JP6886664B2 - Plastic hinge structure of RC columnar structure and plastic hinge part repair method of RC columnar structure - Google Patents

Plastic hinge structure of RC columnar structure and plastic hinge part repair method of RC columnar structure Download PDF

Info

Publication number
JP6886664B2
JP6886664B2 JP2018095241A JP2018095241A JP6886664B2 JP 6886664 B2 JP6886664 B2 JP 6886664B2 JP 2018095241 A JP2018095241 A JP 2018095241A JP 2018095241 A JP2018095241 A JP 2018095241A JP 6886664 B2 JP6886664 B2 JP 6886664B2
Authority
JP
Japan
Prior art keywords
plastic hinge
hinge portion
columnar structure
concrete
pier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018095241A
Other languages
Japanese (ja)
Other versions
JP2019199761A (en
Inventor
修一 藤倉
修一 藤倉
明夫 正司
明夫 正司
博 渡瀬
博 渡瀬
洋介 浦川
洋介 浦川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Utsunomiya University
Oriental Shiraishi Corp
Original Assignee
Utsunomiya University
Oriental Shiraishi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Utsunomiya University, Oriental Shiraishi Corp filed Critical Utsunomiya University
Priority to JP2018095241A priority Critical patent/JP6886664B2/en
Publication of JP2019199761A publication Critical patent/JP2019199761A/en
Application granted granted Critical
Publication of JP6886664B2 publication Critical patent/JP6886664B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Rod-Shaped Construction Members (AREA)
  • Working Measures On Existing Buildindgs (AREA)
  • Bridges Or Land Bridges (AREA)

Description

本発明は、RC柱状構造物の塑性ヒンジ構造及びRC柱状構造物の塑性ヒンジ部補修方法に関する。 The present invention relates to a plastic hinge structure of an RC columnar structure and a method of repairing a plastic hinge portion of an RC columnar structure.

1995年1月17日に発生した兵庫県南部地震などの大地震を契機として、橋梁構造物や建築構造物などのRC構造物では、水平保有耐力法による耐震設計(靭性設計)が主流となった。このため、例えば、橋梁構造物の橋脚や建築構造物の柱などのRC柱状構造物では、一般に下部や上部に曲げ応力で鉄筋が降伏して地震エネルギーを吸収する塑性ヒンジ部を設け、倒壊等の脆性的な破壊を防ぐことが行われている。 In the wake of a major earthquake such as the Hyogoken Nanbu Earthquake that occurred on January 17, 1995, seismic design (toughness design) based on the horizontal holding capacity method became the mainstream for RC structures such as bridge structures and building structures. It was. For this reason, for example, in RC columnar structures such as piers of bridge structures and columns of building structures, generally, a plastic hinge portion is provided at the lower part or upper part of the reinforcing bar to absorb seismic energy due to bending stress, and collapses. It is done to prevent brittle fracture of.

しかし、塑性ヒンジ化は、RC橋脚などのRC柱状構造物の塑性ヒンジ部の損傷を意味しており、倒壊しないまでも残留歪が大きいと大規模補修だけでなく、撤去せざるを得ない場合もあり得た。例えば、橋梁構造物の上部構造が健全な場合であっても、下部構造であるRC橋脚の傾斜角度が1.0度以上、又は橋脚天端の水平変位が150mm以上となる場合は、RC橋脚を撤去して新設する必要があった。 However, plastic hinges mean damage to the plastic hinges of RC columnar structures such as RC piers, and if the residual strain is large even if it does not collapse, not only large-scale repairs but also removal is unavoidable. Was also possible. For example, even if the superstructure of the bridge structure is sound, if the inclination angle of the RC pier, which is the substructure, is 1.0 degree or more, or the horizontal displacement of the top of the pier is 150 mm or more, the RC pier It was necessary to remove and install a new one.

塑性ヒンジ部の残留歪を低減する方法としては、例えば、特許文献1には、橋脚柱10は、内部にコンクリートCが充填される閉塞された円形の鋼管16を備え、この鋼管16は、フーチング部12との結合部近傍に配置された塑性ヒンジ領域変更鋼管18と、この変更鋼管18の上方に配置されるリブ付鋼管20と、から構成され、内周面が円滑な普通鋼管である塑性ヒンジ領域変更鋼管18の下端縁が、フーチング部12の上端面から間隙δだけ上方に離間され、この塑性ヒンジ変更鋼管18の内周面には、グリスなどの付着防止材22が塗布されて、内部に充填されるコンクリートCとの間の縁切りが行なわれている橋脚柱構造が開示されている(特許文献1の特許請求の範囲の請求項1、明細書の段落[0011]〜[0032]、図面の図2、図3等参照)。 As a method for reducing the residual strain of the plastic hinge portion, for example, in Patent Document 1, the bridge pedestal 10 includes a closed circular steel pipe 16 filled with concrete C inside, and the steel pipe 16 is footed. Plastic that is a normal steel pipe with a smooth inner peripheral surface, consisting of a plastic hinge region changing steel pipe 18 arranged near the joint with the portion 12 and a ribbed steel pipe 20 arranged above the changed steel pipe 18. The lower end edge of the hinge region changing steel pipe 18 is separated upward by a gap δ from the upper end surface of the footing portion 12, and the inner peripheral surface of the plastic hinge changing steel pipe 18 is coated with an adhesion preventive material 22 such as grease. A bridge pedestal structure in which an edge is cut from the concrete C to be filled therein is disclosed (claim 1, of the scope of the patent claim of Patent Document 1, paragraphs [0011] to [0032] of the specification. , See FIGS. 2, 3 etc. of the drawing).

特許文献1に記載の橋脚柱構造は、フーチング部や上部構造部への損傷を最小限にすることができ、補修や補強が簡単に行なえるとされている。しかし、特許文献1に記載の橋脚柱構造は、塑性ヒンジ部の外表面には、塑性ヒンジ変更鋼管18が装着されているので、塑性ヒンジ変更鋼管18を切断撤去した上、橋脚柱構造全体を解体撤去して再構築する必要があった。つまり、橋脚柱構造を解体撤去して再構築する際には、上部構造をベントなどの仮設の支柱等で支える必要があった。要するに、補修や補強が簡単に行なえるとは、損傷が少ないフーチング部や上部構造部のみのことを指しており、塑性ヒンジ部を速やかに補修することができる構造ではないという問題があった。 It is said that the pier structure described in Patent Document 1 can minimize damage to the footing portion and the superstructure portion, and can be easily repaired or reinforced. However, in the pier structure described in Patent Document 1, since the plastic hinge changing steel pipe 18 is mounted on the outer surface of the plastic hinge portion, the plastic hinge changing steel pipe 18 is cut and removed, and the entire pier structure is removed. It had to be dismantled, removed and rebuilt. In other words, when dismantling and removing the pier structure and reconstructing it, it was necessary to support the superstructure with temporary columns such as vents. In short, the fact that repair and reinforcement can be easily performed refers only to the footing portion and the superstructure portion with little damage, and there is a problem that the structure is not such that the plastic hinge portion can be quickly repaired.

また、塑性ヒンジ部を補修する方法としては、例えば、特許文献2には、損傷を受けた既設鉄道高架橋柱1の塑性ヒンジ区間2,2’のコンクリートを斫り、座屈した軸方向鉄筋3,3’を露出させ、座屈した軸方向鉄筋5,5’を残して既設鉄道高架橋柱1を取り除き、前記座屈した軸方向鉄筋5,5’を曲げ戻し処理し、この曲げ戻し処理した軸方向鉄筋に新たな軸方向鉄筋6を継手7,7’で接続し、塑性ヒンジ区間保護キャップ8,8’を設置し、新たな軸方向鉄筋6に帯鉄筋9を巻き付け、この帯鉄筋9を巻き付けた軸方向鉄筋6にコンクリート10を打設することで、新たな鉄道高架橋柱への取り換えを行う損傷を受けた鉄道高架橋柱の取り換え工法が開示されている(特許文献2の特許請求の範囲の請求項1、明細書の段落[0012]〜[0016]、図面の図1等参照)。 Further, as a method of repairing the plastic hinge portion, for example, in Patent Document 2, the concrete of the plastic hinge sections 2 and 2'of the damaged existing railway high bridge column 1 is scraped and the buckled axial reinforcing bar 3 is used. , 3'was exposed, the existing railway high bridge column 1 was removed leaving the buckled axial reinforcing bars 5, 5', and the buckled axial reinforcing bars 5, 5'were bent back and subjected to this bending back treatment. A new axial reinforcing bar 6 is connected to the axial reinforcing bar with joints 7 and 7', a plastic hinge section protection cap 8 and 8'is installed, and a band reinforcing bar 9 is wound around the new axial reinforcing bar 6. A method for replacing a damaged railway high-bridge column by placing concrete 10 on an axial reinforcing bar 6 around which the concrete is wound is disclosed (Patent Request of Patent Document 2). Scope claim 1, paragraphs [0012] to [0016] of the specification, FIG. 1 of the drawing, etc.).

しかし、特許文献2に記載の鉄道高架橋柱の取り換え工法は、結局、既設鉄道高架橋柱1を取り替えるものであるため、前述の特許文献1に記載の橋脚柱構造と同様に、上部構造をベントなどの仮設の支柱等で支える必要があり、塑性ヒンジ部を速やかに補修することができる構造ではないという問題があった。 However, since the railway viaduct column replacement method described in Patent Document 2 eventually replaces the existing railway viaduct column 1, the upper structure is vented or the like as in the case of the bridge pier structure described in Patent Document 1 described above. There was a problem that it was necessary to support it with a temporary support column or the like, and the structure was not such that the plastic hinge portion could be repaired quickly.

