JP6889470B2 - 空間整合受信 - Google Patents

空間整合受信 Download PDF

Info

Publication number
JP6889470B2
JP6889470B2 JP2017053742A JP2017053742A JP6889470B2 JP 6889470 B2 JP6889470 B2 JP 6889470B2 JP 2017053742 A JP2017053742 A JP 2017053742A JP 2017053742 A JP2017053742 A JP 2017053742A JP 6889470 B2 JP6889470 B2 JP 6889470B2
Authority
JP
Japan
Prior art keywords
light
signal
local light
receiving device
modulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017053742A
Other languages
English (en)
Other versions
JP2018157441A (ja
Inventor
高秀 坂本
高秀 坂本
梅沢 俊匡
俊匡 梅沢
直克 山本
直克 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Information and Communications Technology
Original Assignee
National Institute of Information and Communications Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Information and Communications Technology filed Critical National Institute of Information and Communications Technology
Priority to JP2017053742A priority Critical patent/JP6889470B2/ja
Priority to PCT/JP2018/008726 priority patent/WO2018168598A1/ja
Publication of JP2018157441A publication Critical patent/JP2018157441A/ja
Application granted granted Critical
Publication of JP6889470B2 publication Critical patent/JP6889470B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by at least one potential-jump barrier or surface barrier, e.g. phototransistors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/61Coherent receivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/04Mode multiplex systems

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Optical Communication System (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Light Receiving Elements (AREA)

