JP2018166024A - Cylindrical battery - Google Patents

Cylindrical battery Download PDF

Info

Publication number
JP2018166024A
JP2018166024A JP2017062124A JP2017062124A JP2018166024A JP 2018166024 A JP2018166024 A JP 2018166024A JP 2017062124 A JP2017062124 A JP 2017062124A JP 2017062124 A JP2017062124 A JP 2017062124A JP 2018166024 A JP2018166024 A JP 2018166024A
Authority
JP
Japan
Prior art keywords
cutting blade
battery
terminal plate
cylindrical battery
sealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017062124A
Other languages
Japanese (ja)
Other versions
JP6890028B2 (en
Inventor
皓己 大塚
Hiroki Otsuka
皓己 大塚
春彦 佐竹
Haruhiko Satake
春彦 佐竹
浩 濱田
Hiroshi Hamada
浩 濱田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP2017062124A priority Critical patent/JP6890028B2/en
Publication of JP2018166024A publication Critical patent/JP2018166024A/en
Application granted granted Critical
Publication of JP6890028B2 publication Critical patent/JP6890028B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)
  • Gas Exhaust Devices For Batteries (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a cylindrical battery capable of surely and promptly releasing an inner pressure after actuating an explosion-proof safety mechanism.SOLUTION: The present invention relates to a cylindrical battery 1a configured by mounting, to an upper opening of a bottomed cylindrical battery can 2 in which power generation elements (3, 4 and 5) are accommodated, a sealing body 10a consisting of a cup-shaped terminal plate 8a with which a flange part 81 is formed, and a disk-shaped sealing plate 7 through a sealing gasket 9. The sealing plate is abutted to a bottom face of the flange part of the terminal plate which is disposed while positioning a bottom part 82 at an upper side. The terminal plate includes a first cutting blade 85 configured by bending a tongue piece that is formed from a notch 83 on a bottom downwards, and an exhaust port 86. The terminal plate also includes a second cutting blade 85a configured by bending multiple notches 83a that are disposed at equal angle intervals on a peripheral side face 87, inwards and obliquely downwards and a ventilation hole 88a. A front end of the second cutting blade is positioned lower than a front end of the first cutting blade.SELECTED DRAWING: Figure 3

Description

本発明は、有底筒状の電池缶内に発電要素を収納してなる筒型電池に関し、具体的には、筒型電池の防爆安全機構に関する。   The present invention relates to a cylindrical battery in which a power generation element is housed in a bottomed cylindrical battery can, and more specifically to an explosion-proof safety mechanism for the cylindrical battery.

本発明の対象となる筒型電池の一例として、有底円筒状の電池缶を備えたボビン形リチウム一次電池を挙げる。図1にそのボビン形リチウム一次電池(以下、筒型電池1とも言う)の構造を示した。なお以下では、有底円筒状の電池缶2の円筒軸100の方向を上下方向とし、電池缶2の底部を下方として上下の各方向を規定すると、図1(A)は、筒型電池1を円筒軸100を含む断面で切断したときの縦断面図であり、図1(B)は、当該筒型電池1を上方から見たときの平面図である。図1(C)は図1(A)におけるb−b矢視断面図であり、ここでは、筒型電池1の上端側を拡大して示した。なお図1(A)は図1(B)におけるa−a矢視断面に対応する。   As an example of a cylindrical battery that is a subject of the present invention, a bobbin-type lithium primary battery having a bottomed cylindrical battery can is given. FIG. 1 shows the structure of the bobbin-type lithium primary battery (hereinafter also referred to as a cylindrical battery 1). In the following description, when the direction of the cylindrical axis 100 of the bottomed cylindrical battery can 2 is defined as the vertical direction and the bottom direction of the battery can 2 is defined as the downward direction, FIG. FIG. 1B is a plan view when the cylindrical battery 1 is viewed from above. FIG. 1C is a cross-sectional view taken along the line bb in FIG. 1A. Here, the upper end side of the cylindrical battery 1 is shown enlarged. Note that FIG. 1A corresponds to a cross section taken along the line aa in FIG.

図1(A)に示したように、例示した筒型電池1は、上方が開口する有底円筒状の電池缶2、二酸化マンガン等の正極活物質を黒鉛等の導電助剤とともにリングコアに似た中空円筒状に成形された正極合剤3、円筒状の負極リチウム4、円筒カップ状のセパレーター5、負極端子を兼ねて電池缶2の開口を密閉封口する封口体10などによって構成されている。そして、電池缶2内には非水電解液が充填されている。   As shown in FIG. 1A, the illustrated cylindrical battery 1 has a bottomed cylindrical battery can 2 that opens upward, and a positive electrode active material such as manganese dioxide, similar to a ring core, together with a conductive aid such as graphite. A positive electrode mixture 3 formed into a hollow cylindrical shape, a cylindrical negative electrode lithium 4, a cylindrical cup-shaped separator 5, a sealing body 10 that also serves as a negative electrode terminal and hermetically seals the opening of the battery can 2. . The battery can 2 is filled with a non-aqueous electrolyte.

電池缶2は金属製であって電池ケースと正極集電体を兼ねる。下方底面には正極の端子部21がプレス加工により外方に突出するように形成されている。また、開口部近傍の周囲には絞り加工によるビーディング部22が形成されている。そして、この電池缶2内に、正極合剤3が圧入されているとともに、中空円筒状の正極合剤3の内方に負極リチウム4がセパレーター5を介して配置されている。
負極リチウム4には、帯状の金属薄板で形成されて負極集電体を兼ねる負極リード6の一方の端部が取り付けられている。他方の端部は封口体10を構成するステンレスなどの金属製薄板からなる円板状の封口板7の下面にスポット溶接されている。封口体10は、当該封口板7とステンレスなどの金属からなる負極の端子板8とによって構成されている。端子板8は、開口の周囲に中空円板状のフランジ部81が一体的に形成されているカップ状であり、伏せたカップのように、底部82を上方にした状態で封口板7と積層されている。
The battery can 2 is made of metal and serves as a battery case and a positive electrode current collector. A terminal portion 21 of the positive electrode is formed on the lower bottom surface so as to protrude outward by pressing. Further, a beading portion 22 by drawing is formed around the vicinity of the opening. A positive electrode mixture 3 is press-fitted into the battery can 2, and a negative electrode lithium 4 is disposed inside the hollow cylindrical positive electrode mixture 3 via a separator 5.
The negative electrode lithium 4 is attached with one end of a negative electrode lead 6 that is formed of a strip-shaped metal thin plate and also serves as a negative electrode current collector. The other end is spot welded to the lower surface of a disc-shaped sealing plate 7 made of a metal thin plate such as stainless steel constituting the sealing body 10. The sealing body 10 includes the sealing plate 7 and a negative terminal plate 8 made of a metal such as stainless steel. The terminal plate 8 has a cup shape in which a hollow disc-shaped flange portion 81 is integrally formed around the opening, and is laminated with the sealing plate 7 with the bottom portion 82 facing upward like a faced cup. Has been.

