JP6887099B2 - Co2回収装置 - Google Patents

Co2回収装置 Download PDF

Info

Publication number
JP6887099B2
JP6887099B2 JP2017135574A JP2017135574A JP6887099B2 JP 6887099 B2 JP6887099 B2 JP 6887099B2 JP 2017135574 A JP2017135574 A JP 2017135574A JP 2017135574 A JP2017135574 A JP 2017135574A JP 6887099 B2 JP6887099 B2 JP 6887099B2
Authority
JP
Japan
Prior art keywords
gas
liquid
lid portion
flow path
absorber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017135574A
Other languages
English (en)
Other versions
JP2019018114A (ja
Inventor
英毅 山下
英毅 山下
昭人 青井
昭人 青井
晃 磯見
晃 磯見
大助 田端
大助 田端
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2017135574A priority Critical patent/JP6887099B2/ja
Publication of JP2019018114A publication Critical patent/JP2019018114A/ja
Application granted granted Critical
Publication of JP6887099B2 publication Critical patent/JP6887099B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Treating Waste Gases (AREA)
  • Gas Separation By Absorption (AREA)
  • Nozzles (AREA)

Description

本発明は、火力発電所、又は、鉄鋼若しくはセメントなどの製造工場において、二酸化炭素(すなわち、CO)を排出する設備又は工程などの排出源からCOを回収するCO回収装置に関するものである。
地球温暖化の主要因は人為的に発生するCOであり、大幅なCO排出削減の必要性が国際的に叫ばれている。このためには、省エネ施策とともに、より炭素の少ないエネルギーへの変換及び再生可能エネルギーへの転換、さらに、CO回収及び貯留技術(CCS)が有効である。CCSは、火力発電所などの発電所、又は、鉄鋼若しくはセメント製造工場等のCOの集中排出源からCOを回収して、地中又は海洋に隔離することによって、大気中へのCO排出を削減する技術である。CCSの最初の段階が、COの回収である。天然ガス生産時の副生COの分離、又は、水素若しくはアンモニア工業におけるCO回収が古くから実施されているが、地球温暖化防止の為には、より低エネルギー及び低コストのCO回収技術が求められている。
この分離及び回収の主な方法としては、アミン溶液などを利用した化学反応で、COを分離及び回収する方法がある。これは、化学吸収法と呼ばれており、ガス中のCOをアミン溶液からなる吸収剤に化学的に吸収させた後、加熱することで、COを吸収剤から分離及び回収する技術であり、常圧で大規模に発生するガスからのCO分離に適している。このような技術は、多くの国で工業的に確立された技術として広く利用されており、日本でも、国産天然ガスの生産工程で長期にわたり利用されている。
例えば、発電所で生成した排気ガスからCOを除去するための技術が、注目されて来ている。この技術では、水性のモノエタノールアミン(MEA)又はメチルジエタノールアミン(MDEA)や2−アミノ−2−メチル−1−プロパノール(AMP)のようなヒンダードアミンを吸収/ストリッピングタイプの再生プロセスの溶媒として使用する。この技術は、石炭型火力発電所及びガスタービンからのCOを捕捉するために、工業的に使用されて来ている。
MEA及びヒンダードアミンに基づく吸収プロセスには、固有の確かに重要な利点がある。しかし、多くの欠点により、このタイプの技術のより広い採用が妨げられ得る。例えば、このプロセスの結果、液体吸収剤の粘度が急激に増大する可能性があり得る。これは、パイプラインの詰まりを生ずることがあり得る。この問題を回避するために、MEAその他のアミンの濃度を比較的に低いレベルに維持することがある。しかし、この場合は、純粋な吸収剤の理論的な能力と比較して、吸収能力を低下させる可能性がある。