Description

本発明は,光情報通信に用いられる受信装置に関する。より具体的に説明すると,本発明は,空間整合受信に用いられる受信装置に関する。
従来,空間多重信号の分離とコヒーレント光受信器は別の技術を用いて行われていた。光多重信号を受信する場合,通常は,光領域において多重信号を分離し,分離された信号を個別にコヒーレント受信していた。このため,多重信号の分離装置と,コヒーレント受信用の受信装置の両方が必要であった。また,光多重の方式毎に専用の多重分離器を用意する必要があり,空間多重信号のモード数,多重数の種類,多重パターンに応じた専用の受信機器構成が必要であった。さらに,光計測技術において,被測定対象からの光応答は任意の多モード信号となり,様々なモードに対応した超高速応答を評価することは困難であった。
W.Mohammed et al., Opt. Eng. 45, 074602(2006)
本発明は,任意の空間多重光信号,多モード光信号を受信できる受信器を提供することを目的とする。
本発明は,受信装置に関する(本発明は受信方法をも提供する)。この受信装置は,受信光と合波される局所光を発生する局所光発生源3と,局所光発生源3から発生した局所光が受信光と合波される前に,局所光の複数の部分に異なった複数の変調を与えるための複数の変調領域5を有する変調部7と,変調部7で複数の変調を与えられた局所光と,受信光とが合波された光を,局所光の複数の部分ごとに検出する複数の検出領域9を有する検出部11とを有する。
受信装置は,
複数の変調領域9が,アレイ状に形成され,
複数の検出領域11が,アレイ状に形成されるものが好ましい。
受信装置は,
局所光発生源3が,局所光の波長を掃引できるものか,光コム信号発生器であるものが好ましい。
受信装置は,
さらに,受信光と,変調部7で複数の変調を与えられた局所光とを合波する合波部21をさらに有するものが好ましい。
受信装置は,
複数の検出領域11が,複数のフォトダイオードであるものが好ましい。
本発明は,任意の空間多重光信号,多モード光信号を受信できる受信器を提供できる。
図1は,受信装置を説明するためのブロック図である。 図2は,複数の変調領域を有する変調部を説明するための概念図である。 図3は,光検出器を示す概念図である。図3(a)は,フォトダイオードと配線の例を示し,図3(b)はフォトダイオードの間隔を説明するための図である。 図4は,デジタル信号プロセッサを説明するためのブロック図である。 図5は,グレーティングを有する受信装置を説明するためのブロック図である。 図6は,合波部を用いない受信装置を説明するためのブロック図である。 図7は,光検出器の利用方法の例を示す概念図である。 図8は,実施例の空間コヒーレント整合検出器を説明するための概念図である。 図9は,PDアレイの設計例を示す図である。 図10は,PDアレイにおける裏面入射断面構造例を示す図である。 図11は,検討した4×4位相パターンを示す。図11(a)は,位相マスクのパターン例を示す。図11(b)は,重み係数の組み合わせ例を示す。 図12は,モード毎の20−Gb/s QPSK信号の受信に焦点を当てて,DSPで復元された配置を計算したものを示す図面に替るグラフである。 図13は,フォトディテクターの大きさ(pn接合面積)に対する3dB周波数帯域の計算見積もりを示す図面に替るグラフである。 図14は,クロストーク量および挿入損失の算出例を示す図面に替るグラフである。
以下,図面を用いて本発明を実施するための形態について説明する。本発明は,以下に説明する形態に限定されるものではなく,以下の形態から当業者が自明な範囲で適宜修正したものも含む。なお,以下では,空間コヒーレント整合検出器を例にして,本発明を実施するための形態について説明する。しかしながら,本発明は,空間コヒーレント整合検出器に限定されるものではない。
図1は,受信装置を説明するためのブロック図である。図1に示されるように,この受信装置は,受信光と合波される局所光を発生する局所光発生源3と,複数の変調領域5を有する変調部7と,複数の検出領域9を有する検出部11とを含む。変調部7は,局所光発生源から発生した局所光が受信光と合波される前に,局所光の複数の部分に異なった複数の変調を与えるための複数の変調領域5を有するものである。検出部11は,変調部で複数の変調を与えられた局所光と,受信光とが合波された光を,局所光の複数の部分ごとに検出する複数の検出領域9を有する。変調の例は,振幅変調,位相変調,周波数変調,振幅シフト,位相シフト,周波数シフト,及びこれら組み合わせである。図1の例では,局所光発生源3から出射した局所光をコリメートするためのレンズ17と,受信光をコリメートするためのレンズ19と,コリメートされた受信光及びコリメートされた局所光とを合波するためのハーフミラー(合波部)21,検出部11からの検出信号をデジタル化するためのADC(アナログ−デジタル変換器)23,DSC(デジタル信号プロセッサ)25を含む。DSC25は,係数制御部27と,MIMO(マルチインプットマルチアウトプット)29を含む。
受信光は,マルチコアファイバ(MCF)や数コアファイバ(FCF)からの出射光であってもよい。受信光は,モード分割多重(MDM)光などの空間多重信号であってもよい。図1の受信装置は,任意の多重モードの光を受信することができるコヒーレント光受信器である。この受信装置は,波長多重伝送,偏波多重伝送,空間多重光伝送,多モード光伝送のみならず,単一モード光伝送におけるコヒーレント受信器として利用されうる。
