JP6890028B2 - Cylindrical battery - Google Patents

Cylindrical battery Download PDF

Info

Publication number
JP6890028B2
JP6890028B2 JP2017062124A JP2017062124A JP6890028B2 JP 6890028 B2 JP6890028 B2 JP 6890028B2 JP 2017062124 A JP2017062124 A JP 2017062124A JP 2017062124 A JP2017062124 A JP 2017062124A JP 6890028 B2 JP6890028 B2 JP 6890028B2
Authority
JP
Japan
Prior art keywords
battery
cutting edge
terminal plate
tubular
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017062124A
Other languages
Japanese (ja)
Other versions
JP2018166024A (en
Inventor
皓己 大塚
皓己 大塚
春彦 佐竹
春彦 佐竹
浩 濱田
浩 濱田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP2017062124A priority Critical patent/JP6890028B2/en
Publication of JP2018166024A publication Critical patent/JP2018166024A/en
Application granted granted Critical
Publication of JP6890028B2 publication Critical patent/JP6890028B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)
  • Gas Exhaust Devices For Batteries (AREA)

Description

本発明は、有底筒状の電池缶内に発電要素を収納してなる筒型電池に関し、具体的には、筒型電池の防爆安全機構に関する。 The present invention relates to a tubular battery in which a power generation element is housed in a bottomed tubular battery can, and specifically to an explosion-proof safety mechanism for the tubular battery.

本発明の対象となる筒型電池の一例として、有底円筒状の電池缶を備えたボビン形リチウム一次電池を挙げる。図1にそのボビン形リチウム一次電池(以下、筒型電池1とも言う)の構造を示した。なお以下では、有底円筒状の電池缶2の円筒軸100の方向を上下方向とし、電池缶2の底部を下方として上下の各方向を規定すると、図1(A)は、筒型電池1を円筒軸100を含む断面で切断したときの縦断面図であり、図1(B)は、当該筒型電池1を上方から見たときの平面図である。図1(C)は図1(A)におけるb−b矢視断面図であり、ここでは、筒型電池1の上端側を拡大して示した。なお図1(A)は図1(B)におけるa−a矢視断面に対応する。 An example of a tubular battery to which the present invention is intended is a bobbin-type lithium primary battery provided with a bottomed cylindrical battery can. FIG. 1 shows the structure of the bobbin-type lithium primary battery (hereinafter, also referred to as a tubular battery 1). In the following, assuming that the direction of the cylindrical shaft 100 of the bottomed cylindrical battery can 2 is the vertical direction and the bottom of the battery can 2 is the downward direction, each of the vertical directions is defined. Is a vertical cross-sectional view taken along the cross section including the cylindrical shaft 100, and FIG. 1B is a plan view of the cylindrical battery 1 when viewed from above. FIG. 1C is a cross-sectional view taken along the line bb in FIG. 1A, and here, the upper end side of the tubular battery 1 is enlarged and shown. Note that FIG. 1 (A) corresponds to the cross section taken along the line aa in FIG. 1 (B).

図1(A)に示したように、例示した筒型電池1は、上方が開口する有底円筒状の電池缶2、二酸化マンガン等の正極活物質を黒鉛等の導電助剤とともにリングコアに似た中空円筒状に成形された正極合剤3、円筒状の負極リチウム4、円筒カップ状のセパレーター5、負極端子を兼ねて電池缶2の開口を密閉封口する封口体10などによって構成されている。そして、電池缶2内には非水電解液が充填されている。 As shown in FIG. 1A, the illustrated tubular battery 1 resembles a ring core in which a bottomed cylindrical battery can 2 having an opening at the top and a positive electrode active material such as manganese dioxide are combined with a conductive auxiliary agent such as graphite. It is composed of a positive electrode mixture 3 formed into a hollow cylindrical shape, a cylindrical negative electrode lithium 4, a cylindrical cup-shaped separator 5, a sealing body 10 that also serves as a negative electrode terminal and seals the opening of the battery can 2. .. The battery can 2 is filled with a non-aqueous electrolytic solution.

電池缶2は金属製であって電池ケースと正極集電体を兼ねる。下方底面には正極の端子部21がプレス加工により外方に突出するように形成されている。また、開口部近傍の周囲には絞り加工によるビーディング部22が形成されている。そして、この電池缶2内に、正極合剤3が圧入されているとともに、中空円筒状の正極合剤3の内方に負極リチウム4がセパレーター5を介して配置されている。
負極リチウム4には、帯状の金属薄板で形成されて負極集電体を兼ねる負極リード6の一方の端部が取り付けられている。他方の端部は封口体10を構成するステンレスなどの金属製薄板からなる円板状の封口板7の下面にスポット溶接されている。封口体10は、当該封口板7とステンレスなどの金属からなる負極の端子板8とによって構成されている。端子板8は、開口の周囲に中空円板状のフランジ部81が一体的に形成されているカップ状であり、伏せたカップのように、底部82を上方にした状態で封口板7と積層されている。
The battery can 2 is made of metal and also serves as a battery case and a positive electrode current collector. The terminal portion 21 of the positive electrode is formed on the lower bottom surface so as to protrude outward by press working. Further, a beading portion 22 is formed by drawing processing around the vicinity of the opening. Then, the positive electrode mixture 3 is press-fitted into the battery can 2, and the negative electrode lithium 4 is arranged inside the hollow cylindrical positive electrode mixture 3 via the separator 5.
One end of the negative electrode lead 6 which is formed of a strip-shaped thin metal plate and also serves as a negative electrode current collector is attached to the negative electrode lithium 4. The other end is spot-welded to the lower surface of a disk-shaped sealing plate 7 made of a thin metal plate such as stainless steel that constitutes the sealing body 10. The sealing body 10 is composed of the sealing plate 7 and a negative electrode terminal plate 8 made of a metal such as stainless steel. The terminal plate 8 has a cup shape in which a hollow disk-shaped flange portion 81 is integrally formed around the opening, and is laminated with the sealing plate 7 with the bottom portion 82 facing upward like a face down cup. Has been done.