さらに、MEA又はヒンダードアミンプロセスでCOが吸収された液体吸収剤は、まだかなりの量の遊離アミン及び溶媒(通常は水)を含有し得る。このような事実の結果、このアミンと水とは熱的脱着の下で蒸気相内に移動するが、付随する設備に、腐食及びその他の劣化を引き起こす可能性がある。この問題に対処するために、その設備に特化された耐腐食材料を使用することが可能であるが、その結果、そのプラントの資本コストが上昇する可能性がある。幾つかの場合には、腐食防止剤を添加することができるが、これらの特殊な添加剤を使用する手間とコストが発生する上に、操作コストが上昇する可能性がある。
前記課題を鑑みて開発された、MEAを用いたCO分離回収方法として、吸収剤を吸収容器に供給する際に、噴霧装置を用いてCOを吸収する方式がある(例えば、特許文献1参照)。図4は、特許文献1に記載のCO回収装置10の概略構成図である。
液体吸収剤12は、噴霧塔14の上部領域15付近へ目がけて、導管16を介し、吸収剤霧化機18によって液滴中に分散される。空気又はある種の別の霧化ガスをノズル管20から噴霧塔14の噴霧塔内部22に供給することができる。一方、排ガス24は、導管26により噴霧塔14の下部領域28へ導かれ、液体吸収剤12との接触により固体粒子30が形成される。残りの、COに乏しい排ガスは、導管31から放出される。そして、固体粒子30は開口部32を経由して噴霧塔14から排出され、輸送機構34によって後工程へ運ばれる。この際、液体吸収剤12の液滴に対して選択される大きさは、吸収剤12の組成、吸収剤物質とCOガスとの反応性、並びに吸収チャンバーのタイプ及びデザインのような様々な要因に依存する。一般に、液滴の表面積の合計は、COとの接触のための最大の表面積を提供するように、十分に小さい方が良く、比較的高い割合でCOをガス流から除去することができる。また、比較的小さい液滴サイズは、他の場合には、液滴の運動及び懸濁を妨げ得る液滴粒子の「粘着性」の傾向が少なくなるのを確実にするのに役に立つ。特許文献1では、噴霧塔に使用するアミン系の吸収剤として、液滴の平均直径は、通常、約1000μm以下であり、通例、約500μm〜約1000μmの範囲であると述べている。この装置と手法とにより、吸収剤によりCOを効率良く分離回収することが出来るとともに、処理中に吸収能力を著しく低下させることなく、低いランニングコストでCOを回収することが出来ることが知られている。
特許第5726198号公報
しかしながら、特許文献1において一般的な噴霧装置を用いた場合では、CO吸収剤を系内で噴霧する際に一般的な一流体噴霧ノズルを用いており、その粒径が約500μm〜約1000μmの範囲と比較的大きいために、COを吸収する処理能力が低いという課題がある。
従って、本発明の目的は、前記問題を解決することにあって、二流体ノズルを用いて、CO回収装置内で噴霧するCO吸収剤の粒径が大幅に小さくなるため、CO吸収剤にCOを大量に吸収させることが可能になるCO回収装置を提供することにある。
前記目的を達成するために、本発明の1つの態様にかかるCO回収装置は、
CO吸収剤と気体と混合して噴霧する噴霧器と、
前記CO吸収剤を前記噴霧器に供給するポンプと、
前記噴霧器を内部に配した容器と、
前記容器の内部にCO含有ガスを導入するCO含有ガス導入部と、
前記容器から処理後のCO含有液又はCO含有固体を処理物として排出する処理物排出部とを備え、
前記噴霧器が、
前記ポンプで前記CO吸収剤が供給される液体流路と気体流路とを有する噴霧器本体部と、
前記噴霧器本体部の先端に配置されて、前記液体流路の開口を覆いかつ平らな内側端面を有する内蓋部と、
前記噴霧器本体部の先端に配置されて前記内蓋部を覆うとともに、前記気体流路の開口を覆いかつ前記内蓋部の前記内側端面に対向する平らな外側端面を持つ外側端部を有する外蓋部と、
前記内蓋部と前記外蓋部との間に配置され、前記内蓋部の前記内側端面と前記外蓋部の前記外側端面との間の円板状の外形の空間で構成され、前記気体流路を流れる気体流と前記液体流路を流れる前記CO吸収剤の液体流とを混合する気液混合部と、
前記内蓋部の前記内側端面の周方向の少なくとも1箇所に貫通して設けられて前記気液混合部と連通して、前記液体流路を流れる液体流を前記気液混合部に流入させる液体流入口と、
前記内蓋部と前記外蓋部との間の前記気液混合部の側部に前記気液混合部と連通して配置されて、前記液体流入口から前記気液混合部に流入する前記液体流に向かって、前記気体流路を流れる気体流を前記気液混合部に流入させる気体流入口と、
前記外蓋部の前記外側端面に貫通して設けられて前記気液混合部と連通し、前記気液混合部で前記気体流と前記液体流が混合して微粒化した前記CO吸収剤の液体を噴出する噴出口とを備えて、
