JP6991796B2 - Concave groove processing equipment for metal pipes - Google Patents

Concave groove processing equipment for metal pipes Download PDF

Info

Publication number
JP6991796B2
JP6991796B2 JP2017166261A JP2017166261A JP6991796B2 JP 6991796 B2 JP6991796 B2 JP 6991796B2 JP 2017166261 A JP2017166261 A JP 2017166261A JP 2017166261 A JP2017166261 A JP 2017166261A JP 6991796 B2 JP6991796 B2 JP 6991796B2
Authority
JP
Japan
Prior art keywords
rotating body
cross
pipe
ball
shaped rotating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017166261A
Other languages
Japanese (ja)
Other versions
JP2018171642A (en
Inventor
忠之 佐藤
広助 久我
忠義 岡田
Original Assignee
日鉄建材株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日鉄建材株式会社 filed Critical 日鉄建材株式会社
Publication of JP2018171642A publication Critical patent/JP2018171642A/en
Priority to JP2021100529A priority Critical patent/JP2021137877A/en
Priority to JP2021192586A priority patent/JP7364650B2/en
Application granted granted Critical
Publication of JP6991796B2 publication Critical patent/JP6991796B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

この発明は、金属管の端部における外面の周方向に間隔をあけた複数個所に管端から管長手方向に延びる凹溝を形成する金属管の凹溝加工装置に関する。 The present invention relates to a groove processing device for a metal pipe, which forms concave grooves extending in the longitudinal direction of the pipe from the pipe end at a plurality of locations at the end of the metal pipe at intervals in the circumferential direction.

例えば、鉄骨構造の建築構造物の角形鋼管柱を上下の梁にボルト接合する場合、一般的には角形鋼管の端部にボルト孔付きの取付プレートを溶接固定し、この取付プレートを梁にボルト接合する構造とするが、その構造では、取付プレートの外形は角形鋼管の外形より広くなるので、周囲との関係で不都合が生じる場合がある。
そこで、角形鋼管の端部をプレス加工により圧潰して十字状断面部(圧潰軸状部)を形成し、その端面に角形鋼管の外形と同じ形状のボルト孔付きの取付プレートを溶接固定し、その取付プレートを梁にボルト接合することが行われている(特許文献1、2)。
For example, when a square steel pipe column of a steel structure building structure is bolted to the upper and lower beams, generally, a mounting plate with a bolt hole is welded and fixed to the end of the square steel pipe, and this mounting plate is bolted to the beam. Although the structure is to be joined, in that structure, the outer shape of the mounting plate is wider than the outer shape of the square steel pipe, which may cause inconvenience in relation to the surroundings.
Therefore, the end of the square steel pipe is crushed by press working to form a cross-shaped cross section (crushed shaft-shaped part), and a mounting plate with bolt holes having the same shape as the outer shape of the square steel pipe is welded and fixed to the end face. The mounting plate is bolted to the beam (Patent Documents 1 and 2).

また、特許文献3では、単にプレスにより圧潰する特許文献1、2の圧潰加工方法では、大きな加圧力を必要とし、そのため設備が大型化且つ重量化し、また、十字状断面部(圧潰軸状部)の山折り部や谷折り部に割れが発生する場合があるということで、角形鋼管の端部をプレス加工により圧潰して十字状断面部(圧潰軸状部)を形成する際に、加工部に割れが生じないように角形鋼管を450~650℃の範囲の加熱状態でプレス加工する方法が示されている。 Further, in Patent Document 3, the crushing methods of Patent Documents 1 and 2 which are simply crushed by a press require a large pressing force, which makes the equipment larger and heavier, and also has a cross-shaped cross-sectional portion (crushed shaft-shaped portion). ) May cause cracks in the mountain folds and valley folds, so when the end of the square steel pipe is crushed by press working to form a cross-shaped cross section (crushed shaft-shaped part), it is processed. A method of pressing a square steel pipe in a heated state in the range of 450 to 650 ° C. is shown so that cracks do not occur in the portion.

特開平10-292556Japanese Patent Application Laid-Open No. 10-292556 特開平11-324225Japanese Patent Application Laid-Open No. 11-324225 特開2001-71070JP 2001-71070

特許文献3によれば、プレスの際に加熱することで、大きな加圧力を必要とし設備が大型化且つ重量化する問題や、割れが生じる場合がある等の問題は解消されるが、加熱を必要とすることは設備の面や作業性の面等その他に関して有利ではないので、加熱を必要とせずに十字状断面部(十字状断面ではない場合には凹溝付き断面部)を形成できることが望まれる。 According to Patent Document 3, by heating at the time of pressing, the problem that a large pressing force is required and the equipment becomes large and heavy, and the problem that cracks may occur are solved, but heating is performed. Since what is required is not advantageous in terms of equipment, workability, etc., it is possible to form a cross section (a cross section with a groove if it is not a cross section) without the need for heating. desired.

本発明は上記従来の欠点を解消するためになされたもので、金属管の端部に十字状断面部等となる凹溝部を形成する際に、加熱を必要とせずに、設備が大型化且つ重量化する問題や、割れ等の問題の生じない金属管の凹溝加工装置を提供することを目的とする。 The present invention has been made in order to eliminate the above-mentioned conventional drawbacks, and when forming a concave groove portion such as a cross-shaped cross section at the end portion of a metal tube, the equipment is increased in size without requiring heating. It is an object of the present invention to provide a groove processing apparatus for a metal pipe, which does not cause a problem of weight increase or a problem of cracking or the like.

上記課題を解決する請求項1の発明は、四角形金属管の端部における外面の周方向に間隔をあけた4個所に管端から管長手方向に延びる凹溝を形成する金属管の凹溝加工装置であって、
中心軸線側では幅厚で半径方向先端に向かってテーパ状に幅狭になりその先端面に幅の狭いフラット面又は凹面を持つ断面形状で周方向に配される4つのソロバン玉状回転体と、 前記周方向に配される複数のソロバン玉状回転体をそれぞれ回転自在に保持する複数の回転体ホルダーと、前記複数の回転体ホルダーを凹溝を形成すべき金属管の外面の周方向位置に対応して設けたハウジングと、前記ハウジングに設けられて前記回転体ホルダーの圧下調整を行う圧下調整手段とを備え、前記回転体ホルダーは、前記ソロバン玉状回転体に作用する荷重を直接受ける形状のオイレスメタルと、このオイレスメタルを収容するホルダ本体と、前記ソロバン玉状回転体の抜け出しを押さえる蓋体とを備えたことを特徴とする。
The invention according to claim 1 solves the above-mentioned problems. It ’s a device,
On the central axis side, there are four solo van ball-shaped rotating bodies that are thick and taper toward the tip in the radial direction and are arranged in the circumferential direction in a cross-sectional shape with a narrow flat surface or concave surface on the tip surface. , A plurality of rotating body holders that rotatably hold a plurality of solo van ball-shaped rotating bodies arranged in the circumferential direction, and a circumferential position of the outer surface of the metal tube in which the plurality of rotating body holders are to form a concave groove. The rotating body holder is provided with a housing provided corresponding to the above and a reduction adjusting means provided in the housing for adjusting the reduction of the rotating body holder, and the rotating body holder directly receives a load acting on the solo van ball-shaped rotating body. It is characterized by having an oilless metal having a shape, a holder body for accommodating the oilless metal, and a lid for holding the solo van ball-shaped rotating body from coming out.

