JP5358194B2 - Cylindrical battery - Google Patents

Cylindrical battery Download PDF

Info

Publication number
JP5358194B2
JP5358194B2 JP2009003791A JP2009003791A JP5358194B2 JP 5358194 B2 JP5358194 B2 JP 5358194B2 JP 2009003791 A JP2009003791 A JP 2009003791A JP 2009003791 A JP2009003791 A JP 2009003791A JP 5358194 B2 JP5358194 B2 JP 5358194B2
Authority
JP
Japan
Prior art keywords
battery
terminal plate
dish
plate
sealing plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009003791A
Other languages
Japanese (ja)
Other versions
JP2010161023A (en
Inventor
浩 濱田
修一 荒栄
徳久 渡部
正典 中西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Energy Co Ltd
Original Assignee
FDK Energy Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Energy Co Ltd filed Critical FDK Energy Co Ltd
Priority to JP2009003791A priority Critical patent/JP5358194B2/en
Publication of JP2010161023A publication Critical patent/JP2010161023A/en
Application granted granted Critical
Publication of JP5358194B2 publication Critical patent/JP5358194B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Gas Exhaust Devices For Batteries (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To surely prevent breakage and firing of a cylindrical battery even when the internal pressure of the battery rises at an abnormal rate. <P>SOLUTION: The cylindrical battery 1a includes an upwardly-opened bottomed cylindrical metallic battery can 11 housing generation elements (21-23); and a sealing body 30a fitted to the opening of the can through a gasket 34 to seal the can. The sealing body includes a dish-like terminal plate 31a with the bottom surface upward, and a disk-like sealing plate 32 disposed below the terminal plate. The bottom surface 44 of the terminal plate includes a cutting edge 41 formed by bending a tongue piece formed by a V-shaped cutout 40 inside the battery can and an exhaust port 42 by the cutout part. A top end 47 of the cutting edge is located adjacently to the upper surface of the sealing plate so that it pierces the sealing plate when the sealing plate expands upward according to the rise of internal pressure in the battery can. The dish-like terminal plate includes a plurality of slit-like holes 50a formed to extend from the exhaust port to a peripheral part 46 of the bottom surface. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

この発明は、有底筒状の電池缶内に発電要素を収納してなる筒状電池に関し、具体的には、筒状電池の防爆安全機構に関する。   The present invention relates to a cylindrical battery in which a power generation element is accommodated in a bottomed cylindrical battery can, and more specifically to an explosion-proof safety mechanism for the cylindrical battery.

本発明の対象となる筒状電池の典型例として、正極活物質に二酸化マンガンを用い、負極活物質に金属リチウムを用いる二酸化マンガン−リチウム系のリチウム電池(CR型電池)を挙げる。図6に従来のCR型電池の構造を示した。(A)は、当該電池1を上方から見たときの平面図であり、(B)は(A)におけるd−d矢視断面図である。また(C)は(A)におけるD−D矢視断面の拡大図である。図示したCR型電池1bは、ボビン形と言われるもので、上方が開口する有底円筒状の正極缶11、二酸化マンガン等の正極活物質を黒鉛等の導電助剤とともに中空円筒状に成形された正極合剤21、円筒状の負極リチウム22、円筒カップ状のセパレータ23、負極端子を兼ねて正極缶11の開口を密閉封口する封口体30などによって構成されている。   A typical example of a cylindrical battery that is an object of the present invention is a manganese dioxide-lithium lithium battery (CR type battery) using manganese dioxide as a positive electrode active material and metal lithium as a negative electrode active material. FIG. 6 shows the structure of a conventional CR battery. (A) is a top view when the said battery 1 is seen from upper direction, (B) is dd arrow sectional drawing in (A). Moreover, (C) is an enlarged view of the DD arrow cross section in (A). The CR type battery 1b shown in the figure is a bobbin type, and is formed into a hollow cylindrical shape with a bottomed cylindrical positive electrode can 11 having an opening at the top, and a positive electrode active material such as manganese dioxide together with a conductive aid such as graphite. The positive electrode mixture 21, the cylindrical negative electrode lithium 22, the cylindrical cup-shaped separator 23, and the sealing body 30 that also serves as a negative electrode terminal and hermetically seals the opening of the positive electrode can 11.

正極缶11は金属製であって電池ケースと正極集電体を兼ねる。下方底面には外側に凸状となる正極端子部12がプレス加工により形成されている。そして、この正極缶11内に、正極合剤21、セパレータ23、および負極リチウム22が順次装填され、開口部近傍の周囲にビーディング部10が加工形成されて、中空筒状の電極体が形成されている。   The positive electrode can 11 is made of metal and serves as a battery case and a positive electrode current collector. On the lower bottom surface, a positive electrode terminal portion 12 that is convex outward is formed by pressing. Then, the positive electrode mixture 21, the separator 23, and the negative electrode lithium 22 are sequentially loaded in the positive electrode can 11, and the beading portion 10 is processed and formed around the opening to form a hollow cylindrical electrode body. Has been.

負極リチウム22は金属リチウム板を丸めたものであって、その一部に負極リード33の一端部があらかじめ取り付けられている。この負極リード33は帯状の金属薄板で形成され、負極集電体を兼ねる。その他端部は封口体30を構成するステンレスなどの金属製薄板からなる円盤状の封口板32の内側(電池内側)にスポット溶接されている。封口体30は、当該封口板32とステンレスなどの金属からなる負極端子板31とによって構成されている。負極端子板31は、周囲にフランジを有する皿状であり、底面を上方にして皿を伏せた状態で封口板32と積層されて封口体30を構成している。   The negative electrode lithium 22 is a rolled metal lithium plate, and one end of the negative electrode lead 33 is attached to a part of the negative electrode lithium 22 in advance. The negative electrode lead 33 is formed of a strip-shaped metal thin plate and also serves as a negative electrode current collector. The other end is spot welded to the inside (battery inside) of a disc-shaped sealing plate 32 made of a metal thin plate such as stainless steel constituting the sealing body 30. The sealing body 30 includes the sealing plate 32 and a negative electrode terminal plate 31 made of a metal such as stainless steel. The negative electrode terminal plate 31 has a dish shape having a flange around it, and is laminated with the sealing plate 32 in a state where the bottom surface is faced up and the dish is turned down to constitute the sealing body 30.

