JP6885827B2 - Grooving device and method for metal pipes - Google Patents

Grooving device and method for metal pipes Download PDF

Info

Publication number
JP6885827B2
JP6885827B2 JP2017166268A JP2017166268A JP6885827B2 JP 6885827 B2 JP6885827 B2 JP 6885827B2 JP 2017166268 A JP2017166268 A JP 2017166268A JP 2017166268 A JP2017166268 A JP 2017166268A JP 6885827 B2 JP6885827 B2 JP 6885827B2
Authority
JP
Japan
Prior art keywords
pipe
metal
metal tube
rotating body
shaped rotating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017166268A
Other languages
Japanese (ja)
Other versions
JP2019042752A (en
Inventor
忠之 佐藤
忠之 佐藤
Original Assignee
日鉄建材株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日鉄建材株式会社 filed Critical 日鉄建材株式会社
Priority to JP2017166268A priority Critical patent/JP6885827B2/en
Publication of JP2019042752A publication Critical patent/JP2019042752A/en
Application granted granted Critical
Publication of JP6885827B2 publication Critical patent/JP6885827B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

この発明は、金属管の端部における外面の周方向に間隔をあけた複数個所に管端から管長手方向に延びる凹溝を形成する金属管の凹溝加工装置、及び方法に関する。 The present invention relates to a groove processing device and a method for forming a groove extending from the end of a metal pipe in the longitudinal direction of the pipe at a plurality of places spaced apart from each other in the circumferential direction of the outer surface at the end of the metal pipe.

例えば、鉄骨構造の建築構造物の角形鋼管柱を上下の梁にボルト接合する場合、一般的には角形鋼管の端部にボルト孔付きの取付プレートを溶接固定し、この取付プレートを梁にボルト接合する構造とするが、その構造では、取付プレートの外形は角形鋼管の外形より広くなるので、周囲との関係で不都合が生じる場合がある。
そこで、角形鋼管の端部をプレス加工により圧潰して十字状断面部(圧潰軸状部)を形成し、その端面に角形鋼管の外形と同じ形状のボルト孔付きの取付プレートを溶接固定し、その取付プレートを梁にボルト接合することが行われている(特許文献1、2)。
For example, when a square steel pipe column of a steel structure building structure is bolted to an upper and lower beam, generally, a mounting plate with a bolt hole is welded and fixed to the end of the square steel pipe, and this mounting plate is bolted to the beam. Although the structure is to be joined, in that structure, the outer shape of the mounting plate is wider than the outer shape of the square steel pipe, which may cause inconvenience in relation to the surroundings.
Therefore, the end of the square steel pipe is crushed by press working to form a cross-shaped cross section (crushed shaft-shaped part), and a mounting plate with bolt holes having the same shape as the outer shape of the square steel pipe is welded and fixed to the end face. The mounting plate is bolted to the beam (Patent Documents 1 and 2).

また、特許文献3では、単にプレスにより圧潰する特許文献1、2の圧潰加工方法では、大きな加圧力を必要とし、そのため設備が大型化且つ重量化し、また、十字状断面部(圧潰軸状部)の山折り部や谷折り部に割れが発生する場合があるということで、角形鋼管の端部をプレス加工により圧潰して十字状断面部(圧潰軸状部)を形成する際に、加工部に割れが生じないように角形鋼管を450〜650℃の範囲の加熱状態でプレス加工する方法が示されている。 Further, in Patent Document 3, the crushing method of Patent Documents 1 and 2 which simply crushes by pressing requires a large pressing force, which makes the equipment larger and heavier, and also has a cross-shaped cross section (crushed shaft-shaped portion). ), Since cracks may occur in the mountain folds and valley folds, processing is performed when the end of the square steel pipe is crushed by press working to form a cross-shaped cross section (crushed shaft-shaped part). A method of pressing a square steel pipe in a heated state in the range of 450 to 650 ° C. is shown so that cracks do not occur in the portion.

特開平10−292556Japanese Patent Application Laid-Open No. 10-292556 特開平11−324225JP-A-11-324225 特開2001−71070JP 2001-71070

特許文献3によれば、プレスの際に加熱することで、大きな加圧力を必要とし設備が大型化且つ重量化する問題や、割れが生じる場合がある等の問題は解消されるが、加熱を必要とすることは設備の面や作業性の面等その他に関して有利ではないので、加熱を必要とせずに十字状断面部(十字状断面ではない場合には凹溝付き断面部)を形成できることが望まれる。 According to Patent Document 3, by heating at the time of pressing, the problem that a large pressing force is required and the equipment becomes large and heavy, and the problem that cracks may occur are solved, but heating is performed. Since what is required is not advantageous in terms of equipment, workability, etc., it is possible to form a cross section (or a grooved cross section if it is not a cross section) without the need for heating. desired.

本発明は上記従来の欠点を解消するためになされたもので、金属管の端部に十字状断面部等となる凹溝部を形成する際に、加熱を必要とせずに、設備が大型化且つ重量化する問題や、割れ等の問題の生じない金属管の凹溝加工方法及び装置を提供することを目的とする。 The present invention has been made in order to eliminate the above-mentioned conventional drawbacks, and when forming a concave groove portion having a cross-shaped cross section or the like at the end portion of a metal tube, the equipment can be enlarged without requiring heating. It is an object of the present invention to provide a method and apparatus for grooving a metal pipe which does not cause a problem of weight increase or a problem of cracking or the like.

上記課題を解決する請求項1の発明は、金属管の端部における外面の周方向に間隔をあけた複数箇所に管端から管長手方向に延びる凹溝を形成する金属管の凹溝加工装置であって、
回転体中心軸線側では幅厚で半径方向先端に向かってテーパー状に幅狭になりその先端面に幅の狭いフラット面又は凹面を持つ断面形状の複数のソロバン玉状回転体を、それぞれ管外面を押す態様で周方向に間隔をあけて設け、
前記複数のソロバン玉状回転体のうちの周方向に隣接する2つのソロバン玉状回転体で押し込まれて金属管に形成された隣接する2つの凹溝部の間に形成される突状部に接触してその膨出を押さえる形状ガイドを設けたことを特徴とする。
The invention of claim 1 for solving the above-mentioned problems is a groove processing apparatus for a metal pipe, which forms concave grooves extending from the pipe end in the pipe longitudinal direction at a plurality of locations at the end of the metal pipe at intervals in the circumferential direction of the outer surface. And
On the central axis side of the rotating body, a plurality of solo van ball-shaped rotating bodies having a cross-sectional shape that is thick and tapered toward the tip in the radial direction and has a narrow flat surface or concave surface on the tip surface are formed on the outer surface of each pipe. Provided at intervals in the circumferential direction in the manner of pressing
Contact with a protruding portion formed between two adjacent concave groove portions formed in a metal tube by being pushed by two abacus ball-shaped rotating bodies adjacent to each other in the circumferential direction among the plurality of abacus ball-shaped rotating bodies. It is characterized in that a shape guide for suppressing the swelling is provided.

請求項2は、請求項1の金属管の凹溝加工装置において、
前記各ソロバン玉状回転体をそれぞれ回転自在に保持する複数の回転体ホルダーと、前記複数の回転体ホルダーを凹溝を形成すべき金属管の外面の周方向位置に対応して設けたハウジングと、前記ハウジングに設けられて前記回転体ホルダーの圧下調整を行う圧下調整手段とを備えたことを特徴とする。
2. The second aspect of the present invention is the groove processing apparatus for a metal pipe according to the first aspect.
A plurality of rotating body holders that rotatably hold each of the solo van ball-shaped rotating bodies, and a housing in which the plurality of rotating body holders are provided corresponding to the circumferential positions of the outer surface of the metal tube to which the concave groove should be formed. The housing is provided with a reduction adjusting means for adjusting the reduction of the rotating body holder.

請求項3は、請求項1又は2の金属管の凹溝加工装置において、
金属管の端部に前記複数の凹溝部及びと突条部が形成された時の管端部内面輪郭に合わせた凹み部と突出部とを有し、金属管の端部に凹溝が形成される際に管内に位置するように配置された中子を備えたことを特徴とする。
A third aspect of the present invention is the groove processing apparatus for a metal pipe according to the first or second aspect.
It has a recessed portion and a protruding portion that match the contour of the inner surface of the pipe end when the plurality of concave grooves and ridges are formed at the end of the metal pipe, and a concave groove is formed at the end of the metal pipe. It is characterized by having a core arranged so as to be located in the pipe when it is made.

請求項4は、請求項1〜3のいずれか1項の金属管の凹溝加工装置において、
前記形状ガイドは、三角形柱状体であり、前記形状ガイドの2つの底角部は、それぞれにソロバン玉状回転体のテーパー状先端側部分の表面に概ね沿う形状の凹面が形成され、前記形状ガイドの凹面を有する底角部で挟まれた底辺部は、前記底辺部の中央に狭い底辺面が残る態様で形成した外形をなしていることを特徴とする。
A fourth aspect of the present invention is the groove processing apparatus for a metal tube according to any one of claims 1 to 3.
The shape guide is a triangular columnar body, and each of the two base corner portions of the shape guide is formed with a concave surface having a shape substantially along the surface of the tapered tip side portion of the abacus ball-shaped rotating body. The bottom portion sandwiched between the bottom corner portions having the concave surface is characterized in that it has an outer shape formed in such a manner that a narrow bottom surface remains in the center of the bottom portion.

請求項5の発明は、請求項1〜4のいずれか1項の金属管の凹溝加工装置により、金属管の端部における外面の周方向に間隔をあけた複数個所に管端から管長手方向に延びる凹溝を形成する金属管の凹溝加工方法であって、
前記複数のソロバン玉状回転体及び形状ガイドと加工対象の金属管とを金属管長手方向に対向させ、前記ソロバン玉状回転体と金属管とを相対的に接近駆動させて金属管の端部の外面に複数の凹溝を形成することを特徴とする。
The invention of claim 5 uses the groove processing apparatus for a metal pipe according to any one of claims 1 to 4 to extend the pipe length from the pipe end to a plurality of places at the end of the metal pipe at intervals in the circumferential direction of the outer surface. It is a method of processing a groove of a metal pipe that forms a groove extending in a direction.
The plurality of solo van ball-shaped rotating bodies and shape guides and the metal tube to be processed are opposed to each other in the longitudinal direction of the metal tube, and the solo van ball-shaped rotating body and the metal tube are driven relatively close to each other to drive the end portion of the metal tube. It is characterized in that a plurality of concave grooves are formed on the outer surface of the.