さらに、非特許文献1には、塑性ヒンジ部の軸方向鉄筋に銅を基礎とする超弾性形状記憶合金(CuAlMn)を用い、地震後の橋脚柱の残留歪を低減することができる従来のRC橋脚柱の構造が開示されている(非特許文献1の29〜58頁等参照)。 Further, in Non-Patent Document 1, a conventional RC that can reduce the residual strain of the pier column after an earthquake by using a copper-based superelastic shape memory alloy (CuAlMn) for the axial reinforcing bar of the plastic hinge portion. The structure of the pier column is disclosed (see pages 29 to 58 of Non-Patent Document 1).

しかし、非特許文献1に記載の従来のRC橋脚柱の構造は、形状記憶合金が極めて高価である上、塑性ヒンジ部の損傷を低減することは困難であり、大地震時に崩壊するおそれを払拭できるものではないという問題があった。 However, in the structure of the conventional RC pier described in Non-Patent Document 1, the shape memory alloy is extremely expensive, it is difficult to reduce the damage of the plastic hinge portion, and the risk of collapse during a large earthquake is eliminated. There was a problem that it was not possible.

特開平9−209308号公報Japanese Unexamined Patent Publication No. 9-209308 特開2012−144919号公報Japanese Unexamined Patent Publication No. 2012-144919

M. 'Saiid' Saiidi、Sebastian Varela著、「DYNAMIC PERFORMANCE OF NOVELBRIDGE columns with superelastic CuAlMn shape memory and ECC」、International Journal of Bridge Engineering(IJBE)、vol.2、 2014年7月、p.29-58M.'Saiid' Saiidi, Sebastian Varela, "DYNAMIC PERFORMANCE OF NOVELBRIDGE columns with superelastic CuAlMn shape memory and ECC", International Journal of Bridge Engineering (IJBE), vol.2, July 2014, p.29-58

そこで、本発明は、前述した問題に鑑みて案出されたものであり、その目的とするところは、大地震時でも崩壊などの脆性破壊を防ぎつつ塑性ヒンジ部の残留歪を低減するとともに、速やかな補修が可能なRC柱状構造物の塑性ヒンジ構造及びRC柱状構造物の塑性ヒンジ部補修方法を提供することにある。 Therefore, the present invention has been devised in view of the above-mentioned problems, and an object of the present invention is to reduce residual strain of the plastic hinge portion while preventing brittle fracture such as collapse even in the event of a large earthquake. It is an object of the present invention to provide a plastic hinge structure of an RC columnar structure capable of rapid repair and a method of repairing a plastic hinge portion of the RC columnar structure.

請求項1に係るRC柱状構造物の塑性ヒンジ構造は、RC橋脚やRC柱などの軸方向力を受けるRC柱状構造物の上部及び/又は下部に設けられ、前記RC柱状構造物に作用する曲げ応力で軸方向筋が降伏して地震エネルギーを吸収する塑性ヒンジ部を有するRC柱状構造物の塑性ヒンジ構造であって、前記軸方向力を支えるコアコンクリートの損傷を防ぐために、前記RC柱状構造物内の中心軸に沿って埋設され、前記塑性ヒンジ部より軸方向に沿って長く上下に延設された管体と、前記塑性ヒンジ部の上下端付近に設けられ、曲げ降伏する前記軸方向筋を接続する複数対の機械式継手と、を備えるとともに、前記RC柱状構造物の軸方向と直交する板面を有し、前記塑性ヒンジ部と他の部分とを区分けする仕切材を備えることを特徴とする。 The plastic hinge structure of the RC columnar structure according to claim 1 is provided on the upper part and / or lower part of the RC columnar structure that receives an axial force such as an RC bridge pedestal or an RC column, and bends that acts on the RC columnar structure. A plastic hinge structure of an RC columnar structure having a plastic hinged portion in which axial streaks yield due to stress to absorb seismic energy. In order to prevent damage to the core concrete that supports the axial force, the RC columnar structure A pipe body embedded along the central axis of the inside and extending vertically along the axial direction from the plastic hinge portion, and an axial muscle provided near the upper and lower ends of the plastic hinge portion and bending and yielding. It is provided with a plurality of pairs of mechanical joints for connecting the RC columnar structures, and a partition member having a plate surface orthogonal to the axial direction of the RC columnar structure and separating the plastic hinge portion from other portions. It is a feature.

請求項に係るRC柱状構造物の塑性ヒンジ構造は、請求項1に係るRC柱状構造物の塑性ヒンジ構造において、前記仕切材は、エキスパンドメタルやパンチングメタルなどの孔あき鋼板からなり、通気可能な孔が形成されていることを特徴とする。 The plastic hinge structure of the RC columnar structure according to claim 2 is the plastic hinge structure of the RC columnar structure according to claim 1. The partition material is made of a perforated steel plate such as an expanded metal or a punching metal and can be ventilated. It is characterized in that a hole is formed.

請求項に係るRC柱状構造物の塑性ヒンジ部補修方法は、請求項1又は2に記載のRC柱状構造物の塑性ヒンジ構造の前記塑性ヒンジ部を補修するRC柱状構造物の塑性ヒンジ補部修方法であって、前記管体内のコアコンクリートで上部構造の荷重を支えつつ、前記塑性ヒンジ部の損傷したコンクリートを撤去する塑性ヒンジ部コンクリート撤去工程を有することを特徴とする。 The method for repairing the plastic hinge portion of the RC columnar structure according to claim 3 is the plastic hinge repair portion of the RC columnar structure for repairing the plastic hinge portion of the plastic hinge structure of the RC columnar structure according to claim 1 or 2. The repair method is characterized by having a plastic hinge portion concrete removing step of removing the damaged concrete of the plastic hinge portion while supporting the load of the superstructure with the core concrete in the pipe body.

請求項に係るRC柱状構造物の塑性ヒンジ部補修方法は、請求項に係るRC柱状構造物の塑性ヒンジ部補修方法において、前記塑性ヒンジ部コンクリート撤去工程は、前記機械式継手を外して損傷した前記軸方向筋を撤去して行うことを特徴とする。 The method for repairing the plastic hinge portion of the RC columnar structure according to claim 4 is the method for repairing the plastic hinge portion of the RC columnar structure according to claim 3 , wherein the plastic hinge portion concrete removing step removes the mechanical joint. It is characterized in that the damaged axial muscle is removed.

請求項に係るRC柱状構造物の塑性ヒンジ部補修方法は、請求項又はに係るRC柱状構造物の塑性ヒンジ部補修方法において、前記塑性ヒンジ部コンクリート撤去工程は、前記仕切材から軸方向外側の前記塑性ヒンジ部のコンクリートを全て撤去することを特徴とする。 The method for repairing a plastic hinge portion of an RC columnar structure according to claim 5 is the method for repairing a plastic hinge portion of an RC columnar structure according to claim 3 or 4 , wherein the step of removing concrete from the plastic hinge portion is a shaft from the partition material. It is characterized in that all the concrete of the plastic hinge portion on the outer side of the direction is removed.

請求項1又は2に係る発明によれば、地震時の塑性ヒンジ部の損傷を、損傷を受けエネルギーの吸収を行う管体外の部分と、損傷を受けない管体内のコアコンクリートの部分と、に分けた二重のシステムとしている。このため、大地震時でも崩壊などの危険な脆性破壊を防ぎつつ塑性ヒンジ部の残留歪を低減することができる。また、機械式継手を取り外して降伏した軸方向筋を撤去することができるので、塑性ヒンジ部の損傷したコンクリートを撤去することが容易であり、速やかな補修が可能である。
また、請求項1又は2に係る発明によれば、塑性ヒンジ部と他の部分とを区分けする仕切材を備えているので、地震時に損傷を受ける塑性ヒンジ部と、その他の一般部との間に板状の仕切りが形成されていることとなる。このため、塑性ヒンジ部のコンクリートの撤去が容易であり、残留歪を低減することができるとともに、さらに速やかな補修が可能となる。
According to the invention of claim 1 or 2 , damage to the plastic hinge portion at the time of an earthquake is divided into a portion outside the pipe body that is damaged and absorbs energy, and a portion of the core concrete inside the pipe body that is not damaged. It is a separate dual system. Therefore, it is possible to reduce the residual strain of the plastic hinge portion while preventing dangerous brittle fracture such as collapse even in the event of a large earthquake. Further, since the mechanical joint can be removed to remove the yielded axial streaks, it is easy to remove the damaged concrete of the plastic hinge portion, and quick repair is possible.
Further, according to the invention of claim 1 or 2, since the partition material for separating the plastic hinge portion and the other portion is provided, the plastic hinge portion damaged at the time of an earthquake and the other general portion are separated from each other. A plate-shaped partition is formed on the surface. Therefore, the concrete of the plastic hinge portion can be easily removed, the residual strain can be reduced, and the repair can be performed more quickly.

特に、請求項に係る発明によれば、水平材である仕切材があってもRC柱状構造物の新設のコンクリート打設時に空気溜まりができるおそれがなくなり、ジャンカなどのコンクリートの打設不良個所を無くして施工を容易且つ短時間で行うことができる。 In particular, according to the invention of claim 2 , even if there is a partition material which is a horizontal member, there is no possibility that air pools will be formed when concrete is placed in a new RC columnar structure, and a place where concrete is placed poorly such as a junker. It is possible to carry out the construction easily and in a short time by eliminating the above.