請求項は、請求項1の金属管の凹溝加工装置において、
前記周方向に配される複数のソロバン玉状回転体の周方向配置中心位置に、前記各ソロバン玉状回転体の半径方向先端側部分にそれぞれ対向する複数の凹み部を持つ凹み断面形状部分を有して管長手方向に延びる短尺棒状の中子を配置したことを特徴とする。
請求項3は、 四角形金属管の端部における外面の周方向に間隔をあけた4個所に管端から管長手方向に延びる凹溝を形成する金属管の凹溝加工装置であって、
中心軸線側では幅厚で半径方向先端に向かってテーパ状に幅狭になりその先端面に幅の狭いフラット面又は凹面を持つ断面形状で周方向に配される4つのソロバン玉状回転体と、
前記周方向に配される4つのソロバン玉状回転体をそれぞれ回転自在に保持する4つの回転体ホルダーと、前記4つの回転体ホルダーを凹溝を形成すべき四角形金属管の外面の周方向位置に対応して設けたハウジングと、前記ハウジングに設けられて前記回転体ホルダーの圧下調整を行う圧下調整手段とを備え、前記回転体ホルダーは、前記ソロバン玉状回転体に作用する荷重を直接受ける形状のオイレスメタルと、このオイレスメタルを収容するホルダ本体と、前記ソロバン玉状回転体の抜け出しを押さえる蓋体とを備えたことを特徴とする金属管の凹溝加工装置である
請求項4は、前記周方向に配される4つのソロバン玉状回転体の周方向配置中心位置に、前記各ソロバン玉状回転体の半径方向先端側部分にそれぞれ対向する4つのの凹み部を持つ凹み断面形状部分を有して管長手方向に延びる短尺棒状の中子を配置したことを特徴とする請求項3記載の金属管の凹溝加工装置である
2. The second aspect of the present invention is the groove processing apparatus for a metal tube according to the first aspect.
A recessed cross-sectional shape portion having a plurality of recesses facing each other at the radial tip side portion of each solo van ball-shaped rotating body at the center position of the circumferential arrangement of the plurality of solo van ball-shaped rotating bodies arranged in the circumferential direction. It is characterized in that a short rod-shaped core extending in the longitudinal direction of the pipe is arranged.
A third aspect of the present invention is a groove processing device for a metal pipe, which forms concave grooves extending in the longitudinal direction of the pipe from the pipe end at four locations at the end of the square metal pipe, which are spaced apart from each other in the circumferential direction.
On the central axis side, there are four abacus ball-shaped rotating bodies that are thick and taper toward the tip in the radial direction and are arranged in the circumferential direction in a cross-sectional shape with a narrow flat surface or concave surface on the tip surface. ,
Four rotating body holders that rotatably hold the four solo van ball-shaped rotating bodies arranged in the circumferential direction, and the circumferential position of the outer surface of the square metal tube in which the four rotating body holders should form a concave groove. The rotating body holder is provided with a housing provided corresponding to the above and a reduction adjusting means provided in the housing for adjusting the reduction of the rotating body holder, and the rotating body holder directly receives a load acting on the solo van ball-shaped rotating body. It is a groove processing device for a metal tube, characterized in that it is provided with an oilless metal having a shape, a holder body for accommodating the oilless metal, and a lid for holding the solo van ball-shaped rotating body from coming out.
The fourth aspect of the present invention is to provide four recesses facing the radial tip side portions of the four solo van ball-shaped rotating bodies at the center positions of the four solo van ball-shaped rotating bodies arranged in the circumferential direction. The recessed groove processing device for a metal tube according to claim 3, wherein a short rod-shaped core having a recessed cross-sectional shape portion extending in the longitudinal direction of the tube is arranged.

本発明の金属管の凹溝加工装置によれば、先端面に幅の狭いフラット面又は凹面を持つ断面形状のソロバン玉状回転体と加工対象の金属管とを金属管長手方向に対向させ、前記ソロバン玉状回転体と金属管とを相対的に接近駆動させて金属管の端部の外面に複数の凹溝を形成することが可能であり、、従来のプレスによる加工方法と異なり、設備の大型化・重量化の問題や凹溝部(谷折り部)の割れ等の問題が生じることなく、また加熱を必要とすることもなく、金属管の端部に凹溝、特に深い凹溝を形成することが可能となる。
また、回転体ホルダーに保持されるソロバン玉状回転体が回転軸を持たずにオイレスメタルにより直接回転可能に支持される構成なので、大きな荷重に対応可能でありながら装置のコンパクト化が実現される。
According to the concave groove processing apparatus for a metal tube of the present invention, a solo van ball-shaped rotating body having a flat surface or a concave surface having a narrow tip surface and a metal tube to be processed are opposed to each other in the longitudinal direction of the metal tube. It is possible to drive the solo van ball-shaped rotating body and the metal tube relatively close to each other to form a plurality of concave grooves on the outer surface of the end of the metal tube. There is no problem of increasing the size and weight of the metal tube, cracking of the concave groove (valley fold), and no heating is required. It becomes possible to form.
In addition, since the solo van ball-shaped rotating body held in the rotating body holder is directly rotatably supported by OILES metal without having a rotation axis, the device can be made compact while being able to handle a large load. ..

請求項2によれば、周方向に配される複数のソロバン玉状回転体の周方向配置中心位置に中子を配した状態で加工を行うことができ、管外のソロバン玉状回転体と管内の中子とで凹溝加工を行うことが可能なので、精度よい形状の凹溝を形成することが可能となる According to claim 2 , processing can be performed in a state where the core is arranged at the center position of the circumferential arrangement of the plurality of abacus ball-shaped rotating bodies arranged in the circumferential direction, and the abacus ball-shaped rotating body outside the tube can be processed. Since it is possible to perform concave groove processing with the core in the pipe, it is possible to form a concave groove having an accurate shape.

請求項7の金属管の凹溝加工装置によれば、回転体ホルダーに保持されるソロバン玉状回転体が回転軸を持たずにオイレスメタルにより直接回転可能に支持される構成なので、大きな荷重に対応可能でありながら装置のコンパクト化が実現される。 According to the concave groove processing device for a metal pipe according to claim 7, the solo van ball-shaped rotating body held in the rotating body holder is directly rotatably supported by OILES metal without having a rotation axis, so that a large load can be applied. The device can be made compact while being compatible.

本発明の金属管の凹溝加工装置の一実施例を示すもので、(イ)は凹溝加工装置の側面図、(ロ)は(イ)におけるハウジングの蓋体を外して示した正面図である。An embodiment of the concave groove processing device for a metal pipe of the present invention is shown, where (a) is a side view of the concave groove processing device, and (b) is a front view showing the housing with the lid removed in (a). Is. 図1における要部のみを拡大して示した拡大図である。It is an enlarged view which showed only the main part in FIG. 1 enlarged. (イ)は図2における1つの回転体ホルダーを部分断面にて示した拡大図、(ロ)は(イ)におけるソロバン玉状回転体の先端面の近傍を拡大した図、(ハ)は先端面の形状の他の実施例を示す図である。(A) is an enlarged view showing one rotating body holder in FIG. 2 in a partial cross section, (b) is an enlarged view of the vicinity of the tip surface of the abacus ball-shaped rotating body in (a), and (c) is the tip. It is a figure which shows the other embodiment of the shape of a surface. 図1の金属管の凹溝加工装置による凹溝加工方法をソロバン玉状回転体と金属管のみを示して説明する図であり、(イ)は側面図、(ロ)は正面図、(ハ)は端部凹溝加工された金属管を端部側から見た正面図である。It is a figure explaining the concave groove processing method by the concave groove processing apparatus of the metal tube of FIG. 1 showing only the abacus ball-shaped rotating body and the metal tube, (a) is a side view, (b) is a front view, (c). ) Is a front view of a metal tube with a concave groove at the end as viewed from the end side. 上記の金属管の凹溝加工装置により製造された十字形断面端部を有する金属管の斜視図である。It is a perspective view of a metal tube having a cross-shaped cross-sectional end manufactured by the above-mentioned groove processing apparatus for a metal tube. 角形鋼管の角部を押し込んで凹溝を形成する場合の角部変形挙動を説明する図であり、(イ)は先端にフラット面を有する本発明のソロバン玉状回転体で角部を押し込んだ場合、(ロ)は先端に円弧面を有するソロバン玉状回転体で角部を押し込んだ場合の説明図、(ハ)は角形鋼管の断面を示した図である。It is a figure explaining the corner deformation behavior when the corner part of a square steel pipe is pushed in to form a concave groove, and (a) is the figure which pushed the corner part by the solo van ball-shaped rotating body of this invention which has a flat surface at the tip. In the case, (b) is an explanatory view when a corner portion is pushed by a solo van ball-shaped rotating body having an arc surface at the tip, and (c) is a view showing a cross section of a square steel pipe. 上記の金属管凹溝加工装置を2台並列方式で設置して、例えば建築構造物の金属管柱材の両端部に十字状断面部(十字管部)を形成する場合の加工手順を説明する図である。The processing procedure in the case where two of the above-mentioned metal pipe concave groove processing devices are installed in parallel to form a cross-shaped cross section (cross pipe portion) at both ends of a metal pipe pillar material of a building structure will be described. It is a figure. 上記の金属管凹溝加工装置を2台直列方式で設置して、例えば建築構造物の金属管柱材の両端部に十字管部を形成する場合の加工手順を説明する図である。It is a figure explaining the processing procedure in the case of installing the above-mentioned metal pipe concave groove processing apparatus in series, for example, forming a cross pipe portion at both ends of a metal pipe pillar material of a building structure. 本発明の金属管の凹溝加工装置により角形鋼管の両端部に十字状断面部を形成した鋼管柱の一使用例を説明する図であり、(イ)は側面図、(ロ)は平面図、(ハ)はE-E矢視断面図である。It is a figure explaining one use example of the steel pipe column which formed the cross-shaped cross section at both ends of the square steel pipe by the concave groove processing apparatus of the metal pipe of this invention, (a) is a side view, (b) is a plan view. , (C) is a cross-sectional view taken along the line EE. 金属管が丸管である場合の実施例であって図4に相当する図であり、(イ)は側面図、(ロ)は正面図、(ハ)は端部凹溝加工された金属管を端部側から見た正面図である。It is an embodiment when the metal pipe is a round pipe and corresponds to FIG. 4, (a) is a side view, (b) is a front view, and (c) is a metal pipe with a concave groove at the end. Is a front view seen from the end side. 本発明の他の実施例(中子を用いる実施例)の金属管の凹溝加工装置を示すもので、図1(イ)に対応する図(側面図)である。It is the figure (side view) corresponding to FIG. 1 (a) which shows the concave groove processing apparatus of the metal tube of another Example (the Example which uses a core) of this invention. (イ)は図11の金属管の凹溝加工装置の要部のみを示して説明する図であり側面図、(ロ)は(イ)のA-A矢視断面図である。(A) is a view showing and explaining only the main part of the concave groove processing device for the metal pipe of FIG. 11, and (b) is a side view, and (b) is a cross-sectional view taken along the line AA of (a). (イ)、(ロ)はそれぞれ図12(イ)、(ロ)における概ね上下のソロバン玉状回転体及び中子のみを示した図である(分かり易くするために)。(ロ)は(イ)のB-B矢視断面図である。(A) and (b) are views showing only the upper and lower abacus ball-shaped rotating bodies and cores in FIGS. 12 (a) and 12 (b), respectively (for the sake of clarity). (B) is a cross-sectional view taken along the line BB of (a). 図11~図13における中子を単独で示した斜視図である。11 is a perspective view showing the core in FIGS. 11 to 13 alone. 本発明のさらに他の実施例(異なる中子を用いる実施例)の金属管の凹溝加工装置を示すもので、(イ)は図12(イ)に対応する図、(ロ)は図12(ロ)に対応する図である。(ロ)は(イ)のC-C矢視断面図である。A device for processing a groove in a metal tube according to still another embodiment of the present invention (an embodiment using a different core) is shown. FIG. 12 (a) is a diagram corresponding to FIG. 12 (a), and FIG. 12 (b) is a diagram. It is a figure corresponding to (b). (B) is a cross-sectional view taken along the line CC of (a). (イ)、(ロ)はそれぞれ図15(イ)、(ロ)における概ね上下のソロバン玉状回転体及び中子のみを示した図である(分かり易くするために)。(ロ)は(イ)のD-D矢視断面図である。(A) and (b) are views showing only the upper and lower abacus ball-shaped rotating bodies and cores in FIGS. 15 (a) and 15 (b), respectively (for the sake of clarity). (B) is a cross-sectional view taken along the line DD of (a). (イ)は図15、図16における中子を単独で示した斜視図、(ロ)は(イ)の中子の正面図である。(A) is a perspective view showing the core in FIGS. 15 and 16 independently, and (b) is a front view of the core in (a).