請求項6の発明は、請求項3又は4に記載の金属管の凹溝加工装置により、金属管の端部における外面の周方向に間隔をあけた複数個所に管端から管長手方向に延びる凹溝を形成する金属管の凹溝加工方法であって、
前記複数のソロバン玉状回転体及び中子と加工対象の金属管とを金属管長手方向に対向させ、前記ソロバン玉状回転体及び中子と金属管とを相対的に接近駆動させて金属管の端部の外面に複数の凹溝を形成することを特徴とする。
The invention of claim 6 extends from the end of the metal pipe in the longitudinal direction of the pipe to a plurality of places at the end of the metal pipe at intervals in the circumferential direction by the groove processing apparatus for the metal pipe according to claim 3 or 4. It is a method of processing a groove of a metal pipe that forms a groove.
The plurality of solo van ball-shaped rotating bodies and cores and the metal tube to be processed are opposed to each other in the longitudinal direction of the metal tube, and the solo van ball-shaped rotating bodies and the core and the metal tube are driven relatively close to each other to drive the metal tube. It is characterized in that a plurality of concave grooves are formed on the outer surface of the end portion of the.

請求項7は、請求項5又は6記載の金属管の凹溝加工方法において、
金属管が多角形金属管である場合に、前記ソロバン玉状回転体の前記先端面を、多角形金属管の角部に当たるように位置させ、前記ソロバン玉状回転体と多角形金属管とを相対的に接近駆動させて多角形金属管の端部の外面に角部の数の凹溝を形成することを特徴とする。
7. The method of grooving a metal tube according to claim 5 or 6, wherein the groove processing method is performed.
When the metal tube is a polygonal metal tube, the tip surface of the solo van ball-shaped rotating body is positioned so as to hit a corner portion of the polygonal metal tube, and the solo van ball-shaped rotating body and the polygonal metal tube are separated from each other. It is characterized in that it is driven relatively close to each other to form concave grooves having a number of corners on the outer surface of the end portion of the polygonal metal tube.

請求項8は、請求項7記載の金属管の凹溝加工方法において、
金属管が四角形金属管である場合に、前記ソロバン玉状回転体の前記先端面を、四角形金属管の4つの角部に当たるように位置させ、前記ソロバン玉状回転体と四角形金属管とを相対的に接近駆動させて四角形金属管の端部の外面に4つの凹溝を形成して、四角形金属管の端部に十字形断面部を形成することを特徴とする。
8. The eighth aspect of the present invention is the method for processing a groove in a metal tube according to the seventh aspect.
When the metal tube is a quadrangular metal tube, the tip surface of the solo van ball-shaped rotating body is positioned so as to hit the four corners of the quadrangular metal tube, and the solo van ball-shaped rotating body and the quadrangular metal tube are relative to each other. It is characterized in that four concave grooves are formed on the outer surface of the end portion of the quadrangular metal pipe by being driven in close proximity to form a cross-shaped cross section at the end portion of the quadrangular metal pipe.

請求項9は、請求項5又は6記載の金属管の凹溝加工方法において、
金属管が丸管である場合に、前記ソロバン玉状回転体の前記先端面を、丸管の外面の周方向に等間隔をなす4個所に位置させ、前記ソロバン玉状回転体と丸管とを相対的に接近駆動させて、丸管の端部の外面に4つの凹溝を形成して、丸管の端部に十字形断面部を形成することを特徴とする。
9. The method of grooving a metal tube according to claim 5 or 6, wherein the groove processing method is performed.
When the metal tube is a round tube, the tip surfaces of the solo van ball-shaped rotating body are positioned at four positions at equal intervals in the circumferential direction of the outer surface of the round tube, and the solo van ball-shaped rotating body and the round tube are formed. Is relatively close to each other to form four concave grooves on the outer surface of the end of the round tube, and a cross-shaped cross section is formed at the end of the round tube.

請求項10はの請求項5〜9のいずれか1項の金属管の凹溝加工方法において、
加工対象の金属管が、四角形鋼管又は丸鋼管による建築構造物の柱材として用いる鋼管であることを特徴とする。
10. The method for grooving a metal tube according to any one of claims 5 to 9.
The metal pipe to be processed is a steel pipe used as a pillar material of a building structure made of a quadrangular steel pipe or a round steel pipe.

本発明の金属管の凹溝加工装置によれば、金属管の管外面を周方向に間隔をあけた複数のソロバン玉状回転体で押し込むことで金属管の外面に周方向に間隔をあけた複数の凹溝を形成することができる。したがって、従来のプレスによる加工方法と異なり、設備の大型化・重量化の問題や凹溝部(谷折り部)の割れ等の問題が生じることなく、また加熱を必要とすることもなく、金属管の端部に凹溝を形成することが可能となる。 According to the groove processing apparatus for a metal pipe of the present invention, the outer surface of the metal pipe is spaced in the circumferential direction by pushing the outer surface of the metal pipe with a plurality of solo van ball-shaped rotating bodies spaced apart in the circumferential direction. A plurality of recesses can be formed. Therefore, unlike the conventional processing method using a press, there are no problems such as increase in size and weight of equipment, cracks in concave grooves (valley folds), and no heating is required. It is possible to form a concave groove at the end of the.

また、金属管の管外面をソロバン玉状の回転体で押し込むので、金属管に深い凹溝を形成することができ、これによって金属管の端部に周方向に交互に凹溝と突状部とを持つ周方向凹凸断面部(金属管が四角形角形鋼管である場合は十字状断面部(十字管部))を形成可能であると同時に、形状ガイドの存在で、隣接する2つの凹溝の間に形成される突状部が必要以上に膨出することを防止できる。
したがって、金属管の端部に形成される周方向凹凸断面部の外面に原管(加工前の金属管)の輪郭から突出した出っ張り部のない良好な周方向凹凸断面形状を確保することができる。
なお、形状ガイドは、必ずしも原管の輪郭から突出した出っ張り部をなくす場合に限らず、原管の輪郭より引っ込んだ突出部を得る場合にも使用できる。
Further, since the outer surface of the metal pipe is pushed by a solo van ball-shaped rotating body, a deep concave groove can be formed in the metal pipe, whereby the concave groove and the protruding portion are alternately formed in the circumferential direction at the end of the metal pipe. It is possible to form a circumferential concavo-convex cross section (cross-shaped cross section (cross tube section) when the metal pipe is a square square steel pipe) with and, and at the same time, due to the presence of the shape guide, two adjacent concave grooves It is possible to prevent the protruding portion formed between them from bulging more than necessary.
Therefore, it is possible to secure a good circumferential concavo-convex cross-sectional shape without a protrusion protruding from the contour of the original pipe (metal pipe before processing) on the outer surface of the circumferential concavo-convex cross-section formed at the end of the metal pipe. ..
The shape guide can be used not only when eliminating the protruding portion protruding from the contour of the original pipe, but also when obtaining a protruding portion recessed from the contour of the original pipe.

請求項3によれば、金属管の端部に複数の凹溝が形成された時の管端部内面輪郭に合わせた断面形状の中子を有するので、管外のソロバン玉状回転体と管内の中子とで凹溝加工が行われることになり、金属管の端部に精度よい形状の周方向凹凸断面形状を形成することができる。 According to claim 3, since it has a core having a cross-sectional shape that matches the contour of the inner surface of the pipe end when a plurality of concave grooves are formed at the end of the metal pipe, the solo van ball-shaped rotating body outside the pipe and the inside of the pipe Since the concave groove is processed with the core, it is possible to form an accurate circumferential concave-convex cross-sectional shape at the end of the metal tube.

前記突状部の膨出を抑える形状ガイドの膨出押さえ面には大きな荷重が作用する。
隣接する2つのソロバン玉状回転体間の狭い空間に位置し、突条部に接触してその膨出を抑える形状ガイドにおける膨出押さえ面の近傍は幅の狭い断面となるので、剛性を確保しにくいが、請求項4のような外形の形状ガイドであれば、大きな荷重に耐える十分な剛性を確保することができる。
A large load acts on the bulging holding surface of the shape guide that suppresses the bulging of the protruding portion.
It is located in a narrow space between two adjacent abacus ball-shaped rotating bodies, and the shape guide that contacts the ridge and suppresses the swelling has a narrow cross section near the swelling holding surface, ensuring rigidity. Although it is difficult to do so, a shape guide having an outer shape as in claim 4 can secure sufficient rigidity to withstand a large load.

請求項5の発明の金属管の凹溝加工方法によれば、本発明の金属管の凹溝加工装置による凹溝加工を効果的にかつ能率的に行うことができる。すなわち、前述のように従来のプレスによる加工方法と異なり、設備の大型化・重量化の問題がなく、また加熱を必要とすることもない。 According to the method for grooving a metal pipe according to the fifth aspect of the present invention, the grooving method for a metal pipe of the present invention can be effectively and efficiently performed by the grooving apparatus. That is, as described above, unlike the conventional processing method using a press, there is no problem of increasing the size and weight of the equipment, and there is no need for heating.

金属管が例えば四角形金属管等の多角形金属管である場合、請求項75や請求項86のように、ソロバン玉状回転体の先端面を、多角形金属管の角部に当たるように位置させて加工することで、凹溝部(谷折り部)の割れ発生の防止の効果が特に顕著に表れる。 When the metal tube is a polygonal metal tube such as a quadrangular metal tube, the tip surface of the solo van ball-shaped rotating body is positioned so as to hit the corner portion of the polygonal metal tube as in claim 75 or 86. The effect of preventing the occurrence of cracks in the concave groove portion (valley fold portion) is particularly remarkable.

請求項8や請求項9のように、金属管が四角形金属管や丸管である場合は、鉄骨構造の建築構造物の柱材として、端部に十字状断面部を有する角形鋼管柱又は丸鋼管柱を製造する場合に特にメリットが大である。 When the metal pipe is a square metal pipe or a round pipe as in claim 8 or 9, it is a square steel pipe pillar or a circle having a cross-shaped cross section at an end as a pillar material of a building structure having a steel frame structure. The merit is especially great when manufacturing steel pipe columns.