正極缶11内には非水電解液(図示省略)が充填されており、封口体30は、ガスケット34とともに正極缶11の開口部内側にビーディング部10を座として装着されつつ、正極缶11開口部が内方にかしめ加工(カール加工)されることで正極缶11に嵌着されている。   The positive electrode can 11 is filled with a non-aqueous electrolyte (not shown), and the sealing body 30 is mounted together with the gasket 34 inside the opening of the positive electrode can 11 with the beading portion 10 as a seat, and the positive electrode can 11. The opening is fitted into the positive electrode can 11 by caulking (curling) inward.

ところで、上記構造の電池1において、皿状の負極端子板31の底面44には、略V字状の切欠40が画成され、その切欠40によって形成された舌片がその基端49で正極缶11内方に折り曲げられている。それによって、その舌片が鋭利な先端47を有する切り刃41となる。そして、その先端47が封口板32に近接している。また、負極端子板31の底面44には、この切り刃41を形成したことにより、内外を連絡する鋭角三角形状の孔(排気口)43が開口する。   By the way, in the battery 1 having the above structure, a substantially V-shaped notch 40 is defined on the bottom surface 44 of the dish-shaped negative electrode terminal plate 31, and a tongue piece formed by the notch 40 is positive at the base end 49. The can 11 is bent inward. Thereby, the tongue piece becomes a cutting blade 41 having a sharp tip 47. The tip 47 is close to the sealing plate 32. In addition, by forming the cutting edge 41 on the bottom surface 44 of the negative electrode terminal plate 31, an acute-angled triangular hole (exhaust port) 43 that communicates the inside and the outside is opened.

当該皿状負極端子板31の底面44の周囲46を縁とした壁面(周辺面)45には、負極端子板31の内外を連絡する小孔(通気孔)43が形成されている。この封口板32と切り刃41は、電池1の誤使用による過放電や強制充電などで、当該電池1の内部にガスが発生し内圧が上昇した場合の防爆安全機構として動作する。そして排気口42は、正極缶11内外方を連絡してガスを外方へ放出するための通路(排気通路)となる。通気孔43は、補助的な排気通路としての役割を担っている。   A small hole (a vent hole) 43 that communicates the inside and outside of the negative electrode terminal plate 31 is formed on a wall surface (peripheral surface) 45 with the periphery 46 of the bottom surface 44 of the dish-shaped negative electrode terminal plate 31 as an edge. The sealing plate 32 and the cutting edge 41 operate as an explosion-proof safety mechanism when gas is generated inside the battery 1 due to overdischarge or forced charging due to misuse of the battery 1 and the internal pressure rises. The exhaust port 42 serves as a passage (exhaust passage) for connecting the inside and outside of the positive electrode can 11 to discharge the gas to the outside. The vent hole 43 serves as an auxiliary exhaust passage.

従来のボビン形電池1における防爆安全機構の動作を具体的に説明すると、まず、内圧上昇に伴って封口板32が上方に膨らみ、切り刃41の先端47がこの封口板32に突き刺さり封口板32に穴を開ける。それによって、この穴から排気口43に至る経路(排気経路)が形成されて、電池1内部のガスが外部へ逃げる。ガスの一部は、穴から通気孔43に至る排気経路を通って外部に排気される。このようにして、電池1の破裂を防止できるようになっている。   The operation of the explosion-proof safety mechanism in the conventional bobbin type battery 1 will be specifically described. First, the sealing plate 32 swells upward as the internal pressure rises, and the tip 47 of the cutting blade 41 pierces the sealing plate 32 and the sealing plate 32 Make a hole in. Thereby, a path (exhaust path) from this hole to the exhaust port 43 is formed, and the gas inside the battery 1 escapes to the outside. A part of the gas is exhausted outside through an exhaust path from the hole to the vent hole 43. In this way, the battery 1 can be prevented from bursting.

従来の筒状電池では、電池缶内の内圧が想定外の速度で爆発的に上昇した場合、切り刃が封口板に突き刺さると、封口板が切り裂かれる。そして、その切り裂かれた封口板が排気口に向かって大きく撓むように膨張し、その膨張部分が排気口を塞いでしまう場合がある。図7にこのような爆発的な内圧上昇時における防爆安全機構の動作状態を示した。この図では、封口体30の拡大断面図を示している。まず、正極缶(電池缶)11内でガスが発生し、内圧が上昇すると封口板32が上方へ膨張し切り刃41の先端47に当接し、封口板32に穴35が開く(A)。ガスの発生が爆発的であると、この穴35から封口板32が切り刃41を境にして分断する。そして、排気口42を通じて外方に排気される間もなく、分断された封口板32が正極缶11に嵌着されている円盤周縁部分を支点にして一気に排気口42に向かって撓み、端子板31の底面44の裏側48に張り付く。それによって、最も大きな排気通路が閉塞されてしまう(B)。このような爆発的な内圧上昇時には、正極合剤やセパレータの破片などの固形物も噴出するため、封口板32によって排気口42が完全に塞がれなくても、排気口42に残された僅かな間隙にこの固形物が集中し、排気口42を完全に閉塞してしまう。もちろん、径が小さな通気孔43も閉塞されてしまう。   In the conventional cylindrical battery, when the internal pressure in the battery can explosively rises at an unexpected speed, the sealing plate is torn when the cutting blade pierces the sealing plate. Then, the cut sealing plate may expand so as to be greatly bent toward the exhaust port, and the expanded portion may block the exhaust port. FIG. 7 shows the operating state of the explosion-proof safety mechanism when such an explosive internal pressure rises. In this figure, the expanded sectional view of the sealing body 30 is shown. First, when gas is generated in the positive electrode can (battery can) 11 and the internal pressure rises, the sealing plate 32 expands upward, contacts the tip 47 of the cutting blade 41, and a hole 35 is opened in the sealing plate 32 (A). If the generation of gas is explosive, the sealing plate 32 is divided from the hole 35 with the cutting edge 41 as a boundary. Then, without being exhausted to the outside through the exhaust port 42, the divided sealing plate 32 is bent toward the exhaust port 42 at a stretch using the peripheral portion of the disk fitted to the positive electrode can 11 as a fulcrum, Stick to the back side 48 of the bottom surface 44. As a result, the largest exhaust passage is blocked (B). When such an explosive internal pressure rises, solids such as positive electrode mixture and separator fragments are also ejected. Therefore, even if the exhaust port 42 is not completely blocked by the sealing plate 32, it remains in the exhaust port 42. This solid matter concentrates in a slight gap, and the exhaust port 42 is completely blocked. Of course, the vent hole 43 having a small diameter is also blocked.