以下、本発明の金属管の凹溝加工装置を実施するための形態について、図面を参照して説明する。 Hereinafter, a mode for carrying out the groove processing apparatus for a metal tube of the present invention will be described with reference to the drawings.

図1は本発明の金属管の凹溝加工装置10の一実施例を示すもので、(イ)は凹溝加工装置10の側面図、(ロ)は(イ)におけるハウジングの蓋体を外して示した正面図、図2は図1(ロ)における要部のみを拡大して示した拡大図である。
この実施例では四角形の角形鋼管8(以下、四角形の角形鋼管の場合は単に角形鋼管と呼ぶ)の両端部に十字形断面部を形成する場合である。
この凹溝加工装置10は、ハウジング7に、加工対象の角形鋼管8の4つの角部に対
応させて4つの凹溝形成機構1を備えている。
各凹溝形成機構1は、凹溝を形成するソロバン玉状回転体2を回転可能に保持する回転体ホルダー3を備え、この回転体ホルダー3を装置中心方向に移動調節して前記ソロバン玉状回転体2の圧下を調整する圧下調整機構11を備えている。
前記ソロバン玉状回転体2は、図3(イ)、(ロ)に詳細を示すように、中心軸線側(中心軸線mの側)では幅厚で半径方向先端に向かってテーパ状に幅狭になりその先端面に幅の狭いフラット面2aを持つ断面形状であり、前記の通り回転体ホルダー3に回転自在に保持されている。なお、図3(ハ)に示すように、先端面に幅の狭い凹面2a’を持つ断面形状としてもよい。
回転体ホルダー3は、前記ソロバン玉状回転体2に作用する荷重を直接受ける形状のオイレスメタル4と、このオイレスメタル4を収容するホルダー本体5と、前記ソロバン玉状回転体の抜け出しを押さえる蓋体6とを備えている。
前記ソロバン玉状回転体2は、回転軸を持たず、前記オイレスメタル4に摺動可能に直接面接触して、前記のようにソロバン玉状回転体2に作用する荷重をオイレスメタル4で支持される。
FIG. 1 shows an embodiment of the concave groove processing device 10 for a metal tube of the present invention, (a) is a side view of the concave groove processing device 10, and (b) is a housing lid removed in (a). 2 is an enlarged view showing only the main part in FIG. 1 (b) in an enlarged manner.
In this embodiment, a cross-shaped cross section is formed at both ends of a rectangular square steel pipe 8 (hereinafter, in the case of a rectangular square steel pipe, simply referred to as a square steel pipe).
The concave groove processing device 10 is provided with four concave groove forming mechanisms 1 in the housing 7 so as to correspond to the four corner portions of the square steel pipe 8 to be processed.
Each concave groove forming mechanism 1 includes a rotating body holder 3 that rotatably holds the abacus ball-shaped rotating body 2 forming the concave groove, and the rotating body holder 3 is moved and adjusted toward the center of the device to adjust the abacus ball-shaped rotating body 2. A reduction adjusting mechanism 11 for adjusting the reduction of the rotating body 2 is provided.
As shown in detail in FIGS. 3 (a) and 3 (b), the abacus ball-shaped rotating body 2 is thick on the central axis side (side of the central axis m) and narrows in a tapered shape toward the tip in the radial direction. It has a cross-sectional shape having a flat surface 2a having a narrow width on its tip surface, and is rotatably held by the rotating body holder 3 as described above. As shown in FIG. 3 (c), the cross-sectional shape may have a concave concave surface 2a'with a narrow width on the tip surface.
The rotating body holder 3 has an OILES metal 4 having a shape that directly receives a load acting on the solo van ball-shaped rotating body 2, a holder main body 5 that houses the oiles metal 4, and a lid that prevents the solo van ball-shaped rotating body from coming off. It has a body 6.
The solo van ball-shaped rotating body 2 does not have a rotation axis, and is slidably directly in direct surface contact with the oiles metal 4, and the load acting on the solo van ball-shaped rotating body 2 is supported by the oiles metal 4 as described above. Will be done.

前記ハウジング7は、4つの回転体ホルダー3を摺動可能に収容するハウジング本体7aと、外側の蓋体7bと、内側の蓋体を兼ねるベース部7a’とからなる。
前記圧下調整機構11は、前記回転体ホルダー3の上面に回転可能に連結された圧下ネジ11a、この圧下ネジ11aに螺合する調整ナット11b、この調整ナット11bを回転のみ可能にハウジング本体7aに固定するナット保持部11cとからなる。前記調整ナット11bを回して回転体ホルダー3の位置(ソロバン玉状回転体2の位置)を調整して圧下を調整することができる。但し、本発明における圧下調整機構としては、実施例の圧下調整機構11に限らず、種々の機構を採用することができる。例えば、スクロールチャック方式などでも採用できる。この場合、複数の回転体ホルダーの圧下調整を同時に行うことができる。
ハウジング7の前記ハウジング本体7aは、前記内側の蓋体を兼ねるベース部7a’と一体であり、前記の通り4つの回転体ホルダー3を摺動可能に収容している。このハウジング本体7aに外側の蓋体7bがボルトで固定されている。
前記ハウジング本体7aの前記ベース部7a’は、詳細は省略するが、2点鎖線で示す装置スタンド12に回転調節可能に取り付けられた回転面板13に固定され、また、このベース部7a’に、加工対象の金属管8を案内する金属管ガイド14が固定されている。
The housing 7 includes a housing body 7a that slidably accommodates the four rotating body holders 3, an outer lid 7b, and a base portion 7a'that also serves as an inner lid.
The reduction adjustment mechanism 11 has a reduction screw 11a rotatably connected to the upper surface of the rotating body holder 3, an adjustment nut 11b screwed into the reduction screw 11a, and the adjustment nut 11b rotatably attached to the housing body 7a. It includes a nut holding portion 11c for fixing. The reduction can be adjusted by turning the adjusting nut 11b to adjust the position of the rotating body holder 3 (the position of the abacus ball-shaped rotating body 2). However, the reduction adjustment mechanism in the present invention is not limited to the reduction adjustment mechanism 11 of the embodiment, and various mechanisms can be adopted. For example, it can also be adopted by a scroll chuck method or the like. In this case, the reduction adjustment of the plurality of rotating body holders can be performed at the same time.
The housing body 7a of the housing 7 is integrated with the base portion 7a'which also serves as the inner lid, and slidably accommodates the four rotating body holders 3 as described above. The outer lid 7b is fixed to the housing body 7a with bolts.
Although the details of the base portion 7a'of the housing body 7a are omitted, the base portion 7a'is fixed to a rotating face plate 13 rotatably attached to the apparatus stand 12 indicated by the two-dot chain line, and is also attached to the base portion 7a'. A metal tube guide 14 for guiding the metal tube 8 to be processed is fixed.