封口体10は、樹脂製の封口ガスケット9とともに電池缶2の開口部内側にビーディング部22を座として装着されつつ、電池缶2におけるビーディング部22より上方の上端部分が内方にかしめ加工(カール加工)されることで電池缶2に嵌着されている。 The sealing body 10 is mounted with the beading portion 22 as a seat inside the opening of the battery can 2 together with the resin sealing gasket 9, and the upper end portion of the battery can 2 above the beading portion 22 is caulked inward. It is fitted to the battery can 2 by being (curled).

図1(B)に示したように、上記構造の筒型電池1において、カップ状の端子板8の底部82のほぼ中央には、略V字状の切欠83が画成され、その切欠83の末端同士を接続した一辺を基端84とした舌片が、その基端84で下方に向かって折り曲げられている。それによって、その舌片が鋭利な先端を有する切り刃85となる。そして、端子板8の底部82には、この切り刃85を形成したことにより、内外を連絡する鋭角三角形状の孔(排気口)86が開口する。また、図1(C)に示したように、端子板8の底部82の周縁から下方に垂設されてフランジ部81に至る壁面(周側面)87には、端子板8の内外を連絡する小孔(通気孔)88が形成されている。 As shown in FIG. 1 (B), in the tubular battery 1 having the above structure, a substantially V-shaped notch 83 is defined at substantially the center of the bottom 82 of the cup-shaped terminal plate 8, and the notch 83 is formed. A tongue piece having a side end 84 connecting the ends of the tongue is bent downward at the base end 84. As a result, the tongue piece becomes a cutting edge 85 having a sharp tip. By forming the cutting edge 85 at the bottom 82 of the terminal plate 8, an acute-angled triangular hole (exhaust port) 86 that connects the inside and the outside is opened. Further, as shown in FIG. 1C, the inside and outside of the terminal plate 8 are communicated to the wall surface (peripheral side surface) 87 that is vertically hung downward from the peripheral edge of the bottom portion 82 of the terminal plate 8 and reaches the flange portion 81. Small holes (vent holes) 88 are formed.

封口板7と切り刃85は、筒型電池1の誤使用による過放電や充電などで、筒型電池1の内部にガスが発生し内圧が上昇した場合の防爆安全機構として動作する。排気口86は、電池缶2の内外を連絡してガスを外方へ放出するための通路(排気通路)となり、通気孔88は、補助的な排気通路としての役割を担っている。 The sealing plate 7 and the cutting edge 85 operate as an explosion-proof safety mechanism when gas is generated inside the tubular battery 1 and the internal pressure rises due to over-discharging or charging due to misuse of the tubular battery 1. The exhaust port 86 serves as a passage (exhaust passage) for communicating the inside and outside of the battery can 2 and discharging gas to the outside, and the ventilation hole 88 plays a role as an auxiliary exhaust passage.

図2に、図1に示した筒型電池1における防爆安全機構の動作を示した。図2(A)は、内圧が上昇した際の封口体10の状態を示しており、図2(B)は防爆安全機構が作動したときの図である。まず図2(A)に示したように、内圧が上昇すると、封口板7において、端子板8のフランジ部81の下面に接していない直径φ1の円形の領域が上方に膨らむように撓む。そして図2(B)に示したように、封口板7がさらに上方に膨らむと、切り刃85の先端がこの封口板7に突き刺さり封口板7に穴70を開ける。それによって、この穴70から排気口86に至る経路(排気経路)が形成されて、筒型電池1内のガスが外部へ逃げる。ガスの一部は、封口板7に開いた穴70から通気孔88に至る排気経路を通って外部に排気される。図中に排気経路を太線矢印で示した。このようにして、筒型電池1の破裂を防止できるようになっている。防爆安全機構が作動する圧力については、例えば、CR17450型のボビン形リチウム一次電池では、2.5MPa〜3.5MPa程度となるように設定されている。 FIG. 2 shows the operation of the explosion-proof safety mechanism in the tubular battery 1 shown in FIG. FIG. 2A shows the state of the sealing body 10 when the internal pressure rises, and FIG. 2B is a view when the explosion-proof safety mechanism is activated. First, as shown in FIG. 2A, when the internal pressure rises, the sealing plate 7 bends so that a circular region having a diameter of φ1 that is not in contact with the lower surface of the flange portion 81 of the terminal plate 8 bulges upward. Then, as shown in FIG. 2B, when the sealing plate 7 further swells upward, the tip of the cutting blade 85 pierces the sealing plate 7 and makes a hole 70 in the sealing plate 7. As a result, a path (exhaust path) from the hole 70 to the exhaust port 86 is formed, and the gas in the tubular battery 1 escapes to the outside. A part of the gas is exhausted to the outside through an exhaust path from the hole 70 formed in the sealing plate 7 to the ventilation hole 88. The exhaust path is indicated by a thick arrow in the figure. In this way, the tubular battery 1 can be prevented from exploding. The pressure at which the explosion-proof safety mechanism operates is set to be about 2.5 MPa to 3.5 MPa in, for example, a CR17450 type bobbin-type lithium primary battery.

なお、以下の特許文献1は、切り刃によって封口板に穴を開ける態様の防爆安全機構を備えた筒状電池について記載されている。また、以下の非特許文献1には、同じ構造の防爆安全機構を備えたボビン形リチウム一次電池について記載されている The following Patent Document 1 describes a tubular battery provided with an explosion-proof safety mechanism in which a hole is made in the sealing plate by a cutting edge. Further, Non-Patent Document 1 below describes a bobbin-type lithium primary battery provided with an explosion-proof safety mechanism having the same structure.