このような状態になると、矢印60で示したように、電池内で発生したガスは、切り刃41によって封口板32に穿設された穴35から封口板32の上方に案内されたあと、結局、排気通路が無い端子板31と封口板32との間の空間(網点部分)36部分のみを緩衝領域とするだけで、それ以上の内圧上昇を抑えることができない。その結果、電池が破裂・発火する、という非常に危険な事態となる可能性がある。   In such a state, as indicated by an arrow 60, the gas generated in the battery is eventually guided above the sealing plate 32 from the hole 35 formed in the sealing plate 32 by the cutting blade 41, and eventually. Only the space (halftone dot portion) 36 between the terminal plate 31 and the sealing plate 32 having no exhaust passage is used as a buffer region, and a further increase in internal pressure cannot be suppressed. As a result, there is a possibility of a very dangerous situation where the battery bursts or ignites.

そこで、本発明は、電池内でガスが爆発的に発生し、想定外の異常な速度で電池缶内の圧力が上昇したとしても、その内圧を確実に電池外へ開放し、電池の破裂・発火を防止する高度な安全機構を備えた筒状電池を提供することを目的としている。   Therefore, even if the gas explosively occurs in the battery and the pressure in the battery can rises at an unexpected abnormal speed, the present invention reliably releases the internal pressure to the outside of the battery, It aims at providing the cylindrical battery provided with the advanced safety mechanism which prevents ignition.

上記目的を達成するための本発明は、上方に開口する有底筒状の金属製電池缶内に発電要素が収納されているとともに、前記電池缶の開口にガスケットを介して封口体が嵌着されて当該電池缶が密閉されてなる筒状電池であって、前記封口体は、上方を底面とした金属製皿状の端子板と、この端子板の下方に配設された円盤状の金属製薄板からなる封口板とによって構成され、前記皿状端子板は、底面に略V字状の切欠によって形成された舌片を前記電池缶の内方にほぼ鉛直方向に立設するように折り曲げてなる切り刃を備えるとともに、当該切り刃を形成した跡の略三角形形状の開口を排気口として備え、前記切り刃の先端は、前記封口板の上面に近接し、電池缶内の内圧上昇に伴って前記封口板が上方に膨張した際に、当該封口板を貫通するように構成され、前記皿状端子板の前記底面には、前記排気口から当該底面の周縁部に向かって延長するスリット状の孔が少なくとも一つ以上形成されている筒状電池とした。   In order to achieve the above object, the present invention is characterized in that a power generation element is housed in a bottomed cylindrical metal battery can that opens upward, and a sealing member is fitted to the opening of the battery can via a gasket. A cylindrical battery in which the battery can is sealed, and the sealing body includes a metal dish-shaped terminal plate with the upper surface as a bottom surface, and a disk-shaped metal disposed below the terminal plate. The plate-like terminal plate is bent so that a tongue piece formed by a substantially V-shaped notch on the bottom surface is erected in a substantially vertical direction inside the battery can. And a substantially triangular opening formed on the trace of the cutting blade as an exhaust port, and the tip of the cutting blade is close to the upper surface of the sealing plate to increase the internal pressure in the battery can. When the sealing plate is expanded upward, the sealing plate penetrates. Is configured so that, on the bottom surface of the dish-shaped terminal plate was a cylindrical battery with a slit-shaped opening extending towards the periphery of the bottom surface from the exhaust port is formed at least one.

あるいは、前記皿状端子板の底面の電池内側面に、前記排気口から当該底面の周縁部に向かって延長する直線上の溝が少なくとも一つ以上形成されている筒状電池としてもよい。そして、前記皿状端子板において、当該皿の側壁面を形成する周辺面には、当該端子板の表裏を連絡する通気孔が穿設され、前記溝の延長方向に当該通気孔が配置されている筒状電池とすればより好ましい。また、前記溝は前記周辺面にまで延長し、前記通気孔は、当該溝の先端側の底に開口していることとしてもよい。   Alternatively, it may be a cylindrical battery in which at least one linear groove extending from the exhaust port toward the peripheral edge of the bottom surface is formed on the inner surface of the battery on the bottom surface of the dish-shaped terminal plate. And in the said plate-shaped terminal board, the vent hole which connects the front and back of the said terminal plate is drilled in the peripheral surface which forms the side wall surface of the said dish, and the said vent hole is arrange | positioned in the extension direction of the said groove | channel. It is more preferable to use a cylindrical battery. Further, the groove may extend to the peripheral surface, and the vent hole may be open to the bottom on the tip side of the groove.