上記の凹溝加工装置10により、例えば角形鋼管8の端部に十字形断面部を形成する場合、図1(イ)において、図示略の例えば油圧シリンダ等による押込み装置により矢印のように左方から角形鋼管8を凹溝加工装置10の4つのソロバン玉状回転体2で囲まれた空間に押し込むと、電縫鋼管製造ラインにおけるサイジング(成形)工程的な作用(ないし冷間ロール成形的な作用)により、図4(イ)、(ロ)、(ハ)に示すように4つのソロバン玉状回転体2で角形鋼管の4つの角部が潰されて角部に凹溝8aが形成される。8bは角形鋼管の面部が潰されずに突出状態で残った突状部である。端部に4つの凹溝8aが形成された角形鋼管8を図5に斜視図で示す。
図示例のように深い凹溝8aを形成した場合は角形鋼管8の端部に十字形断面部8cが形成される。
なお、角形鋼管を固定し、凹溝加工装置10を固定の角形鋼管の端部側に押し込み駆動して、角形鋼管の端部に凹溝を形成することも可能である。要するに相対的に対向方向に接近駆動させることができればよい。
When a cross-shaped cross section is formed, for example, at the end of a square steel pipe 8 by the above-mentioned concave groove processing device 10, in FIG. When the square steel pipe 8 is pushed into the space surrounded by the four solo van ball-shaped rotating bodies 2 of the concave groove processing device 10, the sizing (forming) process action (or cold roll forming) in the electric resistance pipe production line is performed. By the action), as shown in FIGS. 4 (a), (b), and (c), the four corners of the square steel pipe are crushed by the four solo van ball-shaped rotating bodies 2, and a concave groove 8a is formed in the corners. Ru. Reference numeral 8b is a protruding portion in which the surface portion of the square steel pipe is not crushed and remains in a protruding state. A square steel pipe 8 having four concave grooves 8a formed at its ends is shown in a perspective view in FIG.
When a deep groove 8a is formed as shown in the illustrated example, a cross-shaped cross-sectional portion 8c is formed at the end of the square steel pipe 8.
It is also possible to fix the square steel pipe and drive the concave groove processing device 10 by pushing it toward the end side of the fixed square steel pipe to form a concave groove at the end of the square steel pipe. In short, it suffices if they can be driven relatively close to each other.

角形鋼管の外面に十字形断面となるような深い凹溝を形成する場合、電縫鋼管製造ラインにおける一般的なサイジング工程的な発想では、サイジングロールとして半径方向先端に向かってテーパ状に幅狭になり先端面が円弧面となるようなロールプロフィルを採用するが、本発明では先端面に幅の狭いフラット面2a又は凹面2a’を持つ形状としている。これは、次のような実験の結果として採用した形状である。
図6(ロ)のように、角形鋼管の角部を先端面が円弧凸面のロールMで矢印のように押し込んだ実験では、角部に割れが発生する場合が少なからずあった。そこで、種々の原因を考察した上で、図6(イ)のように、先端面をフラット面(あるいは凹面)にしたロールKで角部を矢印のように押し込む実験をしたところ、割れが発生することはなくなった。
角部を先端面が円弧凸面であるロールで押し込んだ時に割れが発生する理由として、次のようなことが考えられた。
電縫鋼管製造ラインのサイジング工程で丸鋼管を角形鋼管に成形する際、角形鋼管の角部(図6(ハ)のハッチング部)には大きな塑性変形が生じ全塑性域となっており、顕著な加工硬化が生じている。したがって、図6(ロ)のように、先端円弧凸面のロールMで押し込んだ場合、角部の狭い範囲の凸R部分が押し込まれることで、その角部の狭い範囲の加工硬化した凸R部分が逆向きの凹R形状に曲げ変形するという過酷な変形が生じるために割れが発生し易い。
一方、図6(イ)のように、角部を先端面がフラット面(あるいは凹面)であるロールKで押し込んだ場合、角部の狭い範囲の凸R部分が逆向きの凹R形状に曲げ変形するのではなく、狭い範囲の凸R部分の凸形状をある程度保ったままその両側の部分も含めた若干広い部分が押し込まれて変形した。このため、狭い範囲の加工硬化した凸R部分の変形は軽減され割れが発生しない。
なお、図6(イ)、(ロ)において、円弧凸面ロールMについてはM1、M2、M3の順に曲げ変形した後押し込まれ、先端フラット面のロールKについてはK1、K2、K3の順に押し込まれることを示している。K1、M1は角部に接触した時点、実線で示したK2、M2は角部が凹み始めて両者の変形挙動の違いが特徴的に表われる時点を示している。
When forming a deep groove having a cross-shaped cross section on the outer surface of a square steel pipe, the general idea of the sizing process in an electrosewn steel pipe production line is to taper the width toward the tip in the radial direction as a sizing roll. However, in the present invention, the roll profile is adopted so that the tip surface becomes an arc surface, but in the present invention, the tip surface has a narrow flat surface 2a or concave surface 2a'. This is the shape adopted as a result of the following experiments.
As shown in FIG. 6 (b), in an experiment in which a corner portion of a square steel pipe was pushed in as shown by an arrow with a roll M having an arc convex tip surface, cracks were often generated at the corner portion. Therefore, after considering various causes, as shown in Fig. 6 (a), an experiment was conducted in which the corners were pushed in as shown by the arrows with a roll K whose tip surface was a flat surface (or concave surface), and cracks occurred. No more to do.
The following are considered as the reasons why cracks occur when the corners are pushed by a roll whose tip surface is an arc convex surface.
When forming a round steel pipe into a square steel pipe in the sizing process of the electric resistance pipe production line, a large plastic deformation occurs at the corner of the square steel pipe (the hatched part in FIG. 6 (c)) and it becomes a total plastic region, which is remarkable. Work hardening has occurred. Therefore, as shown in FIG. 6B, when the convex R portion having a convex tip arc surface is pushed in, the convex R portion in a narrow range of the corner portion is pushed in, so that the work-hardened convex R portion in the narrow range of the corner portion is formed. However, cracks are likely to occur due to severe deformation such as bending and deformation into a concave R shape in the opposite direction.
On the other hand, as shown in FIG. 6 (a), when the corner portion is pushed by the roll K whose tip surface is a flat surface (or concave surface), the convex R portion in a narrow range of the corner portion is bent into a concave R shape in the opposite direction. Instead of being deformed, a slightly wide portion including the portions on both sides thereof was pushed in and deformed while maintaining the convex shape of the convex R portion in a narrow range to some extent. Therefore, the deformation of the work-hardened convex R portion in a narrow range is reduced and cracks do not occur.
In FIGS. 6A and 6B, the arc convex roll M is bent and deformed in the order of M1, M2, and M3 and then pushed in, and the roll K on the flat tip surface is pushed in the order of K1, K2, and K3. It is shown that. K1 and M1 indicate the time when the corners are in contact with each other, and K2 and M2 shown by solid lines indicate the time when the corners begin to dent and the difference in deformation behavior between the two is characteristically shown.