封口体10は、樹脂製の封口ガスケット9とともに電池缶2の開口部内側にビーディング部22を座として装着されつつ、電池缶2におけるビーディング部22より上方の上端部分が内方にかしめ加工(カール加工)されることで電池缶2に嵌着されている。   The sealing body 10 is mounted with the resin sealing gasket 9 inside the opening of the battery can 2 with the beading part 22 as a seat, and the upper end of the battery can 2 above the beading part 22 is caulked inward. The battery can 2 is fitted by curling.

図1(B)に示したように、上記構造の筒型電池1において、カップ状の端子板8の底部82のほぼ中央には、略V字状の切欠83が画成され、その切欠83の末端同士を接続した一辺を基端84とした舌片が、その基端84で下方に向かって折り曲げられている。それによって、その舌片が鋭利な先端を有する切り刃85となる。そして、端子板8の底部82には、この切り刃85を形成したことにより、内外を連絡する鋭角三角形状の孔(排気口)86が開口する。また、図1(C)に示したように、端子板8の底部82の周縁から下方に垂設されてフランジ部81に至る壁面(周側面)87には、端子板8の内外を連絡する小孔(通気孔)88が形成されている。   As shown in FIG. 1B, in the cylindrical battery 1 having the above-described structure, a substantially V-shaped notch 83 is defined substantially at the center of the bottom 82 of the cup-shaped terminal plate 8. A tongue piece having a base 84 as one side connecting the ends of the two is bent downward at the base 84. Thereby, the tongue piece becomes a cutting blade 85 having a sharp tip. Then, by forming this cutting blade 85 at the bottom portion 82 of the terminal plate 8, an acute-angled triangular hole (exhaust port) 86 that communicates the inside and the outside opens. Further, as shown in FIG. 1C, a wall surface (peripheral side surface) 87 that hangs downward from the periphery of the bottom portion 82 of the terminal plate 8 and reaches the flange portion 81 communicates the inside and outside of the terminal plate 8. A small hole (vent hole) 88 is formed.

封口板7と切り刃85は、筒型電池1の誤使用による過放電や充電などで、筒型電池1の内部にガスが発生し内圧が上昇した場合の防爆安全機構として動作する。排気口86は、電池缶2の内外を連絡してガスを外方へ放出するための通路(排気通路)となり、通気孔88は、補助的な排気通路としての役割を担っている。   The sealing plate 7 and the cutting blade 85 operate as an explosion-proof safety mechanism when gas is generated inside the cylindrical battery 1 due to overdischarge or charging due to misuse of the cylindrical battery 1 and the internal pressure rises. The exhaust port 86 serves as a passage (exhaust passage) for connecting the inside and outside of the battery can 2 to discharge gas outward, and the vent hole 88 plays a role as an auxiliary exhaust passage.

図2に、図1に示した筒型電池1における防爆安全機構の動作を示した。図2(A)は、内圧が上昇した際の封口体10の状態を示しており、図2(B)は防爆安全機構が作動したときの図である。まず図2(A)に示したように、内圧が上昇すると、封口板7において、端子板8のフランジ部81の下面に接していない直径φ1の円形の領域が上方に膨らむように撓む。そして図2(B)に示したように、封口板7がさらに上方に膨らむと、切り刃85の先端がこの封口板7に突き刺さり封口板7に穴70を開ける。それによって、この穴70から排気口86に至る経路(排気経路)が形成されて、筒型電池1内のガスが外部へ逃げる。ガスの一部は、封口板7に開いた穴70から通気孔88に至る排気経路を通って外部に排気される。図中に排気経路を太線矢印で示した。このようにして、筒型電池1の破裂を防止できるようになっている。防爆安全機構が作動する圧力については、例えば、CR17450型のボビン形リチウム一次電池では、2.5MPa〜3.5MPa程度となるように設定されている。   FIG. 2 shows the operation of the explosion-proof safety mechanism in the cylindrical battery 1 shown in FIG. FIG. 2 (A) shows the state of the sealing body 10 when the internal pressure rises, and FIG. 2 (B) is a diagram when the explosion-proof safety mechanism is activated. First, as shown in FIG. 2A, when the internal pressure rises, the sealing plate 7 bends so that a circular region having a diameter φ1 that is not in contact with the lower surface of the flange portion 81 of the terminal plate 8 swells upward. Then, as shown in FIG. 2B, when the sealing plate 7 further expands upward, the tip of the cutting blade 85 pierces the sealing plate 7 and opens a hole 70 in the sealing plate 7. As a result, a path (exhaust path) from the hole 70 to the exhaust port 86 is formed, and the gas in the cylindrical battery 1 escapes to the outside. A part of the gas is exhausted to the outside through an exhaust path from the hole 70 opened in the sealing plate 7 to the vent hole 88. The exhaust path is indicated by a thick arrow in the figure. In this way, the tubular battery 1 can be prevented from bursting. The pressure at which the explosion-proof safety mechanism operates is set, for example, to about 2.5 MPa to 3.5 MPa in a CR17450 type bobbin-type lithium primary battery.

なお、以下の特許文献1は、切り刃によって封口板に穴を開ける態様の防爆安全機構を備えた筒状電池について記載されている。また、以下の非特許文献1には、同じ構造の防爆安全機構を備えたボビン形リチウム一次電池について記載されている   In addition, the following patent document 1 is described about the cylindrical battery provided with the explosion-proof safety mechanism of the aspect which opens a hole in a sealing board with a cutting blade. Non-Patent Document 1 below describes a bobbin-type lithium primary battery having an explosion-proof safety mechanism having the same structure.