本発明の筒状電池によれば、内圧が想定外の異常な速度で上昇したとしても、その内圧を確実に電池外方へ逃がし、電池の破裂や発火を防止することができる極めて高い安全性を確保することができる。また、その極めて高い安全性は、端子板の構造を変更するだけで達成でき、電池を製造する際に、別部品や別工程が不要であり、製造コストの増加を極めて低く抑えることができる。   According to the cylindrical battery of the present invention, even if the internal pressure rises at an unexpected abnormal speed, the internal pressure can be surely released to the outside of the battery, and the battery can be prevented from bursting or firing. Can be secured. In addition, the extremely high safety can be achieved only by changing the structure of the terminal board. When manufacturing the battery, no separate parts or processes are required, and the increase in manufacturing cost can be suppressed to a very low level.

本発明の第1の実施例における筒状電池の構造図である。1 is a structural diagram of a cylindrical battery in a first embodiment of the present invention. 上記第1の実施例における封口体の構造と防爆安全機構の動作原理を示した図である。It is the figure which showed the structure of the sealing body in the said 1st Example, and the operation principle of an explosion-proof safety mechanism. 上記第1の実施例のその他の実施形態における端子板の構造図である。It is a block diagram of the terminal board in other embodiment of the said 1st Example. 本発明の第2の実施例における封口体の構造と防爆安全機構の動作原理を示した図である。It is the figure which showed the structure of the sealing body in the 2nd Example of this invention, and the operation principle of an explosion-proof safety mechanism. 本発明の第3の実施例における封口体の構造と防爆安全機構の動作原理を示した図である。It is the figure which showed the structure of the sealing body in the 3rd Example of this invention, and the operation principle of an explosion-proof safety mechanism. 従来の筒状電池の構造図である。It is a structural diagram of a conventional cylindrical battery. 従来の筒状電池における防爆安全機構が不完全に動作した状態を示す図である。It is a figure which shows the state which the explosion-proof safety mechanism in the conventional cylindrical battery operate | moved incompletely.

本発明の実施例における筒状電池の基本構造は、図6に示した従来のボビン形電池1とほぼ同様であり、上方に開口する円筒状の金属製正極缶11内に発電要素(21〜23)を収納し、当該開口に封口体30を嵌着して正極缶11を密閉してなっている。しかし、本実施例の電池では、従来の電池において課題となっていた爆発的な内圧上昇に対しても確実に正極缶11内の発生ガスを排気できる極めて信頼性の高い防爆安全機構を備えている。   The basic structure of the cylindrical battery in the embodiment of the present invention is substantially the same as that of the conventional bobbin battery 1 shown in FIG. 6, and a power generation element (21-21) is placed in a cylindrical metal positive electrode can 11 opened upward. 23) is accommodated, and the positive electrode can 11 is sealed by fitting the sealing body 30 into the opening. However, the battery of the present embodiment is provided with an extremely reliable explosion-proof safety mechanism that can surely exhaust the generated gas in the positive electrode can 11 against an explosive increase in internal pressure, which has been a problem in conventional batteries. Yes.

===第1の実施例===
図1に本発明の第1の実施例における筒状電池の構造を示した。(A)は上方からの平面図であり、(B)は側断面図であり(A)におけるA−A矢視断面を示している。当該実施例に係る電池1aは、従来の電池1と同様の基本構成を有しているが、皿状負極端子板31aの底面44にスリット状の孔50aが画成されている点が従来の電池1とは異なっている。この例では、排気口42から負極端子板31aの底面44の周縁46に向かって放射状に延長する3本のスリット状孔50aが形成されている。
=== First Embodiment ===
FIG. 1 shows the structure of the cylindrical battery in the first embodiment of the present invention. (A) is a top view from above, (B) is a side sectional view, and shows a cross section taken along the line AA in (A). The battery 1a according to this embodiment has the same basic configuration as that of the conventional battery 1, except that a slit-like hole 50a is defined in the bottom surface 44 of the dish-shaped negative electrode terminal plate 31a. It is different from the battery 1. In this example, three slit-shaped holes 50a extending radially from the exhaust port 42 toward the peripheral edge 46 of the bottom surface 44 of the negative electrode terminal plate 31a are formed.

図2に第1の実施例における防爆安全機構の動作を示した。(A)は封口体30aを上方から見た平面図であり、(B)は(A)におけるa−a矢視断面図である。電池1aの内部でガスが爆発的に発生した場合、ほぼ一瞬で、封口板32が上方へ膨張して切り刃41の先端47がこれに穴35を開ける。しかし、従来の電池1とは異なり、複数のスリット状孔50aが排気通路として十分に開口しており、内圧の上昇速度に見合う速度でガスを排気することができる。例え、封口板32の一部が負極端子板31aの底面44の裏側48に張り付いたとしても、端子板31aの底面44には、底面44のほぼ中心にある排気口43から周縁46に延長するスリット状穴50aが複数形成されているため、排気口43とスリット状孔50aの何れかの排気通路が生き残る。スリット状孔の一部が封口板31で覆われたとしても、スリット状穴50aの一部、とくに端子板31aの底面44の周縁46近傍部分が排気通路として生き残る。それによって、ガスを速やかに排気するための排気経路60aが確保され、電池1aの破裂・発火を防止することができる。   FIG. 2 shows the operation of the explosion-proof safety mechanism in the first embodiment. (A) is the top view which looked at the sealing body 30a from upper direction, (B) is the aa arrow directional cross-sectional view in (A). When gas is explosively generated inside the battery 1a, the sealing plate 32 expands upward almost instantly, and the tip 47 of the cutting blade 41 opens the hole 35 therein. However, unlike the conventional battery 1, the plurality of slit-shaped holes 50a are sufficiently opened as exhaust passages, and the gas can be exhausted at a speed commensurate with the increasing speed of the internal pressure. For example, even if a part of the sealing plate 32 sticks to the back side 48 of the bottom surface 44 of the negative electrode terminal plate 31a, the bottom surface 44 of the terminal plate 31a extends from the exhaust port 43 at the substantially center of the bottom surface 44 to the peripheral edge 46. Since a plurality of slit-shaped holes 50a are formed, any one of the exhaust passages 43 and the slit-shaped holes 50a survives. Even if a part of the slit-shaped hole is covered with the sealing plate 31, a part of the slit-shaped hole 50a, particularly, the vicinity of the peripheral edge 46 of the bottom surface 44 of the terminal plate 31a survives as an exhaust passage. Thereby, an exhaust path 60a for quickly exhausting the gas is secured, and the battery 1a can be prevented from being ruptured or ignited.