前記気液混合部で前記気体流と前記CO吸収剤の前記液体流が混合して前記微粒化した液体を前記噴出口から前記容器内に噴霧するとともに、前記CO含有ガス導入部から前記容器内に前記CO含有ガスを導入し、前記CO吸収剤で前記CO含有ガス内のCOガスを吸収させて前記処理物として前記処理物排出部から排出する。
本発明の前記態様によれば、二流体ノズルを用いて、容器内で噴霧するCO吸収剤の粒径が大幅に小さくなるため、CO吸収剤にCOを大量に吸収させることが可能になる。
本発明の実施の形態における代表的なCO回収装置の構成図 本発明の実施の形態の変形例における別のCO回収装置の構成図 本発明の実施の形態における噴霧器の切断部端面図 本発明の実施の形態における噴霧器の図3Aの3B−3B線での断面図 従来の実施の形態におけるCO回収装置の構成図
以下、本発明の実施の形態について、図面を用いて説明する。
図1は、本発明の実施の形態における代表的なCO回収装置100の構成図である。
CO回収装置100は、噴霧器104と、CO吸収剤供給部の一例としてのポンプ102と、容器103と、CO含有ガス導入部107と、処理物排出部150とを備えている。
容器103は、噴霧器104を内部に配している。容器103は、円筒状であり、その内部空間103aの上部に噴霧器104を配置して、下向きに噴霧できるようにしている。容器103の下部は円錐状に下すぼまりの形状となって、処理物排出部150に接続されている。容器103の上端には、排気部141が配置されている。排気部141の一例としては、容器103の上端に排気管140が接続され、他端は大気に開放されている。排気管140と容器103の上端との接続部分には、CO吸収剤を吸収するミストトラップの一例としてミストフィルタ109が配置されている。よって、CO吸収剤は、ミストフィルタ109により排気管140などの排気系統へ混入することがないようになっている。
噴霧器104は、CO吸収剤供給部から供給されるCO吸収剤の液体と、空気などの気体とを混合して容器103内で噴霧可能とする。
ポンプ102は、タンクなどのCO吸収剤保持部101内に保持されたCO吸収剤を噴霧器104に供給する送液ポンプである。CO吸収剤保持部101は、途中に送液ポンプ02と第1開閉弁143とを介在したCO吸収剤供給管142により、容器103内の噴霧器104の液体流路112と接続されている。第1開閉弁143はCO吸収剤供給管142の開閉を行う。
CO含有ガス導入部107は、容器103の内部にCO含有ガスを導入する。CO含有ガス導入部107の一例としては、タンクなどのCO含有ガス保持部と容器103の下部とをCO含有ガス導入管147で接続し、CO含有ガス導入管147の途中に送風ポンプ108と第3開閉弁148とを介在させている。第3開閉弁148はCO含有ガス導入管147の開閉を行う。CO含有ガス導入管147から容器103の下部へは、容器103の横方向にCO含有ガスを導入するようにCO含有ガス導入管147を容器103の下部に接続している。
処理物排出部150は、容器103から処理後のCO含有液又は固体などの処理物を排出する。処理物排出部150の一例としては、容器103の下端とCO含有液又は固体用の貯蔵タンク111とが、途中に第2開閉弁146を介在させたCO含有液排出管145で接続されている。第2開閉弁146はCO含有液排出管145の開閉を行う。
なお、噴霧器104に対して気体の一例として圧縮空気を供給するときは、コンプレッサ105と噴霧器104の気体流路113とを空気供給管144で接続して、コンプレッサ105から圧縮空気を供給する。
以下、CO回収装置100の動作について説明する。
図1において、液体の一例としてのCO吸収剤保持部101内のCO吸収剤を送液ポンプ102を用いて、容器103内の噴霧器104へ一定量送り込む。その際、CO吸収剤は、CO吸収剤供給管142を通じて容器103内の噴霧器104の液体流路112へ直結して供給している。併せて、噴霧器104の気体流路113へは、空気供給管144を介してコンプレッサ105から一例として圧縮空気が供給されている。よって、噴霧器104からCO吸収剤が圧縮空気で微粒化された状態で容器103内へ噴霧される。その状態において、CO含有ガス導入部107からCO含有ガスを送風ポンプ108によって、CO含有ガス導入管147を通して容器103内へ送り込む。その際、噴霧器104から下向きに噴霧されるCO吸収剤と対向してCO含有ガスが接触することによって、COがCO吸収剤に回収されることになる。一例として、図1では、噴霧器104から下向きに噴霧されるCO吸収剤の噴霧領域の下方付近に、CO含有ガスが供給されるように、CO含有ガス導入管147が容器103の下部に接続配置されている。
CO吸収剤で回収されなかった低濃度のCOガスは、容器103の上部より、排気部141の排気管140から排出される。が、その際、CO吸収剤も一緒に排気部141から排出されるのを防ぐために、ミストトラップの一例としてミストフィルタ109を設置している。よって、CO吸収剤は、このミストフィルタ109により排気管140などの排気系統へ混入することがないようになっている。