特開2010−186650号公報JP 2010-186650 A

FDK株式会社、”高容量円筒形リチウム一次電池”、[online]、[平成29年2月9日検索]、インターネット<URL:http://www.fdk.co.jp/battery/lithium/lithium_cylindrical.html>FDK Corporation, “High Capacity Cylindrical Lithium Primary Battery”, [online], [Search February 9, 2017], Internet <URL: http://www.fdk.co.jp/battery/lithium/lithium_cylindrical .html>

従来の筒型電池における防爆安全機構では、電池缶内の圧力が急激に上昇した場合、切り刃が封口板を破断して防爆安全機構自体は作動するものの、その破断箇所が電池の内容物によって閉塞されてしまう可能性があった。破断箇所が電池の内容物によって閉塞されてしまうと電池缶の内圧を速やかに開放することができなくなる。内圧の上昇が爆発的である場合、電池の内容物や電池を構成する部品(封口体、リード端子など)など飛散する可能性もある。   In the conventional explosion-proof safety mechanism in a cylindrical battery, when the pressure in the battery can suddenly rises, the cutting blade breaks the sealing plate and the explosion-proof safety mechanism itself operates, but the break point depends on the contents of the battery. There was a possibility of being blocked. If the broken part is blocked by the contents of the battery, the internal pressure of the battery can cannot be quickly released. When the internal pressure rises explosively, there is a possibility that the contents of the battery and parts (sealing body, lead terminal, etc.) constituting the battery will be scattered.

また、電池缶内の圧力がゆっくりとした速度で上昇するような場合では、封口板が撓む速度も遅くなり、防爆安全機能が作動して切り刃の先端が封口板に突き刺さっても、切り刃が封口板に徐々に食い込んでいき、切り刃自体が破断箇所を塞ぐ栓のようになってしまう場合がある。このような場合においても、電池缶の内圧を速やかに開放することができなくなる。さらに、封口板に切り刃が深く食い込んで封口板が切り裂かれるまで圧力が上昇し続け、封口板が切り裂かれた時点で内容物がその切り裂かれた開口から一気に噴出する可能性もある。   In addition, when the pressure in the battery can rises at a slow rate, the sealing plate bends at a slower rate, and even if the explosion-proof safety function is activated and the tip of the cutting blade pierces the sealing plate, In some cases, the blade gradually bites into the sealing plate, and the cutting blade itself becomes a plug that closes the broken portion. Even in such a case, the internal pressure of the battery can cannot be quickly released. Furthermore, the pressure continues to rise until the cutting blade bites deeply into the sealing plate and the sealing plate is torn, and when the sealing plate is torn, the contents may be ejected from the cut opening at a stroke.

そこで本発明は、防爆安全機構の作動後に内圧を確実にかつ速やかに開放することができる筒型電池を提供することを目的としている。   Therefore, an object of the present invention is to provide a cylindrical battery that can reliably and quickly release the internal pressure after the operation of the explosion-proof safety mechanism.

上記目的を達成するための本発明の一態様は、上方に円形に開口する有底筒状の金属製電池缶内に発電要素が収納されているとともに、前記電池缶の開口に樹脂製の封口ガスケットを介して封口体が嵌着されて当該電池缶が密閉されてなる筒型電池であって、
前記封口体は、金属製で、円形の開口の縁に中空円板状のフランジ部が形成されたカップ状の端子板と、金属製薄板からなる円板状の封口板とから構成され、前記端子板が底部を上方にして配置されつつ、前記封口板が前記フランジ部の下面に当接した状態で前記端子板の下方に配置されてなり、
前記端子板は、前記底部に形成された第1の切り刃と排気口を備えるとともに、前記底部の周縁から下方に垂設されつつ前記フランジ部に接続する周側面に等角度間隔で複数箇所に形成された第2の切り刃と通気孔を備え、
前記第1の切り刃は、基端となる一辺を残して切り欠かれてなる舌片が、当該基端にて前記電池缶の内方に向けて下方に折り曲げられてなり、
前記第排気口は、前記第1の切り刃を形成した跡として開口されてなり、
前記第2の切り刃は、前記端子板の前記フランジ部と前記周側面との境界の円周に沿う一辺を基端として切り欠かれてなる舌片が、当該基端にて前記電池缶の内方に向けて斜め下方に折り曲げられてなり、
前記通気孔は、前記第2の切り刃を形成した跡として開口されてなり、
前記第2の切り刃の先端は、前記第1の切り刃の先端よりも下方にある、
ことを特徴とする筒型電池としている。
One aspect of the present invention for achieving the above object is that a power generation element is housed in a bottomed cylindrical metal battery can that opens in a circular shape upward, and a resin seal is formed in the opening of the battery can. A cylindrical battery in which a sealing body is fitted through a gasket and the battery can is sealed,
The sealing body is made of a metal, and is composed of a cup-shaped terminal plate in which a hollow disk-shaped flange portion is formed at the edge of a circular opening, and a disk-shaped sealing plate made of a thin metal plate, While the terminal plate is disposed with the bottom portion facing upward, the sealing plate is disposed below the terminal plate in a state of contacting the lower surface of the flange portion,
The terminal plate includes a first cutting blade and an exhaust port formed in the bottom portion, and is provided at a plurality of positions at equiangular intervals on a circumferential side surface that is connected to the flange portion while being suspended downward from a peripheral edge of the bottom portion. A second cutting blade and a vent hole formed,
The first cutting blade is formed by bending a tongue piece cut away leaving one side as a base end downward toward the inside of the battery can at the base end,
The first exhaust port is opened as a mark that forms the first cutting blade,
The second cutting blade has a tongue piece that is cut out with one side along the circumference of the boundary between the flange portion and the peripheral side surface of the terminal plate as a base end at the base end of the battery can. Folded diagonally downward toward the inside,
The vent hole is opened as a mark forming the second cutting blade,
The tip of the second cutting blade is below the tip of the first cutting blade,
It is set as the cylindrical battery characterized by this.

上記筒型電池は、上下方向から見て前記第2の切り刃の先端が前記底部の内周の外方にあることを特徴とする筒型電池であってもよい。   The cylindrical battery may be a cylindrical battery characterized in that the tip of the second cutting blade is located outside the inner periphery of the bottom portion when viewed from the vertical direction.