本発明の一実施例の金属管の凹溝加工装置を示すもので、(イ)は凹溝加工装置の側面図、(ロ)は(イ)における枠体32、中子ベース31及び形状ガイドホルダー52を外して示した正面図(但し、中子30の符号は省略)である。A groove processing apparatus for a metal tube according to an embodiment of the present invention is shown, where (a) is a side view of the concave groove processing apparatus, and (b) is a frame body 32, a core base 31 and a shape guide in (a). It is a front view which showed by removing the holder 52 (however, the code | symbol of a core 30 is omitted). (イ)は図1(ロ)における要部のみを拡大して示した拡大図、(ロ)は(イ)におけるソロバン玉状回転体の先端面の近傍を拡大した図、(ハ)は先端面の形状の他の実施例を示す図である。(A) is an enlarged view showing only the main part in FIG. 1 (b), (b) is an enlarged view of the vicinity of the tip surface of the abacus ball-shaped rotating body in (a), and (c) is the tip. It is a figure which shows the other embodiment of the shape of a surface. (イ)は図1(イ)における要部の拡大図、(ロ)は(イ)のA−A矢視断面図(形状ガイドホルダ52を除いて図示した図)、(ハ)は端部凹溝加工された金属管を端部側から見た正面図である。である。(A) is an enlarged view of the main part in FIG. 1 (a), (b) is a cross-sectional view taken along the line AA of (a) (shown excluding the shape guide holder 52), and (c) is an end portion. It is a front view which looked at the metal tube which was grooved with a groove from the end side. Is. 図1〜図3における中子の斜視図である。It is a perspective view of the core in FIGS. 1 to 3. 図1〜図3における4つの形状ガイドのみを設置位置関係で示した斜視図である。It is a perspective view which showed only the four shape guides of FIGS. 1 to 3 in the installation positional relationship. 図5のにおける一つの形状ガイドを示すもので、(イ)は正面図、(ロ)は平面図、(ハ)は右側面図、(ニ)はB−B断面図である。In FIG. 5, one shape guide is shown. FIG. 5A is a front view, FIG. 5B is a plan view, FIG. 5C is a right side view, and FIG. 5D is a sectional view taken along line BB. 図示例の凹溝加工装置における角形鋼管8とソロバン玉状回転体2と形状ガイド51と中子30との相互位置関係を補足説明する図で、(ロ)は図3(ロ)を45度回転させた状態で示した図(但し、表示の内容は若干変えている)、(イ)は(ロ)に対応する平面図(但し左側のソロバン玉状回転体を除いて示した図)である。In the figure which supplementarily explains the mutual positional relationship between the square steel pipe 8, the solo van ball-shaped rotating body 2, the shape guide 51, and the core 30 in the concave groove processing apparatus of the illustrated example, (b) is a diagram in which FIG. 3 (b) is 45 degrees. The figure shown in the rotated state (however, the content of the display is slightly changed), (a) is the plan view corresponding to (b) (however, the figure shown excluding the solo van ball-shaped rotating body on the left side). is there. 形状ガイドが周方向に隣接する2つのソロバン玉状回転体の間に配されている態様を補足説明する図である。It is a figure which supplementarily explains the mode in which the shape guide is arranged between two abacus ball-shaped rotating bodies adjacent in the circumferential direction. 上記の金属管凹溝加工装置により製造された十字形断面端部を有する角形鋼管の斜視図である。It is a perspective view of the square steel pipe having a cruciform cross-sectional end end manufactured by the said metal pipe groove processing apparatus. 形状ガイドを配置せずに、角形鋼管に十字形断面部を形成した場合に、隣接する2つの凹溝部の間に形成される突状部が膨出することを説明する図であり、図3(ロ)に対応する図である。FIG. 3 is a diagram for explaining that when a cruciform cross section is formed on a square steel pipe without arranging a shape guide, a protruding portion formed between two adjacent concave grooves bulges. It is a figure corresponding to (b). 図3(ロ)と図10との差異を説明する図であり、(イ)、(ロ)は形状ガイドを用いた場合、(ハ)、(ニ)は形状ガイドを用いなかった場合のそれぞれ説明図、(ホ)は(ロ)、(ニ)の断面形状(突出状態)の差異を説明する図である。It is a figure explaining the difference between FIG. 3 (b) and FIG. 10, and (a) and (b) are the cases where the shape guide is used, and (c) and (d) are the cases where the shape guide is not used, respectively. Explanatory drawing, (e) is a figure explaining the difference in the cross-sectional shape (protruding state) of (b) and (d). 角形鋼管の角部を押し込んで凹溝を形成する場合の角部変形挙動を説明する図であり、(イ)は先端にフラット面を有する本発明のソロバン玉状回転体で角部を押し込んだ場合、(ロ)は先端に円弧面を有するソロバン玉状回転体で角部を押し込んだ場合の説明図、(ハ)は角形鋼管の断面を示した図である。It is a figure explaining the corner deformation behavior when the corner part of a square steel pipe is pushed in to form a concave groove, and (a) is the figure which pushed the corner part by the solo van ball-shaped rotating body of this invention which has a flat surface at the tip. In the case, (b) is an explanatory view when a corner portion is pushed by a solo van ball-shaped rotating body having an arc surface at the tip, and (c) is a view showing a cross section of a square steel pipe. 上記の金属管凹溝加工装置を2台並列方式で設置して、例えば建築構造物の金属管柱材の両端部に十字状断面部(十字管部)を形成する場合の加工手順を説明する図である。A processing procedure will be described when two of the above-mentioned metal pipe concave groove processing devices are installed in parallel to form, for example, a cross-shaped cross section (cross pipe portion) at both ends of a metal pipe pillar material of a building structure. It is a figure. 上記の金属管凹溝加工装置を2台直列方式で設置して、例えば建築構造物の金属管柱材の両端部に十字管部を形成する場合の加工手順を説明する図である。It is a figure explaining the processing procedure at the time of installing the above-mentioned metal pipe concave groove processing apparatus in series, for example, forming a cross pipe part at both ends of the metal pipe pillar material of a building structure. 本発明の金属管の凹溝加工装置により角形鋼管の両端部に十字状断面部を形成した鋼管柱の一使用例を説明する図であり、(イ)は側面図、(ロ)は平面図、(ハ)はC−C矢視断面図である。It is a figure explaining one use example of the steel pipe column which formed the cross-shaped cross section at both ends of the square steel pipe by the concave groove processing apparatus of the metal pipe of this invention, (a) is a side view, (b) is a plan view. , (C) is a cross-sectional view taken along the line CC. 金属管が丸管である場合の実施例であって図4に相当する図であり、(イ)は側面図、(ロ)は(イ)のDーD矢視断面図(ハ)は端部凹溝加工された金属管を端部側から見た正面図である。It is an embodiment in the case where the metal pipe is a round pipe and is a view corresponding to FIG. 4, (a) is a side view, (b) is a DD arrow cross-sectional view (c) of (a) is an end. It is a front view which looked at the metal tube which was processed into a concave groove from the end side. 実施例1における中子30と異なる中子40を用いた実施例の金属管の凹溝加工装置を示すもので、(イ)は図3(イ)に対応する図(但し、金属管の図示は省略)、(ロ)は(イ)のE−E矢視断面図(但し、左右のソロバン玉状回転体、及び形状ガイドホルダー52の図示は省略)である。The grooving apparatus for the metal pipe of the example using the core 40 different from the core 30 in the first embodiment is shown, and (a) is a diagram corresponding to FIG. 3 (a) (however, the metal pipe is illustrated). (B) and (b) are cross-sectional views taken along the line EE of (a) (however, the left and right abacus ball-shaped rotating bodies and the shape guide holder 52 are not shown). (イ)は図17における中子を単独で示した斜視図、(ロ)は(イ)の中子の正面図である。(A) is a perspective view showing the core in FIG. 17 alone, and (b) is a front view of the core in (a).

以下、本発明の金属管の凹溝加工方法及び装置を実施するための形態について、図面を参照して説明する。 Hereinafter, a method for forming a groove in a metal tube and a mode for carrying out the apparatus of the present invention will be described with reference to the drawings.

図1は本発明の金属管の凹溝加工装置の一実施例を示すもので、(イ)は凹溝加工装置10の側面図、(ロ)は(イ)における後述する枠体32及び形状ガイドホルダー52を外して示した正面図(但し、後述する中子30の符号は省略)である。図2(イ)は図1(ロ)における要部のみを拡大して示した拡大図である。図3(イ)は図1(イ)における要部の拡大図、(ロ)は図1(ロ)における要部の拡大図である。
この実施例では四角形の角形鋼管8(以下、四角形の角形鋼管の場合は単に角形鋼管と呼ぶ)の両端部に十字形断面部を形成する場合である。
この凹溝加工装置10は、ハウジング7に、加工対象の角形鋼管8の4つの角部に対
応させて4つの凹溝形成機構1を備えている。
各凹溝形成機構1は、管外面を押す態様で設けられて凹溝を形成するソロバン玉状回転体2を備え、このソロバン玉状回転体2を回転可能に保持する回転体ホルダー3を備え、この回転体ホルダー3を装置中心方向に移動調節して前記ソロバン玉状回転体2の圧下を調整する圧下調整機構11を備えている。
前記ソロバン玉状回転体2は、中心軸線側(中心軸線mの側)では幅厚で半径方向先端に向かってテーパー状に幅狭になりその先端面に幅の狭いフラット面2aを持つ断面形状であり、前記の通り回転体ホルダー3に回転自在に保持されている。なお、図2(ハ)に示すように、先端面に幅の狭い凹面2a’を持つ断面形状としてもよい。
なお、ソロバン玉状回転体2は回転軸を持たず、回転体ホルダー3は、前記ソロバン玉状回転体2に作用する荷重をオイレスメタルで直接受けるようになっている(原稿注1:形状ガイドが存在するため、回転体ホルダー3の蓋でソロバン玉状回転体の抜け出しを防ぐように図示(作図)するのは困難なので、詳細説明は省きました(NS2905の原稿図面における図3(イ)の図面は省略)。
FIG. 1 shows an embodiment of a groove processing device for a metal tube of the present invention, (a) is a side view of the concave groove processing device 10, and (b) is a frame 32 and a shape described later in (a). It is a front view which showed by removing the guide holder 52 (however, the code | symbol of the core 30 which will be described later is omitted). FIG. 2 (a) is an enlarged view showing only the main part in FIG. 1 (b) in an enlarged manner. FIG. 3 (a) is an enlarged view of the main part in FIG. 1 (a), and FIG. 3 (b) is an enlarged view of the main part in FIG. 1 (b).
In this embodiment, a cruciform cross section is formed at both ends of a quadrangular square steel pipe 8 (hereinafter, in the case of a quadrangular square steel pipe, simply referred to as a square steel pipe).
The groove processing device 10 is provided with four groove forming mechanisms 1 in the housing 7 corresponding to the four corners of the square steel pipe 8 to be processed.
Each concave groove forming mechanism 1 includes a solo van ball-shaped rotating body 2 provided in a manner of pushing the outer surface of the pipe to form a concave groove, and includes a rotating body holder 3 that rotatably holds the solo van ball-shaped rotating body 2. The rotating body holder 3 is moved and adjusted toward the center of the device to provide a reduction adjusting mechanism 11 for adjusting the reduction of the solo van ball-shaped rotating body 2.
The abacus ball-shaped rotating body 2 has a cross-sectional shape that is thick on the central axis side (side of the central axis m) and narrows in a tapered shape toward the tip in the radial direction, and has a narrow flat surface 2a on the tip surface. As described above, the rotating body holder 3 is rotatably held. As shown in FIG. 2C, the cross-sectional shape may have a concave concave surface 2a'with a narrow width on the tip surface.
The solo van ball-shaped rotating body 2 does not have a rotating shaft, and the rotating body holder 3 is adapted to directly receive the load acting on the solo van ball-shaped rotating body 2 by the oilless metal (manuscript note 1: shape guide). Since it is difficult to draw (draw) the lid of the rotating body holder 3 so as to prevent the solo van ball-shaped rotating body from coming off, detailed explanation is omitted (Fig. 3 (a) in the manuscript drawing of NS2905). Drawing is omitted).

前記ハウジング7は、4つの回転体ホルダー3を摺動可能に収容するハウジング本体7aと、外側の蓋体7bと、内側の蓋体を兼ねるベース部7a’とからなる。
前記圧下調整機構11は、前記回転体ホルダー3の上面に回転可能に連結された圧下ネジ11a、この圧下ネジ11aに螺合する調整ナット(図示はダブルナット)11b、この調整ナット11bを回転のみ可能にハウジング本体7aに固定するナット保持部11cとからなる。前記調整ナット11bを回して回転体ホルダー3の位置(ソロバン玉状回転体2の位置)を調整して圧下を調整することができる。但し、本発明における圧下調整機構としては、実施例の圧下調整機構11に限らず、種々の機構を採用することができる。例えば、スクロールチャック方式などでも採用できる。この場合、複数の回転体ホルダーの圧下調整同時に行うことができる。
ハウジング7の前記ハウジング本体7aは、前記内側の蓋体を兼ねるベース部7a’と一体であり、前記の通り4つの回転体ホルダー3を摺動可能に収容している。このハウジング本体7aに外側の蓋体7bがボルトで固定されている。なお、図1(イ)ではベース部7a’と蓋体7bの上下の部分を断面にて示しているが、回転体ホルダー3を摺動可能に保持している構造の図示は省略している。
前記ハウジング本体7aの前記ベース部7a’は、詳細は省略するが、2点鎖線で示す装置スタンド12に回転調節可能に取り付けられた回転面板13に固定され、また、このベース部7a’に、加工対象の金属管8を案内する金属管ガイド14が固定されている。なお、図示例では、金属管ガイド14は図1の紙面と直交する両側において前記ベース部7a’に固定されている。
The housing 7 includes a housing body 7a that slidably accommodates the four rotating body holders 3, an outer lid 7b, and a base portion 7a'that also serves as an inner lid.
The reduction adjustment mechanism 11 only rotates the reduction screw 11a rotatably connected to the upper surface of the rotating body holder 3, the adjustment nut (double nut in the figure) 11b screwed into the reduction screw 11a, and the adjustment nut 11b. It is composed of a nut holding portion 11c that can be fixed to the housing body 7a. The reduction can be adjusted by turning the adjusting nut 11b to adjust the position of the rotating body holder 3 (the position of the abacus ball-shaped rotating body 2). However, the reduction adjustment mechanism in the present invention is not limited to the reduction adjustment mechanism 11 of the embodiment, and various mechanisms can be adopted. For example, it can also be adopted by a scroll chuck method or the like. In this case, the reduction adjustment of the plurality of rotating body holders can be performed at the same time.
The housing body 7a of the housing 7 is integrated with the base portion 7a'which also serves as the inner lid, and slidably accommodates the four rotating body holders 3 as described above. The outer lid 7b is fixed to the housing body 7a with bolts. In FIG. 1 (a), the upper and lower parts of the base portion 7a'and the lid 7b are shown in cross section, but the structure for holding the rotating body holder 3 so as to be slidable is omitted. ..
Although the details of the base portion 7a'of the housing body 7a are omitted, the base portion 7a'is fixed to a rotating face plate 13 which is rotatably attached to the device stand 12 indicated by a two-dot chain line, and is also attached to the base portion 7a'. A metal tube guide 14 for guiding the metal tube 8 to be processed is fixed. In the illustrated example, the metal tube guide 14 is fixed to the base portion 7a'on both sides orthogonal to the paper surface of FIG.

本発明では、周方向に隣接する2つのソロバン玉状回転体2で押し込まれて金属管8に形成された隣接する2つの凹溝部8aの間に形成される突状部8bに接触してその膨出を押さえる形状ガイド51を備えている。
十字形断面部8cを形成するこの実施例では形状ガイド51を4つ設けており、各形状ガイド51は図1(ロ)、図2、図3(ロ)、図7(ロ)、図8の各図にも示すように、4つのソロバン玉状回転体2がそれぞれ、隣接するソロバン玉状回転体2間に配置されている。
4つの形状ガイド51は、ハウジング7のハウジング本体7aの前後面にそれぞれ取り付けられた形状ガイドホルダー52に例えばボルト53で固定されている。なお、形状ガイドホルダー52側に形状ガイド51の端部の断面形状に合わせた凹部(座)を形成し、形状ガイド51の端部をこの凹部(実施例では三角形状の凹部)に印籠形式で固定してもよい。
In the present invention, the protruding portion 8b formed between the two adjacent concave groove portions 8a formed in the metal tube 8 by being pushed by the two abacus ball-shaped rotating bodies 2 adjacent to each other in the circumferential direction is brought into contact with the protruding portion 8b. It is provided with a shape guide 51 that suppresses swelling.
In this embodiment in which the cross-sectional portion 8c is formed, four shape guides 51 are provided, and each shape guide 51 has FIGS. 1 (b), 2 (b), 3 (b), 7 (b), and 8 (b). As shown in each figure of the above, four abacus ball-shaped rotating bodies 2 are arranged between adjacent abacus ball-shaped rotating bodies 2, respectively.
The four shape guides 51 are fixed to the shape guide holders 52 attached to the front and rear surfaces of the housing body 7a of the housing 7 with, for example, bolts 53. A concave portion (seat) matching the cross-sectional shape of the end portion of the shape guide 51 is formed on the shape guide holder 52 side, and the end portion of the shape guide 51 is placed in this concave portion (triangular concave portion in the embodiment) in the form of an inro. It may be fixed.

実施例の各形状ガイド51は、図5、図6、図8等にも示すように、直角三角形柱状体の2つの三角形底角部51cにそれぞれ、ソロバン玉状回転体2のテーパー状先端側部分の表面に概ね沿う形状の凹面51aが形成され、両側の凹面51aの間に、三角形底辺部の中央に幅の狭い三角形底辺面(図示例では鼓断面状の面)51bが残る態様で形成した外形をなしている。
前記突状部の膨出を抑える形状ガイドの膨出押さえ面には大きな荷重が作用するが、 隣接する2つのソロバン玉状回転体間の狭い空間に位置し、突条部に接触してその膨出を抑える形状ガイドにおける膨出押さえ面の近傍は幅の狭い断面となるので、剛性を確保しにくいが、請求項4のような外形の形状ガイドであれば、膨出押さえ面51bの近傍が幅の広い断面(肉厚となるような断面)となっているので、大きな荷重に耐える十分な剛性を確保することができる。
なお、実施例の形状ガイド51は直角三角形柱状体をベースにしているが、直角三角形柱状体に限らず、他の二等辺三角形柱状体としてもよく、隣接する2つのソロバン玉状回転体2間に配置し、隣接する2つの凹溝部8aの間に形成される突状部8bに接触してその膨出を押さえることが可能な形状であればよい。
As shown in FIGS. 5, 6, 8 and the like, each shape guide 51 of the embodiment is provided on each of the two triangular base corners 51c of the right-angled triangular columnar body on the tapered tip side of the solo van ball-shaped rotating body 2. A concave surface 51a having a shape substantially along the surface of the portion is formed, and a narrow triangular bottom surface (a surface having a cross-sectional shape of a drum in the illustrated example) 51b remains in the center of the base of the triangle between the concave surfaces 51a on both sides. It has a right-angled outer shape.
A large load acts on the bulging holding surface of the shape guide that suppresses the bulging of the protruding portion, but it is located in a narrow space between two adjacent solo van ball-shaped rotating bodies and comes into contact with the protruding portion. Since the vicinity of the swelling holding surface in the shape guide for suppressing swelling has a narrow cross section, it is difficult to secure rigidity. However, in the case of the outer shape guide as in claim 4, the vicinity of the swelling holding surface 51b Has a wide cross section (a cross section that becomes thick), so that sufficient rigidity to withstand a large load can be ensured.
Although the shape guide 51 of the embodiment is based on a right-angled triangular columnar body, it is not limited to the right-angled triangular columnar body and may be another isosceles triangular columnar body. Any shape may be used as long as it is arranged in a shape capable of contacting a protruding portion 8b formed between two adjacent concave groove portions 8a and suppressing the swelling thereof.

この実施例の凹溝加工装置10は、図1〜図3に示すように、金属管外面の周方向に配される4つのソロバン玉状回転体2の周方向配置中心位置に、管長手方向に延びる短尺棒状の中子30を配置している。すなわち、金属管の外面を外側から押し込む前述のソロバン玉状回転体2だけでなく、加工時に金属管の前記ソロバン玉状回転体2で押し込まれた部分を受ける中子30が金属管内に位置するように配置されている。 As shown in FIGS. 1 to 3, the groove processing apparatus 10 of this embodiment is located at the center position of the four abacus ball-shaped rotating bodies 2 arranged in the circumferential direction of the outer surface of the metal pipe in the longitudinal direction of the pipe. A short rod-shaped core 30 extending to is arranged. That is, not only the abacus ball-shaped rotating body 2 that pushes the outer surface of the metal tube from the outside, but also the core 30 that receives the portion pushed by the abacus ball-shaped rotating body 2 of the metal tube during processing is located in the metal tube. It is arranged like this.