特開2010−186650号公報Japanese Unexamined Patent Publication No. 2010-186650

FDK株式会社、”高容量円筒形リチウム一次電池”、[online]、[平成29年2月9日検索]、インターネット<URL:http://www.fdk.co.jp/battery/lithium/lithium_cylindrical.html>FDK Corporation, "High-capacity cylindrical lithium primary battery", [online], [Search on February 9, 2017], Internet <URL: http://www.fdk.co.jp/battery/lithium/lithium_cylindrical .html >

従来の筒型電池における防爆安全機構では、電池缶内の圧力が急激に上昇した場合、切り刃が封口板を破断して防爆安全機構自体は作動するものの、その破断箇所が電池の内容物によって閉塞されてしまう可能性があった。破断箇所が電池の内容物によって閉塞されてしまうと電池缶の内圧を速やかに開放することができなくなる。内圧の上昇が爆発的である場合、電池の内容物や電池を構成する部品(封口体、リード端子など)など飛散する可能性もある。 In the explosion-proof safety mechanism of a conventional tubular battery, when the pressure inside the battery can rises sharply, the cutting edge breaks the sealing plate and the explosion-proof safety mechanism itself operates, but the broken part depends on the contents of the battery. There was a possibility of being blocked. If the broken part is blocked by the contents of the battery, the internal pressure of the battery can cannot be released quickly. If the increase in internal pressure is explosive, the contents of the battery and the parts that make up the battery (sealing body, lead terminals, etc.) may scatter.

また、電池缶内の圧力がゆっくりとした速度で上昇するような場合では、封口板が撓む速度も遅くなり、防爆安全機能が作動して切り刃の先端が封口板に突き刺さっても、切り刃が封口板に徐々に食い込んでいき、切り刃自体が破断箇所を塞ぐ栓のようになってしまう場合がある。このような場合においても、電池缶の内圧を速やかに開放することができなくなる。さらに、封口板に切り刃が深く食い込んで封口板が切り裂かれるまで圧力が上昇し続け、封口板が切り裂かれた時点で内容物がその切り裂かれた開口から一気に噴出する可能性もある。 In addition, when the pressure inside the battery can rises at a slow speed, the speed at which the sealing plate bends also slows down, and even if the explosion-proof safety function is activated and the tip of the cutting blade pierces the sealing plate, it cuts. The blade may gradually bite into the sealing plate, and the cutting blade itself may become like a plug that closes the broken part. Even in such a case, the internal pressure of the battery can cannot be released promptly. Further, the pressure continues to increase until the cutting edge bites deeply into the sealing plate and the sealing plate is torn, and when the sealing plate is torn, the contents may be ejected at once from the torn opening.

そこで本発明は、防爆安全機構の作動後に内圧を確実にかつ速やかに開放することができる筒型電池を提供することを目的としている。 Therefore, an object of the present invention is to provide a tubular battery capable of reliably and promptly releasing the internal pressure after the explosion-proof safety mechanism is activated.

上記目的を達成するための本発明の一態様は、上方に円形に開口する有底筒状の金属製電池缶内に発電要素が収納されているとともに、前記電池缶の開口に樹脂製の封口ガスケットを介して封口体が嵌着されて当該電池缶が密閉されてなる筒型電池であって、
前記封口体は、金属製で、円形の開口の縁に中空円板状のフランジ部が形成されたカップ状の端子板と、金属製薄板からなる円板状の封口板とから構成され、前記端子板が底部を上方にして配置されつつ、前記封口板が前記フランジ部の下面に当接した状態で前記端子板の下方に配置されてなり、
前記端子板は、前記底部に形成された第1の切り刃と排気口を備えるとともに、前記底部の周縁から下方に垂設されつつ前記フランジ部に接続する周側面に等角度間隔で複数箇所に形成された第2の切り刃と通気孔を備え、
前記第1の切り刃は、基端となる一辺を残して切り欠かれてなる舌片が、当該基端にて前記電池缶の内方に向けて下方に折り曲げられてなり、
前記排気口は、前記第1の切り刃を形成した跡として開口されてなり、
前記第2の切り刃は、前記端子板の前記フランジ部と前記周側面との境界の円周に沿う一辺を基端として切り欠かれてなる舌片が、当該基端にて前記電池缶の内方に向けて斜め下方に折り曲げられてなり、
前記通気孔は、前記第2の切り刃を形成した跡として開口されてなり、
前記第2の切り刃の先端は、前記第1の切り刃の先端よりも下方にある、
ことを特徴とする筒型電池としている。
One aspect of the present invention for achieving the above object is that the power generation element is housed in a bottomed tubular metal battery can that opens circularly upward, and a resin seal is opened in the opening of the battery can. A tubular battery in which a sealing body is fitted via a gasket and the battery can is sealed.
The sealing body is made of metal, and is composed of a cup-shaped terminal plate in which a hollow disk-shaped flange portion is formed on the edge of a circular opening, and a disk-shaped sealing plate made of a thin metal plate. While the terminal plate is arranged with the bottom portion facing upward, the sealing plate is arranged below the terminal plate in a state where the sealing plate is in contact with the lower surface of the flange portion.
The terminal plate is provided with a first cutting edge and an exhaust port formed on the bottom portion, and is vertically provided downward from the peripheral edge of the bottom portion at a plurality of locations on the peripheral side surface connected to the flange portion at equal angular intervals. With a formed second cutting edge and vents,
In the first cutting edge, a tongue piece cut out leaving one side serving as a base end is bent downward toward the inside of the battery can at the base end.
The exhaust port is opened as a trace of forming the first cutting edge.
In the second cutting edge, a tongue piece cut out from one side along the circumference of the boundary between the flange portion of the terminal plate and the peripheral side surface thereof is formed at the proximal end of the battery can. It is bent diagonally downward toward the inside,
The vent is opened as a mark of forming the second cutting edge.
The tip of the second cutting edge is below the tip of the first cutting edge.
It is a tubular battery that is characterized by this.

上記筒型電池は、上下方向から見て前記第2の切り刃の先端が前記底部の内周の外方にあることを特徴とする筒型電池であってもよい。 The tubular battery may be a tubular battery characterized in that the tip of the second cutting edge is on the outer side of the inner circumference of the bottom when viewed from the vertical direction.

本発明の筒型電池は、防爆安全機構の作動後に内圧を確実にかつ速やかに開放することができ、高い安全性を備えたものとなる。なお、その他の効果については以下の記載で明らかにする。 The tubular battery of the present invention can release the internal pressure reliably and promptly after the explosion-proof safety mechanism is activated, and has high safety. Other effects will be clarified in the following description.