ここで、従来の筒状電池1と第1の実施例における筒状電池1aについて、防爆安全機構の性能を比較した。当該比較に際しては、図1に示した第1の実施例における筒状電池(発明品)1aと、図6に示した従来の筒状電池(従来品)1とをサンプルとして作製した。サイズは、CR8型とし、発明品1aと従来品1とは、負極端子板(31a,31)におけるスリット状孔50aの有無を除けば全て同じ構造とした。なお、皿状の負極端子板(31a,31)は、厚さ0.4mmのステンレス製で、その皿の周辺面45の互いに対向する二箇所には、直径約0.5mmの通気孔43が穿設されている。また、発明品におけるスリット状孔50aは、幅が1mmで負極端子板31aの底面44の周縁46にまで延長している。   Here, the performance of the explosion-proof safety mechanism was compared between the conventional cylindrical battery 1 and the cylindrical battery 1a in the first embodiment. In the comparison, the cylindrical battery (invention product) 1a in the first embodiment shown in FIG. 1 and the conventional cylindrical battery (conventional product) 1 shown in FIG. 6 were prepared as samples. The size was a CR8 type, and the inventive product 1a and the conventional product 1 all had the same structure except for the presence or absence of slit-like holes 50a in the negative electrode terminal plates (31a, 31). The plate-shaped negative electrode terminal plates (31a, 31) are made of stainless steel having a thickness of 0.4 mm, and air holes 43 having a diameter of about 0.5 mm are formed at two opposite positions on the peripheral surface 45 of the plate. It has been drilled. Moreover, the slit-shaped hole 50a in the invention has a width of 1 mm and extends to the peripheral edge 46 of the bottom surface 44 of the negative electrode terminal plate 31a.

そして、上記発明品1aと従来品1について、強制過放電試験を行った。試験は、まず、各サンプルを1mAの定電流で公称容量2,600mAhrを放電し完全放電品とする。次に、12V電源で20mA、30mA、40mAのそれぞれの電流を流して強制過放電させ、公称容量を各電流値で除算した時間、2600/20=130h、2600/30≒87h、2600/40=65h経過後を放電完了時点とする。その放電完了時点から7日間、各サンプルを常温で放置することで行った。試験結果は、この放置期間中の破裂・発火の有無によって判定した。また、当該試験に際しては、強制過放電条件時の三つの電流値毎に、発明品1a、従来品1ともに5本ずつサンプルを用意した。   And the forced overdischarge test was done about the said invention product 1a and the conventional product 1. FIG. In the test, first, each sample was discharged at a constant current of 1 mA to a nominal capacity of 2,600 mAhr to obtain a fully discharged product. Next, a time when a current of 20 mA, 30 mA, and 40 mA is supplied by a 12 V power source to cause forced overdischarge and the nominal capacity is divided by each current value is 2600/20 = 130 h, 2600 / 30≈87 h, 2600/40 = The time after 65 hours is the discharge completion time. Each sample was allowed to stand at room temperature for 7 days from the completion of the discharge. The test result was determined by the presence or absence of rupture / ignition during this standing period. In the test, five samples were prepared for both the inventive product 1a and the conventional product 1 for each of the three current values under the forced overdischarge condition.

表1に当該試験結果を示した。

Figure 0005358194
Table 1 shows the test results.
Figure 0005358194

完全放電後に20mA、および30mAで強制放電させたサンプルでは、発明品1aと従来品1は、ともに5本全てのサンプルで破裂・発火することがなかった。しかし、極めて過激な条件である40mAで強制過放電させたサンプルでは、従来品1の5本のサンプルの内、4本が破裂・発火した。一方、発明品1aでは、全てのサンプルで破裂劣化しなかった。したがって、本発明の第1の実施例における筒状電池1aは、極めて高い安全性を有することが確認できた。   In the samples forcibly discharged at 20 mA and 30 mA after complete discharge, the invention product 1a and the conventional product 1 were not ruptured or ignited in all five samples. However, in the sample subjected to forced overdischarge at 40 mA, which is an extremely extreme condition, four of the five samples of the conventional product 1 burst and ignited. On the other hand, in the invention product 1a, no bursting deterioration occurred in all samples. Therefore, it was confirmed that the cylindrical battery 1a in the first example of the present invention has extremely high safety.

===スリットの数や開口率について===
上記従来例や第1の実施例として示した筒状電池(1,1a)は、一般的な乾電池とは異なり、負極端子板(31,31a)の底面44にリード端子がスポット溶接などによって取り付けられた状態で使用される場合が多い。そのため、第1の実施例における筒状電池1aでは、切り刃41を形成した跡である排気口42に加え、スリット状孔50aを負極端子板31aに形成しており、このスリット状孔50aの数を多くしたり、スリット状孔50aの開口面積を広くしたりすると、リード端子を取り付ける場所が無くなってしまう。また、スリット状孔50aの数が多すぎたり、開口面積が大き過ぎたりすると、負極端子板31aの強度が低下する。そのため、スリット状孔50aを形成する場合には、リード端子の取付け場所や強度などを考慮してその数や開口率を設定する必要がある。
=== About the number of slits and the aperture ratio ===
Unlike the general dry battery, the cylindrical battery (1, 1a) shown as the conventional example or the first embodiment has a lead terminal attached to the bottom surface 44 of the negative electrode terminal plate (31, 31a) by spot welding or the like. In many cases, it is used in the Therefore, in the cylindrical battery 1a in the first embodiment, in addition to the exhaust port 42 which is a trace of the cutting blade 41, the slit-shaped hole 50a is formed in the negative terminal plate 31a. If the number is increased or the opening area of the slit-shaped hole 50a is increased, there is no place to attach the lead terminal. Further, if the number of slit-like holes 50a is too large or the opening area is too large, the strength of the negative electrode terminal plate 31a is lowered. Therefore, when forming the slit-shaped holes 50a, it is necessary to set the number and aperture ratio in consideration of the mounting location and strength of the lead terminals.