上述の凹溝加工装置10で金属管の両端に十字形断面部を持つ両端十字形断面部金属管を製造する場合、2台の凹溝加工装置10を設置して製造すると、生産能率が高い。その場合、図7又は図8の方式を採用すると能率的である。
図7は2台の凹溝加工装置10A、10Bを金属管8を挟む反対側に並列方式で設置(対向させるのではなくずらせて設置)して製造する場合を示す。この場合、それぞれに対向させて例えば油圧シリンダ等による押込み装置20A、20Bを配置する。
同図(イ)において、押込み装置20Aで金属管8を凹溝加工装置10A側に押し込むことで、(ロ)のように一端に十字形断面部8cが形成される。
その金属管を(ハ)のように凹溝加工装置10Bと押込み装置20Bとの間に搬送し、押込み装置20Bで凹溝加工装置10B側に押し込み駆動すると、(ニ)のように他端に十字形断面部8cが形成され、これにより両端に十字形断面部8cが形成された金属管8が得られる。
When the above-mentioned concave groove processing device 10 is used to manufacture a metal tube having a cross-shaped cross section at both ends of the metal tube, the production efficiency is high if two concave groove processing devices 10 are installed and manufactured. .. In that case, it is efficient to adopt the method of FIG. 7 or FIG.
FIG. 7 shows a case where two concave groove processing devices 10A and 10B are installed in parallel on opposite sides of a metal tube 8 (installed in a staggered manner rather than facing each other). In this case, the pushing devices 20A and 20B by, for example, a hydraulic cylinder are arranged so as to face each other.
In the figure (a), by pushing the metal tube 8 toward the concave groove processing device 10A by the pushing device 20A, a cross-shaped cross-sectional portion 8c is formed at one end as shown in (b).
When the metal pipe is conveyed between the concave groove processing device 10B and the pushing device 20B as shown in (c) and pushed to the concave groove processing device 10B side by the pushing device 20B, it is pushed to the other end as shown in (d). A cross-shaped cross section 8c is formed, whereby a metal tube 8 having a cross-shaped cross section 8c formed at both ends is obtained.

図8は2台の凹溝加工装置10A、10Bを金属管8を挟む対向位置に設置する直列方式で製造する場合を示す。この場合、それぞれの凹溝加工装置10の背後に押込み装置20A、20Bを配置する。
図8[I]の(イ)において、凹溝加工装置10Aのソロバン玉状回転体2を開放状態にしておき、押込み装置20Aの押し込部を、開放状態の凹溝加工装置10Aを通過させ金属管8を凹溝加工装置10B側に押し込むことで、(ロ)のように一端に十字形断面部8cが形成される。
次いで、図8[II]の(ハ)に示すように、凹溝加工装置10Bのソロバン玉状回転体2を開放状態にしておき、押込み装置20Bの押し込部を、開放状態の凹溝加工装置10Bを通過させ金属管8を凹溝加工装置10A側に押し込むことで、(ニ)のように他端に十字形断面部8cが形成され、これにより両端に十字形断面部8cが形成された金属管8が得られる。
なお、図8の直列方式の場合、金属管8を固定し押込み装置20で凹溝加工装置10を金属管側に押し込む構成とすることもできる。その場合は、十字形断面部8cが形成されるのは、当然、図8に示された十字形断面部8cと反対側の端部(押し込まれた凹溝加工装置10側の端部)になる。
FIG. 8 shows a case where two concave groove processing devices 10A and 10B are manufactured by a series method in which two concave groove processing devices 10A and 10B are installed at opposite positions sandwiching a metal tube 8. In this case, the pushing devices 20A and 20B are arranged behind the concave groove processing devices 10.
In (a) of FIG. 8 [I], the abacus ball-shaped rotating body 2 of the concave groove processing device 10A is kept in an open state, and the pushing portion of the pushing device 20A is passed through the concave groove processing device 10A in the open state. By pushing the metal tube 8 toward the concave groove processing device 10B, a cross-shaped cross-sectional portion 8c is formed at one end as shown in (b).
Next, as shown in (c) of FIG. 8 [II], the solo van ball-shaped rotating body 2 of the concave groove processing device 10B is kept in an open state, and the indented portion of the indentation device 20B is in an open state. By passing the device 10B and pushing the metal tube 8 toward the concave groove processing device 10A, a cross-shaped cross section 8c is formed at the other end as shown in (d), thereby forming a cross-shaped cross section 8c at both ends. The metal tube 8 is obtained .
In the case of the series method of FIG. 8, the metal pipe 8 may be fixed and the concave groove processing device 10 may be pushed into the metal pipe side by the pushing device 20. In that case, the cross-shaped cross-section portion 8c is naturally formed at the end portion on the opposite side of the cross-shaped cross-section portion 8c shown in FIG. 8 (the end portion on the pushed-in concave groove processing device 10 side). Become.

両端部に十字形断面部8cを形成した角形鋼管を建築構造物の柱材として用いる場合、角形鋼管柱材8の端面に梁材とのボルト接合用の取付プレートを溶接固定する。
図9は柱材の下部についてのみ示したもので、角形鋼管柱材8の十字形断面部8cの下端面に例えば縦横寸法が角形鋼管と同サイズの四角形の取付プレート16を溶接固定し、図示例では下部のH形鋼梁17の上に載せ、取付プレート16とH形鋼梁17のフランジとをボルト18で接合する。
十字形断面部8cの四方にスペースがあるので、その四方のスペースにおいて、ボルト18で固定することができ、角形鋼管の辺と梁のフランジとが平行な状態で梁と接合できる。
上部の梁との接合も同様である。但し、下部のみ又は上部のみに十字形断面部を形成する場合も当然ある。
このように接合された柱は、柱としての美観にも優れるので、建築構造物の柱材として好適である。
なお、角形鋼管の辺を押し潰して管端に十字形断面部を形成した場合、突状部が角形鋼管のコーナー部となり、十字形断面部の前記四方にスペースのうちの2つのスペースはH形鋼梁17のウエブの位置にくることになり、柱としての美観にも優れるようにH形鋼梁17とボルト接合することができなくなる。したがって、建築構造物の柱材として用いる場合でかつ梁がH形鋼の場合は特に、実施例のように角形鋼管の角部を押し込んで(押し潰して)十字形断面部を形成することが必要となる。
しかし、上記のように建築構造物の柱材として用いる場合でかつ梁がH形鋼の場合を除けば、角形鋼管の辺部を押し込んで(押し潰して)十字形断面部を形成してもよい。例えば、例えば土木用の杭材、あるいはフェンス用の杭材、その他種々の用途に適用でき、特に土木用の杭材、あるいはフェンス用の杭材等に好適である。
When a square steel pipe having a cross-shaped cross-section 8c formed at both ends is used as a pillar material of a building structure, a mounting plate for bolt joining with a beam material is welded and fixed to the end surface of the square steel pipe pillar material 8.
FIG. 9 shows only the lower part of the pillar material. For example, a square mounting plate 16 having the same vertical and horizontal dimensions as the square steel pipe is welded and fixed to the lower end surface of the cross-shaped cross section 8c of the square steel pipe pillar material 8. In the illustrated example, it is placed on the lower H-shaped steel beam 17, and the mounting plate 16 and the flange of the H-shaped steel beam 17 are joined by a bolt 18.
Since there are spaces on all four sides of the cross-section portion 8c, the bolts 18 can be used to fix the cross-shaped cross sections, and the sides of the square steel pipe and the flanges of the beams can be joined to the beam in a parallel state.
The same applies to the joint with the upper beam. However, it is natural that a cross-shaped cross section is formed only in the lower part or only in the upper part.
The pillars joined in this way are also excellent in aesthetic appearance as pillars, and are therefore suitable as pillar materials for building structures.
When the side of the square steel pipe is crushed to form a cross-shaped cross section at the end of the pipe, the protruding part becomes the corner of the square steel pipe, and two of the spaces in the four sides of the cross-shaped cross section are H. It will come to the position of the web of the shaped steel beam 17, and it will not be possible to bolt it to the H-shaped steel beam 17 so that it will be aesthetically pleasing as a pillar. Therefore, especially when it is used as a pillar material of a building structure and the beam is H-shaped steel, it is possible to push (crush) the corner portion of the square steel pipe to form a cross-shaped cross section as in the embodiment. You will need it.
However, except when it is used as a pillar material of a building structure and the beam is H-shaped steel as described above, even if the side portion of the square steel pipe is pushed in (crushed) to form a cross-shaped cross section. good. For example, it can be applied to, for example, a pile material for civil engineering, a pile material for a fence, and various other uses, and is particularly suitable for a pile material for civil engineering, a pile material for a fence, and the like.

上述の実施例では四角形金属管について説明したが、五角形、六角形等の多角形金属管を対象とする場合にも適用できる。
その場合は、上述の凹溝加工装置10における、4つのソロバン玉状回転体2・回転体ホルダー3及び圧下調整機構11に代えて、角部の数に対応した数のソロバン玉状回転体2・回転体ホルダー3及び圧下調整機構11を設けることで、多角形金属管の端部に角部の数に応じた凹溝を形成することができる。なお、金属管ガイド14は多角形金属管の断面形状に合わせたものとなる。
Although the quadrangular metal tube has been described in the above-described embodiment, it can also be applied to a case where a polygonal metal tube such as a pentagon or a hexagon is targeted.
In that case, instead of the four solo van ball-shaped rotating bodies 2, the rotating body holder 3 and the reduction adjustment mechanism 11 in the above-mentioned concave groove processing device 10, the number of solo van ball-shaped rotating bodies 2 corresponding to the number of corners -By providing the rotating body holder 3 and the reduction adjustment mechanism 11, it is possible to form a concave groove according to the number of corners at the end of the polygonal metal tube. The metal tube guide 14 is adapted to the cross-sectional shape of the polygonal metal tube.