前記過程を経て、COをCO吸収剤で吸収して生成されたCO含有液又はCO含有固体110は、容器103の下部へ蓄積していく。それらが容器103の下部内で一定量蓄積した段階で、第2開閉弁146を開けて、CO含有液排出管145を介してCO含有液又はCO含有固体110を貯蔵タンク111へ貯蔵する。貯蔵されたCO含有液又はCO含有固体110中には、容器103に投入されたCO吸収剤にCOが大量に吸収した状態にすることが出来る。
図2は、本発明の実施の形態の変形例における別のCO回収装置の構成図である。
この変形例では、CO含有ガス導入部107からCO含有ガスを送風ポンプ108によって、直接、容器103内に導入するのではなく、コンプレッサ105へ接続し、CO含有ガスをコンプレッサ105で圧縮して、圧縮空気の一部として容器103内に上部から導入供給する。よって、CO含有ガス導入管147を容器103の下部ではなく、コンプレッサ105に接続している。この際、導入する圧縮空気の圧力例として、0.2MPa(ゲージ圧)で供給する。一方、CO吸収剤を送液ポンプ102を用いて噴霧器104へ導入する際、液体の圧力例としては、0.15MPa(ゲージ圧)で、50ml/minのCO吸収剤を噴霧する。この結果、噴霧器104から噴霧されるCO吸収剤は、平均粒子径が10μmと非常に小さくなる。これにより、噴霧器104内でCOガスを用いてCO吸収剤を微細化させることになり、対向通過による表面接触と比較して大きな接触機会を得ることが出来る。その結果として、CO吸収剤で大量のCOガスを回収することが出来るようになる。後述するが、噴霧器104の噴出口穴径は、直径1.5mmの大きさがあり、前記の過程を経て、抵抗なく、容器103内へ噴霧されて、COを吸収したCO含有液又はCO含有固体110を回収することができる。
図1及び図2の本発明の実施の形態又は変形例で利用する噴霧器104に関して、図3Aを用いて説明する。図3Aは、図1及び図2の噴霧器104を示す切断端面図である。
噴霧器104は、噴霧器本体部104aと、内蓋部114と、外蓋部115とを少なくとも備えている。内蓋部114と外蓋部115とで気液混合部116を構成している。噴霧器104は、さらに、噴霧器蓋固定部118を備えている。
噴霧器本体部104aは、円柱状部材の中心部に軸方向沿いに配置された液体流路112と、液体流路112の周囲に間隔をおいて軸方向沿いに配置された円筒状の気体流路113とがそれぞれ形成されている。液体流路112と気体流路113とは、噴霧器本体部104aの一部として中央部に位置する円筒部104bで区切られている。
液体流路112は、先端側のみを図示しており、後端の図示しない液体供給口は、CO吸収剤供給管142を介して送液ポンプ102に接続されている。気体流路113も、先端側のみを図示しており、後端の図示しない気体供給口は、空気供給管144を介してコンプレッサ105に接続されており、圧縮エアが供給されている。
円筒部104bの先端は、円筒部104b以外の噴霧器本体部104aより先端側に少し突出し、その先端に内蓋部114が固定されている。
内蓋部114は、噴霧器本体部104aの先端に配置され、液体流路112の開口を覆いかつ平らな内側端面114aを有する断面略C字形状をなしている。内蓋部114は、円筒部104bの端面と内蓋部114の内側端面114aの内面との間には、円板状の外形の第1隙間121が形成されている。内蓋部114の内側端面114aの外周部の1カ所には、内側端面114aを軸方向に貫通する液体流入口119が形成されている。すなわち、液体流入口119は、気液混合部116の外周壁面近傍の上流側平坦面である内蓋部114の内側端面114aに位置しており、液体流路112と気液混合部116とを連通させている。
外蓋部115は、噴霧器本体部104aの先端に配置され、内蓋部114を覆うとともに、気体流路113の開口を覆いかつ内蓋部114の内側端面114aに対向する平らな外側端面115aを有する断面略Ω形状をなしている。外蓋部115は、内蓋部114との間の側部では、所定間隔の円筒状の外形の第2隙間122をあけて覆うとともに、内蓋部114との間の端部では、所定間隔の円板状の外形の空間の気液混合部116を隙間として形成しつつ内蓋部114を覆うように、噴霧器本体部104aの端面と噴霧器蓋固定部118との間に挟持されて固定されている。なお、噴霧器蓋固定部118を無くして、外蓋部115が、直接、噴霧器本体部104aの端面に固定されるようにしてもよい。
