部分には同一符号を付してその構成の説明は省略する。
(Example 3)
Example 3 of the present invention will be described with reference to FIG. FIG. 3 shows a plan sectional view of Example 1 or Example 2 as viewed from above. In FIG. 3, the same parts as those in FIGS. 1 and 2 are designated by the same reference numerals, and the description of the configuration will be omitted.

図3において、高電圧電位プラズマ生成装置42を構成する真空槽1の内部には絶縁碍子2を介して高電圧電位プラズマ生成容器3が設置されている。高電圧電位プラズマ生成容器3は高電圧電位プラズマ生成容器内壁14と高電圧電位プラズマ生成容器外壁15を備えた構成になっている。 In FIG. 3, a high-voltage potential plasma generation container 3 is installed inside the vacuum chamber 1 constituting the high-voltage potential plasma generation device 42 via an insulator 2. The high-voltage potential plasma generation container 3 is configured to include a high-voltage potential plasma generation container inner wall 14 and a high-voltage potential plasma generation container outer wall 15.

高電圧電位プラズマ生成容器3の内側は実施例1あるいは実施例2で前述したように、ターゲット4が設置され、その表面にプラズマ生成点5が形成される。ターゲット4は固体だけでなくガスであってもよい。プラズマ生成点5についてはターゲット4の固体表面への真空槽1の外部から導かれたレーザーの集光によるプラズマ生成、ガスまたは蒸気へ真空槽1の外部から導かれたマイクロ波によるガスまたは蒸気の電離作用によるプラズマ生成などで形成される。プラズマ生成点5のプラズマは高電圧プラズマ生成容器内壁14に形成された開口部16より、高電圧プラズマ生成容器内壁14と高電圧プラズマ生成容器外壁15との隙間から成る屈曲した排気経路(迷路構造)32を通り高電圧プラズマ生成容器外壁15に形成された開口部17より排気される。なお、この高電圧プラズマ生成容器内壁14およびと高電圧プラズマ生成容器外壁15は回転することができ開口部16および開口部17から形成される排気経路8の距離を調整することができる。 As described above in Example 1 or 2, the target 4 is installed inside the high-voltage potential plasma generation container 3, and the plasma generation point 5 is formed on the surface thereof. The target 4 may be a gas as well as a solid. Regarding the plasma generation point 5, plasma generation by condensing a laser guided from the outside of the vacuum chamber 1 onto the solid surface of the target 4, gas or steam of gas or steam by microwaves guided from the outside of the vacuum chamber 1 to gas or steam. It is formed by plasma generation due to ionization. The plasma at the plasma generation point 5 is a curved exhaust path (maze structure) formed by a gap between the high voltage plasma generation container inner wall 14 and the high voltage plasma generation container outer wall 15 through the opening 16 formed in the high voltage plasma generation container inner wall 14. ) 32, and the plasma is exhausted from the opening 17 formed in the outer wall 15 of the high-voltage plasma generation container. The inner wall 14 of the high-voltage plasma generation container and the outer wall 15 of the high-voltage plasma generation container can be rotated, and the distance of the exhaust path 8 formed from the opening 16 and the opening 17 can be adjusted.

そして、迷路構造32である排気経路8を長く採ることを意図し、高電圧プラズマ生成容器外壁15の開口部17は高電圧プラズマ生成容器内壁14の開口部は最大180°対称の位置とするのが好ましい。 Then, the opening 17 of the outer wall 15 of the high-voltage plasma generation container is positioned so that the opening of the inner wall 14 of the high-voltage plasma generation container 14 is symmetrical at a maximum of 180 °, with the intention of taking a long exhaust path 8 which is the maze structure 32. Is preferable.