実験では、図3に示した端子板31a−2のように5本のスリット状孔50aを形成し、負極端子板31a−2の底面44の面積の約30%を開口させた場合でもリード端子を取り付けることが可能であり、強度も実用上問題がなかった。なお、内圧上昇に切り刃41が封口板32に穴を開ける際、切り刃41の基端49には大きな力が掛かる。そのため、切り刃41の基端49は、ある程度の幅が必要である。図1〜図3に示した例では、複数本のスリット状孔50aの内の1本のスリット状孔51が排気口42に連絡しておらず、細長い矩形状に切り抜かれている。それによって、基端49の幅を確保している。なお、スリット状穴50aは、複数本ある方がより好ましいが、1本でもよく、その1本が排気口に連絡してさえいれば、排気経路60aを確保することができる。   In the experiment, even when five slit-like holes 50a are formed like the terminal plate 31a-2 shown in FIG. 3 and about 30% of the area of the bottom surface 44 of the negative electrode terminal plate 31a-2 is opened, the lead terminal It was possible to attach the material, and the strength was not a problem in practice. When the cutting blade 41 makes a hole in the sealing plate 32 due to the increase in internal pressure, a large force is applied to the base end 49 of the cutting blade 41. Therefore, the base end 49 of the cutting blade 41 needs a certain width. In the example shown in FIGS. 1 to 3, one slit-shaped hole 51 among the plurality of slit-shaped holes 50 a is not connected to the exhaust port 42, and is cut out in a long and narrow rectangular shape. Thereby, the width of the base end 49 is secured. In addition, although it is more preferable that there are a plurality of slit-like holes 50a, one may be sufficient, and the exhaust path 60a can be secured as long as one of the slit-shaped holes 50a communicates with the exhaust port.

===第2の実施例===
図4に、本発明の第2の実施例に係る筒状電池における封口体30bの構造を防爆安全機構の動作原理とともに示した。(A)は当該封口体30を上方から見たときの平面図であり、(B)は(A)におけるb−b矢視断面図である。第2の実施例では、第1の実施例におけるスリット状孔50aに代え、排気口42に連絡する溝50bを負極端子板31bの底面44の裏側48に形成している。図示した例では、溝50bの平面形状は、第1の実施例における負極端子板31aにおけるスリット状孔50aと同じで、約1mmの幅で排気口42から負極端子板31bの底面44の周縁46に向かって放射状に3本形成されている。そして、0.4mmの端子板31bの厚さに対し、溝50bの深さは0.15mmとなっている。
=== Second Embodiment ===
FIG. 4 shows the structure of the sealing body 30b in the cylindrical battery according to the second embodiment of the present invention together with the operation principle of the explosion-proof safety mechanism. (A) is a top view when the said sealing body 30 is seen from upper direction, (B) is a bb arrow directional cross-sectional view in (A). In the second embodiment, instead of the slit-like hole 50a in the first embodiment, a groove 50b communicating with the exhaust port 42 is formed on the back side 48 of the bottom surface 44 of the negative electrode terminal plate 31b. In the illustrated example, the planar shape of the groove 50b is the same as the slit-shaped hole 50a in the negative electrode terminal plate 31a in the first embodiment, and the peripheral edge 46 of the bottom surface 44 of the negative electrode terminal plate 31b from the exhaust port 42 with a width of about 1 mm. Three of them are formed radially toward the surface. And with respect to the thickness of the terminal board 31b of 0.4 mm, the depth of the groove 50b is 0.15 mm.

第2の実施例では、ガス発生時の排気通路は、従来と電池1と同じ排気口42と通気孔43である。そのため、爆発的にガスが発生した場合には、従来の電池1と同様に、封口板32が排気口42を覆う。しかし、第2の実施例では、排気口42に連絡する溝50bが形成されているため、切り刃41によって封口板32に開いた穴35から端子板31bの底面44方向に噴出したガスがその底面44の裏側48に形成されている溝50bを伝って排気口42に案内される。すなわち、封口板32が排気口42の開口面を全て覆っても、ガスの排気経路60bが確保される。それによって、破裂・発火の可能性を極めて低くすることができる。実際、第1の実施例における負極端子板31aをこの第2の実施例における端子板31bに変更したCR8型電池をサンプルとして上記強制過放電試験を実際に行ったところ、全ての電流値での強制過放電試験において、破裂・発火するサンプルが無かった。   In the second embodiment, the exhaust passage at the time of gas generation is the same exhaust port 42 and vent hole 43 as the conventional battery 1. Therefore, when gas is explosively generated, the sealing plate 32 covers the exhaust port 42 as in the conventional battery 1. However, in the second embodiment, since the groove 50b communicating with the exhaust port 42 is formed, the gas ejected from the hole 35 opened in the sealing plate 32 by the cutting blade 41 toward the bottom surface 44 of the terminal plate 31b It is guided to the exhaust port 42 through a groove 50 b formed on the back side 48 of the bottom surface 44. That is, even if the sealing plate 32 covers the entire opening surface of the exhaust port 42, the gas exhaust path 60b is secured. Thereby, the possibility of rupture and ignition can be made extremely low. Actually, when the above-mentioned forced overdischarge test was actually conducted using a CR8 type battery in which the negative electrode terminal plate 31a in the first embodiment was changed to the terminal plate 31b in the second embodiment as a sample, In the forced overdischarge test, there were no samples that burst or ignited.