筒型電池の一例を示す図である。It is a figure which shows an example of a tubular battery. 筒型電池における従来の防爆安全機構の動作を説明する図である。It is a figure explaining the operation of the conventional explosion-proof safety mechanism in a tubular battery. 本発明の実施例に係る筒型電池が備える封口体の構造を示す図である。It is a figure which shows the structure of the sealing body included in the tubular battery which concerns on embodiment of this invention. 実施例に係る筒型電池における防爆安全機構の動作を説明する図である。It is a figure explaining the operation of the explosion-proof safety mechanism in the tubular battery which concerns on Example. 実施例に係る筒型電池における防爆安全機構の性能を示す図である。It is a figure which shows the performance of the explosion-proof safety mechanism in the tubular battery which concerns on Example.

本発明の実施例について、以下に添付図面を参照しつつ説明する。なお、以下の説明に用いた図面において、同一または類似の部分に同一の符号を付して重複する説明を省略することがある。図面によっては説明に際して不要な符号を省略することもある。 Examples of the present invention will be described below with reference to the accompanying drawings. In the drawings used in the following description, the same or similar parts may be designated by the same reference numerals and duplicate description may be omitted. Depending on the drawing, unnecessary reference numerals may be omitted in the description.

===実施例===
<封口体の構造>
本発明の実施例に係る筒型電池の基本構成は、図1に示した従来の筒型電池1と同様である。しかし封口体の構造が従来のものとは異なっている。図3に本実施例に係る筒型電池1aの要部を示した。図3(A)は本実施例の筒型電池1aを上方から見たときの平面図であり、図3(B)は、図3(A)におけるc−c矢視断面図であり、電池缶2の上端側を拡大して示している。
=== Example ===
<Structure of sealing body>
The basic configuration of the tubular battery according to the embodiment of the present invention is the same as that of the conventional tubular battery 1 shown in FIG. However, the structure of the sealing body is different from the conventional one. FIG. 3 shows a main part of the tubular battery 1a according to this embodiment. FIG. 3 (A) is a plan view of the tubular battery 1a of this embodiment as viewed from above, and FIG. 3 (B) is a sectional view taken along line cc in FIG. 3 (A). The upper end side of the can 2 is enlarged and shown.

図3(A)に示したように、本実施例の筒型電池1aにおける端子板8aは、底部82にV字型の切欠83によって形成された三角形状の舌片を下方に折り曲げてなる切り刃85と、その切り刃85を形成することによって開口した排気口86が形成されている。また、上方から見て端子板8aの周側面87からフランジ部81にかけて、複数の通気孔88aが円筒軸100周りに等角度間隔に形成されている。この例では45゜間隔で8箇所に形成されている。さらに各通気孔88aは、周側面87とフランジ部81との境界となる円周に沿う一辺を基端84aとしつつ、上方に凸となるV字状の切欠によって形成された舌片85aが折り曲げられたことで開口している。 As shown in FIG. 3A, the terminal plate 8a in the tubular battery 1a of the present embodiment is a cut formed by bending a triangular tongue piece formed by a V-shaped notch 83 at the bottom 82 downward. An exhaust port 86 opened by forming the blade 85 and the cutting blade 85 is formed. Further, a plurality of ventilation holes 88a are formed around the cylindrical shaft 100 at equal angular intervals from the peripheral side surface 87 of the terminal plate 8a to the flange portion 81 when viewed from above. In this example, it is formed at eight locations at intervals of 45 °. Further, each vent hole 88a has a base end 84a on one side along the circumference which is a boundary between the peripheral side surface 87 and the flange portion 81, and the tongue piece 85a formed by an upwardly convex V-shaped notch is bent. It is open because it was done.

図3(B)に示したように、周側面87とフランジ部81との境界は曲面で、その境界を介して周側面87とフランジ部81とが滑らかに連続している。複数の通気孔88aは、この境界に基端84aを有しつつ周側面87にかけて形成された切欠83aによって形成された三角形状の舌片85aが、その基端84aを折り線として斜め下方に向かって折り曲げられた跡として開口している。また、舌片85aの先端は、底部82に設けられた切り刃(以下、第1の切り刃85とも言う)の先端よりも下方に位置している。そして、この舌片85aが第1の切り刃85とは別の切り刃(以下、第2の切り刃85aとも言う)。 As shown in FIG. 3B, the boundary between the peripheral side surface 87 and the flange portion 81 is a curved surface, and the peripheral side surface 87 and the flange portion 81 are smoothly continuous through the boundary. The plurality of ventilation holes 88a have a triangular tongue piece 85a formed by a notch 83a formed over the peripheral side surface 87 while having a base end 84a at the boundary thereof, and the triangular tongue piece 85a faces diagonally downward with the base end 84a as a folding line. It opens as a trace of being bent. Further, the tip of the tongue piece 85a is located below the tip of the cutting blade (hereinafter, also referred to as the first cutting blade 85) provided on the bottom portion 82. The tongue piece 85a is a cutting blade different from the first cutting blade 85 (hereinafter, also referred to as a second cutting blade 85a).