本発明の筒型電池は、防爆安全機構の作動後に内圧を確実にかつ速やかに開放することができ、高い安全性を備えたものとなる。なお、その他の効果については以下の記載で明らかにする。   The cylindrical battery of the present invention can reliably and quickly release the internal pressure after the operation of the explosion-proof safety mechanism, and has high safety. Other effects will be clarified in the following description.

筒型電池の一例を示す図である。It is a figure which shows an example of a cylindrical battery. 筒型電池における従来の防爆安全機構の動作を説明する図である。It is a figure explaining operation | movement of the conventional explosion-proof safety mechanism in a cylindrical battery. 本発明の実施例に係る筒型電池が備える封口体の構造を示す図である。It is a figure which shows the structure of the sealing body with which the cylindrical battery which concerns on the Example of this invention is provided. 実施例に係る筒型電池における防爆安全機構の動作を説明する図である。It is a figure explaining operation | movement of the explosion-proof safety mechanism in the cylindrical battery which concerns on an Example. 実施例に係る筒型電池における防爆安全機構の性能を示す図である。It is a figure which shows the performance of the explosion-proof safety mechanism in the cylindrical battery which concerns on an Example.

本発明の実施例について、以下に添付図面を参照しつつ説明する。なお、以下の説明に用いた図面において、同一または類似の部分に同一の符号を付して重複する説明を省略することがある。図面によっては説明に際して不要な符号を省略することもある。   Embodiments of the present invention will be described below with reference to the accompanying drawings. Note that in the drawings used for the following description, the same or similar parts may be denoted by the same reference numerals and redundant description may be omitted. In some drawings, unnecessary symbols may be omitted in the description.

===実施例===
<封口体の構造>
本発明の実施例に係る筒型電池の基本構成は、図1に示した従来の筒型電池1と同様である。しかし封口体の構造が従来のものとは異なっている。図3に本実施例に係る筒型電池1aの要部を示した。図3(A)は本実施例の筒型電池1aを上方から見たときの平面図であり、図3(B)は、図3(A)におけるc−c矢視断面図であり、電池缶2の上端側を拡大して示している。
=== Example ===
<Structure of sealing body>
The basic configuration of the cylindrical battery according to the embodiment of the present invention is the same as that of the conventional cylindrical battery 1 shown in FIG. However, the structure of the sealing body is different from the conventional one. The principal part of the cylindrical battery 1a which concerns on FIG. 3 at the present Example was shown. FIG. 3A is a plan view of the cylindrical battery 1a of this embodiment as viewed from above, and FIG. 3B is a cross-sectional view taken along the line cc in FIG. The upper end side of the can 2 is shown enlarged.

図3(A)に示したように、本実施例の筒型電池1aにおける端子板8aは、底部82にV字型の切欠83によって形成された三角形状の舌片を下方に折り曲げてなる切り刃85と、その切り刃85を形成することによって開口した排気口86が形成されている。また、上方から見て端子板8aの周側面87からフランジ部81にかけて、複数の通気孔88aが円筒軸100周りに等角度間隔に形成されている。この例では45゜間隔で8箇所に形成されている。さらに各通気孔88aは、周側面87とフランジ部81との境界となる円周に沿う一辺を基端84aとしつつ、上方に凸となるV字状の切欠によって形成された舌片85aが折り曲げられたことで開口している。   As shown in FIG. 3 (A), the terminal plate 8a in the cylindrical battery 1a of the present embodiment is formed by bending a triangular tongue piece formed by a V-shaped notch 83 in the bottom portion 82 downward. A blade 85 and an exhaust port 86 opened by forming the cutting blade 85 are formed. A plurality of air holes 88a are formed at equal angular intervals around the cylindrical shaft 100 from the peripheral side surface 87 of the terminal plate 8a to the flange portion 81 when viewed from above. In this example, it is formed at 8 positions at intervals of 45 °. Further, each vent hole 88a is formed by bending a tongue piece 85a formed by a V-shaped notch protruding upward, with one side along the circumference serving as a boundary between the peripheral side surface 87 and the flange portion 81 being a base end 84a. It has been opened by being.

図3(B)に示したように、周側面87とフランジ部81との境界は曲面で、その境界を介して周側面87とフランジ部81とが滑らかに連続している。複数の通気孔88aは、この境界に基端84aを有しつつ周側面87にかけて形成された切欠83aによって形成された三角形状の舌片85aが、その基端84aを折り線として斜め下方に向かって折り曲げられた跡として開口している。また、舌片85aの先端は、底部82に設けられた切り刃(以下、第1の切り刃85とも言う)の先端よりも下方に位置している。そして、この舌片85aが第1の切り刃85とは別の切り刃(以下、第2の切り刃85aとも言う)。   As shown in FIG. 3B, the boundary between the peripheral side surface 87 and the flange portion 81 is a curved surface, and the peripheral side surface 87 and the flange portion 81 are smoothly continuous through the boundary. The plurality of vent holes 88a have a triangular tongue 85a formed by a notch 83a having a base end 84a at the boundary and formed on the peripheral side surface 87, and obliquely downward with the base end 84a as a fold line. It opens as a folded mark. The tip of the tongue piece 85a is positioned below the tip of a cutting blade (hereinafter also referred to as a first cutting blade 85) provided on the bottom portion 82. And this tongue piece 85a is a cutting blade different from the 1st cutting blade 85 (henceforth the 2nd cutting blade 85a).