外蓋部115と内蓋部114との間において所定間隔の円板状の外形の気液混合部116を確実に形成するため、外蓋部115の外側端面115aの内面に円環状の凸部123を形成して、外蓋部115の内面と内蓋部114の内側端面114aとの間に強制的に隙間として気液混合部116が配置形成できるようにしている。円環状の凸部123は、外蓋部115の外側端面115aの内面に設ける代わりに、内蓋部114の内側端面114aの外面に設けても良い。このように構成される気液混合部116は、気体流路113を流れる気体流と液体流路112を流れる液体流とを混合するためのものである。
また、気液混合部116の側部において、円環状の凸部123の一部を径方向に切り欠いて、気体流路113と気液混合部116とを連通させる気体流入口120を形成している。よって、気体流入口120は、液体流入口119から流入する液体流の流入方向に対して、気体流入口120から流入する気体流の流入方向が交差するように配置されている。気体流入口120は、噴霧器本体部104aの中心(中心軸124)に対して液体流入口119とは180度位相を異にした、液体流入口119に対向する位置に位置する。さらに、外蓋部115の外側端面115aの外面の中央には、円筒部が突出して固定され、軸方向に外側端面115a及び円筒部を貫通した噴出口117aを有する噴出部117を形成している。噴出口117aは、液体流路112と同一中心軸124上に配置されている。これに対して、液体流入口119は、この中心軸124から外れた位置に位置している。
よって、気液混合部116は、円環状の凸部123と内蓋部114と外蓋部115とで囲まれて形成されており、軸方向沿いに内蓋部114を貫通した液体流入口119と、軸方向とは交差する方向沿いに円環状の凸部123を切り欠いた気体流入口120と、軸方向沿いに外蓋部115を貫通した噴出口117aとに連通している。
このような構成において、噴霧器104に供給された液体は、噴霧器本体部104aに対して、図示しない液体供給口から噴霧器先端側に液体流路112を流れて液体流となり、その液体流は、第1隙間121と液体流入口119とを通って、気液混合部116に供給される。また、噴霧器104に供給された気体は、噴霧器本体部104aに対して、図示しない気体供給口から噴霧器先端側に気体流路113を流れて気体流となり、その気体流は、第2隙間122と気体流入口120とを通って、気液混合部116に供給される。
気液混合部116に対して気体流と液体流とが供給されると、気液混合部116内で互いに混合され、液体が微粒化された後に、外蓋部115に設けられた噴出部117の噴出口117aから、混合されて微粒化された液体を外側に噴出する。
以下、気液混合部116での微粒化の機構について、図3Bを参照しながら説明する。液体流路112を流れてきた液体流は、第1隙間121を通り、内蓋部114に設けられた液体流入口119を通り、図3Bに示すように、気液混合部116の円環状の凸部123の近傍より、液体流が噴出部117の方向へ供給される。
一方、液体流入口119から気液混合部116に供給された液体流に対して、液体流入口119の対向する位置に位置する気体流入口120を通って気液混合部116に供給された気体が、気液混合部116内で液体に衝突する。このように衝突することで、液体は円環状の凸部123に押し広げられ、薄い膜状になり円環状の凸部123の周方向に流れることにより、薄い膜状からさらに細かな液滴へと変化する。さらに、この液滴を含む気液混合流を、気液混合部116の外蓋部115側の外側端面115aの内面である壁面に沿って、周回及び撹拌することで、液滴をさらに微粒化することができ、より粒径の小さな液体を噴出口117aから噴霧することが可能である。
より具体的には、気液混合部116は直径8.0mm、高さ2.0mmであり、噴出部117の噴出口117aは、直径1.5mm、長さ2.0mm、液体流入口119は直径0.7mm、気体流入口120は矩形であり、幅1.0mm、高さ1.0mmの噴霧器である。
この噴霧器に対し、気体の例として圧縮空気を0.2MPa(ゲージ圧)の圧力で供給し、液体の例として水を0.15MPa(ゲージ圧)の圧力で供給した。この条件で微粒化した水のザウター平均粒径をレーザー回折法にて評価を行った。レーザー回折法の測定距離は噴霧器の先端から300mmの位置であり、ザウター平均粒径は10.0μmとなった。
前記実施の形態又は変形例にかかる噴霧器104によれば、内蓋部114と外蓋部115との間に設けられた気液混合部116で、液体流入口119から流入する液体と気体流入口120から流入する気体とが向かい合って衝突するとともに、円環状の凸部123に沿って周回及び撹拌して液体が微粒化し、微粒化した液体を噴出部117から噴出することができる。この結果、気化が早く粒径の小さな液体を噴霧可能な噴霧器104を提供することができる。より具体的には、蒸発気化が早い小さな粒径の例として10μm以下の粒径の液体を噴霧することができる二流体ノズル型式の噴霧器104を提供することができる。