<防爆安全機構の動作>
図4に本実施例の筒型電池1aによる防爆安全機構の動作状態を示した。図4(A)〜(C)は、内圧上昇に伴う防爆安全機構の作動状態の遷移を示しており、ここでは、封口体10aのみを示した。まず、図4(A)に示したように、内圧が上昇すると、封口板7が上方に撓む。このとき、第2の切り刃85aが基端84aから端子板8aの内方に斜め下方向に向かって屈曲しているため、この第2の切り刃85aの先端が、自ずと、封口板7の上面と端子板8aのフランジ部81の下面との接触領域よりも内方の位置で封口板7の上面に浅い角度で接する。そして、内圧がさらに上昇すると、封口板7は、自身の上面に接している第2の切り刃85aによって上方への撓みが規制され、直径φ1の上記接触領域よりも内方の直径φ2の領域のみが内圧によって変形可能となる。すなわち、封口板7は、従来よりも狭い面積で内圧を受け止めることになり、封口板7が上方に急速、かつ大きく撓む。それによって図3(B)に示したように、第1の切り刃85が封口板7を速やかに破断する。すなわち、実施例の筒型電池では第1の切り刃85が封口板7に当接してからこれを破断するまでの時間を短くすることができ、内容物が破断箇所70を閉塞する前に電池缶内のガスを外方に放出することができる。もちろん、内圧がゆっくりとした速度で徐々に上昇するような場合であっても、第2の切り刃85aが封口板7に当接した時点で急速に内圧が上昇するため、第1の切り刃85が封口板7に素早く食い込む。それによって、第1の切り刃85自体が破断箇所70を塞ぐ栓となることを抑止することができる。たとえ、第1の切り刃85が破断箇所70を閉鎖し、さらに内圧が上昇した場合でも、図3(C)に示したように、複数の第2切り刃85aが封口板7を複数箇所で破断する。そのため、内容物が噴出したり部品が飛散したりするような大きな内圧に達する前に内圧を開放することができる。また、複数の破断箇所70aによって複数系統の通気経路が確保され、内容物などが一箇所に集中することがなく、内容物の噴出や部品の飛散をより確実に抑止することができる。
<Operation of explosion-proof safety mechanism>
FIG. 4 shows the operating state of the explosion-proof safety mechanism using the tubular battery 1a of this embodiment. FIGS. 4 (A) to 4 (C) show the transition of the operating state of the explosion-proof safety mechanism as the internal pressure rises, and here, only the sealing body 10a is shown. First, as shown in FIG. 4A, when the internal pressure rises, the sealing plate 7 bends upward. At this time, since the second cutting edge 85a is bent diagonally downward from the base end 84a toward the inside of the terminal plate 8a, the tip of the second cutting edge 85a is naturally formed by the sealing plate 7. It contacts the upper surface of the sealing plate 7 at a shallow angle at a position inward of the contact area between the upper surface and the lower surface of the flange portion 81 of the terminal plate 8a. Then, when the internal pressure further increases, the sealing plate 7 is restricted from bending upward by the second cutting edge 85a in contact with the upper surface of the sealing plate 7, and the area having a diameter of φ2 inside the contact area having a diameter of φ1 is restricted. Only can be deformed by internal pressure. That is, the sealing plate 7 receives the internal pressure in a smaller area than the conventional one, and the sealing plate 7 flexes upward rapidly and greatly. As a result, as shown in FIG. 3B, the first cutting edge 85 quickly breaks the sealing plate 7. That is, in the tubular battery of the embodiment, the time from when the first cutting edge 85 abuts on the sealing plate 7 until it breaks can be shortened, and the battery before the contents close the broken portion 70. The gas in the can can be released to the outside. Of course, even when the internal pressure gradually rises at a slow speed, the internal pressure rises rapidly when the second cutting edge 85a comes into contact with the sealing plate 7, so that the first cutting edge 85 quickly bites into the sealing plate 7. Thereby, it is possible to prevent the first cutting edge 85 itself from becoming a plug that closes the fractured portion 70. Even if the first cutting edge 85 closes the fractured portion 70 and the internal pressure further increases, as shown in FIG. 3C, the plurality of second cutting edges 85a form the sealing plate 7 at a plurality of locations. Break. Therefore, the internal pressure can be released before reaching a large internal pressure such that the contents are ejected or the parts are scattered. In addition, a plurality of systems of ventilation paths are secured by the plurality of fracture points 70a, the contents and the like are not concentrated in one place, and the ejection of the contents and the scattering of parts can be more reliably suppressed.

このように、本実施例の筒型電池1aでは、封口体10aの構造に特徴を有して、防爆安全機構が動作した際には、電池缶2内の内圧が確実かつ速やかに開放されるようになっている。 As described above, the tubular battery 1a of the present embodiment is characterized by the structure of the sealing body 10a, and when the explosion-proof safety mechanism operates, the internal pressure in the battery can 2 is surely and promptly released. It has become like.

===安全性試験===
次に、図3に示した本実施例に係る筒型電池1aをサンプルとして作製した。また実施例に対する比較例として、図1に示した従来の筒型電池1もサンプルとして作製した。実施例と比較例のサンプルにおける封口体(10a、10)以外の構成や構造は図1に示した筒型電池1と同様であり、ここでは直径17mm、高さ45.0mmのCR17450型に相当するボビン形リチウム電池を作製した。そして、筒型電池(1a、1)が極めて過酷な状況で誤使用されることも想定し、各サンプルに対し、バーナーで加熱する加熱試験、サンプルを完全に放電させたのちにさらに1Aの電流で放電させる強制放電試験、およびUL規格に基づいて15mAの電流で充電する異常充電試験を行った。また、各試験では、実施例と比較例のそれぞれに対応する2種類のサンプルを、それぞれ15個ずつ作製した。そして、各試験において内圧の上昇によって電池缶内の内容物や封口体を構成する部品が飛散した個体の数を調べた。
=== Safety test ===
Next, the tubular battery 1a according to the present embodiment shown in FIG. 3 was prepared as a sample. Further, as a comparative example with respect to the examples, the conventional tubular battery 1 shown in FIG. 1 was also produced as a sample. The configurations and structures of the samples of Examples and Comparative Examples other than the sealing bodies (10a and 10) are the same as those of the tubular battery 1 shown in FIG. 1, and here, they correspond to the CR17450 type having a diameter of 17 mm and a height of 45.0 mm. A bobbin-type lithium battery was manufactured. Assuming that the tubular batteries (1a, 1) are misused in extremely harsh conditions, each sample is heated by a burner, and after the sample is completely discharged, a current of 1 A is further applied. A forced discharge test was conducted to discharge the battery, and an abnormal charge test was performed to charge the battery with a current of 15 mA based on the UL standard. In each test, 15 samples of 2 types corresponding to each of the examples and comparative examples were prepared. Then, in each test, the number of individuals in which the contents in the battery can and the parts constituting the sealing body were scattered due to the increase in the internal pressure was examined.

以下の表1に各試験の結果を示した。 The results of each test are shown in Table 1 below.