以上のように高電圧プラズマ生成容器3内部の高密度プラズマは、高電圧プラズマ生成容器内壁14と高電圧プラズマ生成容器外壁15との隙間を通る迷路構造32である排気経路8により、高電圧部となる高電圧プラズマ生成容器外壁15の開口部17周辺に到達した頃にはプラズマ密度も十分に低くなるあるいはイオン電子再結合により中性化される。そのため高電圧プラズマ生成容器内壁14、高電圧プラズマ生成容器外壁15などから構成される高電圧部と接地電位である真空槽1内壁面との間の短絡を防ぐことが出来る。 As described above, the high-voltage plasma inside the high-voltage plasma generation container 3 has a high-voltage portion due to the exhaust path 8 which is a maze structure 32 passing through the gap between the high-voltage plasma generation container inner wall 14 and the high-voltage plasma generation container outer wall 15. By the time it reaches the vicinity of the opening 17 of the outer wall 15 of the high-voltage plasma generation vessel 15, the plasma density becomes sufficiently low or is neutralized by ion-electron recombination. Therefore, it is possible to prevent a short circuit between the high voltage portion composed of the high voltage plasma generation container inner wall 14 and the high voltage plasma generation container outer wall 15 and the inner wall surface of the vacuum chamber 1 which is the ground potential.

排気経路8の長さを調節するとることができ、排気経路の容積を増加させることができるので排気能力と絶縁耐圧のトレードオフを調整する事が出来る。 Since the length of the exhaust path 8 can be adjusted and the volume of the exhaust path can be increased, the trade-off between the exhaust capacity and the dielectric strength can be adjusted.

なお、当該実施例3は実施例1から3と適宜組み合わせることによって、より迷路構造32である排気経路8を長く採ることができる。また、上記実施例1から3に説明された真空槽1は横断面を円筒形状で説明しているが、球状または角形形状等の断面多角形でも適用することができる。 By appropriately combining the third embodiment with the first to third embodiments, the exhaust path 8 having a maze structure 32 can be taken longer. Further, although the vacuum chamber 1 described in Examples 1 to 3 has a cylindrical cross section, it can also be applied to a polygonal cross section such as a spherical shape or a square shape.

(実施例4)
本発明の実施例4を図4を参照して説明する。なお、図4において図1と同一部分には同一符号を付してその構成の説明は省略する。
(Example 4)
Example 4 of the present invention will be described with reference to FIG. In FIG. 4, the same parts as those in FIG. 1 are designated by the same reference numerals, and the description of the configuration will be omitted.

実施例4は実施例1から実施例3の形態における高電圧電位プラズマ生成装置40,41,42をイオン源20へ適用した実施例である。 Example 4 is an example in which the high voltage potential plasma generators 40, 41, and 42 according to the first to third embodiments are applied to the ion source 20.

高電圧電位プラズマ生成容器3にイオン引き出し電極21を接続あるいは内部から支持する構造により設置する。イオン引き出し電極21は高電圧電位プラズマ生成容器3と同電位である。イオン引き出し電極21の開口部23と外部の接地電位である真空槽1との間での電位差によりイオンが引き出される。 The ion extraction electrode 21 is connected to or supported from the inside in the high voltage potential plasma generation container 3. The ion extraction electrode 21 has the same potential as the high voltage potential plasma generation container 3. Ions are drawn out by the potential difference between the opening 23 of the ion drawing electrode 21 and the vacuum chamber 1 which is the external ground potential.

このイオンとして開口部23より引き出されるプラズマイオンビーム22はプラズマ生成点5を起点とし、イオン引き出し電極21の開口部23を通りイオン供給源とされることにより実施例4の全体システムがイオン源20として機能する。 The plasma ion beam 22 extracted from the opening 23 as the ions starts from the plasma generation point 5, passes through the opening 23 of the ion extraction electrode 21, and is used as an ion supply source, so that the entire system of Example 4 becomes the ion source 20. Functions as.