従来のCO回収方法では、図4に示すように、CO吸収剤のみを加圧し、一流体の噴霧ノズルを用いて、CO回収装置内へ吸収剤を導入していたため、噴霧した後のCO吸収剤の粒径が大きく、COが吸着分離する接触面積の割合が十分でなかった。
しかし、本発明の実施の形態又は変形例では、前記したように、噴霧器104を使用することにより、容器103内でCO吸収剤を10μm以下の粒径の液体として噴霧することができて単位流量あたりの表面積を増加させることができ、CO吸収剤表面に大量のCOを吸収させることができる。従って、二流体ノズルを用いて、CO回収装置内で噴霧するCO吸収剤の粒径が大幅に小さくなるため、CO吸収剤にCOを大量に吸収させることが可能になる。
また、コンプレッサ105による圧縮空気を用いるときには、二流体ノズルである噴霧器104からCO吸収剤を噴霧することにより、CO吸収剤の粒径を大幅により微細化することが可能になり、それによって単位流量あたりの表面積がより増加することから、CO吸収剤表面に大量のCOをより吸収させることができる。これによって、大量にCOが吸収された高濃度のCO含有液又はCO含有固体を生成させることが可能になる。
CO吸収剤を噴霧器104で噴霧する際にコンプレッサ105から圧縮空気を用いる場合には、この圧縮空気は露点が大気よりも低いため、水分の含まれる量が非常に小さい。よって、噴霧時に導入する空気から混入する水分が飛躍的に少なくなることから、CO吸収剤が水分と反応して酸化する割合が減少し、装置の腐食が減少するとともに、COの回収処理効率が上昇する効果が得られる。
また、CO吸収剤が酸化してしまう場合は、コンプレッサ105からの圧縮空気の代わりに、窒素又はアルゴン又はヘリウムなどの不活性ガスを用いることで、同様の役割をさせることが可能である。
また、容器103から排気管140において、容器103内の接続箇所にミストフィルタ109を設置することで、CO吸収剤が装置外に排出されることを防ぐことが出来る。
このようなCO吸収処理が可能なCO吸収剤は、通常、少なくとも1種のアミン物質からなる。CO吸収剤としては、様々なアミン化合物が適しており、多くが次の部類に属する。脂肪族第一、第二及び第三アミン、並びにポリアミン、ポリイミン(例えば、ポリアルキレンイミン)、環式アミン、アミジン化合物、ヒンダードアミン、アミノ−シロキサン化合物、アミノ酸、及びこれらの組合せよりなる群から選ばれた溶剤類であることが望ましい。
なお、前記様々な実施の形態又は変形例のうちの任意の実施の形態又は変形例を適宜組み合わせることにより、それぞれの有する効果を奏するようにすることができる。また、実施の形態同士の組み合わせ又は実施例同士の組み合わせ又は実施の形態と実施例との組み合わせが可能であると共に、異なる実施の形態又は実施例の中の特徴同士の組み合わせも可能である。
本発明の前記態様にかかるCO回収装置は、従来のCO回収方法に比べて、CO吸収剤にCOを大量に吸収させることが可能になる。この装置と手法により、CO吸収剤に効率良くCOを分離回収することが出来るとともに、処理中に吸収能力を著しく低下させることなく、低いランニングコストでCOを回収することが可能になり、CO回収現場などで大きな経営貢献に繋がる。このようなCO回収装置は、世界中のCO削減手段として広く用いられて、自動車又は電池又は半導体などのデバイス製造業界向けに大きな設備販売事業へと繋がる可能性がある。
10・・・CO回収装置
12・・・液体吸収剤
14・・・噴霧塔
15・・・上部領域
16・・・導管
18・・・吸収剤霧化機
20・・・ノズル管
22・・・噴霧塔内部
24・・・排ガス
26・・・導管
28・・・下部領域
30・・・固体粒子
32・・・開口部
34・・・輸送機構
100・・・CO回収装置
101・・・CO吸収剤保持部
102・・・送液ポンプ
103・・・容器
103a・・・容器内の空間
104・・・噴霧器
104a・・・噴霧器本体部
104b・・・円筒部
105・・・コンプレッサ
107・・・CO含有ガス導入部
108・・・送風ポンプ
109・・・ミストフィルタ
110・・・CO含有液又はCO含有固体
111・・・CO含有液又はCO含有固体用の貯蔵タンク
112・・・液体流路
113・・・気体流路
114・・・内蓋部
114a・・・内側端面
115・・・外蓋部
115a・・・外側端面
116・・・気液混合部
117・・・噴出部
117a・・・噴出口
118・・・噴霧器蓋固定部
119・・・液体流入口
120・・・気体流入口
121・・・第1隙間
122・・・第2隙間
123・・・円環状の凸部
124・・・中心軸
140・・・排気管
141・・・排気部
142・・・CO吸収剤供給管
143・・・第1開閉弁
144・・・空気供給管
145・・・CO含有液排出管
146・・・第2開閉弁
147・・・CO含有ガス導入管
148・・・第3開閉弁
149・・・CO含有ガス保持部