Figure 0006890028
表1において、サンプル1は実施例に係る筒型電池1aであり、サンプル2は比較例に係る筒型電池1である。この表1に示したように、実施例となるサンプル1は、各試験の全てにおいて、15個の個体の内、内容物や部品が飛散した個体が一つもなかった。一方、比較例となるサンプル2では、加熱試験、強制放電試験、および異常充電試験のそれぞれについて、15個中1個、2個、および1個の個体において内容物あるいは部品が飛散した。以上により本発明の実施例に係る筒型電池では、極めて高い安全性を有していることが確認できた。
Figure 0006890028
In Table 1, sample 1 is a tubular battery 1a according to an embodiment, and sample 2 is a tubular battery 1 according to a comparative example. As shown in Table 1, in the sample 1 as an example, none of the 15 individuals had scattered contents or parts in all of the tests. On the other hand, in Sample 2, which is a comparative example, the contents or parts were scattered in 1, 2, and 1 of 15 individuals in each of the heating test, the forced discharge test, and the abnormal charge test. From the above, it was confirmed that the tubular battery according to the embodiment of the present invention has extremely high safety.

次に、電池缶2内の圧力が徐々に上昇するような状況を再現するために、電池缶2の開口を図1に示した従来の筒型電池1と同様の封口体10で封止したサンプルと、図3に示した実施例に係る筒型電池1aの封口体10aで封止したサンプルとを作製した。また、各サンプルでは電池缶2に内外を連絡する孔を形成し、電池缶の内圧が0.1MPa/秒の速度で上昇するように、その孔から圧搾空気を電池缶2内に導入し、防爆安全機構を作動させた。すなわち封口板7を第1の切り刃によって破断させた。そして、防爆安全機構の作動後も圧搾空気の導入を継続し、防爆安全機構の作動時点からの経過時間と電池缶2内の圧力との関係を調べた。なお、電池缶2は、ここでも、外径14.5mm、高さ45.0mmのボビン形リチウム一次電池(例えば、CR14250型)用のものを用いた。また、電池缶2自体が膨らまないように、電池缶2内には円筒形の電池缶2の側面を支持する正極合剤3を収納した。 Next, in order to reproduce the situation in which the pressure inside the battery can 2 gradually increases, the opening of the battery can 2 is sealed with the same sealing body 10 as the conventional tubular battery 1 shown in FIG. A sample and a sample sealed with the sealing body 10a of the tubular battery 1a according to the example shown in FIG. 3 were prepared. Further, in each sample, a hole connecting the inside and the outside is formed in the battery can 2, and compressed air is introduced into the battery can 2 from the hole so that the internal pressure of the battery can rises at a rate of 0.1 MPa / sec. The explosion-proof safety mechanism was activated. That is, the sealing plate 7 was broken by the first cutting edge. Then, the introduction of compressed air was continued even after the explosion-proof safety mechanism was activated, and the relationship between the elapsed time from the time when the explosion-proof safety mechanism was activated and the pressure inside the battery can 2 was investigated. As the battery can 2, a battery can 2 for a bobbin-type lithium primary battery (for example, CR14250 type) having an outer diameter of 14.5 mm and a height of 45.0 mm was used. Further, the positive electrode mixture 3 that supports the side surface of the cylindrical battery can 2 is housed in the battery can 2 so that the battery can 2 itself does not swell.

図5に防爆安全機構の作動時点を起点とした経過時間と電池缶2内の圧力との関係を示した。図5では、グラフの縦軸である電池缶2内の圧力を、従来の筒型電池1の封口体10を用いたサンプル(図中「従来例」)において防爆安全機構が作動したときの圧力を100%とした場合の相対値で示している。 FIG. 5 shows the relationship between the elapsed time starting from the time when the explosion-proof safety mechanism is activated and the pressure inside the battery can 2. In FIG. 5, the pressure inside the battery can 2, which is the vertical axis of the graph, is the pressure when the explosion-proof safety mechanism is activated in a sample (“conventional example” in the figure) using the sealing body 10 of the conventional tubular battery 1. Is shown as a relative value when is set to 100%.

図示したように、実施例の筒型電池1aに用いた封口体10aで封止したサンプル(図中「実施例」)では、封口板7において撓むことが可能な領域が従来例よりも狭いため、防爆安全機構が動作する圧力が従来例よりも高くなっている。しかし、防爆安全機構の作動後は時間の経過とともに速やかに電池缶2内の圧力が減少し、12秒程度で大気圧と平衡状態となった。一方、従来例のサンプルでは20秒後も防爆安全機構が作動したときの圧力が維持されて、内圧が効果的に開放されていない。このように、実施例に係る筒型電池1aでは、電池缶2内の圧力が徐々に上昇するような場合であっても、防爆安全機構が作動すれば、確実、かつ速やかにその圧力を開放することができる。 As shown in the figure, in the sample sealed with the sealing body 10a used for the tubular battery 1a of the embodiment (“Example” in the figure), the region in which the sealing plate 7 can be bent is narrower than that of the conventional example. Therefore, the pressure at which the explosion-proof safety mechanism operates is higher than in the conventional example. However, after the explosion-proof safety mechanism was activated, the pressure inside the battery can 2 quickly decreased with the passage of time, and reached an equilibrium state with the atmospheric pressure in about 12 seconds. On the other hand, in the sample of the conventional example, the pressure when the explosion-proof safety mechanism is activated is maintained even after 20 seconds, and the internal pressure is not effectively released. As described above, in the tubular battery 1a according to the embodiment, even when the pressure in the battery can 2 gradually rises, the pressure is surely and promptly released if the explosion-proof safety mechanism is activated. can do.