請求項に係る発明によれば、管体内のコアコンクリートで上部構造の荷重を支えつつ、塑性ヒンジ部の損傷したコンクリートを撤去するので、塑性ヒンジ部を補修する際に、ベントなどの仮設の支持機構を設ける必要がなくなる。このため、塑性ヒンジ部の補修が容易且つ短時間で行うことができるとともに、仮設費用を低減して安価に補修を行うことができる。 According to the inventions according to claims 3 to 5 , the damaged concrete of the plastic hinge portion is removed while supporting the load of the superstructure with the core concrete in the pipe, so that when repairing the plastic hinge portion, a vent or the like is used. There is no need to provide a temporary support mechanism. Therefore, the plastic hinge portion can be easily repaired in a short time, and the temporary installation cost can be reduced and the repair can be performed at low cost.

特に、請求項に係る発明によれば、機械式継手を外して損傷した軸方向筋を撤去して、塑性ヒンジ部の損傷したコンクリートを撤去するので、さらに塑性ヒンジ部の補修が容易且つ短時間で行うことができる。 In particular, according to the invention of claim 4 , since the mechanical joint is removed, the damaged axial bar is removed, and the damaged concrete of the plastic hinge portion is removed, the repair of the plastic hinge portion is easier and shorter. Can be done in time.

特に、請求項に係る発明によれば、塑性ヒンジ部とその他の部分を仕切材で仕切って縁切りがされているので、塑性ヒンジ部の残留歪を低減することができるだけでなく、地震時に損傷を一般部が受けるおそれを低減することができる。また、仕切材で仕切って縁切りがされているので、塑性ヒンジ部の損傷したコンクリートを撤去するのが、極めて容易であるとともに、コンクリートを斫って撤去する際に、一般部を損傷することがない。 In particular, according to the invention of claim 5 , since the plastic hinge portion and other portions are separated by a partition material and edge-cut, not only the residual strain of the plastic hinge portion can be reduced, but also the plastic hinge portion is damaged at the time of an earthquake. It is possible to reduce the risk that the general part will receive the above. In addition, since the edge is cut by partitioning with a partition material, it is extremely easy to remove the damaged concrete of the plastic hinge part, and when the concrete is scraped and removed, the general part can be damaged. Absent.

本発明の実施形態に係るRC柱状構造物の塑性ヒンジ構造を橋脚の剛結構造へ適用した場合を示す構成説明図である。It is a block diagram which shows the case where the plastic hinge structure of the RC columnar structure which concerns on embodiment of this invention is applied to the rigid structure of a pier. 同上のRC柱状構造物の塑性ヒンジ構造を模式的に示す構成説明図である。It is a structural explanatory view which shows typically the plastic hinge structure of the RC columnar structure of the same above. 本発明の実施形態に係るRC柱状構造物の塑性ヒンジ部補修方法の各工程を示すフローチャートである。It is a flowchart which shows each process of the plastic hinge part repair method of RC columnar structure which concerns on embodiment of this invention. 従来のRC橋脚とし作成した供試体を示す図であり、(a)が断面図、(b)が側面図である。It is a figure which shows the specimen made as the conventional RC pier, (a) is a sectional view, (b) is a side view. 本発明に係るRC橋脚として作成した供試体を示す図であり、(a)が断面図、(b)が側面図である。It is a figure which shows the specimen produced as the RC pier which concerns on this invention, (a) is a sectional view, (b) is a side view. 6δy終了時の損傷状況を示す図である。It is a figure which shows the damage state at the end of 6δy. 実験終了時の損傷状況を示す図である。It is a figure which shows the damage state at the end of an experiment. 従来のRC橋脚の荷重−変位の履歴曲線である。It is a history curve of the load-displacement of the conventional RC pier. 本発明に係るRC橋脚の荷重−変位の履歴曲線である。It is a history curve of the load-displacement of the RC pier according to the present invention. 図8、図9の包絡線の比較を示すグラフである。It is a graph which shows the comparison of the envelope of FIG. 8 and FIG. 従来のRC橋脚と本発明に係るRC橋脚の残留変位の比較を示すグラフである。It is a graph which shows the comparison of the residual displacement of the conventional RC pier and the RC pier which concerns on this invention.

以下、本発明に係るRC柱状構造物の塑性ヒンジ構造及びRC柱状構造物の塑性ヒンジ部補修方法の一実施形態について、図面を参照しながら詳細に説明する。 Hereinafter, an embodiment of the plastic hinge structure of the RC columnar structure and the method of repairing the plastic hinge portion of the RC columnar structure according to the present invention will be described in detail with reference to the drawings.

<RC柱状構造物の塑性ヒンジ構造>
図1及び図2を用いて、本発明の実施形態に係るRC柱状構造物の塑性ヒンジ構造について説明する。本実施形態では、RC柱状構造物としてRC橋脚を例示して説明する。図1は、本発明の実施形態に係るRC柱状構造物の塑性ヒンジ構造であるRC橋脚の塑性ヒンジ構造1を橋脚の剛結構造へ適用した場合を示す構成説明図であり、図2は、本実施形態に係るRC橋脚の塑性ヒンジ構造1を模式的に示す構成説明図である。
<Plastic hinge structure of RC columnar structure>
The plastic hinge structure of the RC columnar structure according to the embodiment of the present invention will be described with reference to FIGS. 1 and 2. In this embodiment, an RC pier will be illustrated as an RC columnar structure. FIG. 1 is a configuration explanatory view showing a case where the plastic hinge structure 1 of an RC pier, which is a plastic hinge structure of an RC columnar structure according to an embodiment of the present invention, is applied to a rigid pier structure, and FIG. 2 is a configuration explanatory view. It is a structural explanatory view which shows typically the plastic hinge structure 1 of the RC pier which concerns on this embodiment.

先ず、RC柱状構造物として例示したRC橋脚について簡単に説明する。図1に示すように、本実施形態に係るRC柱状構造物であるRC橋脚10は、橋梁の下部構造(下部工)であるRC橋脚10が、上部構造(上部工)と一体となって剛結されたラーメン橋RBの橋脚である。RC橋脚10は、RC橋脚10の基礎であるフーチング11、及び橋桁や床版等からなる上部構造12(上部工)にそれぞれ剛結接合されている。 First, the RC pier exemplified as the RC columnar structure will be briefly described. As shown in FIG. 1, in the RC pier 10 which is the RC columnar structure according to the present embodiment, the RC pier 10 which is the lower structure (substructure) of the bridge is rigid together with the upper structure (superstructure). It is the pier of the connected rigid-frame bridge RB. The RC pier 10 is rigidly joined to the footing 11 which is the foundation of the RC pier 10 and the superstructure 12 (superstructure) composed of a bridge girder, a deck, and the like.

本実施形態に係るRC橋脚10の塑性ヒンジ構造1は、図1に示すように、RC橋脚10の上部と下部の両方に設けられている。橋梁の下部構造(下部工)と上部構造12が剛結されているラーメン橋RBの場合は、下部構造であるRC橋脚10の上部にも地震エネルギーに起因する水平力が作用するからである。勿論、RC橋脚10の塑性ヒンジ構造1は、上部構造12との間に支承が設けられている場合などは、RC橋脚10の下部のみに設けられていればよいし、場合によっては、RC橋脚10の上部のみに設けられていてもよい。 As shown in FIG. 1, the plastic hinge structure 1 of the RC pier 10 according to the present embodiment is provided on both the upper part and the lower part of the RC pier 10. This is because in the case of a rigid-frame bridge RB in which the substructure (substructure) of the bridge and the superstructure 12 are rigidly connected, a horizontal force due to seismic energy also acts on the upper part of the RC pier 10, which is the substructure. Of course, the plastic hinge structure 1 of the RC pier 10 may be provided only at the lower part of the RC pier 10 when a bearing is provided between the RC pier 10 and the upper structure 12, and in some cases, the RC pier It may be provided only on the upper part of 10.

図2に示すように、本実施形態に係る塑性ヒンジ構造1は、地震エネルギーを吸収する塑性ヒンジ部2と、それ以外の一般部3など、からなるRC橋脚10の塑性ヒンジ構造である。 As shown in FIG. 2, the plastic hinge structure 1 according to the present embodiment is a plastic hinge structure of an RC pier 10 including a plastic hinge portion 2 that absorbs seismic energy and a general portion 3 other than that.

(塑性ヒンジ部)
塑性ヒンジ部2は、フーチング11と接続するRC橋脚10の最下部、及び上部構造12と接続するRC橋脚10の最下部に設けられておいる。この塑性ヒンジ部2は、RC橋脚10の軸方向(上下方向)に沿って埋設配置された複数の軸方向鉄筋4(軸方向筋)が曲げ降伏してRC橋脚10全体が変位することでRC橋脚10に入力される地震エネルギーをひずみエネルギーとして消費して吸収する機能を有している。
(Plastic hinge part)
The plastic hinge portion 2 is provided at the lowermost part of the RC pier 10 connected to the footing 11 and at the lowermost part of the RC pier 10 connected to the upper structure 12. In this plastic hinge portion 2, a plurality of axial reinforcing bars 4 (axial reinforcing bars) buried and arranged along the axial direction (vertical direction) of the RC pier 10 bend and yield, and the entire RC pier 10 is displaced to perform RC. It has a function of consuming and absorbing the seismic energy input to the pier 10 as strain energy.

RC橋脚10には、すくなくとも四隅に軸方向鉄筋4が配設され、それらを囲繞するように複数の帯鉄筋(図示せず)が上下方向に所定間隔をおいて配置されている。勿論、軸方向鉄筋4や帯鉄筋(帯筋)の本数等は、構造設計に応じて適宜設定されるものである。 Axial reinforcing bars 4 are arranged at least at four corners of the RC pier 10, and a plurality of reinforcing bars (not shown) are arranged at predetermined intervals in the vertical direction so as to surround them. Of course, the number of axial reinforcing bars 4 and the number of reinforcing bars (band reinforcing bars) and the like are appropriately set according to the structural design.

この塑性ヒンジ部2には、複数の軸方向鉄筋4と、これらの軸方向鉄筋4を取り外して交換可能に接続する上下一対の複数対の機械式継手5と、RC橋脚10の中心軸に沿って埋設された管体である鋼管6を備えている。また、RC橋脚10の塑性ヒンジ部2と一般部3との境界には、これらを区分けする仕切材として鋼板7が設置されている。 The plastic hinge portion 2 includes a plurality of axial reinforcing bars 4, a plurality of pairs of upper and lower mechanical joints 5 in which these axial reinforcing bars 4 are removed and interchangeably connected, and along the central axis of the RC bridge pedestal 10. It is provided with a steel pipe 6 which is a pipe body buried in the water. Further, at the boundary between the plastic hinge portion 2 and the general portion 3 of the RC pier 10, a steel plate 7 is installed as a partitioning material for separating them.

(機械式継手)
機械式継手5は、塑性ヒンジ部2に地震エネルギーが入力された際に損傷した軸方向鉄筋4を交換可能とするものであり、一般的な機械式継手であればよい。ここで、機械式継手とは、ねじ節鉄筋継手、モルタル充填継手、端部ねじ加工継手、鋼管圧着継手、鋼管圧着ねじ継手、又は、これらの併用した継手などを指している。要するに、機械式継手とは、鉄筋を直接接合するのではなく、特殊鋼材製の鋼管(スリーブ又はカプラー)と異形鉄筋の節の噛み合いを利用して接合する継手を指している。
(Mechanical fitting)
The mechanical joint 5 makes it possible to replace the axial reinforcing bar 4 damaged when seismic energy is input to the plastic hinge portion 2, and may be a general mechanical joint. Here, the mechanical joint refers to a threaded joint, a mortar-filled joint, an end threaded joint, a steel pipe crimping joint, a steel pipe crimping threaded joint, or a joint in which these are used in combination. In short, the mechanical joint refers to a joint in which a steel pipe (sleeve or coupler) made of a special steel material and a joint of a deformed reinforcing bar are joined by utilizing the meshing of the joints of the reinforcing bar, instead of directly joining the reinforcing bar.

代表的なものを例示して説明すると、ねじ節鉄筋継手は、製造段階で表面の節にねじ状の加工を施した異形鉄筋を、内部にねじ加工された鋼管(カプラー)によって接合する継手である。また、モルタル充填継手は、内周面にリブ加工された継手用鋼管(スリーブ)と鉄筋との隙間に高強度モルタルを充填して接合する継手である。 Explaining a typical example, a threaded rebar joint is a joint in which deformed reinforcing bars in which the surface nodes are threaded at the manufacturing stage are joined by a steel pipe (coupler) threaded inside. is there. Further, the mortar-filled joint is a joint in which a high-strength mortar is filled in a gap between a steel pipe (sleeve) for joint and a reinforcing bar whose inner peripheral surface is ribbed and joined.

(鋼管)
鋼管6は、RC橋脚10の水平断面の図心位置に管軸が重なるように配置され、内部にコンクリートが充填されるCFT(Concrete Filled Tube)とするための断面円形の鋼管である。この鋼管6は、内部に充填されたコンクリートを地震エネルギーが入力された場合でも損傷を受けないコアコンクリートして保護する機能を有している。本発明に係る鋼管は、断面円形のものに限られず、角形鋼管や断面星形の鋼管であっても構わない。但し、地震波がどこからくるかの予測が立たないため、断面円形などの断面形状に異方性が無い方が好ましい。
(Steel pipe)
The steel pipe 6 is a steel pipe having a circular cross section for forming a CFT (Concrete Filled Tube) in which the pipe axis is arranged so as to overlap the centroid position of the horizontal cross section of the RC pier 10 and the inside is filled with concrete. The steel pipe 6 has a function of protecting the concrete filled inside with core concrete that is not damaged even when seismic energy is input. The steel pipe according to the present invention is not limited to a steel pipe having a circular cross section, and may be a square steel pipe or a steel pipe having a star-shaped cross section. However, since it is not possible to predict where the seismic wave will come from, it is preferable that the cross-sectional shape such as a circular cross section has no anisotropy.

この鋼管6の直径や厚さは、上部構造12を支える上で必要なコアコンクリートと、損傷を受けて地震エネルギーを吸収するための塑性ヒンジ部2の外部コンクリートの比率によって設定される。勿論、少なくとも、この鋼管6の直径は、RC橋脚10の短辺方向の幅より小さいことが必要であり、一般的には、RC橋脚10の短辺方向の幅の1/3〜1/2程度の範囲となる。 The diameter and thickness of the steel pipe 6 are set by the ratio of the core concrete required to support the superstructure 12 to the outer concrete of the plastic hinge portion 2 for absorbing seismic energy when damaged. Of course, at least the diameter of the steel pipe 6 needs to be smaller than the width in the short side direction of the RC pier 10, and generally, 1/3 to 1/2 of the width in the short side direction of the RC pier 10. It will be in the range of degree.

また、鋼管6の長さは、図2に示すように、塑性ヒンジ部2より上下とも長く、フーチング11及び一般部3に所定長さだけ喰い込むように延設されている。具体的には、フーチング11及び一般部3に喰い込む長さは、鋼管6を降伏させる水平力が作用した場合でも、フーチング11及び一般部3から鋼管6が抜け出さない程度の長さが必要である。勿論、本発明の実施形態に係る管体として、鋼管6を例示して説明したが、FRPや強化繊維などからなる筒体であっても構わない。要するに、本発明に係る管体は、地震エネルギーなどの所定の水平力に対抗でき、コアコンクリートを保護することのできる筒状の物体であればよい。 Further, as shown in FIG. 2, the length of the steel pipe 6 is longer than the plastic hinge portion 2 both above and below, and is extended so as to bite into the footing 11 and the general portion 3 by a predetermined length. Specifically, the length of biting into the footing 11 and the general portion 3 must be such that the steel pipe 6 does not come out from the footing 11 and the general portion 3 even when a horizontal force for yielding the steel pipe 6 acts. is there. Of course, as the pipe body according to the embodiment of the present invention, the steel pipe 6 has been described as an example, but a cylinder body made of FRP, reinforcing fibers, or the like may be used. In short, the pipe body according to the present invention may be a tubular object that can withstand a predetermined horizontal force such as seismic energy and can protect the core concrete.

(仕切材)
鋼板7は、塑性ヒンジ部2と一般部3との間に設けられ、塑性ヒンジ部2と一般部3とを区分けする仕切材として機能する所定厚の矩形状の鋼板であり、RC橋脚10の軸方向と直交する板面を有している。鋼板7を設けることにより、損傷したコンクリートの撤去が容易であり、残留歪を低減することができる。また、後述のように、地震力で損傷した塑性ヒンジ部2の速やかな補修が可能となる。
(Partition material)
The steel plate 7 is a rectangular steel plate having a predetermined thickness, which is provided between the plastic hinge portion 2 and the general portion 3 and functions as a partitioning material for separating the plastic hinge portion 2 and the general portion 3, and is the RC pier 10. It has a plate surface orthogonal to the axial direction. By providing the steel plate 7, the damaged concrete can be easily removed and the residual strain can be reduced. Further, as will be described later, the plastic hinge portion 2 damaged by the seismic force can be quickly repaired.

なお、この鋼板7は、エキスパンドメタルやパンチングメタルなどの孔あき鋼板であっても構わない。孔あき鋼板とすることにより、孔を通じて空気が通り抜けることができるようになる。このため、RC橋脚10の新設のコンクリートを打設する際に、空気溜まりができるおそれがなくなり、ジャンカなどのコンクリートの打設不良個所を無くすことができるため好ましい。また、本発明に係る仕切材は、無機系の板材やビニールシートなどシート材とすることもできる。要するに、本発明に係る仕切材には、塑性ヒンジ部と他の部分とを区分けする部材であれば、孔の有無にかかわらず、板状又はシート状の部材を適用することができる。 The steel plate 7 may be a perforated steel plate such as an expanded metal or a punching metal. By using a perforated steel plate, air can pass through the holes. Therefore, when the new concrete of the RC pier 10 is placed, there is no possibility that an air pool is formed, and it is possible to eliminate a defective concrete placement place such as a junker, which is preferable. Further, the partition material according to the present invention may be a sheet material such as an inorganic plate material or a vinyl sheet. In short, a plate-shaped or sheet-shaped member can be applied to the partition material according to the present invention as long as it is a member that separates the plastic hinge portion from the other portion, regardless of the presence or absence of holes.

以上説明した本実施形態に係るRC橋脚10の塑性ヒンジ構造1によれば、地震時の塑性ヒンジ部2の損傷を、損傷を受けエネルギーの吸収を行う鋼管6の外側の部分と、損傷を受けない鋼管6内のコアコンクリートの部分と、に分けた二重のシステムとしている。このため、大地震時でも、塑性ヒンジ部2の外側の部分でエネルギーを吸収して崩壊などの危険な脆性破壊を防ぎつつ、塑性ヒンジ部2の損傷した部分を取り替えることで残留歪を低減することができる。また、機械式継手5を取り外して降伏した軸方向鉄筋4を撤去することができるので、塑性ヒンジ部2の損傷したコンクリートを撤去することが容易であり、速やかな補修が可能である。 According to the plastic hinge structure 1 of the RC pier 10 according to the present embodiment described above, the plastic hinge portion 2 at the time of an earthquake is damaged, and the outer portion of the steel pipe 6 that is damaged and absorbs energy is damaged. It is a double system divided into a core concrete part in the steel pipe 6 that does not exist. Therefore, even in the event of a large earthquake, the outer portion of the plastic hinge portion 2 absorbs energy to prevent dangerous brittle fracture such as collapse, and the damaged portion of the plastic hinge portion 2 is replaced to reduce residual strain. be able to. Further, since the mechanical joint 5 can be removed to remove the yielded axial reinforcing bar 4, it is easy to remove the damaged concrete of the plastic hinge portion 2, and quick repair is possible.

また、塑性ヒンジ構造1によれば、地震時に損傷を受ける塑性ヒンジ部2と、その他の一般部3との間に鋼板7が設けられて、塑性ヒンジ部2と一般部3とが縁切りされている。このため、塑性ヒンジ部2のコンクリートの撤去が極めて容易であり、速やかな補修が可能となる。 Further, according to the plastic hinge structure 1, a steel plate 7 is provided between the plastic hinge portion 2 which is damaged at the time of an earthquake and the other general portion 3, and the plastic hinge portion 2 and the general portion 3 are cut off from each other. There is. Therefore, it is extremely easy to remove the concrete of the plastic hinge portion 2, and quick repair is possible.

<RC柱状構造物の塑性ヒンジ部補修方法>
次に、図3を用いて、本発明の実施形態に係るRC柱状構造物の塑性ヒンジ部補修方法について説明する。前述のRC橋脚10の塑性ヒンジ構造1に地震力が入力されて塑性ヒンジ部2が損傷した際に、その塑性ヒンジ部2を補修する場合を例示して説明する。図3は、本発明の実施形態に係るRC柱状構造物の塑性ヒンジ部補修方法の各工程を示すフローチャートである。
<Repair method for plastic hinges of RC columnar structures>
Next, a method of repairing the plastic hinge portion of the RC columnar structure according to the embodiment of the present invention will be described with reference to FIG. The case where the plastic hinge portion 2 is repaired when the plastic hinge portion 2 is damaged by the seismic force input to the plastic hinge structure 1 of the RC pier 10 described above will be described as an example. FIG. 3 is a flowchart showing each step of the method of repairing the plastic hinge portion of the RC columnar structure according to the embodiment of the present invention.

(1.鉄筋撤去工程)
図3に示すように、先ず、本実施形態に係るRC柱状構造物の塑性ヒンジ部補修方法(以下、単に塑性ヒンジ部補修方法という)では、塑性ヒンジ部2が降伏して変形した軸方向鉄筋4を撤去する鉄筋撤去工程を行う。
(1. Reinforcing bar removal process)
As shown in FIG. 3, first, in the method of repairing the plastic hinge portion of the RC columnar structure according to the present embodiment (hereinafter, simply referred to as the method of repairing the plastic hinge portion), the plastic hinge portion 2 yields and is deformed in the axial reinforcing bar. Reinforcing bar removal step of removing 4 is performed.

具体的には、機械式継手5を取り外し、変形した軸方向鉄筋4を撤去する。このとき、元々、機械式継手5を介して接合されているので、軸方向鉄筋4を撤去するのが、極めて容易である。 Specifically, the mechanical joint 5 is removed, and the deformed axial reinforcing bar 4 is removed. At this time, since the joints are originally joined via the mechanical joint 5, it is extremely easy to remove the axial reinforcing bars 4.

(2.塑性ヒンジ部コンクリート撤去工程)
次に、本実施形態に係る塑性ヒンジ部補修方法では、塑性ヒンジ部2の損傷したコンクリートを撤去する塑性ヒンジ部コンクリート撤去工程を行う。このとき、鋼管6内のコアコンクリートで上部構造12の荷重を支えつつ、塑性ヒンジ部2の損傷したコンクリートを撤去する。このため、ベントなどの上部構造12の荷重を一時的に支持する仮設の支持機構を設ける必要なくなる。
(2. Plastic hinge part concrete removal process)
Next, in the plastic hinge portion repair method according to the present embodiment, the plastic hinge portion concrete removing step of removing the damaged concrete of the plastic hinge portion 2 is performed. At this time, the damaged concrete of the plastic hinge portion 2 is removed while supporting the load of the superstructure 12 with the core concrete in the steel pipe 6. Therefore, it is not necessary to provide a temporary support mechanism for temporarily supporting the load of the superstructure 12 such as a vent.

また、本工程では、前工程で軸方向鉄筋4が全て撤去されているので、コンクリート部分が露出しており、斫り機等で損傷したコンクリートを斫り取ることが極めて容易である。 Further, in this step, since all the axial reinforcing bars 4 are removed in the previous step, the concrete portion is exposed, and it is extremely easy to scrape the damaged concrete with a chipping machine or the like.

その上、本工程では、仕切材である鋼板7から軸方向外側の塑性ヒンジ部2のコンクリートを全て撤去する。このとき、RC橋脚10の塑性ヒンジ構造1では、前述のように、鋼板7で塑性ヒンジ部2と一般部3とが縁切りされている。このため、本工程では、損傷したコンクリートを斫り取ることが極めて容易であるとともに、一般部3には、塑性ヒンジ部2のコンクリートを斫り取る際に影響を受けることがない。よって、この点でも、残留歪を低減することができる。 Further, in this step, all the concrete of the plastic hinge portion 2 on the outer side in the axial direction is removed from the steel plate 7 which is a partition material. At this time, in the plastic hinge structure 1 of the RC pier 10, the plastic hinge portion 2 and the general portion 3 are edge-cut by the steel plate 7 as described above. Therefore, in this step, it is extremely easy to scrape the damaged concrete, and the general portion 3 is not affected when scraping the concrete of the plastic hinge portion 2. Therefore, the residual strain can be reduced also in this respect.

(3.鉄筋及び型枠組立工程)
次に、本実施形態に係る塑性ヒンジ部補修方法では、塑性ヒンジ部2に新しい機械式継手5を介して新しい軸方向鉄筋4及び必要な帯鉄筋を配筋するとともに、外側にコンクリート打設用の型枠を組み立てる鉄筋及び型枠組立工程を行う。
(3. Reinforcing bar and formwork assembly process)
Next, in the plastic hinge portion repair method according to the present embodiment, a new axial reinforcing bar 4 and necessary reinforcing bars are arranged on the plastic hinge portion 2 via a new mechanical joint 5, and concrete is placed on the outside. Reinforcing bar and formwork assembly process to assemble the formwork.

(4.コンクリート打設工程)
次に、本実施形態に係る塑性ヒンジ部補修方法では、前工程で組み立てた型枠内にコンクリートを打設するコンクリート打設工程を行う。
(4. Concrete placing process)
Next, in the plastic hinge portion repair method according to the present embodiment, a concrete placing step of placing concrete in the formwork assembled in the previous step is performed.

そして、打設したコンクリートが所定の強度が発現するまでの養生期間をとって、型枠を撤去すれば、本実施形態に係る塑性ヒンジ部補修方法の補修が全て完了する。 Then, if the mold is removed after a curing period until the cast concrete develops a predetermined strength, all the repairs of the plastic hinge portion repair method according to the present embodiment are completed.

以上説明した本実施形態に係る塑性ヒンジ部補修方法によれば、鋼管6内のコアコンクリートで上部構造12の荷重を支えつつ全工程を行う。このため、ベントなどの上部構造12の荷重を一時的に支持する仮設の支持機構を設ける必要がなくなる。よって、塑性ヒンジ部2の補修が容易且つ短時間で行うことができるとともに、仮設費用を低減して安価に補修を行うことができる。 According to the plastic hinge portion repair method according to the present embodiment described above, the entire process is performed while supporting the load of the superstructure 12 with the core concrete in the steel pipe 6. Therefore, it is not necessary to provide a temporary support mechanism for temporarily supporting the load of the superstructure 12 such as a vent. Therefore, the plastic hinge portion 2 can be easily repaired in a short time, and the temporary installation cost can be reduced and the repair can be performed at low cost.

また、本実施形態に係る塑性ヒンジ部補修方法によれば、機械式継手5を外して損傷した軸方向鉄筋4を撤去して、塑性ヒンジ部2の損傷したコンクリートを撤去するので、塑性ヒンジ部2の補修が容易且つ短時間で行うことができる。 Further, according to the method for repairing the plastic hinge portion according to the present embodiment, the mechanical joint 5 is removed, the damaged axial reinforcing bar 4 is removed, and the damaged concrete of the plastic hinge portion 2 is removed. Repair of 2 can be performed easily and in a short time.

その上、本実施形態に係る塑性ヒンジ部補修方法によれば、塑性ヒンジ部2と一般部3とを鋼板7で仕切って縁切りがされているので、コンクリートを斫る際に、一般部3を傷めるおそれがなく、塑性ヒンジ部2の残留歪を低減することができる。それに加え、地震時に損傷を一般部3が受けるおそれを低減することができる。 Further, according to the plastic hinge portion repair method according to the present embodiment, the plastic hinge portion 2 and the general portion 3 are separated by a steel plate 7 and edge-cut. Therefore, when the concrete is scraped, the general portion 3 is separated. There is no risk of damage, and the residual strain of the plastic hinge portion 2 can be reduced. In addition, it is possible to reduce the risk of damage to the general part 3 during an earthquake.

以上、本発明の実施形態に係るRC柱状構造物の塑性ヒンジ構造及びRC柱状構造物の塑性ヒンジ部補修方法について詳細に説明したが、前述した又は図示した実施形態は、いずれも本発明を実施するにあたって具体化した一実施形態を示したものに過ぎない。よって、これらによって本発明の技術的範囲が限定的に解釈されてはならないものである。 The plastic hinge structure of the RC columnar structure and the method of repairing the plastic hinge portion of the RC columnar structure according to the embodiment of the present invention have been described in detail above. It merely shows one embodiment that has been embodied in doing so. Therefore, the technical scope of the present invention should not be construed in a limited manner by these.

特に、RC柱状構造物としてRC橋脚を例示して説明したが、RC橋脚に限られず、本発明は、建築構造物のRC柱などにも適用可能である。要するに、本発明が適用可能なRC柱状構造物は、上下方向を軸方向として設置され、上部構造の荷重等の軸方向力を受けるRC構造物であればよい。また、本発明が適用可能なRC柱状構造物は、せん断破壊やコンクリート部分の圧壊などの脆性破壊に先行して曲げ応力で軸方向筋が終局的に曲げ破壊する靭性設計で設計された構造物である。 In particular, although the RC pier has been described as an example of the RC column structure, the present invention is not limited to the RC pier, and the present invention can be applied to the RC column of the building structure and the like. In short, the RC columnar structure to which the present invention can be applied may be an RC structure that is installed with the vertical direction as the axial direction and receives an axial force such as a load of the superstructure. Further, the RC columnar structure to which the present invention can be applied is a structure designed with a toughness design in which axial streaks are finally bent and broken by bending stress prior to brittle fracture such as shear fracture and crushing of a concrete portion. Is.

<効果確認実験>
次に、図4〜図11を用いて、本発明の効果を確認するために行った検証実験について説明する。
<Effect confirmation experiment>
Next, the verification experiment performed for confirming the effect of the present invention will be described with reference to FIGS. 4 to 11.

(供試体)
先ず、図4、図5を用いて、実験に用いた供試体について説明する。図4は、従来のRC橋脚とし作成した供試体を示す図であり、図5は、本発明に係るRC橋脚として作成した供試体を示す図である。
(Sample)
First, the specimen used in the experiment will be described with reference to FIGS. 4 and 5. FIG. 4 is a diagram showing a specimen prepared as a conventional RC pier, and FIG. 5 is a diagram showing a specimen prepared as an RC pier according to the present invention.

従来のRC橋脚として図4に示す供試体を作成するとともに、本発明に係るRC橋脚として図5に示す供試体を作成した。各供試体の断面寸法は250mm×250mmの正方形断面で、供試体高さは1400mm、有効高さは875mm、せん断スパン比は3.5とした。 The specimen shown in FIG. 4 was prepared as a conventional RC pier, and the specimen shown in FIG. 5 was prepared as an RC pier according to the present invention. The cross-sectional dimensions of each specimen were a square cross section of 250 mm × 250 mm, the height of the specimen was 1400 mm, the effective height was 875 mm, and the shear span ratio was 3.5.

また、軸方向鉄筋はD13(SD295)を60mm間隔で計12本、帯鉄筋はD6(SD295)を70mm 間隔で配置した。軸方向鉄筋比は2.4%、帯鉄筋比は1.0 %である。引張試験より求めた軸方向鉄筋の降伏強度は従来のRC橋脚で346N/mm2、本発明に係るRC橋脚で362N/mm2、帯鉄筋の降伏強度はいずれも360N/mm2である。 In addition, a total of 12 D13 (SD295) bars were placed at 60 mm intervals for the axial reinforcing bars, and D6 (SD295) were placed at 70 mm intervals for the band reinforcing bars. The axial rebar ratio is 2.4% and the band rebar ratio is 1.0%. Yield strength of longitudinal bars obtained from a tensile test is 346N / mm 2 in a conventional RC piers, 362N / mm 2 at RC piers according to the present invention, the yield strength of the hoop is both a 360N / mm 2.

従来のRC橋脚躯体部及び本発明に係るRC橋脚の塑性ヒンジ部の実験当日のコンクリートの圧縮強度は28.9N/mm2、塑性ヒンジ外の本発明に係るRC橋脚躯体部の実験当日のコンクリートの圧縮強度は31.3N/mm2である。従来のRC橋脚の塑性ヒンジ長は130mmとし、本発明に係るRC橋脚の塑性ヒンジ長は機械式継手の長さを考慮して230mmとした。 The compressive strength of the concrete on the day of the experiment on the conventional RC bridge skeleton and the plastic hinge of the RC bridge according to the present invention was 28.9 N / mm 2 , and the concrete on the day of the experiment on the RC bridge skeleton outside the plastic hinge according to the present invention. The compressive strength is 31.3 N / mm 2 . The plastic hinge length of the conventional RC pier is 130 mm, and the plastic hinge length of the RC pier according to the present invention is 230 mm in consideration of the length of the mechanical joint.

本発明に係るRC橋脚のヒンジ部には、前述の塑性ヒンジ部2と同様に、鋼管、機械式継手、鋼板を設けた。鋼管は、径89.1mm、肉厚1.6mm、全長740mmで橋脚基部から460mm の高さまで配置した。鋼板は、塑性ヒンジ部上端、つまり橋脚基部から230mm の高さに配置し、また機械式継手は長さ50mm で橋脚基部及び鋼板の下側に配置し、軸方向鉄筋一本につき2 つずつ用いた。 The hinge portion of the RC pier according to the present invention is provided with a steel pipe, a mechanical joint, and a steel plate in the same manner as the plastic hinge portion 2 described above. The steel pipe had a diameter of 89.1 mm, a wall thickness of 1.6 mm, a total length of 740 mm, and was placed up to a height of 460 mm from the base of the pier. The steel plate is placed at a height of 230 mm from the upper end of the plastic hinge, that is, the base of the pier, and the mechanical joint is 50 mm long and placed under the base of the pier and the steel plate, two for each axial reinforcement. There was.

(実験方法)
次に、実験方法について説明する。本実験では、H鋼及び重り鋼板を供試体に上載し橋脚基部に0.37N/mm2の軸応力を作用させた状態で、油圧ジャッキを用いて水平力を変位制御により与える事で正負交番載荷実験を行った。載荷速度は0.04〜0.4mm/sである。また、載荷パターンは一定変位振幅漸増方式で同一の変位振幅を3回ずつ与えた。
(experimental method)
Next, the experimental method will be described. In this experiment, H steel and weight steel plate were placed on the specimen, and with the axial stress of 0.37 N / mm 2 applied to the base of the pier, horizontal force was applied by displacement control using a hydraulic jack to load positive and negative alternating numbers. An experiment was conducted. The loading speed is 0.04 to 0.4 mm / s. In addition, the loading pattern was a constant displacement amplitude gradual increase method, and the same displacement amplitude was given three times each.

基準変位は軸方向鉄筋の降伏変位δyと定義し、実験時に橋脚基部付近における最外縁軸方向鉄筋ひずみがおおよそ降伏ひずみに達した時の載荷位置における水平変位を降伏変位δyとした。従来のRC橋脚は、1δyを4mm、本発明に係るRC橋脚は、1δy を4.5mm とした。本実験で与えた変位振幅は、従来のRC橋脚は1δy〜6δy、8δy、11δy、本発明に係るRC橋脚は1δy〜10δy である。 The reference displacement is defined as the yield displacement δy of the axial reinforcement, and the horizontal displacement at the loading position when the outermost axial reinforcement strain near the base of the bridge pedestal reaches the yield strain at the time of the experiment is defined as the yield displacement δy. The conventional RC pier has 1δy of 4 mm, and the RC pier according to the present invention has 1δy of 4.5 mm. The displacement amplitudes given in this experiment are 1δy to 6δy, 8δy, 11δy for the conventional RC pier, and 1δy to 10δy for the RC pier according to the present invention.

載荷方向は、図4、図5の矢印方向(EW 方向)で、また油圧ジャッキを押す場合を正載荷、引く場合を負載荷と定義し、E 面を正載荷面、W面を負載荷面とした。 The loading direction is the arrow direction (EW direction) in FIGS. 4 and 5, and the case of pushing the hydraulic jack is defined as the normal load and the case of pulling is defined as the negative load. The E surface is the normal load surface and the W surface is the negative load surface. And said.

実験では、水平荷重、水平変位、軸方向鉄筋及び鋼管のひずみ、帯鉄筋のひずみを測定した。また、載荷終了後には本発明に係るRC橋脚塑性ヒンジ部の軸方向鉄筋、帯鉄筋、コンクリートを撤去し載荷位置での水平変位を測定した。 In the experiment, horizontal load, horizontal displacement, strain of axial reinforcing bars and steel pipes, and strain of reinforcing bars were measured. After the loading was completed, the axial reinforcing bars, the reinforcing bars, and the concrete of the RC pier plastic hinge portion according to the present invention were removed, and the horizontal displacement at the loading position was measured.

[実験結果]
次に、図6〜図11を用いて、実験結果について説明する。先ず、図6、図7を用いて、損傷状況について説明する。図6は、6δy終了時の損傷状況を示す図であり、図7は、実験終了時の損傷状況を示す図である。
[Experimental result]
Next, the experimental results will be described with reference to FIGS. 6 to 11. First, the damage situation will be described with reference to FIGS. 6 and 7. FIG. 6 is a diagram showing a damage situation at the end of 6δy, and FIG. 7 is a diagram showing a damage situation at the end of the experiment.

(損傷状況)
図6、図7に示すように、各供試体1δy〜6δy 載荷時にはひび割れが進展し部分的ではあるがかぶりコンクリート剥落の兆候がみられた。大きなかぶりコンクリートの剥落は従来のRC橋脚(RC-1) が8δy、本発明に係るRC橋脚(RC-PHS) が9δy 載荷時に発生し、最終的にはRC-1が11δy、RC-PHS が10δy 載荷時に軸方向鉄筋の面外方向の座屈及びコアコンクリートの損傷を受け耐力の低下がみられたため実験を終了した。
(Damage status)
As shown in FIGS. 6 and 7, cracks developed during loading of each specimen 1δy to 6δy, and there were some signs of the cover concrete peeling off. Large cover concrete peeling occurs when the conventional RC pier (RC-1) is loaded with 8δy and the RC pier (RC-PHS) according to the present invention is loaded with 9δy, and finally RC-1 is 11δy and RC-PHS. The experiment was terminated because the bearing capacity was reduced due to the out-of-plane buckling of the axial reinforcement and damage to the core concrete during loading.

6δy 載荷終了時及び実験終了時の橋脚躯体の4面のひび割れ、かぶりコンクリートの剥落、軸方向鉄筋の座屈状況を展開図として記録したものを、図6、図7 に示す。各供試体には83.3mm 間隔のメッシュを記入している。図6及び図7よりRC-1 は橋脚基部から200mmの区間でコンクリートのひび割れ、かぶりコンクリートの剥落、軸方向鉄筋のはらみ出しが見られる。一方RC-PHSは橋脚基部から300mmの位置でかぶりコンクリートの剥落が発生しており、機械式継手上部での軸方向鉄筋のはらみ出しや機械式継手のはらみ出しもみられた。このことから損傷を受ける部位である塑性ヒンジの形成状況がRC-1 とRC-PHS で異なることが分かる。 6δy Fig. 6 and Fig. 7 show the cracks on the four sides of the pier skeleton at the end of loading and the end of the experiment, the peeling of the cover concrete, and the buckling of the axial reinforcing bars. Each specimen is marked with a mesh at 83.3 mm intervals. From FIGS. 6 and 7, in RC-1, cracks in concrete, peeling of cover concrete, and protrusion of axial reinforcing bars can be seen in the section 200 mm from the base of the pier. On the other hand, in RC-PHS, the cover concrete was peeled off at a position 300 mm from the base of the pier, and the axial reinforcing bars and the mechanical joints were also bulged out at the upper part of the mechanical joints. From this, it can be seen that the formation status of the plastic hinge, which is the damaged part, differs between RC-1 and RC-PHS.

次に、図8〜図11を用いて、荷重−変位関係について説明する。図8は、従来のRC橋脚の荷重−変位の履歴曲線であり、図9は、本発明に係るRC橋脚の荷重−変位の履歴曲線である。図10は、図8、図9の包絡線の比較を示すグラフである。図11は、従来のRC橋脚と本発明に係るRC橋脚の残留変位の比較を示すグラフである。 Next, the load-displacement relationship will be described with reference to FIGS. 8 to 11. FIG. 8 is a load-displacement history curve of a conventional RC pier, and FIG. 9 is a load-displacement history curve of the RC pier according to the present invention. FIG. 10 is a graph showing a comparison of the envelopes of FIGS. 8 and 9. FIG. 11 is a graph showing a comparison of residual displacement between a conventional RC pier and an RC pier according to the present invention.

図8〜図10の横軸は載荷位置での水平変位、縦軸は水平荷重である。ここでドリフト比とは、橋脚の有効高さと水平変位の比である。図10の実線が従来のRC橋脚(RC-1)、破線が本発明に係るRC橋脚(RC-PHS)である。 The horizontal axis of FIGS. 8 to 10 is the horizontal displacement at the loading position, and the vertical axis is the horizontal load. Here, the drift ratio is the ratio of the effective height of the pier to the horizontal displacement. The solid line in FIG. 10 is the conventional RC pier (RC-1), and the broken line is the RC pier (RC-PHS) according to the present invention.

これによれば、RC-1 は最大耐力にして61kN、ドリフト比にして5 %まで最大耐力付近で耐力が安定している。一方RC-PHS は最大耐力にして75kN、ドリフト比にして5 %まで最大耐力付近で耐力が安定している。ここで最大耐力に14kN の差があるのは機械式継手間の軸方向鉄筋の降伏強度がRC-1 では346N/mm2 であるのに対してRC-PHS では362N/mm2 であること、また、鋼管による耐力の増加が考えられる。 According to this, RC-1 has a stable maximum yield strength of 61 kN and a drift ratio of up to 5% near the maximum yield strength. On the other hand, RC-PHS has a stable maximum yield strength of 75 kN and a drift ratio of up to 5% near the maximum yield strength. Here it there is a difference of 14kN maximize strength is 362N / mm 2 in RC-PHS whereas the yield strength of the longitudinal bar is RC-1 at 346N / mm 2 between the mechanical joint, In addition, it is conceivable that the bearing capacity will increase due to the steel pipe.

また、図10からは、両供試体ともに大幅な耐力の低下がみられないため、変形性能は同等であると言える。しかし、RC-PHS はRC-1 と比較して合計の繰り返し載荷回数が多いことを考慮すれば、RC-PHS の変形性能はRC-1 と比べて同等以上であると言える。 Further, from FIG. 10, it can be said that the deformation performances are the same because the proof stress of both specimens is not significantly reduced. However, considering that RC-PHS has a larger total number of repeated loads than RC-1, it can be said that the deformation performance of RC-PHS is equal to or better than that of RC-1.

また、図11に変位振幅と各変位振幅における1 サイクル目における水平荷重が0kN の時の残留変位の関係を比較したものを示す。図11から、RC-PHS はRC-1 と同程度の水平変位を与えた際には残留変位が若干低減していることが分かる。これもRC-PHS躯体中心部に配置した鋼管による影響であると考えられる。 In addition, FIG. 11 shows a comparison of the relationship between the displacement amplitude and the residual displacement when the horizontal load in the first cycle at each displacement amplitude is 0 kN. From FIG. 11, it can be seen that the residual displacement of RC-PHS is slightly reduced when a horizontal displacement similar to that of RC-1 is applied. This is also considered to be due to the steel pipe placed in the center of the RC-PHS skeleton.

最後に、載荷終了後について考察する。RC-PHS においては、載荷終了後に水平荷重を除去した後に、塑性ヒンジ部の軸方向鉄筋、帯鉄筋及びコアコンクリートを撤去した。その際、鋼管及びコンクリートから成るコア部による上載荷重の保持が可能であった。しかしながら、最終的に42mm の残留変位が生じた。原因としては鋼管が3δy 載荷時には橋脚基部から130mm の位置で降伏しており、鋼管が大きく塑性化しているためであると考えられる。 Finally, let us consider after the loading is completed. In RC-PHS, after removing the horizontal load after loading, the axial reinforcing bars, reinforcing bars and core concrete of the plastic hinges were removed. At that time, it was possible to maintain the loading load by the core portion made of steel pipe and concrete. However, in the end, a residual displacement of 42 mm occurred. It is considered that the cause is that the steel pipe yields at a position 130 mm from the base of the pier when loaded with 3δy, and the steel pipe is largely plasticized.

以上の実験をまとめると、本発明に係るRC橋脚は従来のRC橋脚と比較して、損傷を受ける部位である塑性ヒンジの形成状況が異なることが分かった。 Summarizing the above experiments, it was found that the RC pier according to the present invention has a different formation state of the plastic hinge, which is a damaged part, as compared with the conventional RC pier.

また、本発明に係るRC橋脚は荷重−変位関係における履歴曲線の包絡線の比較から従来のRC橋脚と同等以上の変形性能を有しており、耐力の増加及び残留変位の若干の低減が期待できる。 Further, the RC pier according to the present invention has a deformation performance equal to or higher than that of the conventional RC pier from the comparison of the envelopes of the history curves in the load-displacement relationship, and it is expected that the bearing capacity will be increased and the residual displacement will be slightly reduced. it can.

なお、本発明に係るRC橋脚の塑性ヒンジ部のコンクリート及び鉄筋の撤去は容易で、鋼管内のコアコンクリートによる上載荷重の保持は可能だった。しかし、撤去時には残留変位がみられ、早い段階での鋼管の塑性化が起因していると考えられる。 The concrete and reinforcing bars of the plastic hinge portion of the RC pier according to the present invention could be easily removed, and the loading load could be maintained by the core concrete in the steel pipe. However, residual displacement was observed at the time of removal, which is considered to be due to the plasticization of the steel pipe at an early stage.