Claims (4)

  1. CO吸収剤と気体と混合して噴霧する噴霧器と、
    前記CO吸収剤を前記噴霧器に供給するポンプと、
    前記噴霧器を内部に配した容器と、
    前記容器の内部にCO含有ガスを導入するCO含有ガス導入部と、
    前記容器から処理後のCO含有液又はCO含有固体を処理物として排出する処理物排出部とを備え、
    前記噴霧器が、
    前記ポンプで前記CO吸収剤が供給される液体流路と気体流路とを有する噴霧器本体部と、
    前記噴霧器本体部の先端に配置されて、前記液体流路の開口を覆いかつ平らな内側端面を有する内蓋部と、
    前記噴霧器本体部の先端に配置されて前記内蓋部を覆うとともに、前記気体流路の開口を覆いかつ前記内蓋部の前記内側端面に対向する平らな外側端面を持つ外側端部を有する外蓋部と、
    前記内蓋部と前記外蓋部との間に配置され、前記内蓋部の前記内側端面と前記外蓋部の前記外側端面との間の円板状の外形の空間で構成され、前記気体流路を流れる気体流と前記液体流路を流れる前記CO吸収剤の液体流とを混合する気液混合部と、
    前記内蓋部の前記内側端面の周方向の少なくとも1箇所に貫通して設けられて前記気液混合部と連通して、前記液体流路を流れる液体流を前記気液混合部に流入させる液体流入口と、
    前記内蓋部と前記外蓋部との間の前記気液混合部の側部に前記気液混合部と連通して配置されて、前記液体流入口から前記気液混合部に流入する前記液体流に向かって、前記気体流路を流れる気体流を前記気液混合部に流入させる気体流入口と、
    前記外蓋部の前記外側端面に貫通して設けられて前記気液混合部と連通し、前記気液混合部で前記気体流と前記液体流が混合して微粒化した前記CO吸収剤の液体を噴出する噴出口とを備えて、
    前記気液混合部で前記気体流と前記CO吸収剤の前記液体流が混合して前記微粒化した液体を前記噴出口から前記容器内に噴霧するとともに、前記CO含有ガス導入部から前記容器内に前記CO含有ガスを導入し、前記CO吸収剤で前記CO含有ガス内のCOガスを吸収させて前記処理物として前記処理物排出部から排出する、CO回収装置。
  2. 前記容器の上部に排気管が接続され、前記容器の前記上部と前記排気管との接続箇所にミストトラップを配置する請求項1に記載のCO回収装置。
  3. 前記噴霧器本体部の前記気体流路に圧縮気体を供給するコンプレッサをさらに備える、請求項1又は2に記載のCO回収装置。
  4. 前記コンプレッサに前記CO含有ガス導入部を接続して、前記CO含有ガス導入部から前記CO含有ガスを前記コンプレッサに導入したのち、前記コンプレッサから前記CO含有ガスを含む圧縮気体を前記噴霧器本体部の前記気体流路に供給する、請求項3に記載のCO回収装置。
JP2017135574A 2017-07-11 2017-07-11 Co2回収装置 Active JP6887099B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017135574A JP6887099B2 (ja) 2017-07-11 2017-07-11 Co2回収装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017135574A JP6887099B2 (ja) 2017-07-11 2017-07-11 Co2回収装置

Publications (2)

Publication Number Publication Date
JP2019018114A JP2019018114A (ja) 2019-02-07
JP6887099B2 true JP6887099B2 (ja) 2021-06-16

Family

ID=65352514

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017135574A Active JP6887099B2 (ja) 2017-07-11 2017-07-11 Co2回収装置

Country Status (1)

Country Link
JP (1) JP6887099B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113385010A (zh) * 2021-05-10 2021-09-14 安徽省环境科学研究院 一种发电厂用烟气二氧化碳捕集系统及捕集方法
JP7334992B2 (ja) * 2021-06-16 2023-08-29 株式会社アンレット 二酸化炭素回収装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51125665A (en) * 1975-02-21 1976-11-02 Central Glass Co Ltd A fluid comtact arrangement
JPS6057909B2 (ja) * 1979-08-16 1985-12-17 三井造船株式会社 内部混合式霧化器
JPH03154611A (ja) * 1989-11-09 1991-07-02 Union Carbide Canada Ltd ガス洗浄法
US20070044766A1 (en) * 2005-08-31 2007-03-01 Turbulent Diffusion Technology Inc. Fuel oil atomizer
US8647413B2 (en) * 2009-10-30 2014-02-11 General Electric Company Spray process for the recovery of CO2 from a gas stream and a related apparatus
US20120027664A1 (en) * 2010-07-30 2012-02-02 General Electric Company Carbon dioxide capture system and methods of capturing carbon dioxide
JP2013017982A (ja) * 2011-07-14 2013-01-31 Ihi Corp ガス分離装置
JP6345127B2 (ja) * 2015-01-22 2018-06-20 三菱重工業株式会社 排ガス処理システム及び方法
JP6347432B2 (ja) * 2016-01-20 2018-06-27 パナソニックIpマネジメント株式会社 噴霧装置

Also Published As

Publication number Publication date
JP2019018114A (ja) 2019-02-07

Similar Documents

Publication Publication Date Title
EP2412424B1 (en) Carbon dioxide capture system and method of capturing carbon dioxide
EP2412425B1 (en) Carbon dioxide capture system and method of capturing carbon dioxide
US8647413B2 (en) Spray process for the recovery of CO2 from a gas stream and a related apparatus
CN104837541B (zh) 用于从气体中回收二氧化碳的方法和系统
AU2013200405B2 (en) Systems and methods for capturing carbon dioxide
US20210031136A1 (en) Carbon dioxide capture system and method of operating carbon dioxide capture system
CN110090530B (zh) 二氧化碳回收系统及二氧化碳回收系统的运转方法
JP6887099B2 (ja) Co2回収装置
US20140120015A1 (en) Desorption via a transporting desorption unit for the recovery of co2 from a gas stream and a related apparatus
CZ319392A3 (en) Concurrent dry scrubber
EP2737935A1 (en) Post absorber scrubbing of SO3
CN202823136U (zh) 一种气相氧化结合湿法吸收的脱硝装置
CN108996588B (zh) Voc精制装置
US7101425B2 (en) Washer and method for purifying gases
JP2007050334A (ja) 排ガス浄化方法及び設備
CN105056728A (zh) 一种化工尾气除臭设备及除臭方法
KR102281118B1 (ko) 초음파 분무와 선회류를 이용한 미세입자 제거 장치 및 방법
Soloveichik et al. Spray process for the recovery of CO. sub. 2 from a gas stream and a related apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210406

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210422

R151 Written notification of patent or utility model registration

Ref document number: 6887099

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151