===第3の実施例===
上記第2の実施例では、通気孔43は、従来の電池1と同様に補助的な排気通路として形成されていた。本発明における第3の実施例は、この通気孔43を積極的に活用して排気を促す実施形態である。図5に当該第3の実施例における筒状電池の封口体30cの構造を防爆安全機構の動作原理とともに示した。(A)は封口体30の平面図であり、(B)は側断面図で、(A)におけるc−c矢視断面を示している。(C)は、第3の実施例の変形例であり、封口体32の側断面図を示している。
=== Third embodiment ===
In the second embodiment, the vent hole 43 is formed as an auxiliary exhaust passage as in the conventional battery 1. The third embodiment of the present invention is an embodiment in which exhaust is promoted by actively utilizing the vent holes 43. FIG. 5 shows the structure of the sealing body 30c of the cylindrical battery in the third embodiment together with the operating principle of the explosion-proof safety mechanism. (A) is a top view of the sealing body 30, (B) is side sectional drawing, and has shown the cc arrow cross section in (A). (C) is a modification of the third embodiment, and shows a side sectional view of the sealing body 32.

当該第3の実施例では、第2の実施例と同様に負極端子板31cの底面44裏側48に放射状の溝50bが形成されている。しかし、第3の実施例では、溝50bの延長方向に通気孔43が配置されている点が異なっている。このような構成にすることで、図中に示した排気経路60cのように、封口板32と端子板31cとの間の空間36に充満したガスが溝50cに案内されつつ通気孔43にも案内されてより素早く電池缶内のガスを排出することができるようになっている。もちろん、(C)に示した変形例のように、溝50cが、皿状端子板31cの底面44の中心から底面周縁45を経由して周辺面46にまで延長し、その延長方向の先端に通気孔43が配置されて、溝50cの先端側の底に通気孔43が開口していてもよい。   In the third embodiment, a radial groove 50b is formed on the back side 48 of the bottom surface 44 of the negative electrode terminal plate 31c, as in the second embodiment. However, the third embodiment is different in that the vent hole 43 is arranged in the extending direction of the groove 50b. By adopting such a configuration, the gas filled in the space 36 between the sealing plate 32 and the terminal plate 31c is guided to the groove 50c as well as the vent hole 43 as in the exhaust path 60c shown in the drawing. When guided, the gas in the battery can can be discharged more quickly. Of course, as in the modification shown in (C), the groove 50c extends from the center of the bottom surface 44 of the plate-like terminal board 31c to the peripheral surface 46 via the bottom surface peripheral edge 45, and at the tip in the extending direction. The vent hole 43 may be disposed, and the vent hole 43 may be opened at the bottom on the tip side of the groove 50c.

1、1a 筒状電池
11 正極缶(電池缶)
21 正極合剤
22 負極リチウム
23 セパレータ
30、30a〜30c 封口体
31、31a、31a−2、31b、31c 端子板
32 封口板
34 ガスケット
35 穴
40 切欠
41 切り刃
42 排気口
43 通気孔
44 端子板の底面
45 端子板の周辺面
50a スリット状孔
50b、50c 溝
60a〜60c 排気経路
1, 1a Cylindrical battery 11 Positive electrode can (battery can)
21 Positive electrode mixture 22 Negative electrode lithium 23 Separator 30, 30a-30c Sealing body 31, 31a, 31a-2, 31b, 31c Terminal plate 32 Sealing plate 34 Gasket 35 Hole 40 Notch 41 Cutting blade 42 Exhaust port 43 Vent hole 44 Terminal plate Bottom surface 45 peripheral surface of terminal board 50a slit-like hole 50b, 50c groove 60a-60c exhaust path

Claims (4)