以上のようなイオン源として使用される高電圧プラズマ生成容器に対しても実施例1から実施例3を適用することができる。これによりプラズマ生成室内の真空排気効率が向上し、一定の特性を有したプラズマを連続し安定に生成することが実現され、安定したイオン源として適用することができる。そして、このイオン源で引き出されたイオンは線形加速器、重粒子線照射装置等に活用することができる。 Examples 1 to 3 can be applied to the high-voltage plasma generation container used as the ion source as described above. As a result, the vacuum exhaust efficiency in the plasma generation chamber is improved, plasma having a certain characteristic can be continuously and stably generated, and it can be applied as a stable ion source. The ions extracted from this ion source can be utilized in a linear accelerator, a heavy particle beam irradiator, and the like.

本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。 Although some embodiments of the present invention have been described, these embodiments are presented as examples and are not intended to limit the scope of the invention.

これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更、組み合わせを行うことができる。 These embodiments can be implemented in various other forms, and various omissions, replacements, changes, and combinations can be made without departing from the gist of the invention.

これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。 These embodiments and modifications thereof are included in the scope and gist of the invention, as well as in the scope of the invention described in the claims and the equivalent scope thereof.

1…真空槽
2…絶縁碍子
3…高電圧電位プラズマ生成容器
4…ターゲット
5…プラズマ生成点
6…高電圧電位プラズマ生成容器蓋
7…フック(位置調節装置)
8…排気経路
9…高電圧部
10…高電圧電位プラズマ生成容器
11…ステージ台支柱
12…高電圧ステージ台
13…開口部
14…高電圧電位プラズマ生成容器内壁
15…高電圧電位プラズマ生成容器外壁
16,17…開口部
20…イオン源
21…イオン引き出し電極
22…プラズマイオンビーム
23…開口部
30,31,32,33…迷路構造(屈曲した排気経路)
40,41,42,43…高電圧電位プラズマ生成装置
1 ... Vacuum tank 2 ... Insulator 3 ... High voltage potential plasma generation container 4 ... Target 5 ... Plasma generation point 6 ... High voltage potential plasma generation container lid 7 ... Hook (position adjustment device)
8 ... Exhaust path 9 ... High voltage part 10 ... High voltage potential plasma generation container 11 ... Stage stand support 12 ... High voltage stage stand 13 ... Opening 14 ... High voltage potential plasma generation container inner wall 15 ... High voltage potential plasma generation container outer wall 16, 17 ... Opening 20 ... Ion source 21 ... Ion extraction electrode 22 ... Plasma ion beam 23 ... Openings 30, 31, 32, 33 ... Labyrinth structure (bent exhaust path)
40, 41, 42, 43 ... High voltage potential plasma generator

Claims (8)