図2は,複数の変調領域を有する変調部を説明するための概念図である。図2に示されるように,この変調部7は,複数の変調領域5を有する。局所光発生源3から出射し,レンズ17によりコリメートされた光が,変調部7に存在する複数の変調領域5を通過する。その際に,複数の変調領域5のそれぞれに対応した変調を受けることとなる。複数の変調領域5における変調の例は,位相変調である。例えば,複数の変調領域5が0とπのいずれかの位相変調を行うものであっても,0,π/2,π,及び3π/2のいずれかの変調を行うものであってもよい。複数の変調領域5は,振幅変調を行うものであってもよいし,周波数変調を行うものであってもよい。変調部7(マスク)の各変調領域5には,光変調器が設けられ,それぞれの光変調器が制御部と接続され,任意の変調を行うものであってもよい。
複数の変調領域5は,格子状に設けられてもよいし,任意の配置であってもよい。複数の変調領域5は,格子点上に4つ以上の光変調器が存在するものである。図2の例では,m×n個の変調領域を有している。複数の変調領域5の例は,2×2(縦方向及び横方向に2つずつ),2×2が1つの面に4つある構造(4×4),3×3,5×5,6×6,4×6,8×8,及び12×12である。
局所光発生源3の好ましい例は,波長を掃引できる局所光発生源である。波長を掃引できる光源は,例えば再表2007−148413号公報に記載される通り,公知である。局所光発生源3の好ましい別の例は,光コム信号発生器である。光コム信号発生器は,例えば特開2006−17748号公報や,特開2011−221366号公報に記載される通り,公知である。
合波部21は,受信光と,変調部で複数の変調を与えられた局所光とを合波する要素である。合波部21の例は,ハーフミラー及びビームスプリッターである。
光検出器(検出部)
次に,光検出器11の例について説明する。図3は,光検出器を示す概念図である。図3(a)は,フォトダイオードと配線の例を示し,図3(b)はフォトダイオードの間隔を説明するための図である。この例の光検出器11は,複数のフォトディテクター(例えばフォトダイオード)9が2次元アレイ状に配置されている。フォトダイオード9は,光情報通信に用いられている公知のフォトダイオードを用いることができる。フォトダイオード9は,検出器のピクセルを構成し,それぞれが,変調部7の変調領域5に対応したものであってもよい。2次元アレイの例は,格子点上に4つ以上のフォトダイオードが存在するものである。2次元アレイの例は,2×2(縦方向及び横方向に2つずつ),2×2が1つの面に4つある構造(4×4),3×3,5×5,6×6,4×6,8×8,及び12×12である。2次元アレイ状に配置された複数のフォトディテクターは,それぞれ10μm以上離れて配置される(つまり隣接するフォトダイオードの最も近い部分間の距離dが10μm以上)ことが好ましい。この間隔が大きすぎると,光検出機能が低下するので,隣接するフォトダイオードの間の距離dは,10μm以上100μm以下が好ましく,30μm以上80μm以下でも,30μm以上60μm以下でも,40μm以上60μm以下でもよい。光検出器の2次元フォトディテクターアレー部は,面入射構造(表面入射又は裏面入射構造)を有していることが好ましい。
この光検出器は,例えば,複数のフォトディテクターの間に幅が4μm以下(好ましくは1μm以上4μm以下,1μm以上3μm以下,又は2μm以上4μm以下)の配線12を有する。それぞれのフォトダイオードの受光領域は,1辺が100μm以下(面積が1万μm以下)であることが好ましい。
複数のフォトダイオードは,それぞれメサ構造を有することが好ましい。メサ構造は,あらかじめ結晶成長によりpn接合を形成し,その後,素子領域をエッチングにより島状に切り出した構造を意味する。メサ構造を有するフォトダイオードは,例えば,特許5842393号公報や特許5386764号公報に記載される通り公知である。フォトダイオードはプレーな構造であってもよい。プレーな構造は,カソード層側となるn型エピタキシャル層の表面から選択的に不純物を深さ方向に添加し,そこをp型に反転させてアノードとする構造を意味する。また,光検出器は,2次元フォトディテクターアレー部から1GHz以上の高速電気信号を出力することができるような高周波伝送路が設けられていることが好ましい。このような高速伝送路は,例えば,2次元フォトディテクターアレー部を基盤の中心部に設け,その2次元フォトディテクターアレー部に存在する配線と接続された配線が基盤の周方向に伸びている構造を有するものである。そして,この基盤は,外部(例えば後述するデジタル信号プロセッサ)とフィリップチップボンディング又はワイヤーボンディングにより接続されることが好ましい。これらの配線は,マイクロストリップラインやコプレーナ型の伝送線路により実現されることが好ましい。このような構成を有すれば,光電流が各フォトダイオードに流れ,電気信号に変換され,伝送線路を通して外部電気回路へと出力されることとなる。
この光検出器は,光通信用のフォトダイオードをアレイ状にして用いているので,CCDなどとは異なり,周波数応答が1GHz以上といった高速信号に対応できる。
フォトディテクターアレーは,マルチコアファイバ内のシングルモードファイバー群から放射される複数の光を受信するものであり,複数の光のそれぞれに,複数のフォトディテクターのいずれかが対応する。
ADC(アナログ−デジタル変換器)
ADC23は,それぞれのフォトダイオードが検出した光強度をデジタル情報に変換する要素である。それぞれのフォトダイオードと接続されたADCが存在し,それぞれのフォトダイオードの検出値をデジタル信号に変換してもよい。ADCはDSPへデジタル信号を出力する。
DSP(デジタル信号プロセッサ)