<防爆安全機構の動作>
図4に本実施例の筒型電池1aによる防爆安全機構の動作状態を示した。図4(A)〜(C)は、内圧上昇に伴う防爆安全機構の作動状態の遷移を示しており、ここでは、封口体10aのみを示した。まず、図4(A)に示したように、内圧が上昇すると、封口板7が上方に撓む。このとき、第2の切り刃85aが基端84aから端子板8aの内方に斜め下方向に向かって屈曲しているため、この第2の切り刃85aの先端が、自ずと、封口板7の上面と端子板8aのフランジ部81の下面との接触領域よりも内方の位置で封口板7の上面に浅い角度で接する。そして、内圧がさらに上昇すると、封口板7は、自身の上面に接している第2の切り刃85aによって上方への撓みが規制され、直径φ1の上記接触領域よりも内方の直径φ2の領域のみが内圧によって変形可能となる。すなわち、封口板7は、従来よりも狭い面積で内圧を受け止めることになり、封口板7が上方に急速、かつ大きく撓む。それによって図3(B)に示したように、第1の切り刃85が封口板7を速やかに破断する。すなわち、実施例の筒型電池では第1の切り刃85が封口板7に当接してからこれを破断するまでの時間を短くすることができ、内容物が破断箇所70を閉塞する前に電池缶内のガスを外方に放出することができる。もちろん、内圧がゆっくりとした速度で徐々に上昇するような場合であっても、第2の切り刃85aが封口板7に当接した時点で急速に内圧が上昇するため、第1の切り刃85が封口板7に素早く食い込む。それによって、第1の切り刃85自体が破断箇所70を塞ぐ栓となることを抑止することができる。たとえ、第1の切り刃85が破断箇所70を閉鎖し、さらに内圧が上昇した場合でも、図3(C)に示したように、複数の第2切り刃85aが封口板7を複数箇所で破断する。そのため、内容物が噴出したり部品が飛散したりするような大きな内圧に達する前に内圧を開放することができる。また、複数の破断箇所70aによって複数系統の通気経路が確保され、内容物などが一箇所に集中することがなく、内容物の噴出や部品の飛散をより確実に抑止することができる。
<Operation of explosion-proof safety mechanism>
FIG. 4 shows the operating state of the explosion-proof safety mechanism using the cylindrical battery 1a of this embodiment. 4A to 4C show the transition of the operating state of the explosion-proof safety mechanism accompanying the increase in internal pressure, and only the sealing body 10a is shown here. First, as shown in FIG. 4A, when the internal pressure increases, the sealing plate 7 bends upward. At this time, since the second cutting blade 85a is bent obliquely downward from the base end 84a to the inside of the terminal plate 8a, the tip of the second cutting blade 85a is naturally formed on the sealing plate 7. It contacts the upper surface of the sealing plate 7 at a shallow angle at a position inside the contact area between the upper surface and the lower surface of the flange portion 81 of the terminal plate 8a. When the internal pressure further rises, the sealing plate 7 is restricted from being bent upward by the second cutting blade 85a in contact with the upper surface of the sealing plate 7, and is an area having a diameter φ2 inward of the contact area having the diameter φ1. Only can be deformed by internal pressure. That is, the sealing plate 7 receives the internal pressure in a smaller area than the conventional one, and the sealing plate 7 bends rapidly and greatly upward. Thereby, as shown in FIG. 3B, the first cutting blade 85 quickly breaks the sealing plate 7. That is, in the cylindrical battery according to the embodiment, the time from when the first cutting blade 85 abuts against the sealing plate 7 until it breaks can be shortened, and the battery before the contents close the break point 70 can be shortened. The gas in the can can be discharged outward. Of course, even when the internal pressure gradually rises at a slow speed, the internal pressure rapidly rises when the second cutting blade 85a comes into contact with the sealing plate 7, so that the first cutting blade 85 bites into the sealing plate 7 quickly. Accordingly, it is possible to prevent the first cutting blade 85 itself from becoming a plug that closes the broken portion 70. Even when the first cutting blade 85 closes the fractured portion 70 and the internal pressure further increases, as shown in FIG. 3C, the plurality of second cutting blades 85a push the sealing plate 7 at a plurality of locations. Break. Therefore, the internal pressure can be released before reaching a large internal pressure at which the contents are ejected or components are scattered. Further, a plurality of ventilation paths are secured by the plurality of breakage points 70a, the contents and the like are not concentrated at one place, and the ejection of the contents and the scattering of the parts can be more reliably suppressed.

このように、本実施例の筒型電池1aでは、封口体10aの構造に特徴を有して、防爆安全機構が動作した際には、電池缶2内の内圧が確実かつ速やかに開放されるようになっている。   Thus, the cylindrical battery 1a of the present embodiment has a feature in the structure of the sealing body 10a, and when the explosion-proof safety mechanism operates, the internal pressure in the battery can 2 is reliably and promptly released. It is like that.

===安全性試験===
次に、図3に示した本実施例に係る筒型電池1aをサンプルとして作製した。また実施例に対する比較例として、図1に示した従来の筒型電池1もサンプルとして作製した。実施例と比較例のサンプルにおける封口体(10a、10)以外の構成や構造は図1に示した筒型電池1と同様であり、ここでは直径17mm、高さ45.0mmのCR17450型に相当するボビン形リチウム電池を作製した。そして、筒型電池(1a、1)が極めて過酷な状況で誤使用されることも想定し、各サンプルに対し、バーナーで加熱する加熱試験、サンプルを完全に放電させたのちにさらに1Aの電流で放電させる強制放電試験、およびUL規格に基づいて15mAの電流で充電する異常充電試験を行った。また、各試験では、実施例と比較例のそれぞれに対応する2種類のサンプルを、それぞれ15個ずつ作製した。そして、各試験において内圧の上昇によって電池缶内の内容物や封口体を構成する部品が飛散した個体の数を調べた。
=== Safety test ===
Next, the cylindrical battery 1a according to this example shown in FIG. 3 was produced as a sample. Further, as a comparative example to the example, the conventional cylindrical battery 1 shown in FIG. 1 was also produced as a sample. The structure and structure other than the sealing bodies (10a, 10) in the samples of Examples and Comparative Examples are the same as those of the cylindrical battery 1 shown in FIG. 1, and here corresponds to the CR17450 type having a diameter of 17 mm and a height of 45.0 mm. A bobbin-type lithium battery was manufactured. Assuming that the cylindrical batteries (1a, 1) are misused in extremely severe situations, each sample is heated by a burner, and after the sample is completely discharged, a current of 1 A is further applied. And an abnormal charge test in which charging was performed at a current of 15 mA based on the UL standard. In each test, 15 samples of two types corresponding to each of the example and the comparative example were prepared. In each test, the number of individuals in which the contents in the battery can and the parts constituting the sealing body were scattered due to the increase in internal pressure was examined.

以下の表1に各試験の結果を示した。   Table 1 below shows the results of each test.