真空槽の内部に絶縁材を介して設置され内部が真空排気される高電圧電位プラズマ生成容器と、この高電圧電位プラズマ生成容器内に設置されプラズマ成分材料となるターゲットとから構成され、前記高電圧電位プラズマ生成容器内部と前記真空槽内部とは屈曲した排気経路によって連通され、
前記屈曲した排気経路は、前記高電圧電位プラズマ生成容器の開口部と所定の間隙を形成してこの高電圧電位プラズマ生成容器に配置される高電圧電位プラズマ生成容器蓋によって形成され、
前記高電圧電位プラズマ生成容器蓋は、この高電圧電位プラズマ生成容器蓋の内面または前記高電圧電位プラズマ生成容器に取り付けられる位置調節装置によって前記高電圧電位プラズマ生成容器の前記開口部と所定の間隙を形成していることを特徴とする高電圧電位プラズマ生成装置。
It is composed of a high-voltage potential plasma generation container installed inside the vacuum chamber via an insulating material and vacuum exhausted inside, and a target installed in the high-voltage potential plasma generation container and used as a plasma component material. The inside of the voltage-potential plasma generation container and the inside of the vacuum chamber are communicated by a bent exhaust path.
The bent exhaust path is formed by a high-voltage potential plasma generation container lid that forms a predetermined gap with the opening of the high-voltage potential plasma generation container and is arranged in the high-voltage potential plasma generation container.
The high-voltage potential plasma generation container lid is formed between the opening of the high-voltage potential plasma generation container and a predetermined gap by a position adjusting device attached to the inner surface of the high-voltage potential plasma generation container lid or the high-voltage potential plasma generation container. A high-voltage potential plasma generator characterized by forming the above.
前記位置調節装置は、その大きさおよび長さを変えることによって、前記高電圧電位プラズマ生成容器の開口部と高電圧電位プラズマ生成容器蓋によって形成される間隙からなる前記屈曲した排気経路の容積を調整することができることを特徴とする請求項1記載の高電圧電位プラズマ生成装置。 By changing the size and length of the position adjusting device, the volume of the bent exhaust path formed by the opening of the high-voltage potential plasma generation container and the gap formed by the lid of the high-voltage potential plasma generation container can be adjusted. The high voltage potential plasma generator according to claim 1, wherein the high voltage potential plasma generator can be adjusted. 真空槽の内部に絶縁材を介して設置され内部が真空排気される高電圧電位プラズマ生成容器と、この高電圧電位プラズマ生成容器内に設置されプラズマ成分材料となるターゲットとから構成され、前記高電圧電位プラズマ生成容器内部と前記真空槽内部とは屈曲した排気経路によって連通され、
前記屈曲した排気経路は、真空槽の内部に絶縁材を介して設置され内部が真空排気される開口部が形成された高電圧電位プラズマ生成容器と、前記高電圧電位プラズマ生成容器にステージ台支柱を介して所定の間隙を形成して設置される高電圧ステージと、によって形成されることを特徴とする高電圧電位プラズマ生成装置。
It is composed of a high-voltage potential plasma generation container installed inside the vacuum chamber via an insulating material and vacuum exhausted inside, and a target installed in the high-voltage potential plasma generation container and used as a plasma component material. The inside of the voltage-potential plasma generation container and the inside of the vacuum chamber are communicated by a bent exhaust path.
The bent exhaust path includes a high-voltage potential plasma generation container in which an opening is formed inside the vacuum chamber via an insulating material and the inside is vacuum-exhausted, and a stage stand support in the high-voltage potential plasma generation container. A high-voltage potential plasma generator, characterized in that it is formed by a high-voltage stage that is installed with a predetermined gap formed therein.
前記高電圧電位プラズマ生成容器は、その側面を開口部が形成された内壁と外壁の二重構造とし、その隙間を前記屈曲した排気経路としたことを特徴とする請求項1から請求項3のいずれか1項記載の高電圧電位プラズマ生成装置。 The high-voltage potential plasma generation vessel has a double structure of an inner wall and an outer wall having an opening formed on a side surface thereof, and the gap thereof is a bent exhaust path, according to any one of claims 1 to 3. The high voltage potential plasma generator according to any one of the items. 前記内壁と前記外壁は回転自在に構成され、排気経路を調整可能としたことを特徴とする請求項4記載の高電圧電位プラズマ生成装置。 The high-voltage potential plasma generator according to claim 4, wherein the inner wall and the outer wall are rotatably configured and an exhaust path can be adjusted. 前記絶縁材は、絶縁碍子から形成され前記高電圧電位プラズマ生成容器を支持することを特徴とする請求項1から請求項5のいずれか1項記載の高電圧電位プラズマ生成装置。 The high-voltage potential plasma generator according to any one of claims 1 to 5, wherein the insulating material is formed of an insulator and supports the high-voltage potential plasma generation container. 前記真空槽は球状、円筒形状または角筒形状であることを特徴とする請求項1から請求項6のいずれか1項記載の高電圧電位プラズマ生成装置。 The high voltage potential plasma generator according to any one of claims 1 to 6, wherein the vacuum chamber has a spherical shape, a cylindrical shape, or a square cylinder shape. 前記請求項1から請求項7のいずれか1項記載の高電圧電位プラズマ生成装置にイオン引き出し電極を接続あるいは内部から支持することを特徴とするイオン源。 An ion source characterized in that an ion extraction electrode is connected to or internally supported by the high voltage potential plasma generator according to any one of claims 1 to 7.
JP2017228978A 2017-11-29 2017-11-29 High voltage potential plasma generator and ion source Active JP6890084B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017228978A JP6890084B2 (en) 2017-11-29 2017-11-29 High voltage potential plasma generator and ion source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017228978A JP6890084B2 (en) 2017-11-29 2017-11-29 High voltage potential plasma generator and ion source