上方に開口する有底筒状の金属製電池缶内に発電要素が収納されているとともに、前記電池缶の開口にガスケットを介して封口体が嵌着されて当該電池缶が密閉されてなる筒状電池であって、
前記封口体は、上方を底面とした金属製皿状の端子板と、この端子板の下方に配設された円盤状の金属製薄板からなる封口板とによって構成され、
前記皿状端子板は、底面に略V字状の切欠によって形成された舌片を前記電池缶の内方にほぼ鉛直方向に立設するように折り曲げてなる切り刃を備えるとともに、当該切り刃を形成した跡の略三角形形状の開口を排気口として備え、
前記切り刃の先端は、前記封口板の上面に近接し、電池缶内の内圧上昇に伴って前記封口板が上方に膨張した際に、当該封口板を貫通するように構成され、
前記皿状端子板の前記底面には、前記排気口から当該底面の周縁部に向かって延長するスリット状の孔が少なくとも一つ以上形成されている
ことを特徴とする筒状電池。
A cylinder in which a power generation element is housed in a bottomed cylindrical metal battery can that opens upward, and a sealing body is fitted into the opening of the battery can via a gasket so that the battery can is sealed. Battery
The sealing body is composed of a metal dish-shaped terminal plate with the upper surface as a bottom surface, and a sealing plate made of a disk-shaped metal thin plate disposed below the terminal plate,
The dish-shaped terminal plate includes a cutting blade formed by bending a tongue piece formed by a substantially V-shaped notch on a bottom surface so as to be erected in a substantially vertical direction inside the battery can. With a substantially triangular opening of the trace that formed
The tip of the cutting blade is close to the upper surface of the sealing plate, and is configured to penetrate the sealing plate when the sealing plate expands upward as the internal pressure increases in the battery can,
At least one or more slit-like holes extending from the exhaust port toward the peripheral edge of the bottom surface are formed on the bottom surface of the dish-shaped terminal plate.
上方に開口する有底筒状の金属製電池缶内に発電要素を収納するとともに、前記電池缶の開口をガスケットを介して封口体を嵌着することで当該電池缶を密閉してなる筒状電池であって、
前記封口体は、上方を底面とした金属製皿状の端子板と、この端子板の下方に配設された円盤状の金属製薄板からなる封口板とによって構成され、
前記皿状端子板は、底面に略V字状の切欠によって形成された舌片を前記電池缶の内方にほぼ鉛直方向に立設するように折り曲げてなる切り刃を備えるとともに、当該切り刃を形成した跡の略三角形形状の開口を排気口として備え、
前記切り刃の先端は、前記封口板の上面に近接し、電池缶内の内圧上昇に伴って前記封口板が上方に膨張した際に、当該封口板を貫通するように構成され、
前記皿状端子板の底面の電池内側面には、前記排気口から当該底面の周縁部に向かって延長する直線上の溝が少なくとも一つ以上形成されている
ことを特徴とする筒状電池。
A cylindrical shape in which a power generation element is housed in a bottomed cylindrical metal battery can that opens upward, and the battery can is sealed by fitting a sealing body through a gasket to the opening of the battery can. A battery,
The sealing body is composed of a metal dish-shaped terminal plate with the upper surface as a bottom surface, and a sealing plate made of a disk-shaped metal thin plate disposed below the terminal plate,
The dish-shaped terminal plate includes a cutting blade formed by bending a tongue piece formed by a substantially V-shaped notch on a bottom surface so as to be erected in a substantially vertical direction inside the battery can. With a substantially triangular opening of the trace that formed
The tip of the cutting blade is close to the upper surface of the sealing plate, and is configured to penetrate the sealing plate when the sealing plate expands upward as the internal pressure increases in the battery can,
At least one or more linear grooves extending from the exhaust port toward the peripheral edge of the bottom surface are formed on the inner surface of the battery on the bottom surface of the dish-shaped terminal plate.
前記皿状端子板において、当該皿の側壁面を形成する周辺面には、当該端子板の表裏を連絡する通気孔が穿設され、前記溝の延長方向に当該通気孔が配置されていることを特徴とする請求項2に記載の筒状電池。   In the dish-shaped terminal plate, a vent hole communicating the front and back of the terminal plate is formed on the peripheral surface forming the side wall surface of the dish, and the vent hole is disposed in the extending direction of the groove. The cylindrical battery according to claim 2. 前記溝は前記周辺面にまで延長し、前記通気孔は、当該溝の先端側の底に開口していることを特徴とする請求項3に記載の筒状電池。   4. The cylindrical battery according to claim 3, wherein the groove extends to the peripheral surface, and the air hole is opened at a bottom of the groove on the tip side.
JP2009003791A 2009-01-09 2009-01-09 Cylindrical battery Expired - Fee Related JP5358194B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009003791A JP5358194B2 (en) 2009-01-09 2009-01-09 Cylindrical battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009003791A JP5358194B2 (en) 2009-01-09 2009-01-09 Cylindrical battery

Publications (2)

Publication Number Publication Date
JP2010161023A JP2010161023A (en) 2010-07-22
JP5358194B2 true JP5358194B2 (en) 2013-12-04

Family

ID=42578044

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009003791A Expired - Fee Related JP5358194B2 (en) 2009-01-09 2009-01-09 Cylindrical battery

Country Status (1)

Country Link
JP (1) JP5358194B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111566846B (en) * 2017-12-13 2022-10-21 三星Sdi株式会社 Secondary battery
CN110676532B (en) * 2019-08-19 2021-05-28 安徽巡鹰新能源科技有限公司 New energy lithium battery flatulence repairing method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0355248Y2 (en) * 1984-11-14 1991-12-09
JPS63167669U (en) * 1987-04-21 1988-11-01
JP3222963B2 (en) * 1992-12-25 2001-10-29 三洋電機株式会社 Explosion-proof sealed battery
JP4915390B2 (en) * 2008-05-02 2012-04-11 ソニー株式会社 Non-aqueous electrolyte battery

Also Published As

Publication number Publication date
JP2010161023A (en) 2010-07-22

Similar Documents

Publication Publication Date Title
US8642195B2 (en) Modular CID assembly for a lithium ion battery
JP4692985B2 (en) Sealed prismatic battery
JPH1064499A (en) Lithium ion electrochemical battery with safety valve and electric circuit breaker
CN103262296A (en) Button cell having bursting protection
JPH06196150A (en) Battery and manufacture of battery
KR101678727B1 (en) Cap assembly and cylinderical type battery comprising the same
JP2021533526A (en) Batteries with vents
JP2000077058A (en) Electric circuit breaking mechanism of battery
JP5358194B2 (en) Cylindrical battery
WO2010088332A1 (en) Modular cid assembly for a lithium ion battery
US3214300A (en) Pressure relief device for sealed electric cells
CN111564590B (en) Battery with explosion-proof structure
JP5054866B2 (en) Low profile breathable seal for electrochemical cells
KR20210053105A (en) Secondary battery
JP2005259413A (en) Battery
JP2005235531A (en) Sealed battery
JP5433248B2 (en) Cylindrical battery
JP6890028B2 (en) Cylindrical battery
EP2070136A1 (en) End cap seal assembly for an electrochemical cell
JP2002367582A (en) Sealed battery
JP7478027B2 (en) Gasket member for alkaline battery, and alkaline battery
JPH066454Y2 (en) Explosion-proof battery
JP2017142976A (en) Cylindrical battery
KR100858809B1 (en) Battery
JP2010161024A (en) Cylindrical battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130806

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130902

R150 Certificate of patent or registration of utility model

Ref document number: 5358194

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees