JP6888270B2 - Manufacturing method of nickel oxide powder - Google Patents

Manufacturing method of nickel oxide powder Download PDF

Info

Publication number
JP6888270B2
JP6888270B2 JP2016203313A JP2016203313A JP6888270B2 JP 6888270 B2 JP6888270 B2 JP 6888270B2 JP 2016203313 A JP2016203313 A JP 2016203313A JP 2016203313 A JP2016203313 A JP 2016203313A JP 6888270 B2 JP6888270 B2 JP 6888270B2
Authority
JP
Japan
Prior art keywords
nickel
nickel oxide
oxide powder
particles
surface area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016203313A
Other languages
Japanese (ja)
Other versions
JP2018065701A (en
Inventor
法道 米里
法道 米里
渡辺 博文
博文 渡辺
晶市 黒川
晶市 黒川
高橋 純一
純一 高橋
雄太郎 木道
雄太郎 木道
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2016203313A priority Critical patent/JP6888270B2/en
Publication of JP2018065701A publication Critical patent/JP2018065701A/en
Application granted granted Critical
Publication of JP6888270B2 publication Critical patent/JP6888270B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、還元して導電性フィラー材料や電池材料に用いられる酸化ニッケル粉末の製造方法に関する。 The present invention relates to a method for producing nickel oxide powder which is reduced and used as a conductive filler material or a battery material.

一般に、酸化ニッケル粉末は、硫酸ニッケル、硝酸ニッケル、炭酸ニッケル、水酸化ニッケル等のニッケル塩類又はニッケルメタル粉を、ロータリーキルン等の転動炉、プッシャー炉等のような連続炉、あるいはバーナー炉のようなバッチ炉を用いて酸化性雰囲気下で焼成することによって製造される。このようにして作製された酸化ニッケル粉末は、電子部品用材料や電池用材料等の多様な用途に用いられており、一部はニッケル粉末に還元してから導電性フィラー用材料や電池用材料として用いられている。例えば導電性フィラー用材料では、酸化ニッケル粉末の還元で得たニッケル粉末を樹脂等に練り込んでフィルム状としたり、ペースト状にして塗膜を形成したりして電磁波シールドとして用いられている。また、電池用材料では、還元で得たニッケル粉末を燃料電池の電極として用いられている。 Generally, the nickel oxide powder is a nickel salt such as nickel sulfate, nickel nitrate, nickel carbonate, nickel hydroxide, or nickel metal powder, such as a rolling furnace such as a rotary kiln, a continuous furnace such as a pusher furnace, or a burner furnace. It is produced by firing in an oxidizing atmosphere using a simple batch furnace. The nickel oxide powder thus produced is used for various purposes such as materials for electronic parts and batteries, and some of them are reduced to nickel powder and then materials for conductive fillers and batteries. It is used as. For example, in a material for a conductive filler, nickel powder obtained by reducing nickel oxide powder is kneaded into a resin or the like to form a film, or a paste is formed to form a coating film, which is used as an electromagnetic wave shield. Further, in the battery material, nickel powder obtained by reduction is used as an electrode of a fuel cell.

上記のように酸化ニッケル粉末を還元してニッケル粉末の形態で用いる場合は、原料となる酸化ニッケル粉末は、その不純物含有量、特に塩素や硫黄の含有量が十分に低いことが求められる。その理由は、塩素や硫黄は腐食の原因になったり劣化を促進したりするため、それら不純物がニッケル粉末に多く含まれていると、そのニッケル粉末を用いた機器の信頼性を低下させるおそれがあるからである。 When the nickel oxide powder is reduced and used in the form of nickel powder as described above, the nickel oxide powder used as a raw material is required to have a sufficiently low impurity content, particularly chlorine and sulfur content. The reason is that chlorine and sulfur cause corrosion and accelerate deterioration, and if the nickel powder contains a large amount of these impurities, the reliability of equipment using the nickel powder may be reduced. Because there is.

そのため、例えば特許文献1には、450〜600℃の仮焼による脱水工程と、1000〜1200℃の焙焼による硫酸ニッケルの分解工程とを明確に分離した酸化ニッケル粉末の製造方法が提案されている。この製造方法によれば、硫黄含有量が低く且つ平均粒径が小さい酸化ニッケル粉末を安定して製造できると記載されている。また、特許文献2には、横型回転式製造炉を用いて強制的に空気を導入しながら、最高温度900〜1250℃で焙焼する方法が提案されている。この製造方法によっても、硫黄含有量が500質量ppm以下の不純物の少ない酸化ニッケル粉末が得られると記載されている。 Therefore, for example, Patent Document 1 proposes a method for producing nickel oxide powder in which the dehydration step by calcining at 450 to 600 ° C. and the decomposition step of nickel sulfate by roasting at 1000 to 1200 ° C. are clearly separated. There is. According to this production method, it is described that nickel oxide powder having a low sulfur content and a small average particle size can be stably produced. Further, Patent Document 2 proposes a method of roasting at a maximum temperature of 900 to 1250 ° C. while forcibly introducing air using a horizontal rotary manufacturing furnace. It is described that this production method also provides nickel oxide powder having a sulfur content of 500 mass ppm or less and having a small amount of impurities.

特開2004−123488号公報Japanese Unexamined Patent Publication No. 2004-123488 特開2004−189530号公報Japanese Unexamined Patent Publication No. 2004-189530

上記の特許文献1や2の方法によれば硫黄含有量の低い酸化ニッケル粉末が得られるものの、これら特許文献1や2の方法で得られる酸化ニッケル粉末は、平均粒径が1.0μm以下の微細な粉末になる。一般的に、ニッケル粉末の原料となる酸化ニッケル粉末は、最終形態のニッケル粉末の粒径制御の観点から、ある程度の大きさの粒径と適切な範囲内の比表面積を併せ持つ酸化ニッケル粉末が求められている。具体的には、レーザー散乱法で測定した中心粒径(粒度分布から体積換算で50%となる粒径D50)が5μm以上で、かつ比表面積が0.5〜1.6m/gの範囲内の酸化ニッケル粉末が好適とされており、上記した特許文献1や2の方法で得られるような微細な粉末は好ましくない。 Although nickel oxide powder having a low sulfur content can be obtained by the methods of Patent Documents 1 and 2 described above, the nickel oxide powder obtained by the methods of Patent Documents 1 and 2 has an average particle size of 1.0 μm or less. It becomes a fine powder. In general, nickel oxide powder, which is a raw material of nickel powder, is required to have a nickel oxide powder having a particle size of a certain size and a specific surface area within an appropriate range from the viewpoint of controlling the particle size of the nickel powder in the final form. Has been done. Specifically, the central particle size (particle size D50, which is 50% in terms of volume from the particle size distribution) measured by the laser scattering method is 5 μm or more, and the specific surface area is in the range of 0.5 to 1.6 m 2 / g. The nickel oxide powder inside is preferred, and the fine powder obtained by the methods of Patent Documents 1 and 2 described above is not preferable.

本発明は上記した従来の事情に鑑みてなされたものであり、工業的に広く用いられている硫酸ニッケルを原料に用いることができ、硫黄含有量が低く且つ所定の範囲内の粒径及び比表面積を有する酸化ニッケル粉末の製造方法を提供することを目的としている。 The present invention has been made in view of the above-mentioned conventional circumstances, nickel sulfate widely used industrially can be used as a raw material, the sulfur content is low, and the particle size and ratio are within a predetermined range. It is an object of the present invention to provide a method for producing a nickel oxide powder having a specific surface area.

本発明者らは、上記目的を達成するため、酸化ニッケル粉末の製造プロセスについて鋭意研究を重ねた結果、硫酸ニッケル水溶液を水酸化塩、炭酸塩、硝酸塩等の塩基性水溶液を用いて中和することによって、水酸化ニッケル、炭酸ニッケル、硝酸ニッケル等の粒子が凝集した二次粒子からなる中間体を生成し、これを非還元性で且つ低酸素分圧雰囲気で焼成することにより、洗浄処理を特に施さなくても硫黄含有量が低く且つ所定の粒径及び比表面積を有する二次粒子の形態の酸化ニッケル粉末を作製できることを見出し、本発明を完成するに至った。 As a result of diligent research on the production process of nickel oxide powder in order to achieve the above object, the present inventors neutralize the nickel sulfate aqueous solution with a basic aqueous solution such as hydroxide salt, carbonate or nitrate. As a result, an intermediate composed of secondary particles in which particles such as nickel hydroxide, nickel carbonate, and nickel nitrate are aggregated is generated, and this is fired in a non-reducing and low oxygen partial pressure atmosphere to perform a cleaning treatment. It has been found that nickel oxide powder in the form of secondary particles having a low sulfur content and a predetermined particle size and specific surface area can be produced without any particular application, and the present invention has been completed.

すなわち、本発明の酸化ニッケル粉末の製造方法は、硫酸ニッケルの水溶液を塩基性水溶液で中和してニッケル塩の中間体粒子を晶析させる工程と、得られた中間体粒子の焼成処理により二次粒子の形態を有する酸化ニッケル粉末を生成させる工程とを含み、前記焼成処理を温度550〜900℃の範囲内で且つ酸素分圧5kPa以下の非還元性雰囲気で行うことにより、前記二次粒子の形態を有する酸化ニッケル粉末の硫黄含有量を200質量ppm以下、D50を10〜20μm、比表面積を0.5〜1.6m /gにすることを特徴としている。 That is, the method for producing nickel oxide powder of the present invention is a step of neutralizing an aqueous solution of nickel sulfate with a basic aqueous solution to crystallize intermediate particles of a nickel salt, and a firing treatment of the obtained intermediate particles. and a step of producing nickel oxide powder in the form of the following particles, by performing the firing process with a non-reducing atmosphere and the following oxygen partial pressure 5kPa in a range of temperature 550 to 900 ° C., the secondary particles The nickel oxide powder having the above-mentioned form has a sulfur content of 200 mass ppm or less, a D50 of 10 to 20 μm, and a specific surface area of 0.5 to 1.6 m 2 / g .

本発明によれば、硫黄含有量が低く且つ所定の粒径及び比表面積を有する酸化ニッケル粉末を洗浄処理を施すことなく容易に作製することができる。 According to the present invention, nickel oxide powder having a low sulfur content and a predetermined particle size and specific surface area can be easily produced without performing a cleaning treatment.

ニッケル粉末に還元してから用いることが多い酸化ニッケル粉末は、前述したように、ある程度の大きさの粒径と適切な範囲内の比表面積を有していることが望ましい。その理由は、酸化ニッケル粉末を還元して得られるニッケル粉末の粒径は、原料の酸化ニッケル粉末の粒径よりも顕著に小さくなるため、フィラー材料等で求められる粒径を勘案すると酸化ニッケル粉末の段階ではD50が5μm以上であることが好ましい。 As described above, it is desirable that the nickel oxide powder, which is often used after being reduced to nickel powder, has a particle size of a certain size and a specific surface area within an appropriate range. The reason is that the particle size of the nickel powder obtained by reducing the nickel oxide powder is significantly smaller than the particle size of the raw material nickel oxide powder. Therefore, considering the particle size required for the filler material or the like, the nickel oxide powder At the stage of, it is preferable that D50 is 5 μm or more.

また、酸化ニッケル粉末の比表面積は、還元によるニッケル粉末生成時の成長速度に影響し、比表面積が小さすぎると成長速度が遅くなり生産性が低下してしまう。逆に比表面積が大きすぎると成長速度が速くなりすぎて、生成したニッケル粉末の粒径のばらつきが大きくなる傾向がある。以上の点から比表面積は0.5〜1.6m/gの範囲内にするのが好ましい。しかしながら、例えば粒径が5μmの真球状で単粒子で構成される酸化ニッケル粉末は、比表面積を計算すると0.18m/gになるので、上記範囲の比表面積に比べて極めて小さな値になる。 Further, the specific surface area of the nickel oxide powder affects the growth rate at the time of producing the nickel powder by reduction, and if the specific surface area is too small, the growth rate becomes slow and the productivity decreases. On the contrary, if the specific surface area is too large, the growth rate becomes too fast, and the particle size of the produced nickel powder tends to vary widely. From the above points, the specific surface area is preferably in the range of 0.5 to 1.6 m 2 / g. However, for example, nickel oxide powder having a true spherical particle size of 5 μm and composed of single particles has a specific surface area of 0.18 m 2 / g, which is extremely small compared to the specific surface area in the above range. ..

そこで、上記のD50の要件と比表面積の要件とを共に満たすため、本発明の一具体例の酸化ニッケル粉末の製造方法では、一次粒子が凝集(焼結)した二次粒子の形態の酸化ニッケル粉末を作製している。このように一次粒子が凝集(焼結)した二次粒子の形態を有する酸化ニッケル粉末を作製するため、本発明の実施形態に係る酸化ニッケル粉末の製造方法は、硫酸ニッケル水溶液を塩基性水溶液で中和して水酸化ニッケル等の中間体粒子を得る中和工程と、得られた中間体粒子を温度550〜1000℃で且つ酸素分圧5kPa以下の非還元性雰囲気の下で焼成して酸化ニッケル粉末を得る焼成工程とを有している。なお凝集(焼結)した二次粒子は、後述するように一次粒子が強固に結合した二次粒子からなる凝集体の形態であり、導電性フィラーとして樹脂等に練り込んだり、ペーストに加工したとしても結合が切れることはない。 Therefore, in order to satisfy both the above requirement of D50 and the requirement of specific surface area, in the method for producing nickel oxide powder of a specific example of the present invention, nickel oxide in the form of secondary particles in which primary particles are aggregated (sintered) We are making powder. In order to produce nickel oxide powder having the form of secondary particles in which the primary particles are aggregated (sintered) in this way, the method for producing nickel oxide powder according to the embodiment of the present invention is to use a nickel sulfate aqueous solution as a basic aqueous solution. A neutralization step of neutralizing to obtain intermediate particles such as nickel hydroxide, and firing the obtained intermediate particles in a non-reducing atmosphere at a temperature of 550 to 1000 ° C. and an oxygen partial pressure of 5 kPa or less for oxidation. It has a firing step to obtain nickel powder. The agglomerated (sintered) secondary particles are in the form of agglomerates composed of secondary particles in which the primary particles are firmly bonded as described later, and are kneaded into a resin or the like as a conductive filler or processed into a paste. Even so, the bond will not be broken.

これにより、ニッケル鍍金等に広く用いられる硫酸ニッケルを原料に用いても、D50が5μm以上であり且つ比表面積が0.5〜1.6m/gの範囲内にある酸化ニッケル粉末を作製することができる。この酸化ニッケル粉末を還元することで得られるニッケル粉末は、電磁波シールド等のフィラー材料や電池材料等に好適に用いることができる。以下、これら一連の工程からなる酸化ニッケル微粉末の製造方法について工程ごとに詳細に説明する。 Thereby, even if nickel sulfate widely used for nickel plating or the like is used as a raw material, nickel oxide powder having a D50 of 5 μm or more and a specific surface area in the range of 0.5 to 1.6 m 2 / g can be produced. be able to. The nickel powder obtained by reducing the nickel oxide powder can be suitably used as a filler material such as an electromagnetic wave shield, a battery material, or the like. Hereinafter, a method for producing nickel oxide fine powder, which comprises a series of these steps, will be described in detail for each step.

(中和工程)
先ず中和工程では、原料としての硫酸ニッケルの水溶液に対して、中和剤としての塩基性水溶液を添加して中和反応を生じさせ、水酸化ニッケル等のニッケル塩の中間体粒子を晶析させる。原料として用いる硫酸ニッケルは、例えば硫酸ニッケル六水和物等を用いるのが好ましく、これを水で希釈して水溶液とする。なお、最終的に得られる酸化ニッケル微粉末は電子部品用材料や電池用材料として主に用いられるため、それらの腐食を防止するため、原料や中和剤中に含まれる不純物が100質量ppm未満であることが望ましい。
(Neutralization process)
First, in the neutralization step, a basic aqueous solution as a neutralizing agent is added to an aqueous solution of nickel sulfate as a raw material to cause a neutralization reaction, and intermediate particles of a nickel salt such as nickel hydroxide are crystallized. Let me. As the nickel sulfate used as a raw material, for example, nickel sulfate hexahydrate or the like is preferably used, and this is diluted with water to obtain an aqueous solution. Since the finally obtained nickel oxide fine powder is mainly used as a material for electronic parts and a material for batteries, impurities contained in the raw material and the neutralizing agent are less than 100 mass ppm in order to prevent their corrosion. Is desirable.

硫酸ニッケル水溶液中のニッケル濃度は特に限定はないが、生産性を考慮するとニッケル濃度で50〜150g/Lが好ましい。この濃度が50g/L未満では生産性が悪くなる。一方、150g/Lを超えると水溶液中の陰イオン濃度が高くなりすぎ、生成した水酸化ニッケル中の硫黄品位が高くなるため、最終的に得られる酸化ニッケル粉末中の不純物品位が十分に低くならない場合がある。 The nickel concentration in the nickel sulfate aqueous solution is not particularly limited, but the nickel concentration is preferably 50 to 150 g / L in consideration of productivity. If this concentration is less than 50 g / L, the productivity will deteriorate. On the other hand, if it exceeds 150 g / L, the anion concentration in the aqueous solution becomes too high, and the sulfur grade in the produced nickel hydroxide becomes high, so that the impurity grade in the finally obtained nickel oxide powder does not become sufficiently low. In some cases.

中和剤として用いる塩基性水溶液には、水酸化ナトリウムや水酸化カリウムのような水酸化塩、炭酸ナトリウムのような炭酸塩、硝酸ナトリウムや硝酸カリウムのような硝酸塩を用いることができる。これら中和剤を用いた中和反応により得られる中間体粒子は、水酸化塩の場合は水酸化ニッケル粒子、炭酸塩の場合は炭酸ニッケル粒子、硝酸塩の場合は硝酸ニッケルとなる。これらの中間体粒子は、一次粒子が凝集した二次粒子を含んでいる。なお、中和反応により得られた中間体粒子の二次粒子は、一次粒子同士の結合力は高くなく、外力により結合が切れることもある。 As the basic aqueous solution used as the neutralizing agent, a hydroxide salt such as sodium hydroxide or potassium hydroxide, a carbonate such as sodium carbonate, or a nitrate such as sodium nitrate or potassium nitrate can be used. The intermediate particles obtained by the neutralization reaction using these neutralizing agents are nickel hydroxide particles in the case of hydroxide, nickel carbonate particles in the case of carbonate, and nickel nitrate in the case of nitrate. These intermediate particles include secondary particles in which the primary particles are aggregated. The secondary particles of the intermediate particles obtained by the neutralization reaction do not have a high bonding force between the primary particles, and the bonding may be broken by an external force.

上記の塩基性水溶液は、これらの2種以上の混合液でもよく、この場合に生成される中間体粒子は、水酸化ニッケル、炭酸ニッケル、及び硝酸ニッケルのうち2種以上が混合した粒子となる。中和反応時の液中に残留するニッケルの量を考慮すると、上記塩基性水溶液は水酸化塩とするのが好ましく、水酸化ナトリウム又は水酸化カリウムがより好ましく、コストを考慮すると水酸化ナトリウムが特に好ましい。この塩基性水溶液にはアルコール等の水溶性有機溶媒を混合させてもよい。 The above basic aqueous solution may be a mixed solution of two or more of these, and the intermediate particles produced in this case are particles in which two or more of nickel hydroxide, nickel carbonate, and nickel nitrate are mixed. .. Considering the amount of nickel remaining in the liquid during the neutralization reaction, the basic aqueous solution is preferably a hydroxide salt, more preferably sodium hydroxide or potassium hydroxide, and considering the cost, sodium hydroxide is used. Especially preferable. A water-soluble organic solvent such as alcohol may be mixed with this basic aqueous solution.

中和反応時の液温は一般的な反応条件であれば特に制約はなく、常温で行うことも可能であるが、水酸化ニッケル粒子を十分に成長させるため、液温を50〜70℃とすることが好ましい。このように中間体粒子を十分に成長させることで、中間体粒子中に硫黄が過度に含まれるのを防止することができる。上記中和反応により晶析した中間体粒子には硫黄が含まれており、例えば中間体粒子が水酸化ニッケル粒子の場合は1〜3質量%程度の硫黄を含有している。一方、原料に塩化ニッケルを用いないため塩素が混入する虞がほとんどなく、原料に不可避的に含まれる不純物以外は実質的に塩素を含有しない中間体粒子となる。 The liquid temperature during the neutralization reaction is not particularly limited as long as it is under general reaction conditions, and it can be carried out at room temperature. However, in order to sufficiently grow the nickel hydroxide particles, the liquid temperature is set to 50 to 70 ° C. It is preferable to do so. By sufficiently growing the intermediate particles in this way, it is possible to prevent excessive sulfur from being contained in the intermediate particles. The intermediate particles crystallized by the neutralization reaction contain sulfur. For example, when the intermediate particles are nickel hydroxide particles, they contain about 1 to 3% by mass of sulfur. On the other hand, since nickel chloride is not used as the raw material, there is almost no possibility that chlorine is mixed in, and the intermediate particles are substantially free of chlorine except for impurities inevitably contained in the raw material.

上記の中和反応の終了後は、晶析した中間体粒子を含むスラリーを濾過して中間体粒子を濾過ケーキの形態で回収する。この濾過ケーキは、次の焼成工程に移る前に洗浄することが好ましい。洗浄はレパルプ洗浄とすることが好ましく、洗浄に用いる洗浄液としては水が好ましく、純水が特に好ましい。洗浄時の中間体粒子と水の混合割合は特に限定はなく、中間体粒子であるニッケル塩に含まれる陰イオン、特に硫酸イオン等の成分が、十分に除去できる混合割合とすればよい。洗浄後は必要に応じて脱水した後、乾燥するのが好ましい。 After completion of the above neutralization reaction, the slurry containing the crystallized intermediate particles is filtered to recover the intermediate particles in the form of a filtered cake. The filtered cake is preferably washed before moving on to the next baking step. The cleaning is preferably repulp cleaning, water is preferable as the cleaning liquid used for cleaning, and pure water is particularly preferable. The mixing ratio of the intermediate particles and water at the time of washing is not particularly limited, and the mixing ratio may be such that the components such as anions, particularly sulfate ions contained in the nickel salt which is the intermediate particles can be sufficiently removed. After washing, it is preferable to dehydrate if necessary and then dry.

(焼成工程)
次に焼成工程では、上記の中和工程で得た中間体粒子を熱処理して酸化ニッケル粉末の生成、即ち焼成が行われる。この熱処理は、温度が550〜1000℃の範囲内で且つ酸素分圧が5kPa以下の非還元性雰囲気下で行われる。上記にて説明した通り、中間体粒子は硫黄を含有している。この硫黄は主に原料に由来する硫酸の形態を有しており、大部分は硫酸ニッケルのままで中間体粒子内若しくはその表面に存在している。この硫酸ニッケルは焼成により下記式1の通り分解、揮発して酸化ニッケルとなる。この式1に示す反応における分解反応を促進するため、焼成時の雰囲気を上記したように非還元性で且つ低酸素分圧にするのが良いと考えられる。
(Baking process)
Next, in the firing step, the intermediate particles obtained in the above neutralization step are heat-treated to produce nickel oxide powder, that is, firing is performed. This heat treatment is performed in a non-reducing atmosphere in which the temperature is in the range of 550 to 1000 ° C. and the oxygen partial pressure is 5 kPa or less. As explained above, the intermediate particles contain sulfur. This sulfur has the form of sulfuric acid mainly derived from the raw material, and most of it remains as nickel sulfate and exists in the intermediate particles or on the surface thereof. This nickel sulfate is decomposed and volatilized as shown in the following formula 1 by firing to become nickel oxide. In order to promote the decomposition reaction in the reaction represented by this formula 1, it is considered that the atmosphere at the time of firing should be non-reducing and have a low oxygen partial pressure as described above.

[式1]
2NiSO → 2NiO + 2SO + O
[Equation 1]
2NiSO 4 → 2NiO + 2SO 2 + O 2

焼成時の雰囲気の具体的な酸素分圧の値としては、5kPa以下にする。この酸素分圧は3kPa以下が好ましく、1kPa以下がより好ましい。この酸素分圧が5kPaを超えると、上記式1における分解反応進みにくくなり、酸化ニッケル粉末の硫黄含有量が低下せず、最終的に得られる酸化ニッケル粉末の硫黄含有量が200質量ppmを超えることがある。酸素分圧の下限は特に限定はないが、10Paにすれば十分に酸化ニッケル粉末の硫黄含有量を低減することができる。もちろん酸素分圧が10Paよりもさらに低い場合を除外するものではない。 The specific oxygen partial pressure value of the atmosphere at the time of firing is set to 5 kPa or less. The oxygen partial pressure is preferably 3 kPa or less, and more preferably 1 kPa or less. When this oxygen partial pressure exceeds 5 kPa, the decomposition reaction in the above formula 1 becomes difficult to proceed, the sulfur content of the nickel oxide powder does not decrease, and the sulfur content of the finally obtained nickel oxide powder exceeds 200 mass ppm. Sometimes. The lower limit of the oxygen partial pressure is not particularly limited, but if it is set to 10 Pa, the sulfur content of the nickel oxide powder can be sufficiently reduced. Of course, the case where the oxygen partial pressure is even lower than 10 Pa is not excluded.

さらに、水酸化ニッケル等の中間体粒子が還元されてニッケルになるのを防止するため、焼成時の雰囲気を非還元性にする。例えば、焼成時の雰囲気を構成するガスの主成分を、窒素、二酸化炭素、水蒸気、アルゴン、及びヘリウムからなる群から選ばれる1種にすればよい。具体的には、炉内にこれら窒素、二酸化炭素、水蒸気、アルゴン、及びヘリウムからなる群から選ばれる1種のガスを供給したり、これらガスのいずれかを主成分とする低酸素濃度のガスを供給したりしながら焼成すればよい。あるいは、炉内雰囲気の排気により酸素分圧5kPa以下にまで減圧した状態で焼成してもよい。 Further, in order to prevent intermediate particles such as nickel hydroxide from being reduced to nickel, the atmosphere at the time of firing is made non-reducing. For example, the main component of the gas constituting the atmosphere at the time of firing may be one selected from the group consisting of nitrogen, carbon dioxide, water vapor, argon, and helium. Specifically, one type of gas selected from the group consisting of nitrogen, carbon dioxide, water vapor, argon, and helium is supplied into the furnace, or a gas having a low oxygen concentration containing any of these gases as a main component. It may be fired while supplying. Alternatively, firing may be performed in a state where the oxygen partial pressure is reduced to 5 kPa or less by exhausting the atmosphere in the furnace.

焼成時の雰囲気温度を550〜1000℃の範囲内にする理由は、この温度範囲では、生成された酸化ニッケル粉末は一次粒子が互いに凝集(焼結)した二次粒子の形態をとるからである。凝集(焼結)した二次粒子の形態とは、焼結により一次粒子同士の結合力が強化された凝集体を意味し、容易に外力により凝集体が破壊されることはない。加熱温度が550℃未満では、上記式1の分解反応が進行しにくくなり硫黄成分が残留するため、酸化ニッケル微粉末の硫黄含有量が200質量ppmを超えることがある。一方加熱温度が1000℃を超えると、中間体粒子から熱分解で得られた酸化ニッケル粉末の一次粒子の凝集(焼結)が進行しすぎて比表面積が0.5m/g未満となることがある。この焼成を行う装置は特に限定はなく、公知の装置を使用してもよいが、焼成時に発生する分解ガスを効率よく排出するため、炉内に強制的に雰囲気ガスを導入したり、炉内の雰囲気を強制的に排気する機構を有する装置を用いるのが好ましい。 The reason why the atmospheric temperature at the time of firing is set in the range of 550 to 1000 ° C. is that in this temperature range, the generated nickel oxide powder takes the form of secondary particles in which the primary particles are aggregated (sintered) with each other. .. The morphology of the agglomerated (sintered) secondary particles means an agglomerate in which the bonding force between the primary particles is strengthened by sintering, and the agglomerates are not easily destroyed by an external force. If the heating temperature is less than 550 ° C., the decomposition reaction of the above formula 1 is difficult to proceed and the sulfur component remains, so that the sulfur content of the nickel oxide fine powder may exceed 200 mass ppm. On the other hand, when the heating temperature exceeds 1000 ° C., the aggregation (sintering) of the primary particles of the nickel oxide powder obtained by thermal decomposition from the intermediate particles progresses too much, and the specific surface area becomes less than 0.5 m 2 / g. There is. The apparatus for performing this firing is not particularly limited, and a known apparatus may be used. However, in order to efficiently discharge the decomposition gas generated during firing, atmospheric gas may be forcibly introduced into the furnace or the inside of the furnace may be used. It is preferable to use a device having a mechanism for forcibly exhausting the atmosphere of.

(酸化ニッケル微粉末の物性)
上記した本発明の一具体例の製造方法により得られる酸化ニッケル粉末は、原料や中和剤から不可避不純物として混入する以外に塩素が混入する工程を含まないので、塩素含有量が極めて低い。加えて、硫黄含有量が制御されるとともに、一次粒子が凝集(焼結)した二次粒子の形態を有する粉末になる。具体的には、硫黄含有量が200質量ppm以下、より好ましくは100質量ppm以下であり、レーザー散乱法で測定したD50が5μm以上で且つ比表面積が0.5〜1.6m/gになる。D50の上限は特に限定はないが、焼成温度の範囲から30μm程度が上限になる。また、D50のより好ましい範囲は、10〜20μmである。
(Physical characteristics of nickel oxide fine powder)
The nickel oxide powder obtained by the production method of one specific example of the present invention described above does not include a step of mixing chlorine other than being mixed as an unavoidable impurity from a raw material or a neutralizing agent, and therefore has an extremely low chlorine content. In addition, the sulfur content is controlled, and the primary particles are aggregated (sintered) into a powder having the form of secondary particles. Specifically, the sulfur content is 200 mass ppm or less, more preferably 100 mass ppm or less, the D50 measured by the laser scattering method is 5 μm or more, and the specific surface area is 0.5 to 1.6 m 2 / g. Become. The upper limit of D50 is not particularly limited, but the upper limit is about 30 μm from the range of the firing temperature. Further, a more preferable range of D50 is 10 to 20 μm.

以下、本発明の実施例及び比較例によって本発明をさらに詳細に説明するが、本発明は、これらの実施例によってなんら限定されるものではない。なお、以下の実施例及び比較例で用いた水酸化ニッケル粒子と酸化ニッケル粉末の粒径、及び酸化ニッケル粉末の比表面積と硫黄分析の方法は、以下の通りである。 Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples of the present invention, but the present invention is not limited to these Examples. The particle sizes of the nickel hydroxide particles and the nickel oxide powder used in the following Examples and Comparative Examples, the specific surface area of the nickel oxide powder, and the method of sulfur analysis are as follows.

(1)水酸化ニッケル粒子と酸化ニッケル粉末の二次粒径の測定:粒子径測定装置(Microtrac 9320−X100、Microtrac Inc製)を用いて、レーザー回折・散乱法で測定し、その粒度分布から体積積算50%となる粒径D50を求めた。
(2)酸化ニッケル粉末の比表面積の測定:比表面積測定装置(NOVA 1000e、ユアサアイオニクス社製)を用いて、BET法で行なった。
(3)酸化ニッケル粉末の硫黄分析:ICP発光分光分析法で行なった。
(1) Measurement of secondary particle size of nickel hydroxide particles and nickel oxide powder: Measured by laser diffraction / scattering method using a particle size measuring device (Microtrac 9320-X100, manufactured by Microtrac Inc), and based on the particle size distribution. The particle size D50 having a volume integration of 50% was determined.
(2) Measurement of specific surface area of nickel oxide powder: The specific surface area was measured by the BET method using a specific surface area measuring device (NOVA 1000e, manufactured by Yuasa Ionics Co., Ltd.).
(3) Sulfur analysis of nickel oxide powder: Performed by ICP emission spectroscopy.

(実施例1)
硫酸ニッケルの水溶液を撹拌しながら、水酸化ナトリウムによりpH8.0、液温60℃の条件下で中和し、得られた水酸化ニッケル沈殿物を水洗、脱水、乾燥して水酸化ニッケル粒子とした。得られた水酸化ニッケルの凝集二次粒子径(粒度分布測定におけるD50)は25μmであった。この粒子10gをアルミナの試料皿に充填し、長尺石英管にヒーターを付設した管状炉に装填した。
(Example 1)
While stirring the aqueous solution of nickel sulfate, neutralize with sodium hydroxide under the conditions of pH 8.0 and liquid temperature of 60 ° C., and the obtained nickel hydroxide precipitate is washed with water, dehydrated and dried to obtain nickel hydroxide particles. did. The agglutinated secondary particle size (D50 in the particle size distribution measurement) of the obtained nickel hydroxide was 25 μm. 10 g of these particles were filled in an alumina sample dish and loaded into a tube furnace equipped with a heater in a long quartz tube.

この長尺石英管の端部から窒素濃度が99.99vol%で且つ酸素分圧が0.1kPa未満の非還元性ガスを毎分1Lで導入し、この気流雰囲気の下、上記の水酸化ニッケル粒子を850℃で5時間の条件で焼成した。得られた酸化ニッケル粉末は一次粒子が凝集(焼結)した二次粒子の形態を有しており、そのD50は18μm、比表面積は1.3m/g、硫黄含有量は50質量ppmであった。 A non-reducing gas having a nitrogen concentration of 99.99 vol% and an oxygen partial pressure of less than 0.1 kPa was introduced at 1 L / min from the end of this long quartz tube, and the above nickel hydroxide was introduced under this air flow atmosphere. The particles were calcined at 850 ° C. for 5 hours. The obtained nickel oxide powder has the form of secondary particles in which primary particles are aggregated (sintered), and its D50 is 18 μm, its specific surface area is 1.3 m 2 / g, and its sulfur content is 50 mass ppm. there were.

(実施例2)
焼成時の温度を850℃に代えて900℃にした以外は上記実施例1と同様にして酸化ニッケル微粉末を作製した。得られた酸化ニッケル粉末は一次粒子が凝集(焼結)した二次粒子の形態を有しており、その上記粒度分布測定によるD50は14μm、比表面積は0.9m/g、硫黄含有量は30質量ppmであった。
(Example 2)
Nickel oxide fine powder was prepared in the same manner as in Example 1 above except that the temperature at the time of firing was changed to 900 ° C. instead of 850 ° C. The obtained nickel oxide powder has the form of secondary particles in which primary particles are aggregated (sintered), and the D50 measured by the particle size distribution measurement is 14 μm, the specific surface area is 0.9 m 2 / g, and the sulfur content. Was 30 mass ppm.

(実施例3)
焼成時の温度を850℃に代えて940℃にした以外は上記実施例1と同様にして酸化ニッケル微粉末を作製した。得られた酸化ニッケル粉末は一次粒子が凝集(焼結)した二次粒子の形態を有しており、そのD50は12μm、比表面積は0.6m/g、硫黄含有量は25質量ppmであった。
(Example 3)
Nickel oxide fine powder was prepared in the same manner as in Example 1 above except that the temperature at the time of firing was changed to 940 ° C instead of 850 ° C. The obtained nickel oxide powder has the form of secondary particles in which primary particles are aggregated (sintered), and its D50 is 12 μm, its specific surface area is 0.6 m 2 / g, and its sulfur content is 25 mass ppm. there were.

(実施例4)
焼成時の温度を850℃に代えて750℃にした以外は上記実施例1と同様にして酸化ニッケル微粉末を作製した。得られた酸化ニッケル粉末は一次粒子が凝集(焼結)した二次粒子の形態を有しており、そのD50は20μm、比表面積は1.5m/g、硫黄含有量は100質量ppmであった。
(Example 4)
Nickel oxide fine powder was prepared in the same manner as in Example 1 above except that the temperature at the time of firing was changed to 750 ° C instead of 850 ° C. The obtained nickel oxide powder has the form of secondary particles in which primary particles are aggregated (sintered), and its D50 is 20 μm, its specific surface area is 1.5 m 2 / g, and its sulfur content is 100 mass ppm. there were.

(実施例5)
焼成時の温度を850℃に代えて600℃にした以外は上記実施例1と同様にして酸化ニッケル微粉末を作製した。得られた酸化ニッケル粉末は一次粒子が凝集(焼結)した二次粒子の形態を有しており、そのD50は24μm、比表面積は1.6m/g、硫黄含有量は160質量ppmであった。
(Example 5)
Nickel oxide fine powder was prepared in the same manner as in Example 1 above except that the temperature at the time of firing was changed to 600 ° C. instead of 850 ° C. The obtained nickel oxide powder has the form of secondary particles in which primary particles are aggregated (sintered), and its D50 is 24 μm, its specific surface area is 1.6 m 2 / g, and its sulfur content is 160 mass ppm. there were.

(実施例6)
上記実施例1と同様にして水酸化ニッケル粒子を管状炉に装填した後、長尺石英管の端部から酸素濃度5%volの酸素と窒素の混合ガスを毎分1Lで導入し、酸素分圧5kPaの非還元性ガスの気流雰囲気の下、900℃で5時間の条件で焼成した。得られた酸化ニッケル粉末は一次粒子が凝集(焼結)した二次粒子の形態を有しており、そのD50は16μm、比表面積は1.3m/g、硫黄含有量は190質量ppmであった。
(Example 6)
After loading the nickel hydroxide particles into the tube furnace in the same manner as in Example 1 above, a mixed gas of oxygen and nitrogen having an oxygen concentration of 5% vol was introduced from the end of the long quartz tube at 1 L / min, and the oxygen content was increased. It was fired at 900 ° C. for 5 hours under an air flow atmosphere of a non-reducing gas having a pressure of 5 kPa. The obtained nickel oxide powder has the form of secondary particles in which primary particles are aggregated (sintered), and its D50 is 16 μm, its specific surface area is 1.3 m 2 / g, and its sulfur content is 190 mass ppm. there were.

(実施例7)
長尺石英管の端部から酸素濃度1vol%の酸素と窒素の混合ガスを毎分1Lで導入し、酸素分圧1kPaの非還元性ガスの気流雰囲気の下で焼成した以外は上記実施例6と同様にして酸化ニッケル粉末を作製した。得られた酸化ニッケル粉末は一次粒子が凝集(焼結)した二次粒子の形態を有しており、そのD50は15μm、比表面積は1.1m/g、硫黄含有量は90質量ppmであった。
(Example 7)
Example 6 above except that a mixed gas of oxygen and nitrogen having an oxygen concentration of 1 vol% was introduced from the end of a long quartz tube at 1 L / min and calcined in an air flow atmosphere of a non-reducing gas having an oxygen partial pressure of 1 kPa. Nickel oxide powder was prepared in the same manner as in the above. The obtained nickel oxide powder has the form of secondary particles in which primary particles are aggregated (sintered), and its D50 is 15 μm, its specific surface area is 1.1 m 2 / g, and its sulfur content is 90 mass ppm. there were.

(実施例8)
上記実施例1と同様にして水酸化ニッケル粒子を作製し、その粒子100gを小型転動炉に充填し、窒素濃度99.99vol%で且つ酸素分圧0.11kPa未満の非還元性ガスを毎分10Lで導入し、この気流雰囲気の下、900℃で2時間の条件で焼成した。得られた酸化ニッケル粉末は一次粒子が凝集(焼結)した二次粒子の形態を有しており、そのD50は13μm、比表面積は1.0m/g、硫黄含有量は90質量ppmであった。
(Example 8)
Nickel hydroxide particles are prepared in the same manner as in Example 1, 100 g of the particles are filled in a small rolling mill, and a non-reducing gas having a nitrogen concentration of 99.99 vol% and an oxygen partial pressure of less than 0.11 kPa is charged every time. It was introduced at 10 L of minutes and calcined at 900 ° C. for 2 hours under this air flow atmosphere. The obtained nickel oxide powder has the form of secondary particles in which primary particles are aggregated (sintered), and its D50 is 13 μm, its specific surface area is 1.0 m 2 / g, and its sulfur content is 90 mass ppm. there were.

(実施例9)
上記実施例1と同様にして水酸化ニッケル粒子を作製し、その粒子20gをアルミナの匣鉢に充填してから小型減圧加熱炉内に載置し、排気量と吸気量とを調整して炉内の圧力が20kPa以下、炉内の酸素分圧が4kPa以下の非還元性雰囲気において、900℃で2時間の条件で焼成した。得られた酸化ニッケル粉末は一次粒子が凝集(焼結)した二次粒子の形態を有しており、そのD50は14μm、比表面積は0.9m/g、硫黄含有量は100質量ppmであった。
(Example 9)
Nickel hydroxide particles are prepared in the same manner as in Example 1, 20 g of the particles are filled in an alumina bowl, and then placed in a small vacuum heating furnace, and the exhaust amount and the intake amount are adjusted to adjust the furnace. In a non-reducing atmosphere where the internal pressure was 20 kPa or less and the oxygen partial pressure in the furnace was 4 kPa or less, firing was performed at 900 ° C. for 2 hours. The obtained nickel oxide powder has the form of secondary particles in which primary particles are aggregated (sintered), and its D50 is 14 μm, its specific surface area is 0.9 m 2 / g, and its sulfur content is 100 mass ppm. there were.

(比較例1)
長尺石英管の端部から空気を毎分1Lで導入し、酸素分圧21kPaの大気の気流雰囲気の下で焼成した以外は上記実施例1と同様にして酸化ニッケル粉末を作製した。得られた酸化ニッケル粉末は一次粒子が凝集(焼結)した二次粒子の形態を有しており、そのD50は15μm、比表面積は2.0m/g、硫黄含有量は230質量ppmであった。
(Comparative Example 1)
An nickel oxide powder was prepared in the same manner as in Example 1 above, except that air was introduced from the end of the long quartz tube at 1 L / min and calcined in an air flow atmosphere with an oxygen partial pressure of 21 kPa. The obtained nickel oxide powder has the form of secondary particles in which primary particles are aggregated (sintered), and its D50 is 15 μm, its specific surface area is 2.0 m 2 / g, and its sulfur content is 230 mass ppm. there were.

(比較例2)
長尺石英管の端部から空気を毎分1Lで導入し、酸素分圧21kPaの大気の気流雰囲気の下、900℃で5時間の条件で焼成した以外は上記実施例1と同様にして酸化ニッケル粉末を作製した。得られた酸化ニッケル粉末は一次粒子が凝集(焼結)した二次粒子の形態を有しており、そのD50は13μm、比表面積は1.7m/g、硫黄含有量は220質量ppmであった。
(Comparative Example 2)
Air was introduced from the end of the long quartz tube at 1 L / min, and it was calcined in the same manner as in Example 1 above except that it was calcined at 900 ° C. for 5 hours under an air flow atmosphere with an oxygen partial pressure of 21 kPa. A nickel powder was prepared. The obtained nickel oxide powder has the form of secondary particles in which primary particles are aggregated (sintered), and its D50 is 13 μm, its specific surface area is 1.7 m 2 / g, and its sulfur content is 220 mass ppm. there were.

(比較例3)
長尺石英管の端部から酸素濃度10%volの酸素と窒素の混合ガスを毎分1Lで導入し、酸素分圧10kPaの気流雰囲気の下、900℃で5時間の条件で焼成した以外は上記実施例1と同様にして酸化ニッケル粉末を作製した。得られた酸化ニッケル粉末は一次粒子が凝集(焼結)した二次粒子の形態を有しており、そのD50は13μm、比表面積は1.7m/g、硫黄含有量は210質量ppmであった。
(Comparative Example 3)
A mixed gas of oxygen and nitrogen having an oxygen concentration of 10% vol was introduced from the end of a long quartz tube at 1 L / min, and calcined at 900 ° C. for 5 hours under an air flow atmosphere with an oxygen partial pressure of 10 kPa. A nickel oxide powder was prepared in the same manner as in Example 1 above. The obtained nickel oxide powder has the form of secondary particles in which primary particles are aggregated (sintered), and its D50 is 13 μm, its specific surface area is 1.7 m 2 / g, and its sulfur content is 210 mass ppm. there were.

(比較例4)
焼成時の温度を850℃に代えて1050℃にした以外は上記実施例1と同様にして酸化ニッケル微粉末を作製した。得られた酸化ニッケル粉末は一次粒子が凝集(焼結)した二次粒子の形態を有しており、そのD50は17μm、比表面積は0.4m/g、硫黄含有量は50質量ppmであった。
(Comparative Example 4)
Nickel oxide fine powder was prepared in the same manner as in Example 1 above except that the temperature at the time of firing was changed to 1050 ° C instead of 850 ° C. The obtained nickel oxide powder has the form of secondary particles in which primary particles are aggregated (sintered), and its D50 is 17 μm, its specific surface area is 0.4 m 2 / g, and its sulfur content is 50 mass ppm. there were.

(比較例5)
焼成時の温度を850℃に代えて500℃にした以外は上記実施例1と同様にして酸化ニッケル微粉末を作製した。得られた酸化ニッケル粉末は一次粒子が凝集(焼結)した二次粒子の形態を有しており、そのD50は33μm、比表面積は1.7m/g、硫黄含有量は270質量ppmであった。上記した実施例及び比較例の結果を下記表1にまとめて示す。
(Comparative Example 5)
Nickel oxide fine powder was prepared in the same manner as in Example 1 above except that the temperature at the time of firing was changed to 500 ° C. instead of 850 ° C. The obtained nickel oxide powder has the form of secondary particles in which primary particles are aggregated (sintered), and its D50 is 33 μm, its specific surface area is 1.7 m 2 / g, and its sulfur content is 270 mass ppm. there were. The results of the above-mentioned Examples and Comparative Examples are summarized in Table 1 below.

Figure 0006888270
Figure 0006888270

上記1の結果から分かるように、全ての実施例において、酸化ニッケル微粉末の硫黄含有量は200質量ppm以下で且つ一次粒子が凝集(焼結)した二次粒子の形態であり、D50は5μm以上、比表面積は0.6〜1.6m/gであり、硫黄含有量が低減され粒径及び比表面積が制御された酸化ニッケル粉末が得られた。これに対して、比較例1〜3及び比較例5は酸化ニッケル微粉末の硫黄含有量が高く、比較例4は比表面積が極めて小さいことから、この酸化ニッケル粉末を原料にして還元したニッケル粉末は導電性フィラー材料や電池材料に適していない。


As can be seen from the result of 1 above, in all the examples, the sulfur content of the nickel oxide fine powder is 200 mass ppm or less, the primary particles are in the form of aggregated (sintered) secondary particles, and the D50 is 5 μm. As described above, the specific surface area was 0.6 to 1.6 m 2 / g, and the nickel oxide powder in which the sulfur content was reduced and the particle size and the specific surface area were controlled was obtained. On the other hand, in Comparative Examples 1 to 3 and Comparative Example 5, the sulfur content of the nickel oxide fine powder was high, and in Comparative Example 4, the specific surface area was extremely small. Is not suitable for conductive filler materials or battery materials.


Claims (3)

硫酸ニッケルの水溶液を塩基性水溶液で中和してニッケル塩の中間体粒子を晶析させる工程と、得られた中間体粒子の焼成処理により二次粒子の形態を有する酸化ニッケル粉末を生成させる工程とを含み、前記焼成処理を温度550〜900℃の範囲内で且つ酸素分圧5kPa以下の非還元性雰囲気で行うことにより、前記二次粒子の形態を有する酸化ニッケル粉末の硫黄含有量を200質量ppm以下、D50を10〜20μm、比表面積を0.5〜1.6m /gにすることを特徴とする酸化ニッケル粉末の製造方法。 A step of neutralizing an aqueous solution of nickel sulfate with a basic aqueous solution to crystallize intermediate particles of a nickel salt, and a step of calcining the obtained intermediate particles to produce nickel oxide powder having the form of secondary particles. By performing the firing treatment in a non-reducing atmosphere having a temperature in the range of 550 to 900 ° C. and an oxygen partial pressure of 5 kPa or less, the sulfur content of the nickel oxide powder having the form of the secondary particles is 200. A method for producing nickel oxide powder, which comprises mass ppm or less, D50 of 10 to 20 μm, and specific surface area of 0.5 to 1.6 m 2 / g. 前記非還元性雰囲気は、窒素、二酸化炭素、水蒸気、アルゴン、及びヘリウムからなる群から選ばれる1種を主成分とする雰囲気であることを特徴とする、請求項1に記載の酸化ニッケル粉末の製造方法。 The nickel oxide powder according to claim 1, wherein the non-reducing atmosphere is an atmosphere containing one kind selected from the group consisting of nitrogen, carbon dioxide, water vapor, argon, and helium as a main component. Production method. 前記中間体粒子は、水酸化ニッケル、炭酸ニッケル、及び硝酸ニッケルからなる群から選ばれる少なくとも1種の粒子であることを特徴とする、請求項1又は請求項2に記載の酸化ニッケル粉末の製造方法。 The production of the nickel oxide powder according to claim 1 or 2, wherein the intermediate particles are at least one kind of particles selected from the group consisting of nickel hydroxide, nickel carbonate, and nickel nitrate. Method.
JP2016203313A 2016-10-17 2016-10-17 Manufacturing method of nickel oxide powder Active JP6888270B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016203313A JP6888270B2 (en) 2016-10-17 2016-10-17 Manufacturing method of nickel oxide powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016203313A JP6888270B2 (en) 2016-10-17 2016-10-17 Manufacturing method of nickel oxide powder

Publications (2)

Publication Number Publication Date
JP2018065701A JP2018065701A (en) 2018-04-26
JP6888270B2 true JP6888270B2 (en) 2021-06-16

Family

ID=62085594

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016203313A Active JP6888270B2 (en) 2016-10-17 2016-10-17 Manufacturing method of nickel oxide powder

Country Status (1)

Country Link
JP (1) JP6888270B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0710544A (en) * 1993-06-23 1995-01-13 Tdk Corp Production of nickel oxide powder
JP5310462B2 (en) * 2009-10-13 2013-10-09 住友金属鉱山株式会社 Nickel powder and method for producing the same
JP5862919B2 (en) * 2011-02-10 2016-02-16 住友金属鉱山株式会社 Nickel oxide fine powder and method for producing the same
JP5979041B2 (en) * 2013-03-13 2016-08-24 住友金属鉱山株式会社 Method for producing nickel powder
JP6131775B2 (en) * 2013-08-23 2017-05-24 住友金属鉱山株式会社 Method for producing nickel powder

Also Published As

Publication number Publication date
JP2018065701A (en) 2018-04-26

Similar Documents

Publication Publication Date Title
JP5907169B2 (en) Nickel oxide fine powder and method for producing the same
JP2014019624A (en) Fine nickel oxide powder and method for manufacturing the same, and nickel hydroxide powder provided as raw ingredient for manufacturing the fine nickel oxide powder and method for manufacturing the same
JP5365488B2 (en) Method for producing nickel cobalt aluminum composite oxide
JP6159306B2 (en) Nickel oxide powder
JP2009155194A (en) Nickel oxide powder and method for manufacturing the same
JP4858153B2 (en) Nickel oxide powder and manufacturing method thereof
JP6763228B2 (en) Manufacturing method of nickel oxide fine powder
JP6888270B2 (en) Manufacturing method of nickel oxide powder
JP2011225395A (en) Nickel oxide fine powder, and method for producing the same
JP5729926B2 (en) Gallium oxide powder
JP5790292B2 (en) Method for producing nickel oxide powder
JPH11322335A (en) Gallium oxide and its production
JP6969120B2 (en) Manufacturing method of nickel oxide fine powder
JP6852345B2 (en) Manufacturing method of nickel oxide fine powder
JP6834235B2 (en) Manufacturing method of nickel hydroxide particles
JP2012206868A (en) Method for producing readily-soluble molybdenum trioxide, and readily soluble molybdenum trioxide
JP6772646B2 (en) Nickel oxide fine powder and its manufacturing method
JP2004123488A (en) Method for manufacturing nickel oxide powder
JP5979041B2 (en) Method for producing nickel powder
JP7098919B2 (en) Manufacturing method of nickel oxide fine powder
JP6819322B2 (en) Manufacturing method of nickel oxide fine powder
JP7088231B2 (en) Nickel hydroxide particles
JP6241491B2 (en) Nickel oxide fine powder and method for producing the same, nickel hydroxide powder for use in the raw material for producing the nickel oxide fine powder, and method for producing the same
JP2016172658A (en) Manufacturing method of nickel oxide powder
JP7088236B2 (en) Nickel hydroxide particles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191003

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200825

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20201016

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201124

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20201215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210311

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20210311

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20210319

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20210323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210420

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210503

R150 Certificate of patent or registration of utility model

Ref document number: 6888270

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150