1:塑性ヒンジ構造
2:塑性ヒンジ部
3:一般部
4:軸方向鉄筋(軸方向筋)
5:機械式継手
6:鋼管(管体)
7:鋼板(仕切材)
RB:ラーメン橋(橋梁)
10:RC橋脚
11:フーチング
12:上部構造
1: Plastic hinge structure 2: Plastic hinge part 3: General part 4: Axial reinforcing bar (axial reinforcing bar)
5: Mechanical fitting 6: Steel pipe (tube body)
7: Steel plate (partition material)
RB: Rigid frame bridge (bridge)
10: RC pier 11: Footing 12: Superstructure

Claims (5)

RC橋脚やRC柱などの軸方向力を受けるRC柱状構造物の上部及び/又は下部に設けられ、前記RC柱状構造物に作用する曲げ応力で軸方向筋が降伏して地震エネルギーを吸収する塑性ヒンジ部を有するRC柱状構造物の塑性ヒンジ構造であって、
前記軸方向力を支えるコアコンクリートの損傷を防ぐために、前記RC柱状構造物内の中心軸に沿って埋設され、前記塑性ヒンジ部より軸方向に沿って長く上下に延設された管体と、
前記塑性ヒンジ部の上下端付近に設けられ、曲げ降伏する前記軸方向筋を接続する複数対の機械式継手と、を備えるとともに、
前記RC柱状構造物の軸方向と直交する板面を有し、前記塑性ヒンジ部と他の部分とを区分けする仕切材を備えること
を特徴とするRC柱状構造物の塑性ヒンジ構造。
Plastic that is provided on the upper and / or lower part of an RC columnar structure that receives axial force such as RC bridge piers and RC columns, and the axial muscle yields due to the bending stress acting on the RC columnar structure to absorb seismic energy. A plastic hinge structure of an RC columnar structure having a hinge portion.
In order to prevent damage to the core concrete that supports the axial force, a pipe body that is buried along the central axis in the RC columnar structure and extends vertically along the axial direction from the plastic hinge portion, and a pipe body.
A plurality of pairs of mechanical joints provided near the upper and lower ends of the plastic hinge portion and connecting the axial streaks that bend and yield are provided , and also.
A plastic hinge structure of an RC columnar structure, which has a plate surface orthogonal to the axial direction of the RC columnar structure and includes a partition member for separating the plastic hinge portion from another portion.
前記仕切材は、エキスパンドメタルやパンチングメタルなどの孔あき鋼板からなり、通気可能な孔が形成されていること
を特徴とする請求項1に記載のRC柱状構造物の塑性ヒンジ構造。
The plastic hinge structure of the RC columnar structure according to claim 1, wherein the partition material is made of a perforated steel plate such as an expanded metal or a punching metal and has a ventilable hole.
請求項1又は2に記載のRC柱状構造物の塑性ヒンジ構造の前記塑性ヒンジ部を補修するRC柱状構造物の塑性ヒンジ部補修方法であって、
前記管体内のコアコンクリートで上部構造の荷重を支えつつ、前記塑性ヒンジ部の損傷したコンクリートを撤去する塑性ヒンジ部コンクリート撤去工程を有すること
を特徴とするRC柱状構造物の塑性ヒンジ部補修方法。
A method for repairing a plastic hinge portion of an RC columnar structure according to claim 1 or 2 , wherein the plastic hinge portion of the plastic hinge structure of the RC columnar structure is repaired.
A method for repairing a plastic hinge portion of an RC columnar structure, which comprises a plastic hinge portion concrete removing step of removing the damaged concrete of the plastic hinge portion while supporting the load of the superstructure with the core concrete in the pipe body.
前記塑性ヒンジ部コンクリート撤去工程は、前記機械式継手を外して損傷した前記軸方向筋を撤去して行うこと
を特徴とする請求項に記載のRC柱状構造物の塑性ヒンジ部補修方法。
The method for repairing a plastic hinge portion of an RC columnar structure according to claim 3 , wherein the step of removing the plastic hinge portion concrete is performed by removing the mechanical joint and removing the damaged axial streaks.
前記塑性ヒンジ部コンクリート撤去工程は、前記仕切材から軸方向外側の前記塑性ヒンジ部のコンクリートを全て撤去すること
を特徴とする請求項又はに記載のRC柱状構造物の塑性ヒンジ部補修方法。
The method for repairing a plastic hinge portion of an RC columnar structure according to claim 3 or 4 , wherein the step of removing the concrete of the plastic hinge portion is to remove all the concrete of the plastic hinge portion on the outer side in the axial direction from the partition member. ..
JP2018095241A 2018-05-17 2018-05-17 Plastic hinge structure of RC columnar structure and plastic hinge part repair method of RC columnar structure Active JP6886664B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018095241A JP6886664B2 (en) 2018-05-17 2018-05-17 Plastic hinge structure of RC columnar structure and plastic hinge part repair method of RC columnar structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018095241A JP6886664B2 (en) 2018-05-17 2018-05-17 Plastic hinge structure of RC columnar structure and plastic hinge part repair method of RC columnar structure

Publications (2)

Publication Number Publication Date
JP2019199761A JP2019199761A (en) 2019-11-21
JP6886664B2 true JP6886664B2 (en) 2021-06-16

Family

ID=68613005

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018095241A Active JP6886664B2 (en) 2018-05-17 2018-05-17 Plastic hinge structure of RC columnar structure and plastic hinge part repair method of RC columnar structure

Country Status (1)

Country Link
JP (1) JP6886664B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111021767B (en) * 2019-11-26 2022-01-28 东南大学 Friction energy consumption sleeve reinforcing device and using method thereof
JP7479029B2 (en) 2020-05-14 2024-05-08 国立大学法人宇都宮大学 Residual strain suppression structure for RC columnar structure and method for repairing plastic hinge part of RC columnar structure
CN111648256A (en) * 2020-05-26 2020-09-11 中铁六局集团有限公司 Pier body reinforcing construction method
CN111636296A (en) * 2020-06-04 2020-09-08 上海建工四建集团有限公司 Structure and method for converting stress state of prefabricated stand column
CN111893897B (en) * 2020-08-13 2022-05-24 中国水利水电第八工程局有限公司 Supporting device for bridge capping beam construction and bridge capping beam construction method
CN113356028A (en) * 2021-06-22 2021-09-07 天津市政工程设计研究总院有限公司 Shock absorption and isolation structure of hybrid energy consumption bridge
CN113373801A (en) * 2021-06-30 2021-09-10 青岛理工大学 But earthquake back quick replacement's prefabricated pier plasticity hinge structure
CN113430921B (en) * 2021-08-02 2022-06-17 西南交通大学 Can prosthetic prefabricated BRB pier plasticity hinge structure fast after shake
CN113585623B (en) * 2021-09-13 2024-06-07 湖南大学 Self-resetting repairable high-performance prefabricated RC column
CN114045740B (en) * 2021-11-22 2024-04-30 中冶南方城市建设工程技术有限公司 Upright post applied to upper bearing arch bridge and construction method thereof
CN115126274B (en) * 2022-06-14 2024-03-19 上海二十冶建设有限公司 Construction process of high-ductility inorganic reinforcing system of existing building

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003041657A (en) * 2001-07-31 2003-02-13 East Japan Railway Co Method for arranging reinforcing material for concrete member
JP4363542B2 (en) * 2003-03-04 2009-11-11 三井住友建設株式会社 Bridge construction method
JP4354365B2 (en) * 2004-08-19 2009-10-28 三井住友建設株式会社 Main reinforcing bar connection method
JP2007085166A (en) * 2006-09-22 2007-04-05 East Japan Railway Co High ductility concrete member
JP5279356B2 (en) * 2008-06-12 2013-09-04 鹿島建設株式会社 Plastic hinge structure of concrete member and concrete member
JP5367496B2 (en) * 2009-08-07 2013-12-11 鹿島建設株式会社 Reinforced concrete structure
JP6208994B2 (en) * 2013-07-01 2017-10-04 東日本旅客鉄道株式会社 Concrete structure and method for restoring concrete structure
JP3189826U (en) * 2014-01-21 2014-04-03 潤弘精密工程事業股▲ふん▼有限公司 Steel pipe concrete structure
JP6660719B2 (en) * 2015-11-20 2020-03-11 株式会社大林組 Method of constructing beam-column joint-column joint structure, ramen viaduct and beam-column joint-column joint structure
JP6833263B2 (en) * 2016-06-28 2021-02-24 西松建設株式会社 Column-beam joint structure and manufacturing method of joint members

Also Published As

Publication number Publication date
JP2019199761A (en) 2019-11-21

Similar Documents

Publication Publication Date Title
JP6886664B2 (en) Plastic hinge structure of RC columnar structure and plastic hinge part repair method of RC columnar structure
WO2017185942A1 (en) Steel-fiber composite material concrete combined column, and post-earthquake repair method thereof
US7188452B2 (en) Sleeved bracing useful in the construction of earthquake resistant structures
US9175469B2 (en) Self-reinforced masonry blocks, walls made from self-reinforced masonry blocks, and method for making self-reinforced masonry blocks
JP2008240488A (en) Concrete type bar-shaped damper structure
JP5666291B2 (en) Concrete filled steel pipe column
JP7479029B2 (en) Residual strain suppression structure for RC columnar structure and method for repairing plastic hinge part of RC columnar structure
CN110700082A (en) Column base node of SMA-ECC self-resetting circular steel tube restrained reinforced concrete pier
JP6755655B2 (en) Seismic reinforcement method for existing tubular walls made of reinforced concrete
JP2012057443A (en) Steel pipe reinforced concrete composite pile and manufacturing method for the same
JP2010261270A (en) Composite structure and method for constructing composite structure building
JP2008025236A (en) Precast prestressed concrete beam using tension material different in strength between end part and central part
KR101585835B1 (en) Pre-stressed concrete filled steel tube and bridge with girder using the same
JP2006200361A (en) Base isolating method for existing building
JP2007039992A (en) Bridge girder movement inhibiting device, and method of producing bridge girder movement inhibiting device
RU2347047C2 (en) Method for building floor panel reconstruction
JP5423185B2 (en) Concrete-filled pier structure
JP6996544B2 (en) Seismic retrofitting method for existing structures
JP4708296B2 (en) Pile-column connection structure
KR101786758B1 (en) Construction method of prstressed steel composite bridge using temporary hydraulic jack
JP6860381B2 (en) Reinforcement method and structure of steel pipe pile using multiple fine crack type fiber reinforced cement composite material
JP4708295B2 (en) Pile-column connection structure
JP2007308979A (en) Base isolation construction method for existing building
JP6452349B2 (en) Bending reinforcement structure of existing tower structure
Casucci et al. Suitability of cooling towers in areas prone to earthquakes

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200325

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210330

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210414

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210427

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210506

R150 Certificate of patent or registration of utility model

Ref document number: 6886664

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250