金属管が丸管の場合、端部に十字形断面部を形成する場合であれば、凹溝加工装置10自体は図1で示したものと同じでよい。但し、金属管ガイド14は丸管断面形状に合わせたものとなる。
図10に金属管が丸管18である場合の実施例を示す。同図は図4に相当する図であり、(イ)は側面図、(ロ)は正面図、(ハ)は端部凹溝加工された金属管を端部側から見た正面図である。凹溝部を18a、突状部を18b、十字形断面部を18cで示す。
製造方法は角管の場合と基本的には同じであるが、ソロバン玉状回転体2で押し込む周方向位置は特に限定されない。
When the metal tube is a round tube and a cross-shaped cross section is formed at the end portion, the concave groove processing device 10 itself may be the same as that shown in FIG. However, the metal tube guide 14 is adapted to the cross-sectional shape of the round tube.
FIG. 10 shows an embodiment when the metal tube is a round tube 18. FIG. 4 is a view corresponding to FIG. 4, (a) is a side view, (b) is a front view, and (c) is a front view of a metal tube having a concave groove at the end as viewed from the end side. .. The concave groove portion is indicated by 18a, the protruding portion is indicated by 18b, and the cross-sectional portion is indicated by 18c.
The manufacturing method is basically the same as that of the square tube, but the position in the circumferential direction to be pushed by the abacus ball-shaped rotating body 2 is not particularly limited.

図11~図14に本発明の他の実施例の金属管の凹溝加工装置10’を示す。対象とする金属管はこの実施例も実施例1と同様に角形鋼管である。
図11は実施例の凹溝加工装置10’の側面図であり図1(イ)に対応する図である。図12(イ)は図11の凹溝加工装置10’の要部のみを示して説明する図であり、(イ)は側面図、(ロ)は(イ)のA-A矢視断面図である。図13は図12における各部を分かり易くするための図であって、図12における金属管8の図示を省略し、かつ、4つのソロバン玉状回転体2のうちの左右2つ(図12(ロ)の左右2つ)のソロバン玉状回転体2の図示を省略した図である。
11 to 14 show a groove processing device 10'for a metal tube according to another embodiment of the present invention . The target metal pipe is a square steel pipe as in the first embodiment of this embodiment.
FIG. 11 is a side view of the concave groove processing device 10'of the embodiment and is a view corresponding to FIG. 1 (a). 12 (a) is a view showing and explaining only the main part of the concave groove processing apparatus 10'of FIG. 11, (a) is a side view, and (b) is a cross-sectional view taken along the line AA of (a). Is. FIG. 13 is a diagram for making each part in FIG. 12 easy to understand, and the illustration of the metal tube 8 in FIG. 12 is omitted, and the left and right two of the four abacus ball-shaped rotating bodies 2 (FIG. 12 (FIG. 12). It is the figure which omitted the illustration of the abacus ball-shaped rotating body 2 of b) left and right two).

この実施例の凹溝加工装置10’は、図12(ロ)のように金属管外面の周方向に配される4つのソロバン玉状回転体2の周方向配置中心位置に、図12(イ)のように管長手方向に延びる短尺棒状の中子30を配置している。すなわち、金属管の外面を外側から押し込む前述のソロバン玉状回転体2だけでなく、加工時に金属管の前記ソロバン玉状回転体2で押し込まれた部分を受ける中子30が金属管内に位置するように配置されている。 The concave groove processing device 10'of this embodiment is located at the center position of the four solo van ball-shaped rotating bodies 2 arranged in the circumferential direction of the outer surface of the metal pipe as shown in FIG. 12 (b). ), A short rod-shaped core 30 extending in the longitudinal direction of the pipe is arranged. That is, not only the above-mentioned abacus ball-shaped rotating body 2 that pushes the outer surface of the metal tube from the outside, but also the core 30 that receives the portion pushed by the abacus ball-shaped rotating body 2 of the metal tube during processing is located in the metal tube. It is arranged like this.

この中子30は、図14に斜視図でも示すように、前記各ソロバン玉状回転体2の半径方向先端側部分にそれぞれ対向する4つの凹み部30aを持ち、隣接する凹み部30a間に突出部30bを有して十字断面をしている。すなわち、長手方向の全体が十字断面をなしている。
この中子30のように、全体が均一断面の中子をストレートカリバー中子と称する。
なお、図14では十字断面の中子30の横部と縦部とを水平、垂直になる姿勢で示している。
前記中子30は図11に示すように枠体32を介してハウジング本体7aに取り付けられている。すなわち、中子30の端面に中子長手方向から見て例えば矩形板状の中子ベース31を一体に固定し、この中子ベース31をハウジング7におけるハウジング本体7aの前面に取り付けた前記枠体32にボルトで固定することで、水平な状態でハウジング本体7aに固定している。
なお、この実施例におけるハウジング本体7aの蓋体7b’は上下の端部を切り欠いて長さを短くしており、前記枠体32の上下部をハウジング本体7aの上下部に固定している。
なお、図11~図13において、図1や図2や図4と基本的に同じ部分は同じ符号を付して説明を省略している。
As shown in the perspective view of FIG. 14, the core 30 has four recesses 30a facing each other on the radial tip side portions of the abacus ball-shaped rotating bodies 2, and protrudes between the adjacent recesses 30a. It has a portion 30b and has a cross section. That is, the entire longitudinal direction has a cross section.
A core having a uniform cross section as a whole, such as the core 30, is referred to as a straight caliber core.
In FIG. 14, the horizontal portion and the vertical portion of the core 30 in the cross section are shown in a horizontal and vertical posture.
As shown in FIG. 11, the core 30 is attached to the housing body 7a via the frame body 32. That is, for example, a rectangular plate-shaped core base 31 is integrally fixed to the end surface of the core 30 when viewed from the longitudinal direction of the core, and the core base 31 is attached to the front surface of the housing body 7a in the housing 7. By fixing it to 32 with a bolt, it is fixed to the housing body 7a in a horizontal state.
The lid body 7b'of the housing body 7a in this embodiment is cut out at the upper and lower ends to shorten the length, and the upper and lower portions of the frame body 32 are fixed to the upper and lower parts of the housing body 7a. ..
In FIGS. 11 to 13, basically the same parts as those in FIGS. 1, 2 and 4 are designated by the same reference numerals and the description thereof is omitted.

上記の凹溝加工装置10’により、例えば実施例1と同様に角形鋼管8の端部に十字形断面部を形成する場合、図示略の例えば油圧シリンダ等による押込み装置により図11において矢印のように左方から角形鋼管8を凹溝加工装置10’の4つのソロバン玉状回転体2で囲まれた空間に押し込むと、電縫鋼管製造ラインにおけるサイジング(成形)工程的な作用(ないし冷間ロール成形的な作用)により、図12(イ)、(ロ)に示すように4つのソロバン玉状回転体2と管内の中子30とで、角形鋼管の4つの角部が潰されて角部に凹溝8aが形成されるとともに、角形鋼管の各面の中央部が潰されずに突出状態で残って突状部8bが形成され、十字形断面となる。端部に4つの凹溝8aが形成された角形鋼管8は基本的には図5に斜視図で示した形状となるが、中子30が存在することで、精度よい十字形断面部8cが形成される。 When a cross-shaped cross section is formed at the end of a square steel pipe 8 by the above-mentioned concave groove processing device 10', for example, as in the first embodiment, as shown by an arrow in FIG. 11 by a pushing device using, for example, a hydraulic cylinder (not shown). When the square steel pipe 8 is pushed into the space surrounded by the four solo van ball-shaped rotating bodies 2 of the concave groove processing device 10'from the left side, the sizing (forming) process action (or cold) in the electrosewn steel pipe production line is performed. As shown in FIGS. 12 (a) and 12 (b), the four corners of the square steel pipe are crushed by the four solo van ball-shaped rotating bodies 2 and the core 30 in the pipe due to the roll forming action). A concave groove 8a is formed in the portion, and the central portion of each surface of the square steel pipe is not crushed and remains in a protruding state to form a protruding portion 8b, resulting in a cross section. The square steel pipe 8 in which the four concave grooves 8a are formed at the ends basically has the shape shown in the perspective view in FIG. 5, but the presence of the core 30 provides an accurate cross-sectional portion 8c. It is formed.