===製造容易性について===
ところで、図1や図3に示した筒型電池(1、1a)の端子板(8、8a)は、普通、円板状の金属板をプレス加工することで作製される。本実施例の筒型電池1aの端子板8aでは、円板状の金属板に第1および第2の切り刃(85、85a)となる切欠を形成し、その上で端子板8aの中心を所定の径のポンチでプレス加工してフランジ部81のあるカップ状に成形する。そのため、ポンチの径、すなわち図3(B)に示した端子板8aの底部82の内径φ3よりも内側に第2の切り刃85aとなる切欠が形成されていると(φ3>φ2)、第2の切り刃85aの先端が上方に折れ曲がってしまう。そのため、円板状の金属板をカップ状に成形した後に第2の切り刃85aとなる切欠を端子板8aの周側面87に後工程で形成する必要がある。そのため、端子板8aの製造工程が複雑となり、筒型電池1aの製造コストを増大させる可能性がある。そこで、図3に示したように、第2の切り刃85aの先端位置が底部82の内径φ3よりも外方となるように(φ3<φ2)端子板8aを形成すれば、フランジ部81から周側面87にかけて切欠83aを形成するとともに、その切欠83aによって形成された舌片を折り曲げるだけでよく、実施例の筒型電池1aにおける端子板8aを、従来の筒型電池1の端子板8とほぼ同様の手順で安価に作製することができる。
=== Ease of manufacture ===
By the way, the terminal plates (8, 8a) of the tubular batteries (1, 1a) shown in FIGS. 1 and 3 are usually produced by pressing a disk-shaped metal plate. In the terminal plate 8a of the tubular battery 1a of the present embodiment, notches serving as first and second cutting blades (85, 85a) are formed in the disk-shaped metal plate, and the center of the terminal plate 8a is formed on the notches. It is press-processed with a punch having a predetermined diameter to form a cup shape having a flange portion 81. Therefore, when the diameter of the punch, that is, the notch forming the second cutting edge 85a is formed inside the inner diameter φ3 of the bottom 82 of the terminal plate 8a shown in FIG. 3 (B) (φ3> φ2), the second The tip of the cutting edge 85a of No. 2 bends upward. Therefore, it is necessary to form a notch to be the second cutting edge 85a on the peripheral side surface 87 of the terminal plate 8a in a post-process after forming the disk-shaped metal plate into a cup shape. Therefore, the manufacturing process of the terminal plate 8a becomes complicated, and the manufacturing cost of the tubular battery 1a may increase. Therefore, as shown in FIG. 3, if the terminal plate 8a is formed so that the tip position of the second cutting edge 85a is outside the inner diameter φ3 of the bottom portion 82 (φ3 <φ2), the flange portion 81 can be used. It is only necessary to form a notch 83a over the peripheral side surface 87 and bend the tongue piece formed by the notch 83a, and the terminal plate 8a in the tubular battery 1a of the embodiment is used with the terminal plate 8 of the conventional tubular battery 1. It can be produced inexpensively by almost the same procedure.

===その他の実施例===
上記実施例では、第2の切り刃85aが等角度間隔で8箇所に形成されていたが、等角度間隔で複数箇所にあればよく、例えば180゜間隔で2箇所にのみ第2の切り刃85aが形成されていても、内圧の上昇に伴って第2の切り刃85aの先端は、第1の切り刃の先端よりも先に封口板7に当接する。そして、その当接箇所は、フランジ部81と封口板7との接触領域より内方である。したがって、図4に示した動作と同様にして内圧を速やかに開放することができる。もちろん、内圧がさらに上昇しても第2の切り刃85aが封口板7を破断するため、内容物の噴出や部品の飛散も発生しない。
=== Other Examples ===
In the above embodiment, the second cutting blades 85a are formed at eight locations at equal angle intervals, but it is sufficient that the second cutting blades are at a plurality of locations at equal angle intervals, for example, the second cutting blades are formed at only two locations at 180 ° intervals. Even if the 85a is formed, the tip of the second cutting edge 85a comes into contact with the sealing plate 7 before the tip of the first cutting edge as the internal pressure increases. The contact point is inward from the contact area between the flange portion 81 and the sealing plate 7. Therefore, the internal pressure can be quickly released in the same manner as the operation shown in FIG. Of course, even if the internal pressure further increases, the second cutting edge 85a breaks the sealing plate 7, so that the contents do not spurt out or the parts do not scatter.

第2の切り刃85aの数の上限については、数が多いほど、封口板7には円形に近い形状で第2の切り刃85aの先端が当接することになり、封口板7の撓み状態に偏りが生じにくくなる。それによって、防爆安全機構が作動する圧力のバラツキがより均一になる。その一方で、端子板8aの強度が低下し、第2の切り刃85aをより多く設けることによって製造コストも増加する。したがって、第2の切り刃85aの数は、端子板8aの強度や製造コストなどに応じて適宜に設定すればよい。 Regarding the upper limit of the number of the second cutting blades 85a, the larger the number, the more the tip of the second cutting blade 85a comes into contact with the sealing plate 7 in a shape close to a circle, and the sealing plate 7 is in a bent state. Bias is less likely to occur. As a result, the pressure variation at which the explosion-proof safety mechanism operates becomes more uniform. On the other hand, the strength of the terminal plate 8a is lowered, and the manufacturing cost is increased by providing more second cutting blades 85a. Therefore, the number of the second cutting blades 85a may be appropriately set according to the strength of the terminal plate 8a, the manufacturing cost, and the like.

上記実施例に係る筒型電池1aは、ボビン形リチウム一次電池であったが、もちろん実施例に係る筒型電池は、封口体の構成や構造が実施例と同様であれば、スパイラル型のリチウム一次電池、発電原理が異なる他の種類の電池(アルカリ電池など)、二次電池などであってもよい。また、本発明に係る実施例は、例えば、角筒状の電池缶の端面に円形の開口が形成されている電池にも適用することが可能である。 The tubular battery 1a according to the above embodiment was a bobbin type lithium primary battery, but of course, the tubular battery according to the embodiment is a spiral type lithium if the structure and structure of the sealing body are the same as those of the embodiment. It may be a primary battery, another type of battery having a different power generation principle (alkaline battery, etc.), a secondary battery, or the like. Further, the embodiment according to the present invention can be applied to, for example, a battery in which a circular opening is formed in the end face of a square tubular battery can.