この中子30は、図4に斜視図でも示すように、前記各ソロバン玉状回転体2の半径方向先端側部分にそれぞれ対向する4つの凹み部30aを持ち、隣接する凹み部30a間に突出部30bを有して十字断面をしている。すなわち、長手方向の全体が十字断面をなしている。
この中子30のように、全体が均一断面の中子をストレートカリバー中子と称する。
なお、図4では十字断面の中子30の横部と縦部とを水平、垂直になる姿勢で示している。
前記中子30は前述の図1に示すように枠体32を介してハウジング本体7aに取り付けられている。すなわち、中子30の端面に中子長手方向から見て例えば矩形板状の中子ベース31を一体に固定し、この中子ベース31をハウジング7におけるハウジング本体7aの前面に取り付けた前記枠体32にボルトで固定することで、水平な状態でハウジング本体7aに固定している。
なお、この実施例におけるハウジング本体7aの蓋体7bは上下の端部を切り欠いて長さを短くしており、前記枠体32の上下部をハウジング本体7aの上下部に固定している。
As shown in the perspective view of FIG. 4, the core 30 has four recesses 30a facing each other in the radial tip side of each abacus ball-shaped rotating body 2, and projects between the adjacent recesses 30a. It has a portion 30b and has a cross section. That is, the entire longitudinal direction has a cross section.
A core having a uniform cross section as a whole, such as the core 30, is called a straight caliber core.
In FIG. 4, the horizontal portion and the vertical portion of the core 30 having a cross section are shown in a horizontal and vertical posture.
The core 30 is attached to the housing body 7a via the frame 32 as shown in FIG. That is, the frame body in which, for example, a rectangular plate-shaped core base 31 is integrally fixed to the end surface of the core 30 when viewed from the longitudinal direction of the core, and the core base 31 is attached to the front surface of the housing body 7a in the housing 7. By fixing it to 32 with a bolt, it is fixed to the housing body 7a in a horizontal state.
The lid body 7b of the housing body 7a in this embodiment is cut out at the upper and lower ends to shorten the length, and the upper and lower parts of the frame body 32 are fixed to the upper and lower parts of the housing body 7a.

上記の凹溝加工装置10により、例えば角形鋼管8の端部に十字形断面部を形成する場合、図1(イ)において、図示略の例えば油圧シリンダ等による押込み装置により矢印のように左方から角形鋼管8を凹溝加工装置10の4つのソロバン玉状回転体2で囲まれた空間に押し込むと、電縫鋼管製造ラインにおけるサイジング(成形)工程的な作用(ないし冷間ロール成形的な作用)により、図3(イ)、(ロ)、(ハ)に示すように4つのソロバン玉状回転体2で角形鋼管の4つの角部が潰されて形成された凹溝部(凹溝)8a、及び、角形鋼管の面部が潰されずに突出状態で残った突状部8bが形成されて、周方向に交互に凹溝部8aと突状部8bとを持つ周方向凹凸断面部(この実施例では十字形断面部(十字管部))8cが形成される。端部に周方向凹凸断面部(十字管部)8cが形成された角形鋼管8を図9に斜視図で示す。
周方向凹凸断面部8cが形成される際、隣接する2つのソロバン玉状回転体2間に配置されている形状ガイド51は、隣接する2つの凹溝部8aの間に形成される突状部8bに接触してその膨出を押さえるので、突状部8bが必要以上に膨出することを防止できる。
図10は形状ガイド51を用いなかった場合における図3(ロ)に対応する図であるが、図示のように、4つのソロバン玉状回転体2で角形鋼管の4つの角部が潰されると、角形鋼管の面部が潰されずに突出状態で残って突状部が形成されるが、その突状部は原管(加工前の金属管)の輪郭から突出するような突状部8b’となる。
図11は図3(ロ)と図10との差異を対比説明する図であり、(イ)、(ロ)は形状ガイド51を用いた上記実施例の場合、(ハ)、(ニ)は形状ガイド51を用いなかった場合の角形鋼管を示し、(イ)、(ハ)はそれぞれ側面図、(ロ)、(ニ)はそれぞれ周方向凹凸断面部8cの断面図、(ホ)は(ロ)、(ニ)の断面形状(突出状態)の差異を説明する図である。
上述の通りであり、形状ガイド51を設けることで、金属管の端部に形成される周方向凹凸断面部の外面に原管(加工前の金属管)の輪郭から突出した出っ張り部のない良好な周方向凹凸断面形状(この実施例では十字形断面部)8cを確保することができる。
なお、形状ガイド51は、必ずしも原管の輪郭から突出した出っ張り部をなくす場合に限らず、原管の輪郭より引っ込んだ突出部を得る場合にも使用できる。
When a cross-shaped cross section is formed at the end of a square steel pipe 8 by the concave groove processing device 10, for example, in FIG. 1 (a), a pushing device using, for example, a hydraulic cylinder (not shown) is used to push left as shown by an arrow. When the square steel pipe 8 is pushed into the space surrounded by the four solo van ball-shaped rotating bodies 2 of the recessed groove processing device 10, the sizing (forming) process action (or cold roll forming) in the electric pipe production line is performed. (Action), as shown in FIGS. 3 (a), (b), and (c), a concave groove portion (recessed groove) formed by crushing four corner portions of a square steel pipe with four solo van ball-shaped rotating bodies 2. 8a and a projecting portion 8b that remains in a protruding state without being crushed on the surface of the square steel pipe are formed, and a circumferential concavo-convex cross section having concave groove portions 8a and projecting portions 8b alternately in the circumferential direction (this implementation). In the example, a cross section (cross section) 8c is formed. FIG. 9 is a perspective view showing a square steel pipe 8 having a circumferentially uneven cross-sectional portion (cross pipe portion) 8c formed at an end portion.
When the circumferential concavo-convex cross-sectional portion 8c is formed, the shape guide 51 arranged between the two adjacent abacus ball-shaped rotating bodies 2 has a protruding portion 8b formed between the two adjacent concave groove portions 8a. Since the protrusion is suppressed by contacting with, it is possible to prevent the protruding portion 8b from bulging more than necessary.
FIG. 10 is a diagram corresponding to FIG. 3 (b) when the shape guide 51 is not used, but as shown in the drawing, when the four corners of the square steel pipe are crushed by the four abacus ball-shaped rotating bodies 2. , The surface of the square steel pipe is not crushed and remains in a protruding state to form a protruding part, but the protruding part is a protruding part 8b'that protrudes from the contour of the original pipe (metal pipe before processing). Become.
FIG. 11 is a diagram for comparing and explaining the difference between FIG. 3 (b) and FIG. 10, and (a) and (b) are the cases of the above embodiment using the shape guide 51, and (c) and (d) are The square steel pipe when the shape guide 51 is not used is shown, (a) and (c) are side views, (b) and (d) are cross-sectional views of the circumferentially uneven cross-sectional portion 8c, and (e) is (e). It is a figure explaining the difference of the cross-sectional shape (protruding state) of b) and (d).
As described above, by providing the shape guide 51, there is no protrusion protruding from the contour of the original pipe (metal pipe before processing) on the outer surface of the circumferentially uneven cross section formed at the end of the metal pipe. It is possible to secure an uneven cross-sectional shape (cross-sectional portion in this embodiment) 8c in the circumferential direction.
The shape guide 51 can be used not only when eliminating the protruding portion protruding from the contour of the original pipe, but also when obtaining a protruding portion recessed from the contour of the original pipe.

上述の実施例では、固定的に設置された凹溝加工装置10に対して角形鋼管8の端部を押し込んで周方向凹凸断面部を形成しているが、角形鋼管を固定し、凹溝加工装置10を固定の角形鋼管の端部側に押し込み駆動して、角形鋼管の端部に凹溝を形成することも可能である。要するに相対的に対向方向に接近駆動させることができればよい。 In the above-described embodiment, the end portion of the square steel pipe 8 is pushed into the concave groove processing device 10 installed in a fixed manner to form a circumferentially uneven cross section. However, the square steel pipe is fixed and the concave groove processing is performed. It is also possible to push and drive the device 10 toward the end side of the fixed square steel pipe to form a concave groove at the end of the square steel pipe. In short, it suffices if it can be driven relatively close to each other.

角形鋼管の外面に十字形断面となるような深い凹溝を形成する場合、電縫鋼管製造ラインにおける一般的なサイジング工程的な発想では、サイジングロールとして半径方向先端に向かってテーパー状に幅狭になり先端面が円弧面となるようなロールプロフィルを採用するが、本発明では先端面に幅の狭いフラット面2a又は凹面2a’を持つ形状としている。これは、次のような実験の結果として採用した形状である。
図12(ロ)のように、角形鋼管の角部を先端面が円弧凸面のロールMで矢印のように押し込んだ実験では、角部に割れが発生する場合が少なからずあった。そこで、種々の原因を考察した上で、図12(イ)のように、先端面をフラット面(あるいは凹面)にしたロールKで角部を矢印のように押し込む実験をしたところ、割れが発生することはなくなった。
角部を先端面が円弧凸面であるロールで押し込んだ時に割れが発生する理由として、次のようなことが考えられた。
電縫鋼管製造ラインのサイジング工程で丸鋼管を角形鋼管に成形する際、角形鋼管の角部(図12(ハ)のハッチング部)には大きな塑性変形が生じ全塑性域となっており、顕著な加工硬化が生じている。したがって、図12(ロ)のように、先端円弧凸面のロールMで押し込んだ場合、角部の狭い範囲の凸R部分が押し込まれることで、その角部の狭い範囲の加工硬化した凸R部分が逆向きの凹R形状に曲げ変形するという過酷な変形が生じるために割れが発生し易い。
一方、図12(イ)のように、角部を先端面がフラット面(あるいは凹面)であるロールKで押し込んだ場合、角部の狭い範囲の凸R部分が逆向きの凹R形状に曲げ変形するのではなく、狭い範囲の凸R部分の凸形状をある程度保ったままその両側の部分も含めた若干広い部分が押し込まれて変形した。このため、狭い範囲の加工硬化した凸R部分の変形は軽減され割れが発生しない。
なお、図12(イ)、(ロ)において、円弧凸面ロールMについてはM1、M2、M3の順に曲げ変形した後押し込まれ、先端フラット面のロールKについてはK1、K2、K3の順に押し込まれることを示している。K1、M1は角部に接触した時点、実線で示したK2、M2は角部が凹み始めて両者の変形挙動の違いが特徴的に表われる時点を示している。
When forming a deep groove having a cross section on the outer surface of a square steel pipe, the general idea of the sizing process in an electric pipe manufacturing line is to taper the width toward the tip in the radial direction as a sizing roll. A roll profile is adopted so that the tip surface becomes an arc surface, but in the present invention, the tip surface has a narrow flat surface 2a or concave surface 2a'. This is the shape adopted as a result of the following experiments.
As shown in FIG. 12B, in an experiment in which a corner portion of a square steel pipe was pushed in as shown by an arrow with a roll M having a convex tip surface, cracks were often generated at the corner portion. Therefore, after considering various causes, as shown in Fig. 12 (a), an experiment was conducted in which the corners were pushed in as shown by the arrows with a roll K having a flat (or concave) tip surface, and cracks occurred. No more to do.
The following are considered as the reasons why cracks occur when the corners are pushed by a roll whose tip surface is an arc convex surface.
When a round steel pipe is formed into a square steel pipe in the sizing process of the electric resistance pipe production line, a large plastic deformation occurs at the corner part (the hatched part of FIG. 12 (c)) of the square steel pipe, and it becomes a total plastic region, which is remarkable. Work hardening has occurred. Therefore, as shown in FIG. 12 (b), when the convex R portion having a convex tip arc surface is pushed in, the convex R portion having a narrow range of the corner portion is pushed, so that the work-hardened convex R portion having a narrow range of the corner portion is pushed. Is liable to crack due to severe deformation that bends and deforms into a concave R shape in the opposite direction.
On the other hand, as shown in FIG. 12A, when the corner portion is pushed by the roll K whose tip surface is a flat surface (or concave surface), the convex R portion in a narrow range of the corner portion is bent into a concave R shape in the opposite direction. Instead of being deformed, a slightly wide portion including both side portions was pushed in and deformed while maintaining the convex shape of the convex R portion in a narrow range to some extent. Therefore, the deformation of the work-hardened convex R portion in a narrow range is reduced and cracks do not occur.
In FIGS. 12A and 12B, the arc convex roll M is bent and deformed in the order of M1, M2, and M3 and then pushed in, and the roll K on the flat tip surface is pushed in the order of K1, K2, and K3. It is shown that. K1 and M1 indicate the time when they come into contact with the corners, and K2 and M2 shown by solid lines indicate the time when the corners begin to dent and the difference in deformation behavior between the two appears characteristically.

上述の凹溝加工装置10で金属管の両端に十字形断面部を持つ両端十字形断面部金属管を製造する場合、2台の凹溝加工装置10を設置して製造すると、生産能率が高い。その場合、図13又は図14の方式を採用すると能率的である。
図13は2台の凹溝加工装置10A、10Bを金属管8を挟む反対側に並列方式で設置(対向させるのではなくずらせて設置)して製造する場合を示す。この場合、それぞれに対向させて例えば油圧シリンダ等による押込み装置20A、20Bを配置する。
同図(イ)において、押込み装置20Aで金属管8を凹溝加工装置10A側に押し込むことで、(ロ)のように一端に十字形断面部8cが形成される。
その金属管を(ハ)のように凹溝加工装置10Bと押込み装置20Bとの間に搬送し、押込み装置20Bで凹溝加工装置10B側に押し込み駆動すると、(ニ)のように他端に十字形断面部8cが形成され、これにより両端に十字形断面部8cが形成された金属管8が得られる。
When the above-mentioned concave groove processing device 10 is used to manufacture a metal pipe having a cross-shaped cross section at both ends of the metal pipe, the production efficiency is high when two concave groove processing devices 10 are installed and manufactured. .. In that case, it is efficient to adopt the method of FIG. 13 or FIG.
FIG. 13 shows a case where two recessed groove processing devices 10A and 10B are installed on opposite sides of a metal tube 8 in a parallel manner (installed by shifting rather than facing each other). In this case, pushing devices 20A and 20B using, for example, a hydraulic cylinder are arranged so as to face each other.
In FIG. 3A, the metal pipe 8 is pushed toward the groove processing device 10A by the pushing device 20A, so that the cross-sectional portion 8c is formed at one end as shown in (B).
When the metal pipe is conveyed between the grooving device 10B and the pushing device 20B as shown in (c) and pushed to the concave grooving device 10B side by the pushing device 20B, it is pushed to the other end as shown in (d). A cross section 8c is formed, whereby a metal tube 8 having a cross section 8c formed at both ends is obtained.

図14は2台の凹溝加工装置10A、10Bを金属管8を挟む対向位置に設置する直列方式で製造する場合を示す。この場合、それぞれの凹溝加工装置10の背後に押込み装置20A、20Bを配置する。
図14[I]の(イ)において、凹溝加工装置10Aのソロバン玉状回転体2を開放状態にしておき、押込み装置20Aの押し込部を、開放状態の凹溝加工装置10Aを通過させ金属管8を凹溝加工装置10B側に押し込むことで、(ロ)のように一端に十字形断面部8cが形成される。
次いで、図14[II]の(ハ)に示すように、凹溝加工装置10Bのソロバン玉状回転体2を開放状態にしておき、押込み装置20Bの押し込部を、開放状態の凹溝加工装置10Bを通過させ金属管8を凹溝加工装置10A側に押し込むことで、(ニ)のように他端に十字形断面部8cが形成され、これにより両端に十字形断面部8cが形成された金属管8が得られる。
なお、図14の直列方式の場合、金属管8を固定し押込み装置20で凹溝加工装置10を金属管側に押し込む構成とすることもできる。その場合は、十字形断面部8cが形成されるのは、当然、図14に示された十字形断面部8cと反対側の端部(押し込まれた凹溝加工装置10側の端部)になる。
FIG. 14 shows a case where two recessed groove processing devices 10A and 10B are manufactured in a series system in which two recessed groove processing devices 10A and 10B are installed at opposite positions sandwiching a metal tube 8. In this case, the pushing devices 20A and 20B are arranged behind the respective recessed groove processing devices 10.
In (a) of FIG. 14 [I], the abacus ball-shaped rotating body 2 of the concave groove processing device 10A is kept in an open state, and the pushing portion of the pushing device 20A is passed through the recessed groove processing device 10A in the open state. By pushing the metal tube 8 toward the groove processing device 10B, a cross-shaped cross-sectional portion 8c is formed at one end as shown in (b).
Next, as shown in (c) of FIG. 14 [II], the solo van ball-shaped rotating body 2 of the recessed groove processing device 10B is kept in an open state, and the pushing portion of the pushing device 20B is recessed in the open state. By passing the device 10B and pushing the metal tube 8 toward the groove processing device 10A, a cruciform cross-section 8c is formed at the other end as shown in (d), and a cruciform cross section 8c is formed at both ends. A metal tube 8 is obtained.
In the case of the series method of FIG. 14, the metal pipe 8 may be fixed and the groove processing device 10 may be pushed into the metal pipe side by the pushing device 20. In that case, the cruciform cross-section 8c is naturally formed at the end opposite to the cruciform cross-section 8c shown in FIG. 14 (the end on the pushed-in concave groove processing device 10 side). Become.

両端部に十字形断面部8cを形成した角形鋼管を建築構造物の柱材として用いる場合、角形鋼管柱材8の端面に梁材とのボルト接合用の取付プレートを溶接固定する。
図15は柱材の下部についてのみ示したもので、角形鋼管柱材8の十字形断面部8cの下端面に例えば縦横寸法が角形鋼管と同サイズの四角形の取付プレート16を溶接固定し、図示例では下部のH形鋼梁17の上に載せ、取付プレート16とH形鋼梁17のフランジとをボルト18で接合する。
十字形断面部8cの四方にスペースがあるので、その四方のスペースにおいて、ボルト18で固定することができ、角形鋼管の辺と梁のフランジとが平行な状態で梁と接合できる。
上部の梁との接合も同様である。但し、下部のみ又は上部のみに十字形断面部を形成する場合も当然ある。
このように接合された柱は、柱としての美観にも優れるので、建築構造物の柱材として好適である。
なお、角形鋼管の辺を押し潰して管端に十字形断面部を形成した場合、突状部が角形鋼管のコーナー部となり、十字形断面部の前記四方にスペースのうちの2つのスペースはH形鋼梁17のウエブの位置にくることになり、柱としての美観にも優れるようにH形鋼梁17とボルト接合することができなくなる。したがって、建築構造物の柱材として用いる場合でかつ梁がH形鋼の場合は特に、実施例のように角形鋼管の角部を押し込んで(押し潰して)十字形断面部を形成することが必要となる。
しかし、上記のように建築構造物の柱材として用いる場合でかつ梁がH形鋼の場合を除けば、角形鋼管の辺部を押し込んで(押し潰して)十字形断面部を形成してもよい。例えば、例えば土木用の杭材、あるいはフェンス用の杭材、その他種々の用途に適用でき、特に土木用の杭材、あるいはフェンス用の杭材等に好適である。
When a square steel pipe having a cross-shaped cross section 8c formed at both ends is used as a column material of a building structure, a mounting plate for bolting with a beam material is welded and fixed to the end surface of the square steel pipe column material 8.
FIG. 15 shows only the lower part of the pillar material. For example, a square mounting plate 16 having the same vertical and horizontal dimensions as the square steel pipe is welded and fixed to the lower end surface of the cross section 8c of the square steel pipe pillar material 8. In the illustrated example, it is placed on the lower H-shaped steel beam 17, and the mounting plate 16 and the flange of the H-shaped steel beam 17 are joined by a bolt 18.
Since there are spaces on all four sides of the cross-shaped cross section 8c, it can be fixed with bolts 18 in the four spaces, and the side of the square steel pipe and the flange of the beam can be joined to the beam in a parallel state.
The same applies to the joint with the upper beam. However, it is natural that a cruciform cross section is formed only in the lower part or only in the upper part.
The columns joined in this way are also excellent in aesthetic appearance as columns, and are therefore suitable as column materials for building structures.
When the side of the square steel pipe is crushed to form a cross-shaped cross section at the pipe end, the protruding part becomes the corner part of the square steel pipe, and two of the spaces in the four sides of the cross-shaped cross section are H. Since it comes to the position of the web of the shaped steel beam 17, it cannot be bolted to the H-shaped steel beam 17 so as to have an excellent appearance as a column. Therefore, especially when it is used as a column material of a building structure and the beam is H-shaped steel, it is possible to push (crush) the corner portion of the square steel pipe to form a cross-shaped cross section as in the embodiment. You will need it.
However, except when it is used as a column material of a building structure and the beam is H-shaped steel as described above, even if the side portion of the square steel pipe is pushed (crushed) to form a cross section. Good. For example, it can be applied to, for example, a pile material for civil engineering, a pile material for a fence, and various other uses, and is particularly suitable for a pile material for civil engineering, a pile material for a fence, and the like.

上述の実施例では四角形金属管について説明したが、五角形、六角形等の多角形金属管を対象とする場合にも適用できる。
その場合は、上述の凹溝加工装置10における、4つのソロバン玉状回転体2・形状ガイド51・回転体ホルダー3及び圧下調整機構11に代えて、角部の数に対応した数のソロバン玉状回転体2・形状ガイド51・回転体ホルダー3及び圧下調整機構11を設けることで、多角形金属管の端部に角部の数に応じた凹溝を形成することができる。なお、金属管ガイド14は多角形金属管の断面形状に合わせたものとなる。
また、上述の実施例では、中子が金属管内に位置するように配置された例を説明したが、必ずしも中子がなくても実施は可能であり、中子を用いない凹溝加工装置、又は凹溝加工方法も本願発明に含まれる。
Although the quadrangular metal tube has been described in the above-described embodiment, it can also be applied to a case where a polygonal metal tube such as a pentagon or a hexagon is targeted.
In that case, instead of the four solo van ball-shaped rotating bodies 2, the shape guide 51, the rotating body holder 3, and the reduction adjustment mechanism 11 in the above-mentioned concave groove processing device 10, the number of solo van balls corresponding to the number of corners By providing the shape rotating body 2, the shape guide 51, the rotating body holder 3, and the reduction adjustment mechanism 11, it is possible to form a concave groove according to the number of corners at the end of the polygonal metal tube. The metal tube guide 14 is adapted to the cross-sectional shape of the polygonal metal tube.
Further, in the above-described embodiment, an example in which the core is arranged so as to be located in the metal pipe has been described, but it can be carried out without the core, and a concave groove processing device that does not use the core. Alternatively, the concave groove processing method is also included in the present invention.

金属管が丸管の場合、端部に十字形断面部を形成する場合であれば、凹溝加工装置自体は図1で示したものと概ね同じでよい。但し、金属管ガイド14は丸管断面形状に合わせたものとなる。
図16に金属管が丸管18である場合の実施例の凹溝加工装置10’の要部を示す。同図は図3に相当する図であり、(イ)は側面図、(ロ)は正面図、(ハ)は端部凹溝加工された金属管を端部側から見た正面図である。凹溝部を18a、突状部を18b、十字形断面部を18cで示す。
なお、丸管の場合、ソロバン玉状回転体2で押し込む周方向位置は特に限定されない。
When the metal tube is a round tube and a cross-shaped cross section is formed at the end, the groove processing apparatus itself may be substantially the same as that shown in FIG. However, the metal tube guide 14 is adapted to the cross-sectional shape of the round tube.
FIG. 16 shows a main part of the grooving apparatus 10'of the embodiment when the metal pipe is a round pipe 18. FIG. 3 is a view corresponding to FIG. 3, (a) is a side view, (b) is a front view, and (c) is a front view of a metal pipe with a grooved end as viewed from the end side. .. The concave groove portion is indicated by 18a, the protruding portion is indicated by 18b, and the cross-sectional portion is indicated by 18c.
In the case of a round tube, the circumferential position of the abacus ball-shaped rotating body 2 is not particularly limited.

図17に本発明のさらに他の実施例の金属管の凹溝加工装置10”の要部を示す。この実施例も、対象とする金属管は実施例1と同様に角形鋼管である。
図17(イ)、(ロ)は図3(イ)、(ロ)に対応する図で、凹溝加工装置10”をその要部のみを示して説明する図であり、(イ)は側面図、(ロ)は(イ)のC−C矢視断面図(但し、4つのソロバン玉状回転体2のうちの左右2つのソロバン玉状回転体2の図示を省略した図)である。
FIG. 17 shows a main part of the groove processing device 10 ”of the metal pipe of still another embodiment of the present invention. In this embodiment as well, the target metal pipe is a square steel pipe as in the first embodiment.
17 (a) and 17 (b) are views corresponding to FIGS. 3 (a) and 3 (b), and are views for explaining the concave groove processing device 10 "by showing only the main part thereof, and (a) is a side surface. (B) is a cross-sectional view taken along the line CC of (a) (however, the left and right two abacus ball-shaped rotating bodies 2 of the four abacus ball-shaped rotating bodies 2 are not shown).

この実施例の凹溝加工装置10”は、実施例1と同様に、金属管外面の周方向に配される4つのソロバン玉状回転体2の周方向配置中心位置に、管長手方向に延びる短尺棒状の中子40を配置している。
この中子40は、図18にも示すように、前記各ソロバン玉状回転体2の半径方向先端側部分にそれぞれ対向する4つの凹み部40aを持ち、隣接する凹み部40a間に突出部40bを有して十字状をなす十字断面部40cを有するが、長手方向全体が十字断面ではなく、角形の管内面に沿う管内断面形状部分40dを有している。そして、前記管内断面形状部分40dの角部からソロバン玉状回転体2の半径方向先端側形状に沿って前記長手方向にはストレートな凹み部40aに滑らかにつながる湾曲移行凹面40eを有している。
このような管内断面形状部分40dと湾曲移行凹面40eと十字断面部40cとを持つ形状の中子40を総形カリバー中子と呼ぶ。
なお、図18では中子40の十字断面の横部と縦部とが水平、垂直になる姿勢で示している。
Similar to the first embodiment, the concave groove processing device 10 ”of this embodiment extends in the longitudinal direction of the pipe at the center position of the four abacus ball-shaped rotating bodies 2 arranged in the circumferential direction of the outer surface of the metal pipe. A short rod-shaped core 40 is arranged.
As shown in FIG. 18, the core 40 has four recessed portions 40a facing each other in the radial tip side portion of each of the solo van ball-shaped rotating bodies 2, and a protruding portion 40b between the adjacent recessed portions 40a. It has a cross-sectional portion 40c forming a cross shape, but has a cross-sectional shape portion 40d in the pipe along the inner surface of the pipe, which is not a cross-section in the entire longitudinal direction. Then, it has a curved transition concave surface 40e that smoothly connects the corner portion of the in-pipe cross-sectional shape portion 40d to the straight concave portion 40a in the longitudinal direction along the radial tip side shape of the abacus ball-shaped rotating body 2. ..
A core 40 having such a cross-sectional shape portion 40d in a pipe, a curved transition concave surface 40e, and a cross-sectional portion 40c is called a total caliber core.
In FIG. 18, the horizontal portion and the vertical portion of the cross section of the core 40 are shown in a horizontal and vertical posture.

この実施例3は、実施例1とは基本的には中子40が総形カリバー中子である点が異なるだけであるが、中子40が管内断面形状部分40d及び湾曲移行凹面40eを有することで、ソロバン玉状回転体2と中子40とによる凹み部40aの形成が滑らかに行われ、形状精度の確保が容易になる。
なお、図17、図18において、図1〜図8と基本的に同じ部分は同じ符号を付して説明を省略している。
This Example 3 is different from the Example 1 only in that the core 40 is basically a total caliber core, but the core 40 has an in-pipe cross-sectional shape portion 40d and a curved transition concave surface 40e. As a result, the recessed portion 40a is smoothly formed by the abacus ball-shaped rotating body 2 and the core 40, and it becomes easy to secure the shape accuracy.
In FIGS. 17 and 18, basically the same parts as those in FIGS. 1 to 8 are designated by the same reference numerals and the description thereof is omitted.

1 凹溝形成機構
2 ソロバン玉状回転体
2a フラット面
2a’凹面
3 回転体ホルダー
m 中心軸線
7 ハウジング
7a ハウジング本体
7a’(ハウジング本体の内側の)ベース部
7b (ハウジングの)蓋体
8 角形鋼管(金属管)
18 丸鋼管(金属管)
8a、18a 凹溝(凹溝部)
8b、8b’、18b 突状部
8c、8c’、18c 十字形断面部
10、10’、10” 金属管の凹溝加工装置
11 圧下調整機構
11a 圧下ネジ
11b 調整ナット
11c ナット保持部
12 装置スタンド
13 回転面板
14 金属管ガイド
16 取付プレート
20A、20B 押込み装置
30 中子(ストレートカリバー中子)
40 中子(総形カリバー中子)
30a、40a 凹み部
30b、40b 突出部
40c 十字断面部
40d 管内断面形状部分
40e 湾曲移行凹面
31 中子ベース
32 枠体
51 形状ガイド
52 形状ガイドホルダー
53 ボルト
1 Concave groove forming mechanism 2 Abacus ball-shaped rotating body 2a Flat surface 2a'Concave surface 3 Rotating body holder m Central axis 7 Housing 7a Housing body 7a'(inside the housing body) Base 7b (Housing) Lid 8 Square steel pipe (Metal tube)
18 Round steel pipe (metal pipe)
8a, 18a concave groove (concave groove part)
8b, 8b', 18b Protruding parts 8c, 8c', 18c Cross section 10, 10', 10 "Metal pipe groove processing device 11 Reduction adjustment mechanism 11a Reduction adjustment mechanism 11b Adjustment nut 11c Nut holding part 12 Device stand 13 Rotating face plate 14 Metal pipe guide 16 Mounting plates 20A, 20B Pushing device 30 Core (straight caliber core)
40 core (total caliber core)
30a, 40a Recessed part 30b, 40b Protruding part 40c Cross-section part 40d In-pipe cross-sectional shape part 40e Curved transition concave surface 31 Core base 32 Frame body 51 Shape guide 52 Shape guide holder 53 Bolt

Claims (10)

金属管の端部における外面の周方向に間隔をあけた複数箇所に管端から管長手方向に延びる凹溝を形成する金属管の凹溝加工装置であって、
回転体中心軸線側では幅厚で半径方向先端に向かってテーパー状に幅狭になりその先端面に幅の狭いフラット面又は凹面を持つ断面形状の複数のソロバン玉状回転体を、それぞれ管外面を押す態様で周方向に間隔をあけて設け、
前記複数のソロバン玉状回転体のうちの周方向に隣接する2つのソロバン玉状回転体で押し込まれて金属管に形成された隣接する2つの凹溝部の間に形成される突状部に接触してその膨出を押さえる形状ガイドを設けたことを特徴とする金属管の凹溝加工装置。
It is a groove processing device for a metal pipe that forms concave grooves extending from the pipe end in the pipe longitudinal direction at a plurality of locations at the end of the metal pipe at intervals in the circumferential direction of the outer surface.
On the central axis side of the rotating body, a plurality of solo van ball-shaped rotating bodies having a cross-sectional shape that is thick and tapered toward the tip in the radial direction and has a narrow flat surface or concave surface on the tip surface are formed on the outer surface of each pipe. Provided at intervals in the circumferential direction in the manner of pressing
Contact with a protruding portion formed between two adjacent concave groove portions formed in a metal tube by being pushed by two abacus ball-shaped rotating bodies adjacent to each other in the circumferential direction among the plurality of abacus ball-shaped rotating bodies. A groove processing device for a metal pipe, characterized in that a shape guide for suppressing the swelling is provided.
前記各ソロバン玉状回転体をそれぞれ回転自在に保持する複数の回転体ホルダーと、前記複数の回転体ホルダーを凹溝を形成すべき金属管の外面の周方向位置に対応して設けたハウジングと、前記ハウジングに設けられて前記回転体ホルダーの圧下調整を行う圧下調整手段とを備えたことを特徴とする請求項1記載の金属管の凹溝加工装置。 A plurality of rotating body holders that rotatably hold each of the solo van ball-shaped rotating bodies, and a housing in which the plurality of rotating body holders are provided corresponding to the circumferential positions of the outer surface of the metal tube to which the concave groove should be formed. The recessed groove processing device for a metal pipe according to claim 1, further comprising a reduction adjusting means for adjusting the reduction of the rotating body holder, which is provided in the housing. 金属管の端部に前記複数の凹溝部及び突条部が形成された時の管端部内面輪郭に合わせた凹み部と突出部とを有し、金属管の端部に凹溝が形成される際に管内に位置するように配置された中子を備えたことを特徴とする請求項1又は2記載の金属管の凹溝加工装置。 It has a recess and a protrusion that match the contour of the inner surface of the pipe end when the plurality of concave grooves and ridges are formed at the end of the metal pipe, and the concave groove is formed at the end of the metal pipe. The recessed groove processing apparatus for a metal pipe according to claim 1 or 2, wherein the core is provided so as to be located in the pipe when the pipe is used. 前記形状ガイドは、三角形柱状体であり、前記形状ガイドの2つの底角部は、それぞれにソロバン玉状回転体のテーパー状先端側部分の表面に概ね沿う形状の凹面が形成され、前記形状ガイドの凹面を有する底角部で挟まれた底辺部は、前記底辺部の中央に狭い底辺面が残る態様で形成した外形をなしていることを特徴とする請求項1〜3のいずれか1項に記載の金属管の凹溝加工装置。 The shape guide is a triangular columnar body, and each of the two base corner portions of the shape guide is formed with a concave surface having a shape substantially along the surface of the tapered tip side portion of the abacus ball-shaped rotating body. Any one of claims 1 to 3, wherein the bottom portion sandwiched between the bottom corner portions having the concave surface has an outer shape formed in such a manner that a narrow bottom surface remains in the center of the bottom portion. The grooving apparatus for metal pipes according to. 請求項1〜4のいずれか1項の金属管の凹溝加工装置により、金属管の端部における外面の周方向に間隔をあけた複数個所に管端から管長手方向に延びる凹溝を形成する金属管の凹溝加工方法であって、
前記複数のソロバン玉状回転体及び形状ガイドと加工対象の金属管とを金属管長手方向に対向させ、前記ソロバン玉状回転体と金属管とを相対的に接近駆動させて金属管の端部に複数の凹溝を形成することを特徴とする金属管の凹溝加工方法。
The groove processing apparatus for a metal pipe according to any one of claims 1 to 4 forms concave grooves extending from the pipe end in the pipe longitudinal direction at a plurality of locations at the end of the metal pipe at intervals in the circumferential direction of the outer surface. It is a method of machining a groove in a metal pipe.
The plurality of solo van ball-shaped rotating bodies and shape guides and the metal tube to be processed face each other in the longitudinal direction of the metal tube, and the solo van ball-shaped rotating body and the metal tube are driven relatively close to each other to drive the end portion of the metal tube. A method for processing a groove in a metal tube, which comprises forming a plurality of grooves in a metal tube.
請求項3又は4に記載の金属管の凹溝加工装置により、金属管の端部における外面の周方向に間隔をあけた複数個所に管端から管長手方向に延びる凹溝を形成する金属管の凹溝加工方法であって、
前記複数のソロバン玉状回転体及び中子と加工対象の金属管とを金属管長手方向に対向させ、前記ソロバン玉状回転体及び中子と金属管とを相対的に接近駆動させて金属管の端部の外面に複数の凹溝を形成することを特徴とする金属管の凹溝加工方法。
By the groove processing apparatus for a metal pipe according to claim 3 or 4, a metal pipe that forms concave grooves extending from the pipe end in the pipe longitudinal direction at a plurality of locations at the end of the metal pipe at intervals in the circumferential direction of the outer surface. It is a method of processing the concave groove of
The plurality of solo van ball-shaped rotating bodies and cores and the metal tube to be processed are opposed to each other in the longitudinal direction of the metal tube, and the solo van ball-shaped rotating body and the core and the metal tube are relatively close to each other to drive the metal tube. A method for processing a concave groove of a metal pipe, which comprises forming a plurality of concave grooves on the outer surface of the end portion of the metal tube.
金属管が多角形金属管である場合に、前記ソロバン玉状回転体の前記先端面を、多角形金属管の角部に当たるように位置させ、前記ソロバン玉状回転体と多角形金属管とを相対的に接近駆動させて多角形金属管の端部の外面に角部の数の凹溝を形成することを特徴とする請求項5又は6記載の金属管の凹溝加工方法。 When the metal tube is a polygonal metal tube, the tip surface of the solo van ball-shaped rotating body is positioned so as to hit a corner portion of the polygonal metal tube, and the solo van ball-shaped rotating body and the polygonal metal tube are separated from each other. The method for processing a concave groove in a metal pipe according to claim 5 or 6, wherein the concave groove having a number of corners is formed on the outer surface of the end portion of the polygonal metal pipe by being driven relatively close to each other. 金属管が四角形金属管である場合に、前記ソロバン玉状回転体の前記先端面を、四角形金属管の4つの角部に当たるように位置させ、前記ソロバン玉状回転体と四角形金属管とを相対的に接近駆動させて四角形金属管の端部の外面に4つの凹溝を形成して、四角形金属管の端部に十字形断面部を形成することを特徴とする請求項7記載の金属管の凹溝加工方法。 When the metal tube is a quadrangular metal tube, the tip surface of the solo van ball-shaped rotating body is positioned so as to hit the four corners of the quadrangular metal tube, and the solo van ball-shaped rotating body and the quadrangular metal tube are relative to each other. The metal pipe according to claim 7, wherein four concave grooves are formed on the outer surface of the end portion of the quadrangular metal pipe, and a cross-shaped cross section is formed at the end portion of the quadrangular metal pipe. Concave groove processing method. 金属管が丸管である場合に、前記ソロバン玉状回転体の前記先端面を、丸管の外面の周方向に等間隔をなす4個所に位置させ、前記ソロバン玉状回転体と丸管とを相対的に接近駆動させて、丸管の端部の外面に4つの凹溝を形成して、丸管の端部に十字形断面部を形成することを特徴とする請求項5又は6記載の金属管の凹溝加工方法。 When the metal tube is a round tube, the tip surfaces of the solo van ball-shaped rotating body are positioned at four positions at equal intervals in the circumferential direction of the outer surface of the round tube, and the solo van ball-shaped rotating body and the round tube are formed. 5 or 6, wherein four concave grooves are formed on the outer surface of the end portion of the round pipe, and a cross-shaped cross section is formed at the end portion of the round pipe. Concave groove processing method for metal pipes. 請求項5〜9のいずれか1項の金属管の凹溝加工方法の加工対象の金属管が、四角形鋼管又は丸鋼管による建築構造物の柱材として用いる鋼管であることを特徴とする金属管の凹溝加工方法。
The metal pipe to be processed by the method for processing a concave groove of a metal pipe according to any one of claims 5 to 9 is a steel pipe used as a pillar material of a building structure made of a square steel pipe or a round steel pipe. Concave groove processing method.
JP2017166268A 2017-08-30 2017-08-30 Grooving device and method for metal pipes Active JP6885827B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017166268A JP6885827B2 (en) 2017-08-30 2017-08-30 Grooving device and method for metal pipes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017166268A JP6885827B2 (en) 2017-08-30 2017-08-30 Grooving device and method for metal pipes

Publications (2)

Publication Number Publication Date
JP2019042752A JP2019042752A (en) 2019-03-22
JP6885827B2 true JP6885827B2 (en) 2021-06-16

Family

ID=65815218

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017166268A Active JP6885827B2 (en) 2017-08-30 2017-08-30 Grooving device and method for metal pipes

Country Status (1)

Country Link
JP (1) JP6885827B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7304183B2 (en) * 2019-03-27 2023-07-06 日鉄建材株式会社 metal tube pillar
CN114833262A (en) * 2022-05-25 2022-08-02 叶小闯 Steel pipe flat-end sealing device for building processing

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS496037B1 (en) * 1969-10-08 1974-02-12
JPS57142715A (en) * 1981-02-27 1982-09-03 Mitsugi Motomura Manufacture of finned shape tube by multiple rolls
JPH0857530A (en) * 1994-08-25 1996-03-05 Akira Ozawa Device for forming mouth edge part
JPH10292556A (en) * 1997-04-17 1998-11-04 Sumitomo Kinzoku Kenzai Kk Building column material
JPH11324225A (en) * 1998-05-19 1999-11-26 Sumitomo Metal Steel Products Inc Building column
JP2001071070A (en) * 1999-08-31 2001-03-21 Sumitomo Metal Steel Products Inc Manufacture of columnar member
JP5049925B2 (en) * 2008-08-27 2012-10-17 本田技研工業株式会社 Manufacturing method of universal joint outer ring and intermediate product for universal joint outer ring

Also Published As

Publication number Publication date
JP2019042752A (en) 2019-03-22

Similar Documents

Publication Publication Date Title
JP6885827B2 (en) Grooving device and method for metal pipes
EP1629917B1 (en) Insert seat
JP5805893B2 (en) Bearing walls and wall materials for bearing walls
US20230201901A1 (en) Sheet transitioning in spiral formed structures
US7947380B2 (en) Sheet material
JP4995665B2 (en) Method of joining a pipe and a plurality of members to be joined
JP6991796B2 (en) Concave groove processing equipment for metal pipes
WO2018083748A1 (en) Step-bending die
JP2005273755A (en) Retainer for thrust cylindrical roller bearing and its manufacturing method
RU2564183C1 (en) Device to round edges of double-tee
US9597722B2 (en) Pressing tool and method for manufacturing a pressing tool
US20050034499A1 (en) Processing method of forming a concavity in a pipe member and an apparatus thereof
KR20110034482A (en) Steel bar of reinforcement and method for cutting roll manufacturing the same
JP2007278414A (en) Cage for thrust roller bearing, and its manufacturing method
JP4826227B2 (en) Rotary die
DE10111406A1 (en) Device for dividing pipes
CN113770199B (en) Plate transition in spiral forming structures
CN106513477A (en) T-shaped steel bending tool
JP4614208B2 (en) Joining auxiliary member and joining structure
JP5669409B2 (en) Metal strip edge processing method
US4165628A (en) Fin pass roll
RU2662278C1 (en) Cutting plate and milling cutter for its use
RU2513668C2 (en) Method of cutting square cross-section pipes and device to this end
WO2014157168A1 (en) Metal tube-twisting method and device
JP2000140946A (en) Device and method for forming tube by bending roll and tube

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20180813

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200814

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210419

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210415

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210513

R150 Certificate of patent or registration of utility model

Ref document number: 6885827

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150