図15~図17に本発明のさらに他の実施例の金属管の凹溝加工装置10”の要部を示す。この実施例も、対象とする金属管は実施例3と同様に角形鋼管である。
図15(イ)は図12に対応する図で、凹溝加工装置10”をその要部のみを示して説明する図であり、(イ)は側面図、(ロ)は(イ)のC-C矢視断面図である。図16は図15における各部を分かり易くするための図であって、図15における金属管8の図示を省略し、かつ、4つのソロバン玉状回転体2のうちの左右2つ(図15(ロ)の左右2つ)のソロバン玉状回転体2の図示を省略した図である。
15 to 17 show the main parts of the concave groove processing device 10 ”of the metal pipe of still another embodiment of the present invention . In this embodiment as well, the target metal pipe is a square steel pipe as in the third embodiment. be.
15 (a) is a diagram corresponding to FIG. 12, and is a diagram for explaining the concave groove processing device 10 "by showing only the main part thereof, (a) is a side view, and (b) is C of (a). -C is a cross-sectional view taken along the arrow C. FIG. 16 is a diagram for making each part in FIG. 15 easy to understand, the metal tube 8 in FIG. 15 is not shown, and the four abacus ball-shaped rotating bodies 2 are shown. It is the figure which omitted the illustration of the abacus ball-shaped rotating body 2 of the left and right two (two on the left and right of FIG. 15 (b)).

この実施例の凹溝加工装置10”は、実施例3と同様に、金属管外面の周方向に配される4つのソロバン玉状回転体2の周方向配置中心位置に、管長手方向に延びる短尺棒状の中子40を配置している。
この中子40は、図17に示すように、前記各ソロバン玉状回転体2の半径方向先端側部分にそれぞれ対向する4つの凹み部40aを持ち、隣接する凹み部40a間に突出部40bを有して十字状をなす十字断面部40cを有するが、長手方向全体が十字断面ではなく、角形の管内面に沿う管内断面形状部分40dを有している。そして、前記管内断面形状部分40dの角部からソロバン玉状回転体2の半径方向先端側形状に沿って前記長手方向にはストレートな凹み部40aに滑らかにつながる湾曲移行凹面40eを有している。
このような管内断面形状部分40dと湾曲移行凹面40eと十字断面部40cとを持つ形状の中子40を総形カリバー中子と呼ぶ。
なお、図17では中子40の十字断面の横部と縦部とが水平、垂直になる姿勢で示している。
Similar to the third embodiment, the concave groove processing device 10 "of this embodiment extends in the longitudinal direction of the pipe at the center position of the four solo van ball-shaped rotating bodies 2 arranged in the circumferential direction of the outer surface of the metal pipe. A short rod-shaped core 40 is arranged.
As shown in FIG. 17, the core 40 has four recessed portions 40a facing each other on the radial tip side portion of each solo van ball-shaped rotating body 2, and a protruding portion 40b is provided between the adjacent recessed portions 40a. It has a cross-section portion 40c forming a cross shape, but has a cross-sectional shape portion 40d in the pipe along the inner surface of the square pipe, not a cross-section portion in the entire longitudinal direction. Further, it has a curved transition concave surface 40e that smoothly connects from the corner portion of the in-pipe cross-sectional shape portion 40d to the straight concave portion 40a in the longitudinal direction along the radial tip side shape of the abacus ball-shaped rotating body 2. ..
A core 40 having such an in-pipe cross-sectional shape portion 40d, a curved transition concave surface 40e, and a cross-sectional cross-sectional portion 40c is called a total caliber core.
In FIG. 17, the horizontal portion and the vertical portion of the cross section of the core 40 are shown in a horizontal and vertical posture.

この実施例4は、基本的には中子40が総形カリバー中子である点が異なるだけであるが、中子40が管内断面形状部分40d及び湾曲移行凹面40eを有することで、ソロバン玉状回転体2と中子40とによる凹み部40aの形成が滑らかに行われ、形状精度の確保が容易になる。
なお、図15~図17において、図11~図14と基本的に同じ部分は同じ符号を付して説明を省略している。
This Example 4 is basically different in that the core 40 is a total caliber core, but the core 40 has an in-pipe cross-sectional shape portion 40d and a curved transition concave surface 40e, so that the abacus ball The recessed portion 40a is smoothly formed by the shape rotating body 2 and the core 40, and it becomes easy to secure the shape accuracy.
In FIGS. 15 to 17, basically the same parts as those in FIGS. 11 to 14 are designated by the same reference numerals and the description thereof is omitted.

1 凹溝形成機構
2 ソロバン玉状回転体
2a フラット面
2a’凹面
3 回転体ホルダー
m 中心軸線
4 オイレスメタル
5 ホルダー本体
6 蓋体
7 ハウジング
7a ハウジング本体
7a’(ハウジング本体の内側の)ベース部
7b、7b’ (ハウジングの)蓋体
8 角形鋼管(金属管)
18 丸鋼管(金属管)
8a、18a 凹溝(凹溝部)
8b、18b 突状部
8c、18c 十字形断面部
10、10’、10” 金属管の凹溝加工装置
11 圧下調整機構
11a 圧下ネジ
11b 調整ナット
11c ナット保持部
12 装置スタンド
13 回転面板
14 金属管ガイド
16 取付プレート
20 押込み装置
30 中子(ストレートカリバー中子)
40 中子(総形カリバー中子)
30a、40a 凹み部
30b、40b 突出部
40c 十字断面部
40d 管内断面形状部分
40e 湾曲移行凹面
31 中子ベース
32 枠体
1 Concave groove forming mechanism 2 Solovan ball-shaped rotating body 2a Flat surface 2a'Concave surface 3 Rotating body holder m Central axis 4 Oiles metal 5 Holder body 6 Cover body 7 Housing 7a Housing body 7a'(inside the housing body) Base part 7b , 7b'Cover (of housing) Octagonal steel pipe (metal pipe)
18 Round steel pipe (metal pipe)
8a, 18a concave groove (concave groove part)
8b, 18b Protruding part 8c, 18c Cross-shaped cross section 10, 10'10 "Metal tube concave groove processing device 11 Reduction adjustment mechanism 11a Reduction adjustment screw 11b Adjustment nut 11c Nut holding part 12 Device stand 13 Rotating face plate 14 Metal tube Guide 16 Mounting plate 20 Pushing device 30 Core (straight caliber core)
40 core (total caliber core)
30a, 40a Recessed portion 30b, 40b Protruding portion 40c Cross-sectional portion 40d In-pipe cross-sectional shape portion 40e Curved transition concave surface 31 Core base 32 Frame body

Claims (4)