1 筒型電池(ボビン形リチウム一次電池)、2 電池缶、3 正極合剤、
4 負極リチウム、5 セパレーター、7 封口板、8,8a 端子板、
9 封口ガスケット、10,10a 封口体、70,70a 破断箇所(穴)、
81 端子板のフランジ部、82 端子板の底部、83,83a 切欠、
84,84a 切欠の基端、85 切り刃(第1の切り刃)、85a 第2の切り刃、
86 排気口、87 端子板の周側面、88 通気孔
1 Cylindrical battery (bobbin type lithium primary battery), 2 Battery can, 3 Positive electrode mixture,
4 Negative electrode lithium, 5 Separator, 7 Seal plate, 8,8a terminal plate,
9 Sealing gasket, 10,10a Sealing body, 70,70a Breaking point (hole),
81 terminal plate flange, 82 terminal plate bottom, 83, 83a notch,
84,84a Notch base end, 85 cutting edge (first cutting edge), 85a second cutting edge,
86 Exhaust port, 87 Terminal plate peripheral side, 88 Vent

Claims (2)

上方に円形に開口する有底筒状の金属製電池缶内に発電要素が収納されているとともに、前記電池缶の開口に樹脂製の封口ガスケットを介して封口体が嵌着されて当該電池缶が密閉されてなる筒型電池であって、
前記封口体は、金属製で、円形の開口の縁に中空円板状のフランジ部が形成されたカップ状の端子板と、金属製薄板からなる円板状の封口板とから構成され、前記端子板が底部を上方にして配置されつつ、前記封口板が前記フランジ部の下面に当接した状態で前記端子板の下方に配置されてなり、
前記端子板は、前記底部に形成された第1の切り刃と排気口を備えるとともに、前記底部の周縁から下方に垂設されつつ前記フランジ部に接続する周側面に等角度間隔で複数箇所に形成された第2の切り刃と通気孔を備え、
前記第1の切り刃は、基端となる一辺を残して切り欠かれてなる舌片が、当該基端にて前記電池缶の内方に向けて下方に折り曲げられてなり、
前記排気口は、前記第1の切り刃を形成した跡として開口されてなり、
前記第2の切り刃は、前記端子板の前記フランジ部と前記周側面との境界の円周に沿う一辺を基端として切り欠かれてなる舌片が、当該基端にて前記電池缶の内方に向けて斜め下方に折り曲げられてなり、
前記通気孔は、前記第2の切り刃を形成した跡として開口されてなり、
前記第2の切り刃の先端は、前記第1の切り刃の先端よりも下方にある、
ことを特徴とする筒型電池。
A power generation element is housed in a bottomed tubular metal battery can that opens in a circular shape upward, and a sealing body is fitted into the opening of the battery can via a resin sealing gasket. Is a sealed tubular battery
The sealing body is made of metal, and is composed of a cup-shaped terminal plate in which a hollow disk-shaped flange portion is formed on the edge of a circular opening, and a disk-shaped sealing plate made of a thin metal plate. While the terminal plate is arranged with the bottom portion facing upward, the sealing plate is arranged below the terminal plate in a state where the sealing plate is in contact with the lower surface of the flange portion.
The terminal plate is provided with a first cutting edge and an exhaust port formed on the bottom portion, and is vertically provided downward from the peripheral edge of the bottom portion at a plurality of locations on the peripheral side surface connected to the flange portion at equal angular intervals. With a formed second cutting edge and vents,
In the first cutting edge, a tongue piece cut out leaving one side serving as a base end is bent downward toward the inside of the battery can at the base end.
The exhaust port is opened as a trace of forming the first cutting edge.
In the second cutting edge, a tongue piece cut out from one side along the circumference of the boundary between the flange portion of the terminal plate and the peripheral side surface thereof is formed at the proximal end of the battery can. It is bent diagonally downward toward the inside,
The vent is opened as a mark of forming the second cutting edge.
The tip of the second cutting edge is below the tip of the first cutting edge.
Cylindrical battery characterized by that.
請求項1に記載の筒型電池において、上下方向から見て前記第2の切り刃の先端が前記底部の内周の外方にあることを特徴とする筒型電池。 The tubular battery according to claim 1, wherein the tip of the second cutting edge is on the outer side of the inner circumference of the bottom when viewed from the vertical direction.
JP2017062124A 2017-03-28 2017-03-28 Cylindrical battery Active JP6890028B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017062124A JP6890028B2 (en) 2017-03-28 2017-03-28 Cylindrical battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017062124A JP6890028B2 (en) 2017-03-28 2017-03-28 Cylindrical battery

Publications (2)

Publication Number Publication Date
JP2018166024A JP2018166024A (en) 2018-10-25
JP6890028B2 true JP6890028B2 (en) 2021-06-18

Family

ID=63922091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017062124A Active JP6890028B2 (en) 2017-03-28 2017-03-28 Cylindrical battery

Country Status (1)

Country Link
JP (1) JP6890028B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7308469B2 (en) * 2019-12-13 2023-07-14 パナソニックIpマネジメント株式会社 sealed battery

Also Published As

Publication number Publication date
JP2018166024A (en) 2018-10-25

Similar Documents

Publication Publication Date Title
EP1623472B1 (en) End cap seal assembly for an electrochemical cell
JP5679181B2 (en) Gasket for cylindrical battery, cylindrical battery
JP4692985B2 (en) Sealed prismatic battery
JP6698279B2 (en) Cylindrical battery
US20080166626A1 (en) End cap seal assembly for an electrochemical cell
JP6890028B2 (en) Cylindrical battery
US3214300A (en) Pressure relief device for sealed electric cells
WO2018116911A1 (en) Sealing gasket for circular cylindrical shaped alkaline battery and circular cylindrical shaped alkaline battery
JP6770851B2 (en) Cylindrical battery
JP6516197B2 (en) Sealed battery and battery case
US20080085450A1 (en) End cap seal assembly for an electrochemical cell
JP6726471B2 (en) Cylindrical battery
JP5358194B2 (en) Cylindrical battery
JP5433248B2 (en) Cylindrical battery
JP7286429B2 (en) Sealing gaskets and batteries
JP5595113B2 (en) Cylindrical lithium battery
JP5851177B2 (en) Positive electrode can for lithium battery, lithium battery and method for producing the same
JP7478027B2 (en) Gasket member for alkaline battery, and alkaline battery
JP5342893B2 (en) Cylindrical battery
US20080102365A1 (en) End cap seal assembly for an electrochemical cell
JPH07122254A (en) Cylindrical alkaline battery
JP2020068058A (en) Power storage device
JP2010161024A (en) Cylindrical battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201020

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210427

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210524

R150 Certificate of patent or registration of utility model

Ref document number: 6890028

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250