Figure 2018166024
表1において、サンプル1は実施例に係る筒型電池1aであり、サンプル2は比較例に係る筒型電池1である。この表1に示したように、実施例となるサンプル1は、各試験の全てにおいて、15個の個体の内、内容物や部品が飛散した個体が一つもなかった。一方、比較例となるサンプル2では、加熱試験、強制放電試験、および異常充電試験のそれぞれについて、15個中1個、2個、および1個の個体において内容物あるいは部品が飛散した。以上により本発明の実施例に係る筒型電池では、極めて高い安全性を有していることが確認できた。
Figure 2018166024
In Table 1, sample 1 is a cylindrical battery 1a according to an example, and sample 2 is a cylindrical battery 1 according to a comparative example. As shown in Table 1, Sample 1 as an example did not have any individual in which the contents and parts were scattered among the 15 individuals in all the tests. On the other hand, in sample 2 as a comparative example, the contents or parts were scattered in one, two, and one individual out of fifteen for each of the heating test, forced discharge test, and abnormal charge test. From the above, it was confirmed that the cylindrical battery according to the example of the present invention has extremely high safety.

次に、電池缶2内の圧力が徐々に上昇するような状況を再現するために、電池缶2の開口を図1に示した従来の筒型電池1と同様の封口体10で封止したサンプルと、図3に示した実施例に係る筒型電池1aの封口体10aで封止したサンプルとを作製した。また、各サンプルでは電池缶2に内外を連絡する孔を形成し、電池缶の内圧が0.1MPa/秒の速度で上昇するように、その孔から圧搾空気を電池缶2内に導入し、防爆安全機構を作動させた。すなわち封口板7を第1の切り刃によって破断させた。そして、防爆安全機構の作動後も圧搾空気の導入を継続し、防爆安全機構の作動時点からの経過時間と電池缶2内の圧力との関係を調べた。なお、電池缶2は、ここでも、外径14.5mm、高さ45.0mmのボビン形リチウム一次電池(例えば、CR14250型)用のものを用いた。また、電池缶2自体が膨らまないように、電池缶2内には円筒形の電池缶2の側面を支持する正極合剤3を収納した。   Next, in order to reproduce the situation in which the pressure in the battery can 2 gradually increases, the opening of the battery can 2 is sealed with a sealing body 10 similar to that of the conventional cylindrical battery 1 shown in FIG. A sample and a sample sealed with the sealing body 10a of the cylindrical battery 1a according to the example shown in FIG. 3 were produced. In each sample, a hole communicating with the inside and outside of the battery can 2 is formed, and compressed air is introduced into the battery can 2 from the hole so that the internal pressure of the battery can rises at a rate of 0.1 MPa / second, The explosion-proof safety mechanism was activated. That is, the sealing plate 7 was broken by the first cutting blade. Then, the introduction of compressed air was continued after the operation of the explosion-proof safety mechanism, and the relationship between the elapsed time from the operation time of the explosion-proof safety mechanism and the pressure in the battery can 2 was examined. The battery can 2 used here is also for a bobbin-type lithium primary battery (for example, CR14250 type) having an outer diameter of 14.5 mm and a height of 45.0 mm. Moreover, the positive electrode mixture 3 that supports the side surface of the cylindrical battery can 2 was accommodated in the battery can 2 so that the battery can 2 itself did not swell.

図5に防爆安全機構の作動時点を起点とした経過時間と電池缶2内の圧力との関係を示した。図5では、グラフの縦軸である電池缶2内の圧力を、従来の筒型電池1の封口体10を用いたサンプル(図中「従来例」)において防爆安全機構が作動したときの圧力を100%とした場合の相対値で示している。   FIG. 5 shows the relationship between the elapsed time starting from the operation point of the explosion-proof safety mechanism and the pressure in the battery can 2. In FIG. 5, the pressure in the battery can 2, which is the vertical axis of the graph, is the pressure when the explosion-proof safety mechanism is activated in the sample using the sealing body 10 of the conventional cylindrical battery 1 (“conventional example” in the figure). Is shown as a relative value with 100%.

図示したように、実施例の筒型電池1aに用いた封口体10aで封止したサンプル(図中「実施例」)では、封口板7において撓むことが可能な領域が従来例よりも狭いため、防爆安全機構が動作する圧力が従来例よりも高くなっている。しかし、防爆安全機構の作動後は時間の経過とともに速やかに電池缶2内の圧力が減少し、12秒程度で大気圧と平衡状態となった。一方、従来例のサンプルでは20秒後も防爆安全機構が作動したときの圧力が維持されて、内圧が効果的に開放されていない。このように、実施例に係る筒型電池1aでは、電池缶2内の圧力が徐々に上昇するような場合であっても、防爆安全機構が作動すれば、確実、かつ速やかにその圧力を開放することができる。   As shown in the figure, in the sample ("Example" in the figure) sealed with the sealing body 10a used in the cylindrical battery 1a of the example, the region where the sealing plate 7 can be bent is narrower than the conventional example. Therefore, the pressure at which the explosion-proof safety mechanism operates is higher than in the conventional example. However, after the operation of the explosion-proof safety mechanism, the pressure in the battery can 2 quickly decreased with the passage of time, and reached an atmospheric pressure equilibrium state in about 12 seconds. On the other hand, in the sample of the conventional example, the pressure when the explosion-proof safety mechanism is activated is maintained even after 20 seconds, and the internal pressure is not effectively released. As described above, in the cylindrical battery 1a according to the embodiment, even when the pressure in the battery can 2 gradually increases, the pressure is reliably and promptly released if the explosion-proof safety mechanism is activated. can do.