金属管の端部における外面の周方向に間隔をあけた複数個所に管端から管長手方向に延びる凹溝を形成する金属管の凹溝加工装置であって、
中心軸線側では幅厚で半径方向先端に向かってテーパ状に幅狭になりその先端面に幅の狭いフラット面又は凹面を持つ断面形状で周方向に配される複数のソロバン玉状回転体と、
前記周方向に配される複数のソロバン玉状回転体をそれぞれ回転自在に保持する複数の回転体ホルダーと、前記複数の回転体ホルダーを凹溝を形成すべき金属管の外面の周方向位置に対応して設けたハウジングと、前記ハウジングに設けられて前記回転体ホルダーの圧下調整を行う圧下調整手段とを備え、前記回転体ホルダーは、前記ソロバン玉状回転体に作用する荷重を直接受ける形状のオイレスメタルと、このオイレスメタルを収容するホルダ本体と、前記ソロバン玉状回転体の抜け出しを押さえる蓋体とを備えたことを特徴とする金属管の凹溝加工装置。
It is a groove processing device for a metal pipe that forms concave grooves extending in the longitudinal direction of the pipe from the pipe end at a plurality of places spaced in the circumferential direction of the outer surface at the end of the metal pipe.
With a plurality of abacus ball-shaped rotating bodies arranged in the circumferential direction in a cross-sectional shape having a flat surface or a concave surface having a narrow flat surface or a concave surface on the tip surface, which is wide and narrows in a taper shape toward the tip in the radial direction on the central axis side. ,
A plurality of rotating body holders that rotatably hold a plurality of solo van ball-shaped rotating bodies arranged in the circumferential direction, and the plurality of rotating body holders at positions in the circumferential direction of the outer surface of the metal tube to which a concave groove should be formed. A housing provided correspondingly and a reduction adjusting means provided in the housing for adjusting the reduction of the rotating body holder are provided, and the rotating body holder has a shape that directly receives a load acting on the solo van ball-shaped rotating body. A groove processing device for a metal tube, which comprises an oilless metal, a holder body for accommodating the oilless metal, and a lid for holding the solo van ball-shaped rotating body from coming out.
前記周方向に配される複数のソロバン玉状回転体の周方向配置中心位置に、前記各ソロバン玉状回転体の半径方向先端側部分にそれぞれ対向する複数の凹み部を持つ凹み断面形状部分を有して管長手方向に延びる短尺棒状の中子を配置したことを特徴とする請求項1記載の金属管の凹溝加工装置。 At the center position of the circumferential arrangement of the plurality of solo van ball-shaped rotating bodies arranged in the circumferential direction, a recessed cross-sectional shape portion having a plurality of recessed portions facing the radial tip side portions of the respective solo van ball-shaped rotating bodies is provided. The concave groove processing apparatus for a metal pipe according to claim 1, wherein a short rod-shaped core extending in the longitudinal direction of the pipe is arranged. 四角形金属管の端部における外面の周方向に間隔をあけた4個所に管端から管長手方向に延びる凹溝を形成する金属管の凹溝加工装置であって、
中心軸線側では幅厚で半径方向先端に向かってテーパ状に幅狭になりその先端面に幅の狭いフラット面又は凹面を持つ断面形状で周方向に配される4つのソロバン玉状回転体と、
前記周方向に配される4つのソロバン玉状回転体をそれぞれ回転自在に保持する4つの回転体ホルダーと、前記4つの回転体ホルダーを凹溝を形成すべき四角形金属管の外面の周方向位置に対応して設けたハウジングと、前記ハウジングに設けられて前記回転体ホルダーの圧下調整を行う圧下調整手段とを備え、前記回転体ホルダーは、前記ソロバン玉状回転体に作用する荷重を直接受ける形状のオイレスメタルと、このオイレスメタルを収容するホルダ本体と、前記ソロバン玉状回転体の抜け出しを押さえる蓋体とを備えたことを特徴とする金属管の凹溝加工装置。
It is a groove processing device for a metal pipe that forms concave grooves extending in the longitudinal direction of the pipe from the pipe end at four places spaced in the circumferential direction of the outer surface at the end of the quadrangular metal pipe.
On the central axis side, there are four abacus ball-shaped rotating bodies that are thick and taper toward the tip in the radial direction and are arranged in the circumferential direction in a cross-sectional shape with a narrow flat surface or concave surface on the tip surface. ,
Four rotating body holders that rotatably hold the four solo van ball-shaped rotating bodies arranged in the circumferential direction, and the circumferential position of the outer surface of the square metal tube in which the four rotating body holders should form a concave groove. The rotating body holder is provided with a housing provided corresponding to the above and a reduction adjusting means provided in the housing for adjusting the reduction of the rotating body holder, and the rotating body holder directly receives a load acting on the solo van ball-shaped rotating body. A groove processing device for a metal tube, which comprises an oilless metal having a shape, a holder body for accommodating the oilless metal, and a lid for holding the solo van ball-shaped rotating body from coming out.
前記周方向に配される4つのソロバン玉状回転体の周方向配置中心位置に、前記各ソロバン玉状回転体の半径方向先端側部分にそれぞれ対向する4つのの凹み部を持つ凹み断面形状部分を有して管長手方向に延びる短尺棒状の中子を配置したことを特徴とする請求項3記載の金属管の凹溝加工装置。 A recessed cross-sectional shape portion having four recesses facing each other at the radial tip side portion of each solo van ball-shaped rotating body at the center position of the circumferential arrangement of the four solo van ball-shaped rotating bodies arranged in the circumferential direction. The concave groove processing apparatus for a metal pipe according to claim 3, wherein a short rod-shaped core extending in the longitudinal direction of the pipe is arranged.
JP2017166261A 2017-03-31 2017-08-30 Concave groove processing equipment for metal pipes Active JP6991796B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021100529A JP2021137877A (en) 2017-03-31 2021-06-16 Method for processing recessed groove of metal tube
JP2021192586A JP7364650B2 (en) 2017-03-31 2021-11-26 Grooving method for metal tubes

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017072810 2017-03-31
JP2017072810 2017-03-31

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2021100529A Division JP2021137877A (en) 2017-03-31 2021-06-16 Method for processing recessed groove of metal tube
JP2021192586A Division JP7364650B2 (en) 2017-03-31 2021-11-26 Grooving method for metal tubes

Publications (2)

Publication Number Publication Date
JP2018171642A JP2018171642A (en) 2018-11-08
JP6991796B2 true JP6991796B2 (en) 2022-02-03

Family

ID=64106884

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2017166261A Active JP6991796B2 (en) 2017-03-31 2017-08-30 Concave groove processing equipment for metal pipes
JP2021100529A Pending JP2021137877A (en) 2017-03-31 2021-06-16 Method for processing recessed groove of metal tube
JP2021192586A Active JP7364650B2 (en) 2017-03-31 2021-11-26 Grooving method for metal tubes

Family Applications After (2)

Application Number Title Priority Date Filing Date
JP2021100529A Pending JP2021137877A (en) 2017-03-31 2021-06-16 Method for processing recessed groove of metal tube
JP2021192586A Active JP7364650B2 (en) 2017-03-31 2021-11-26 Grooving method for metal tubes

Country Status (1)

Country Link
JP (3) JP6991796B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001071070A (en) 1999-08-31 2001-03-21 Sumitomo Metal Steel Products Inc Manufacture of columnar member
JP2013075323A (en) 2011-09-30 2013-04-25 Nisshin Steel Co Ltd Method for manufacturing stepped square pipe

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1777728A (en) * 1928-02-25 1930-10-07 Berger Brothers Co Mechanism for crimping leader pipe
FR1161843A (en) * 1956-11-26 1958-09-04 Reinforced hollow finned tube
JPS4920713B1 (en) * 1968-11-08 1974-05-27
JPS496037B1 (en) * 1969-10-08 1974-02-12
JPS5223339B2 (en) * 1972-12-22 1977-06-23
JPS57142715A (en) * 1981-02-27 1982-09-03 Mitsugi Motomura Manufacture of finned shape tube by multiple rolls
JPH01228613A (en) * 1988-03-09 1989-09-12 Sumitomo Metal Ind Ltd Manufacture of pipe with external fin
JPH10292556A (en) * 1997-04-17 1998-11-04 Sumitomo Kinzoku Kenzai Kk Building column material
JPH11324225A (en) * 1998-05-19 1999-11-26 Sumitomo Metal Steel Products Inc Building column
JP3792690B2 (en) * 2003-11-11 2006-07-05 松本重工業株式会社 Manufacturing method of deformed heat transfer tube for heat exchanger

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001071070A (en) 1999-08-31 2001-03-21 Sumitomo Metal Steel Products Inc Manufacture of columnar member
JP2013075323A (en) 2011-09-30 2013-04-25 Nisshin Steel Co Ltd Method for manufacturing stepped square pipe

Also Published As

Publication number Publication date
JP7364650B2 (en) 2023-10-18
JP2018171642A (en) 2018-11-08
JP2022024143A (en) 2022-02-08
JP2021137877A (en) 2021-09-16

Similar Documents

Publication Publication Date Title
JP5805893B2 (en) Bearing walls and wall materials for bearing walls
JP6885827B2 (en) Grooving device and method for metal pipes
JP6991796B2 (en) Concave groove processing equipment for metal pipes
US20230201901A1 (en) Sheet transitioning in spiral formed structures
US10422097B2 (en) Two-piece polygon shaped metal fin tube foundation and method of making same
EP2942120A1 (en) Roll-bending process apparatus and roll-bending process method
GB2450765A (en) Sheet Material
Singh et al. Robot assisted incremental sheet forming of Al6061 under static pressure: Preliminary study of thickness distribution within the deformation region
JP6377264B1 (en) Step bending mold
EP3323521A1 (en) Method for manufacturing l-shaped square pipe, device for manufacturing l-shaped square pipe, and l-shaped square pipe
JP5157759B2 (en) Square steel pipe member
US20110185874A1 (en) Punch Press
CN106513477A (en) T-shaped steel bending tool
RU2566689C2 (en) Straightening of long ribbed part and device to this end (versions)
JP5239649B2 (en) Square steel pipe member for column
RU2581687C2 (en) Method of manufacturing of closed metal profile and process system for its implementation
RU2513560C2 (en) Method of cutting square cross-section pipes and device to this end
JP6293952B1 (en) Support structure
JP2010106515A (en) Square steel pipe column
JP2009190043A (en) Structural member
RU2707460C2 (en) Forging machine
JP2013146745A (en) Expanded metal, method for manufacturing the same, and perforated wall using expanded metal
JP2000140946A (en) Device and method for forming tube by bending roll and tube
Ngala et al. Design and Construction of a Universal Pipe-Bending Machine
EP2234738A1 (en) Arching metallic profiles in continuous in-line process

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20180813

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200814

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210419

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210415

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210616

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211208

R150 Certificate of patent or registration of utility model

Ref document number: 6991796

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150