光検出器は,さらにデジタル信号プロセッサ(DSP)25を有するものが好ましい。図4は,デジタル信号プロセッサを説明するためのブロック図である。デジタル信号プロセッサ25は,複数のフォトディテクターに含まれるそれぞれのフォトディテクターに対応した重み係数付与部27を有する。DSP25は,重み係数付与部が付与するそれぞれの重み係数を調整できる。DSP25は,ADC23のそれぞれからデジタル信号を受け取り,それぞれのデジタル信号に,重み係数をかけ合わせ,MIMO(マルチインプットマルチ出力)部29に送る。MIMO部29は,それぞれのフォトディテクターからの光信号に重みがけを行った情報を出力する。出力情報を解析すると,受信信号を解析できる。
このようにして,複数のフォトディテクターのそれぞれから信号に様々な重み係数をかけ合わせたものを信号として出力できる。さらに,それぞれのフォトディテクターに関する重み係数を変えることで,特定のフォトディテクターが検出した成分を抽出できる。
この光検出器は,例えば,マルチコアファイバ(MCF)と数モードファイバ(FMF)とが組み合わさった伝送路や,FMFによる伝送路からの出力を直接受信するための光検出器として用いられてもよい。
なお,上記は,フォトダイオードをアレイ状にした例について説明した。もっとも,単一の光検出器を用いても,変調や取得信号の解析を行うことにより,信号光や局所光の振幅,位相の時間変化や空間分布及び空間分布の変化を取得し,これらを復元できる。単一の光検出器を用いた場合には,他の空間分布を持つ光信号と混在した光信号の中から,特定の空間分布を持つ光信号を,選択的に,受信することができる。なお,空間整合受信については,CCDを用いて検出してもよい。
以下,受信装置の動作例について説明する。MCFからの出力光が出力ポートに入射する。すると,入力ポートに入射した受信光がレンズに向けて出射する。レンズ19は,広がった状態の受信光を受け取り,受信光をコリメートし,ハーフミラー21へと伝える。一方,局所光源3から局所光が出射され,局所光の幅が広げられた状態でレンズ17に到達し,レンズ17においてコリメートされる。レンズ17から出射した局所光は,位相マスク7に到達する。位相マスク7における複数の位相変調器5は,局所光の各部位に対し,所定の位相変調を施す。位相変調を施された局所光は,ハーフミラー21に到達する。ハーフミラーに到達した際の局所光の光径(w)は,ハーフミラー21に到達した受信光の光径(w)と同じかそれより小さい(例えば,90%以上99%以下である)ことが好ましい。ハーフミラー21において,受信光と局所光とが合波される。受信光のうち,局所光と位相があった部分は強めあい,位相が逆位相であった部分は弱めあう。このように合波された光は,光強度が強めあった部分と弱めあった部分が存在することとなる。その強弱は,基本的には,それぞれの位相変調器5に対応したものである。ハーフミラー21において合波された光は,光検出器11に入射する。光検出器11には,位相変調器5に対応した位置にフォトダイオード9が存在する。このため,光検出器11において,受信した光の強度を測定できることとなる。それぞれのフォトダイオード9からの出力は,ADC23においてデジタル信号に変換され,DSP25において信号処理が施される。DSP25は,受信光を復元できる。具体的には,DSP25は,それぞれのフォトダイオード9からの出力に対して重み付けをすることができるようにされており,重み付けを調整することで,位相変調に応じた成分の光強度情報を得ることができる。これにより,受信光のモードや変調方式を分類できることとなる。
図5は,グレーティングを有する受信装置を説明するためのブロック図である。この例では,局所光がグレーティング31及びレンズを経て,位相マスク7に至る。グレーティングの例は,ファイバブラッググレーティング(FBG)である。ファイバブラッググレーティングは,ユニフォームファイバグレーティング,チャープグレーティング,又はマルチセクショングレーティングを用いるものや,変調可能なファイバグレーティングがあげられる。ファイバブラッググレーティングは,たとえば,位相マスクを介して紫外線を照射し,そのコアの屈折率を所定のピッチで変化させることにより得ることができる。グレーティングを用いることで,波長選択コヒーレント検出を実現できる。つまり,例えば,局発光波長を信号光波長帯域内に配置し,局発光の振幅及び位相等に,空間分布を与え,かつ,信号光と局発光間ビート成分を,単一の光検出または,複数の光検出器を用いて,検出することにより,局発光の振幅,位相の時間変化,空間分布,変化情報を取得,復元することができる。局発光波長を信号光波長帯域内に配置するとは,例えば,信号光波長の占有光波長をλ以上λ以下とした時(ただし,λ<λ),局発光波長λをλ以上λ以下の領域に配置することである。
なお,局発光波長を信号光波長帯域外に配置した場合,信号光と局発光間ビート成分を,単一の光検出,または,複数の光検出器を用いて検出することで,局発光の振幅,位相の時間変化,空間分布,変化情報を取得,復元するものも有効である。局発光波長を信号光波長帯域外に配置するとは,例えば,信号光波長の占有光波長をλ以上λ以下とした時(ただし,λ<λ),局発光波長λをλより小さいか,λより大きい領域に配置することである。
この場合の受信装置の例は,受信光3と合波される局所光を発生する局所光発生源5,局所光と受信光3とが合波された光を,検出する検出部13とを有する受信装置となる。局所光の波長は,信号光波長帯域外である。この場合,特定の空間分布を有する光信号を選択的に受信することで,局発光の振幅,位相の時間変化,空間分布,変化情報を取得,復元できる。局発光を信号光帯域外に配置した場合,信号光は電気信号として取得される際に,振幅位相情報を保有したまま,中間周波数帯信号にダウンコンバートされ,この信号がデジタル信号処理回路に入力される。デジタル信号理仮路上で,中間信号を平行信号セットに変換し,前述のマスクアレイと同じ位相,振幅分布をもつマスクを局発信号に適用した平行信号セットを用意し,これと,ミキシング行うことにより,信号光を復調,モード分離が行える。
図6は,合波部を用いない受信装置を説明するためのブロック図である。図6に示される例では,光検出器において受信光と局所光とが合わさるため,受信光と局所光とを合波する合波部が存在しない。このような構成とすれば光学素子を軽減できることとなる。
図7は,光検出器の利用方法の例を示す概念図である。この例では,マルチコアファイバ(MCF)と数モードファイバ(FMF)とが接続された伝送路からの出力光を複数の光検出器11を用いて受信し,それぞれの光検出器(及びそれと接続されたADC及びDSP)により受信信号を解析する。
上記の光検出器は,以下のような用途も考えられる。MCFからの光をレンズ等で集光し,各フォトディテクターへ直接光結合を行う。MCFのコア配置(三角配置,四角配置)に合わせ,光検出器のピクセルの配置を決定すればよい。従来技術ではMCFを複数の単一ファイバーへ変換するDEMUX装置又はDEMUX装置後に複数の単一ファイバーを接続し,その単一ファイバーに応じた受信器が必要であった。上記の光検出器を用いればDEMUX装置が不要となり,また出力本数分必要であった複数の受信器が1つに集約できる。このため,上記の光検出器を用いれば,受信側システム構成を簡略化でき,小型トランシーバー等の設計に大きく寄与される。また,軌道角運動量(OAM)を使ったモード分割多重伝送においても,上記の光検出器を用いることで,光DEMUX装置や後段の1モードに対する受信機が不要となり,直接OAM光信号を受信できる。これにより瞬時モード判定とデータ受信が可能となる。2次元PDA各素子とパッチアンテナなどの小型アンテナを接続し,各光検出器素子への位相制御を電気的,光学的手法により行うことで,2次元フェーズドアレーアンテナを製造できる。光検出器単体素子は100GHz以上で動作するよう設計が可能であることから,マイクロ波帯からミリ波帯,あるいはTHz帯の2次元フェーズドアレーアンテナが作製可能となる。
本実施例では,高速モード分離とコヒーレント検出を光電子的に可能にする「空間コヒーレント整合検出」とよばれる新しい手法を提案し,検討する。
図8にその原理を示す。図8は,実施例の空間コヒーレント整合検出器を説明するための概念図である。空間コヒーレント整合検出器は,ハーフミラー,局所光,位相マスク,フォトダイオード(PD)アレイおよびデジタル信号プロセッサ(DSP)を含む。信号および局所光は信号ポートおよびローカルポートから入力され,コリメートされる。2つの光は,ハーフミラーで結合され,PDアレイに入射する。信号および局所光は,PDアレイのアクティブエリアをカバーするビームサイズで十分に空間的に広がっている。
PDアレイは,共通の光入力と複数の出力電極とが2次元マトリクス状に配置された構造を有し,異なる位置の光電流を別々に取り出す。PDアレイの各要素は従来のPD技術に基づいているため,10Gbaud以上の高帯域幅検出が可能である。検出システムでは,ローカルポート側に特殊位相パターンを持つ位相マスクを配置している。位相マスクを用いて,局所ビームの位相パターンが制御される。したがって,PDアレイの各素子に入力されるローカル光の光位相は,必要に応じて制御される。一方,信号光はそのままPDアレイに入射し,したがって,PDレーザーで信号光とローカル光の相対位相差を独立に制御できる。
図9は,PDアレイの設計例を示す図である。図9に示されるように,PDアレイは,1GHz以上の高速電気信号を外部へ取り出すための高周波伝送路が設けられている。図10は,PDアレイにおける裏面入射断面構造例を示す図である。タイル状に加工した高速フォトディテクター(大きさ:約100μm×100μm以下)を2次元上に配置する。各フォトディテクターからの電気出力と外部電気回路との接続のため,フォトディテクターには4μm程度の配線を設ける。電気信号は1GHz以上の高速信号であるため,外部回路への信号取り出しにはマイクロストリップラインやコプレーナ―伝送線路を設ける。高速光信号は上面もしくは裏面より入射を行う。これにより光電流が各フォトディテクターに流れ,電気信号へ変換され,伝送線路を通して外部電気回路へ出力される。
例えば,アレイ内の2つのPD素子の間にπ/2位相オフセットを与えると,信号の同相(I)成分と直交(Q)成分が同時に検出され,コヒーレント検出が達成される。空間モードを分離するには,モーダルパターンに一致する位相オフセットを与えることによって,PD素子からの光電流をすべて集計する必要がある。加算プロセスのための熱電流の重み係数を適切に変更することにより,光学構成を変えることなく任意の直交モードを動的に選択することができる。
重み係数はDSPで簡単に制御することができ,光検出に先立って光モード分割なしですべてのモードチャネルの並列検出を実現できる。例えば,アレイ内の2つのPD素子の間にπ/2位相オフセットを与えると,信号の同相(I)成分と直交(Q)成分が同時に検出され,コヒーレント検出が達成される。空間モードを分離するには,モードパターンに一致する位相オフセットを与えることによって,PD素子からの光電流をすべて集計すればよい。加算プロセスのための熱電流の重み係数を適切に変更することにより,光学系の構成を変えることなく任意の直交モードを動的に選択することができる。重み係数はDSPで簡単に制御することができ,光検出に先立って光モード分割なしですべてのモードチャネルの並列検出を実現できる。
この技術の最も重要な点は,受信したMDM信号に対して空間フィルタまたは他の光信号処理を適用しなくて済むことである。信号は,共通の単一光入力面を有するフォトダイオードアレイに単に入力される。このようなPDアレイの単一のセットでは,すべてのモーダルチャネルを個別に検出することができる。位相マスクパターンを変更することなく,空間モードを直交的に分離することができる。我々は,配列要素で検出された光電流の組み合わせを選択するためにDSPを使用する。検出システムは,異なるモード数が多重化された他のMDM信号に対して柔軟にアップグレードすることができる。マトリックスサイズが十分に大きい場合には,3,5またはそれより高次のMDM信号を検出可能である。
さらに,検出スキームは,モード分割損失を被らない。モード損失にかかわらず,固有損失は理想的に3dBであり,シングルチャンネル位相ダイバーシティコヒーレント受信機およびコヒーレント整合検出器と同等である。光損失を比例的に増加させる従来の位相板ベースの光モードスプリッタモーダル数に変換する(図8の理論的損失は6dBであるが,ハーフミラーのもう一方の出力ポートを使用してバランス型検出構成として変更することで,3dBまで改善できる。)。
ここでは,4x4 PDアレイを用いた3つのモードのMDM信号のモード分離と検出に着目した空間コヒーレント整合検出器を検討する。本概念を証明するために数値解析を行った。図11は,検討した4×4位相パターンを示す。図11(a)は,位相マスクのパターン例を示す。図11(b)は,重み係数の組み合わせ例を示す。この位相マスクは,図の点線の枠で囲まれた4組のサブ位相マスクで構成されている。各サブ位相マスクは,それぞれ0,π/2,π,3π/2の位相シフトを与える4つの領域を有する。[0,π]位相シフトに対応する一対のPD素子は,受信信号の同相成分のバランスト検出として機能する。直角位相成分は,対となる[π/2,3π/2]PDを用いて検出される。PDアレイからのすべての光電流を合計するとき,重み係数の組み合わせを変更するだけでモード分離が達成される。LP01モードは,以下の重み係数行列を用いてすべての光電流を合計すると検出される。
A=[aij]=[1 0 0 1; 0 −1 −1 0; 0 −1 −1 0;1 0 0 1](I成分の場合)。
[0 −1 1 0; 1 0 0 −1; −1 0 0 1; 0 1 −1 0](Q成分の場合)。
また,LP11aモードとLP11bモードを検出するには,それぞれ
[1 0 0 −1; 0 −1 1 0; 0 −1 1 0; 1 0 0 −1] (LP11a−I),
[0 −1 −1 0; 1 0 0 1; −1 0 0 −1; 0 1 1 0] (LP11a−Q),および
[1 0 0 1; 0 −1 −1 0; 0 1 1 0; −1 0 0 −1] (LP11b−I),
[0 −1 1 0; 1 0 0 −1; 1 0 0 −1; 0 −1 1 0] (LP11b−Q)となる。
図12は,モード毎の20−Gb/s QPSK信号,例えば3×20−Gb/sMDM QPSK信号の受信に焦点を当てて,DSPで復元された配置を計算したものを示す。計算では,0.1 nmでのOSNRは20 dBと仮定される。マルチ入力マルチ出力(MIMO)イコライザを適用して信号を分離し,モードのチャネル間のクロストークを抑圧する。図12(a)から(c)は,すべてのチャネルが多重化され,空間コヒーレント整合検出器で受信されたときに得られるLP01,LP11aおよびLP11bモードに対応するモードのチャネルの配置を示している。なお,簡単に説明するため,空間コヒーレント整合検出器では,すべてのモードが保持されると仮定する。したがって,すべてのチャネルがクロストークなしに別々に復元されていることが分かる。これは,このシステムがMDM信号のすべてのモードのチャネルを直交で逆多重化できることを意味する。また,PDアレイの角度(および位相マスクも同様)をMDMモードに対して0.1π[rad]傾斜させたときに得られた配置を計算した。この配置は図12(d)から(f)に示されている。この状況では,サブセットPDにおける光検出の均衡が不完全になる。従って,不均衡な成分は,MIMOで完全に補償することはできない。我々は,MIMO処理を変更する,および/またはPDアレイ(より大きい行列スケールを有する)の空間分解能を向上させることができると考えている。
結論として,我々は,高速PDアレイに基づく2次元空間コヒーレント整合検出方器を提案し,検討した。3×20 Gb/sMDM QPSK信号を検出する4×4行列による配置の数値解析を通して,MDM信号は光電気的に分波し,コヒーレントに受信することができることが分かる。従来のMDMデマルチプレクサーとは異なり,空間フィルタリングも光スプリッティングも受信信号には適用されず,理想的には,単一チャネルコヒーレント受信機に匹敵する3dBの損失を低減するのに有益である。
図13は,フォトディテクターの大きさ(pn接合面積)に対する3dB周波数帯域の計算見積もりを示す図面に替るグラフである。図13からフォトディテクターの大きさを100μm×100μm以下とすることで帯域約1GHz以上が得られることがわかる。
図14は,クロストーク量および挿入損失の算出例を示す図面に替るグラフである。図14に示されるように,1ピクセルのピクセルサイズ100μm×100μm,配線幅4μm,スペース14μm,ピクセル間隔64μm時,周波数30GHz以下においてRFクロストーク20dB以下が得られる。同様に1ピクセルのピクセルサイズ20μm×20μm,配線幅4μm,スペース14μm,ピクセル間隔44μm時,周波数30GHz以下においてRFクロストーク20dB以下が得られる。
本発明は,光情報通信の分野で利用されうる。
3 局所光源
5 変調領域(変調器)
7 変調部
9 検出領域(フォトディテクター,フォトダイオード)
11 検出部
12 配線
17 レンズ
19 レンズ
21 合波部(ハーフミラー)
23 ADC
25 デジタル信号プロセッサ(DSP)
27 重み係数付与部


Claims (6)

  1. 受信光と合波される局所光を発生する局所光発生源(3)と,
    前記局所光発生源(3)から発生した局所光が前記受信光と合波される前に,前記局所光の複数の部分に異なった複数の変調を与えるための複数の変調領域(5)を有する変調部(7)と,
    前記変調部(7)で複数の変調を与えられた局所光と,前記受信光とが合波された光を,前記局所光の複数の部分ごとに検出する複数の検出領域(9)を有する検出部(11)とを有する,
    受信装置。
  2. 請求項1に記載の受信装置であって,
    前記複数の変調領域(9)は,アレイ状に形成され,
    前記複数の検出領域(11)は,アレイ状に形成される,受信装置。
  3. 請求項1に記載の受信装置であって,
    前記局所光発生源(3)は,前記局所光の波長を掃引できる,受信装置。
  4. 請求項1に記載の受信装置であって,
    前記局所光発生源(3)は,光コム信号発生器である,受信装置。
  5. 請求項1に記載の受信装置であって,
    さらに,前記受信光と,前記変調部(7)で複数の変調を与えられた局所光とを合波する合波部(21)をさらに有する,受信装置。
  6. 請求項1に記載の受信装置であって,
    前記複数の検出領域(11)は,複数のフォトダイオードである,受信装置。
JP2017053742A 2017-03-17 2017-03-17 空間整合受信 Active JP6889470B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017053742A JP6889470B2 (ja) 2017-03-17 2017-03-17 空間整合受信
PCT/JP2018/008726 WO2018168598A1 (ja) 2017-03-17 2018-03-07 空間整合受信

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017053742A JP6889470B2 (ja) 2017-03-17 2017-03-17 空間整合受信

Publications (2)

Publication Number Publication Date
JP2018157441A JP2018157441A (ja) 2018-10-04
JP6889470B2 true JP6889470B2 (ja) 2021-06-18

Family

ID=63523053

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017053742A Active JP6889470B2 (ja) 2017-03-17 2017-03-17 空間整合受信

Country Status (2)

Country Link
JP (1) JP6889470B2 (ja)
WO (1) WO2018168598A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113541809B (zh) * 2021-07-13 2022-06-24 东南大学 一种多波段可调光生毫米波产生系统
JPWO2023026462A1 (ja) * 2021-08-27 2023-03-02

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03179332A (ja) * 1989-04-28 1991-08-05 Nippon Telegr & Teleph Corp <Ntt> 光受信器
JP6130290B2 (ja) * 2013-12-04 2017-05-17 日本電信電話株式会社 モード結合器

Also Published As

Publication number Publication date
JP2018157441A (ja) 2018-10-04
WO2018168598A1 (ja) 2018-09-20

Similar Documents

Publication Publication Date Title
JP7140784B2 (ja) モジュラー三次元光学検知システム
US9564968B2 (en) Multiple-input method and apparatus of free-space optical communication
CN105871500B (zh) 采用相干检测及带外信道识别的光学通信链路
CN112099048B (zh) 基于时分-差频复用的微波光子mimo雷达探测方法及系统
CN108463958B (zh) 用于空分复用系统的偏振不敏感自零差探测接收器
US10677989B2 (en) Reconfigurable spectroscopy system
Tsokos et al. True time delay optical beamforming network based on hybrid InP-silicon nitride integration
JP6884948B2 (ja) 高速フォトディテクターアレー
JP4971316B2 (ja) 多波長センサアレイ
CN104283616B (zh) 基于光真延时的对射频信号整形的系统和方法
KR102572056B1 (ko) Lidar 시스템 내에서 다수의 애퍼쳐로부터의 가간섭성 검출을 관리하기 위한 장치 및 방법
KR20200122367A (ko) 다중 채널의 확산-빔 광학 무선 통신을 위한 시스템
JP6889470B2 (ja) 空間整合受信
CN113614569A (zh) 具有降低的散斑灵敏度的lidar系统
US6701042B1 (en) Arrayed waveguide grating module and device and method for monitoring optical signal using the same
US8610625B2 (en) Method and apparatus for transmitting and receiving phase-controlled radiofrequency signals
EP2693664B1 (en) Self coherent colorless architecture for flexible WDM access network
Zhang et al. Crosstalk-mitigated AWGR-based two-dimensional IR beam-steered indoor optical wireless communication system with a high spatial resolution
KR20020037050A (ko) 수광 소자 및 수광 소자를 사용한 광 검출기
US20230128701A1 (en) Distribution of Optical Local-Oscillator Comb for Spectral Channelizing of RF Signal
JP2003087040A (ja) 光制御アレイアンテナ
Umezawa et al. Advanced Photoreceiver Technology for Space Division Multiplexing Communication
Sakamoto et al. Two-dimensional spatial coherent matched detection scheme for modal separation and homodyne detection of mode-division multiplexed signals
JP2023106196A (ja) 光パルス計測器、光パルス計測方法及び光パルス計測プログラム
JPS6378623A (ja) 波長分割多重光伝送装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210420

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210514

R150 Certificate of patent or registration of utility model

Ref document number: 6889470

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150