===製造容易性について===
ところで、図1や図3に示した筒型電池(1、1a)の端子板(8、8a)は、普通、円板状の金属板をプレス加工することで作製される。本実施例の筒型電池1aの端子板8aでは、円板状の金属板に第1および第2の切り刃(85、85a)となる切欠を形成し、その上で端子板8aの中心を所定の径のポンチでプレス加工してフランジ部81のあるカップ状に成形する。そのため、ポンチの径、すなわち図3(B)に示した端子板8aの底部82の内径φ3よりも内側に第2の切り刃85aとなる切欠が形成されていると(φ3>φ2)、第2の切り刃85aの先端が上方に折れ曲がってしまう。そのため、円板状の金属板をカップ状に成形した後に第2の切り刃85aとなる切欠を端子板8aの周側面87に後工程で形成する必要がある。そのため、端子板8aの製造工程が複雑となり、筒型電池1aの製造コストを増大させる可能性がある。そこで、図3に示したように、第2の切り刃85aの先端位置が底部82の内径φ3よりも外方となるように(φ3<φ2)端子板8aを形成すれば、フランジ部81から周側面87にかけて切欠83aを形成するとともに、その切欠83aによって形成された舌片を折り曲げるだけでよく、実施例の筒型電池1aにおける端子板8aを、従来の筒型電池1の端子板8とほぼ同様の手順で安価に作製することができる。
=== Ease of manufacturing ===
By the way, the terminal plates (8, 8a) of the cylindrical batteries (1, 1a) shown in FIGS. 1 and 3 are usually produced by pressing a disk-shaped metal plate. In the terminal plate 8a of the cylindrical battery 1a of the present embodiment, notches to be the first and second cutting blades (85, 85a) are formed in a disk-shaped metal plate, and the center of the terminal plate 8a is formed thereon. A cup with a flange portion 81 is formed by pressing with a punch having a predetermined diameter. Therefore, if a notch that becomes the second cutting edge 85a is formed inside the diameter of the punch, that is, the inner diameter φ3 of the bottom 82 of the terminal plate 8a shown in FIG. 3B (φ3> φ2), The tip of the second cutting blade 85a is bent upward. Therefore, after forming a disk-shaped metal plate in a cup shape, it is necessary to form the notch used as the 2nd cutting blade 85a in the peripheral side surface 87 of the terminal board 8a by a post process. This complicates the manufacturing process of the terminal plate 8a and may increase the manufacturing cost of the cylindrical battery 1a. Therefore, as shown in FIG. 3, if the terminal plate 8a is formed such that the tip position of the second cutting blade 85a is outside the inner diameter φ3 of the bottom portion 82 (φ3 <φ2), the flange portion 81 A cutout 83a is formed over the peripheral side surface 87, and a tongue piece formed by the cutout 83a only needs to be bent. The terminal plate 8a in the tubular battery 1a of the embodiment is replaced with the terminal plate 8 of the conventional tubular battery 1. It can be manufactured at a low cost by almost the same procedure.

===その他の実施例===
上記実施例では、第2の切り刃85aが等角度間隔で8箇所に形成されていたが、等角度間隔で複数箇所にあればよく、例えば180゜間隔で2箇所にのみ第2の切り刃85aが形成されていても、内圧の上昇に伴って第2の切り刃85aの先端は、第1の切り刃の先端よりも先に封口板7に当接する。そして、その当接箇所は、フランジ部81と封口板7との接触領域より内方である。したがって、図4に示した動作と同様にして内圧を速やかに開放することができる。もちろん、内圧がさらに上昇しても第2の切り刃85aが封口板7を破断するため、内容物の噴出や部品の飛散も発生しない。
=== Other Embodiments ===
In the above embodiment, the second cutting blades 85a are formed at eight positions at equal angular intervals. However, the second cutting blades only need to be present at a plurality of positions at equal angular intervals. Even if 85a is formed, the tip of the second cutting blade 85a contacts the sealing plate 7 earlier than the tip of the first cutting blade as the internal pressure increases. And the contact location is inward from the contact area | region of the flange part 81 and the sealing board 7. FIG. Therefore, the internal pressure can be quickly released in the same manner as the operation shown in FIG. Of course, even if the internal pressure further increases, the second cutting blade 85a breaks the sealing plate 7, so that neither the ejection of contents nor the scattering of parts occurs.

第2の切り刃85aの数の上限については、数が多いほど、封口板7には円形に近い形状で第2の切り刃85aの先端が当接することになり、封口板7の撓み状態に偏りが生じにくくなる。それによって、防爆安全機構が作動する圧力のバラツキがより均一になる。その一方で、端子板8aの強度が低下し、第2の切り刃85aをより多く設けることによって製造コストも増加する。したがって、第2の切り刃85aの数は、端子板8aの強度や製造コストなどに応じて適宜に設定すればよい。   As for the upper limit of the number of second cutting blades 85a, the larger the number, the closer the tip of the second cutting blade 85a comes into contact with the sealing plate 7 in a circular shape, and the sealing plate 7 is bent. Bias is less likely to occur. As a result, the pressure variation at which the explosion-proof safety mechanism operates is more uniform. On the other hand, the strength of the terminal plate 8a is reduced, and the manufacturing cost is also increased by providing more second cutting blades 85a. Therefore, the number of the second cutting blades 85a may be set as appropriate according to the strength of the terminal plate 8a, the manufacturing cost, and the like.

上記実施例に係る筒型電池1aは、ボビン形リチウム一次電池であったが、もちろん実施例に係る筒型電池は、封口体の構成や構造が実施例と同様であれば、スパイラル型のリチウム一次電池、発電原理が異なる他の種類の電池(アルカリ電池など)、二次電池などであってもよい。また、本発明に係る実施例は、例えば、角筒状の電池缶の端面に円形の開口が形成されている電池にも適用することが可能である。   The cylindrical battery 1a according to the above embodiment was a bobbin-type lithium primary battery. Of course, the cylindrical battery according to the embodiment has a spiral type lithium as long as the structure and structure of the sealing body are the same as those of the embodiment. It may be a primary battery, another type of battery (such as an alkaline battery) having a different power generation principle, a secondary battery, or the like. The embodiment according to the present invention can also be applied to, for example, a battery in which a circular opening is formed on the end face of a rectangular tube-shaped battery can.