Publications (2)

Publication Number Publication Date
JP2019102162A JP2019102162A (en) 2019-06-24
JP6890084B2 true JP6890084B2 (en) 2021-06-18

Family

ID=66973959

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017228978A Active JP6890084B2 (en) 2017-11-29 2017-11-29 High voltage potential plasma generator and ion source

Country Status (1)

Country Link
JP (1) JP6890084B2 (en)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4771230B2 (en) * 2007-07-31 2011-09-14 独立行政法人日本原子力研究開発機構 Ion beam extraction acceleration method and apparatus
JP4919082B2 (en) * 2007-11-21 2012-04-18 Tdk株式会社 Ion beam processing apparatus and ion beam processing method
JP5357486B2 (en) * 2008-09-30 2013-12-04 東京エレクトロン株式会社 Plasma processing equipment
JP2010205446A (en) * 2009-02-27 2010-09-16 Kobe Steel Ltd Ion source
US8987678B2 (en) * 2009-12-30 2015-03-24 Fei Company Encapsulation of electrodes in solid media
JP5683902B2 (en) * 2010-10-29 2015-03-11 株式会社東芝 Laser ion source
JP2015021183A (en) * 2013-07-23 2015-02-02 株式会社東芝 Ion irradiation device
JP6683575B2 (en) * 2016-09-01 2020-04-22 東京エレクトロン株式会社 Plasma processing device

Also Published As

Publication number Publication date
JP2019102162A (en) 2019-06-24

Similar Documents

Publication Publication Date Title
US3949265A (en) Multistage charged particle accelerator, with high-vacuum insulation
JP2015028879A (en) Target for x-ray generation and x-ray generation device
Zenin et al. Generating stationary electron beams by a forevacuum plasma source at pressures up to 100 Pa
JP5822767B2 (en) Ion source apparatus and ion beam generating method
WO2016063325A1 (en) Scanning electron microscope
KR20150084321A (en) Cylindrical X-ray tube using triode electron emitting device
Hosseinzadeh et al. Optimization and numerical simulation for the extraction system of the H− multicusp ion source
JP6890084B2 (en) High voltage potential plasma generator and ion source
KR100679593B1 (en) High-voltage generator and accelerator using same
JP5327657B2 (en) Plasma generator
JPWO2011034086A1 (en) Electron gun, vacuum processing equipment
WO2017168557A1 (en) Vacuum device and vacuum pump
Kistemaker et al. Some plasma-physical aspects of mono-and duo-plasmatron ion sources
JP2020534639A (en) RF resonator for ion beam acceleration
KR101352496B1 (en) Plasma Generation Apparatus and Plasma Generation Method
Burdovitsin et al. Expansion of the working range of forevacuum plasma electron sources toward higher pressures
US2600151A (en) Ion producing mechanism
US3517240A (en) Method and apparatus for forming a focused monoenergetic ion beam
JP2018536978A5 (en)
Isakova et al. Influence of cathode diameter on the operation of a planar diode with an explosive emission cathode
JP7268781B1 (en) Electron beam irradiation device and vacuum vessel
RU2306683C1 (en) Plasma electron source
JP7255952B2 (en) ion beam source
Zenin et al. Influence of the hole diameter in the perforated electrode on the parameters of electron beam generated by a forevacuum plasma electron source
JP7476090B2 (en) Ion source and ion beam device

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20180831

RD07 Notification of extinguishment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7427

Effective date: 20191219

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210303

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210326

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210409

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210423

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210524

R150 Certificate of patent or registration of utility model

Ref document number: 6890084

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150