1 筒型電池(ボビン形リチウム一次電池)、2 電池缶、3 正極合剤、
4 負極リチウム、5 セパレーター、7 封口板、8,8a 端子板、
9 封口ガスケット、10,10a 封口体、70,70a 破断箇所(穴)、
81 端子板のフランジ部、82 端子板の底部、83,83a 切欠、
84,84a 切欠の基端、85 切り刃(第1の切り刃)、85a 第2の切り刃、
86 排気口、87 端子板の周側面、88 通気孔
1 cylindrical battery (bobbin-type lithium primary battery), 2 battery cans, 3 positive electrode mixture,
4 negative lithium, 5 separator, 7 sealing plate, 8, 8a terminal plate,
9 Sealing gasket, 10, 10a Sealing body, 70, 70a Broken part (hole),
81 flange of terminal plate, 82 bottom of terminal plate, 83, 83a notch,
84, 84a The base end of the notch, 85 cutting blade (first cutting blade), 85a second cutting blade,
86 exhaust port, 87 peripheral surface of terminal board, 88 vent hole

Claims (2)

上方に円形に開口する有底筒状の金属製電池缶内に発電要素が収納されているとともに、前記電池缶の開口に樹脂製の封口ガスケットを介して封口体が嵌着されて当該電池缶が密閉されてなる筒型電池であって、
前記封口体は、金属製で、円形の開口の縁に中空円板状のフランジ部が形成されたカップ状の端子板と、金属製薄板からなる円板状の封口板とから構成され、前記端子板が底部を上方にして配置されつつ、前記封口板が前記フランジ部の下面に当接した状態で前記端子板の下方に配置されてなり、
前記端子板は、前記底部に形成された第1の切り刃と排気口を備えるとともに、前記底部の周縁から下方に垂設されつつ前記フランジ部に接続する周側面に等角度間隔で複数箇所に形成された第2の切り刃と通気孔を備え、
前記第1の切り刃は、基端となる一辺を残して切り欠かれてなる舌片が、当該基端にて前記電池缶の内方に向けて下方に折り曲げられてなり、
前記第排気口は、前記第1の切り刃を形成した跡として開口されてなり、
前記第2の切り刃は、前記端子板の前記フランジ部と前記周側面との境界の円周に沿う一辺を基端として切り欠かれてなる舌片が、当該基端にて前記電池缶の内方に向けて斜め下方に折り曲げられてなり、
前記通気孔は、前記第2の切り刃を形成した跡として開口されてなり、
前記第2の切り刃の先端は、前記第1の切り刃の先端よりも下方にある、
ことを特徴とする筒型電池。
A power generation element is housed in a bottomed cylindrical metal battery can that opens in a circular shape upward, and a sealing body is fitted to the opening of the battery can via a resin sealing gasket. Is a sealed cylindrical battery,
The sealing body is made of a metal, and is composed of a cup-shaped terminal plate in which a hollow disk-shaped flange portion is formed at the edge of a circular opening, and a disk-shaped sealing plate made of a thin metal plate, While the terminal plate is disposed with the bottom portion facing upward, the sealing plate is disposed below the terminal plate in a state of contacting the lower surface of the flange portion,
The terminal plate includes a first cutting blade and an exhaust port formed in the bottom portion, and is provided at a plurality of positions at equiangular intervals on a circumferential side surface that is connected to the flange portion while being suspended downward from a peripheral edge of the bottom portion. A second cutting blade and a vent hole formed,
The first cutting blade is formed by bending a tongue piece cut away leaving one side as a base end downward toward the inside of the battery can at the base end,
The first exhaust port is opened as a mark that forms the first cutting blade,
The second cutting blade has a tongue piece that is cut out with one side along the circumference of the boundary between the flange portion and the peripheral side surface of the terminal plate as a base end at the base end of the battery can. Folded diagonally downward toward the inside,
The vent hole is opened as a mark forming the second cutting blade,
The tip of the second cutting blade is below the tip of the first cutting blade,
A cylindrical battery characterized by that.
請求項1に記載の筒型電池において、上下方向から見て前記第2の切り刃の先端が前記底部の内周の外方にあることを特徴とする筒型電池。   2. The cylindrical battery according to claim 1, wherein a tip of the second cutting blade is located on an outer side of an inner periphery of the bottom portion when viewed from above and below.
JP2017062124A 2017-03-28 2017-03-28 Cylindrical battery Active JP6890028B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017062124A JP6890028B2 (en) 2017-03-28 2017-03-28 Cylindrical battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017062124A JP6890028B2 (en) 2017-03-28 2017-03-28 Cylindrical battery

Publications (2)

Publication Number Publication Date
JP2018166024A true JP2018166024A (en) 2018-10-25
JP6890028B2 JP6890028B2 (en) 2021-06-18

Family

ID=63922091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017062124A Active JP6890028B2 (en) 2017-03-28 2017-03-28 Cylindrical battery

Country Status (1)

Country Link
JP (1) JP6890028B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114762180A (en) * 2019-12-13 2022-07-15 松下知识产权经营株式会社 Sealed battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114762180A (en) * 2019-12-13 2022-07-15 松下知识产权经营株式会社 Sealed battery

Also Published As

Publication number Publication date
JP6890028B2 (en) 2021-06-18

Similar Documents

Publication Publication Date Title
JP2006521674A5 (en)
JP2000077058A (en) Electric circuit breaking mechanism of battery
JP2011192636A (en) Gasket for cylindrical battery, and cylindrical battery
WO2010088332A1 (en) Modular cid assembly for a lithium ion battery
EP2100340A1 (en) End cap seal assembly for an electrochemical cell
WO2018116911A1 (en) Sealing gasket for circular cylindrical shaped alkaline battery and circular cylindrical shaped alkaline battery
JP2018166024A (en) Cylindrical battery
JP6770851B2 (en) Cylindrical battery
US3214300A (en) Pressure relief device for sealed electric cells
US20080085450A1 (en) End cap seal assembly for an electrochemical cell
JP6516197B2 (en) Sealed battery and battery case
JP6078334B2 (en) Cylindrical battery
JP2006032297A (en) Sealed battery and its manufacturing method
JP6726471B2 (en) Cylindrical battery
JP5358194B2 (en) Cylindrical battery
JP5084212B2 (en) Cylindrical sealed battery
JP2006202637A (en) Alkaline battery
JP5433248B2 (en) Cylindrical battery
JP7286429B2 (en) Sealing gaskets and batteries
JP5595113B2 (en) Cylindrical lithium battery
JPH07288121A (en) Sealing structure of explosion-proof battery
JP2020068058A (en) Power storage device
JP2010161024A (en) Cylindrical battery
JP5342893B2 (en) Cylindrical battery
JP2007287624A (en) Safety valve for sealed battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201020

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210427

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210524

R150 Certificate of patent or registration of utility model

Ref document number: 6890028

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150