JP6883411B2 - Covering material for raising seedlings - Google Patents

Covering material for raising seedlings Download PDF

Info

Publication number
JP6883411B2
JP6883411B2 JP2016231102A JP2016231102A JP6883411B2 JP 6883411 B2 JP6883411 B2 JP 6883411B2 JP 2016231102 A JP2016231102 A JP 2016231102A JP 2016231102 A JP2016231102 A JP 2016231102A JP 6883411 B2 JP6883411 B2 JP 6883411B2
Authority
JP
Japan
Prior art keywords
layer
white
white layer
seedlings
silver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016231102A
Other languages
Japanese (ja)
Other versions
JP2018085957A (en
Inventor
孝仁 西端
孝仁 西端
Original Assignee
岩谷マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 岩谷マテリアル株式会社 filed Critical 岩谷マテリアル株式会社
Priority to JP2016231102A priority Critical patent/JP6883411B2/en
Publication of JP2018085957A publication Critical patent/JP2018085957A/en
Application granted granted Critical
Publication of JP6883411B2 publication Critical patent/JP6883411B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、水稲栽培などの育苗期に用いられる被覆資材に関する。 The present invention relates to a covering material used in a seedling raising period such as paddy rice cultivation.

例えば水稲栽培では、ハウス内で行う育苗期と、水田で行う本田管理期とがある。育苗期は、種を播いてから出芽させるまでの出芽期、苗が所定の長さになるまで緑化期、及び、苗を外気に慣らす硬化期を経て、苗を完成させる時期である。 For example, in paddy rice cultivation, there is a seedling raising period performed in a greenhouse and a Honda management period performed in a paddy field. The seedling raising period is a period in which the seedlings are completed through a germination period from sowing to emergence, a greening period until the seedlings reach a predetermined length, and a hardening period in which the seedlings are acclimatized to the outside air.

この育苗期の内、主に出芽期と緑化期には、種苗を所定の箱の中に入れ、その上に、アルミニウム等の金属粒子を配合ないし塗布して形成された銀色の被覆資材を被せて管理を行っている(例えば、特許文献1及び2参照)。このように被覆資材を被せることで保温効果を発揮させ、例えば、出芽期の昼では約30〜32℃、緑化期の昼では約20〜25℃の範囲で管理を行っている。なお、出芽期では光は略不要であるが、緑化期では曇りのような光を苗に当てて管理を行えるように、被覆資材には所定量の光を透過可能にしているものが多い。 During the seedling raising period, mainly during the germination period and the greening period, seedlings are placed in a predetermined box and covered with a silver-colored coating material formed by blending or applying metal particles such as aluminum. (See, for example, Patent Documents 1 and 2). By covering with the covering material in this way, the heat retaining effect is exhibited, and for example, the temperature is controlled in the range of about 30 to 32 ° C. in the daytime of the budding period and about 20 to 25 ° C. in the daytime of the greening period. Although light is almost unnecessary during the emergence period, many coating materials allow a predetermined amount of light to pass through so that the seedlings can be managed by irradiating the seedlings with light such as cloudiness during the greening period.

特開昭54−106589JP-A-54-106589 特開昭60−251826Japanese Patent Application Laid-Open No. 60-251826

ところで、発明者が各地のいわゆる農協や農家を回って、育苗時の問題点を聞き取り調査したところ、近年においては、苗の高温障害である苗やけが増加していることが分かった。即ち、一般的な育苗時期は4〜5月であるが、温暖化などの影響により4〜5月でも外気温が20〜25℃に達する日もあり、このため、ハウス内の温度が約30〜35℃、被覆資材の中では温度が約45〜50℃に達する場合があることが分かった。そして、被覆資材の中では温度が約40℃になると根の生育に悪影響が現れはじめ、約45℃に達すると苗やけが起こり易くなる。このため農家では、温度が上がり過ぎないように、タイミングを見てハウスや被覆資材の裾を上げる等の手段を講じているが、兼業農家では、その裾を上げるタイミングを見計らうことは困難である。また、専業農家にとっても、そのような裾上げによる温度管理を行うのは必ずしも容易ではないことが分かった。 By the way, when the inventor visited so-called agricultural cooperatives and farmers in various places to hear and investigate problems during seedling raising, it was found that the number of seedling burns, which is a high temperature disorder of seedlings, has increased in recent years. That is, the general seedling raising period is from April to May, but there are days when the outside temperature reaches 20 to 25 ° C even in April to May due to the influence of global warming, so the temperature inside the house is about 30. It was found that the temperature may reach ~ 35 ° C., and in the coating material, the temperature may reach about 45-50 ° C. Then, in the covering material, when the temperature reaches about 40 ° C., the root growth begins to be adversely affected, and when the temperature reaches about 45 ° C., seedlings are likely to burn. For this reason, farmers take measures such as raising the hem of the house and covering materials at the right timing so that the temperature does not rise too much, but it is difficult for part-time farmers to determine when to raise the hem. Is. It was also found that it is not always easy for full-time farmers to control the temperature by such hemming.

本発明は以上の問題を解決するためのもので、外気温が高い場合であっても、苗やけしない温度に管理可能であって、しかも、育苗に必要な光を取り込むことができる育苗用被覆資材を提供することを目的とする。 The present invention is for solving the above problems, and is a coating for raising seedlings that can be controlled to a temperature that does not burn seedlings even when the outside air temperature is high, and that can take in the light required for raising seedlings. The purpose is to provide materials.

上記課題は、種苗の育苗期における保温に用いられ、前記種苗を収容した収容体を覆う育苗用被覆資材であって、前記収容体の外側に露出し、白色顔料が配合された層である白層と、前記収容体の内側に露出し、銀色となる金属製粒子が配合された層である銀層とを有することで、800nmの波長の近赤外線に対する反射率が略42〜73%となるようにし、可視光線領域の波長の可視光の透過率が略5〜20%となるようにした育苗用被覆資材により解決される。 The above-mentioned problem is white, which is a coating material for raising seedlings that is used for heat retention during the seedling raising period and covers the container that houses the seedlings, and is a layer that is exposed to the outside of the container and contains a white pigment. By having the layer and the silver layer which is a layer in which the metal particles which are exposed inside the container and become silver are mixed, the reflectance to near infrared rays having a wavelength of 800 nm is approximately 42 to 73%. Thus, the solution is to use a coating material for raising seedlings so that the transmittance of visible light having a wavelength in the visible light region is approximately 5 to 20%.

上記構成によれば、800nmの近赤外線に対する反射率を略42〜73%にすることで、外気温が20〜25℃になっても、ハウスや被覆資材の裾をめくることなく、被覆資材で覆われた収容体内を少なくとも45℃以内に抑えて苗やけを防止することができ、かつ、収容体内を所要の温度範囲で保温でき、さらに、緑化期に必要な光を苗に当てることができる。
即ち、800nmの波長の赤外線に対する反射率は、温度に大きな影響を与える近赤外線の領域を反射する目安とすることができ、この反射率を高めることが高温化を効果的に抑制できる。そこで、近赤外線の反射率を高めることが好ましく、800nmの近赤外線の反射率を略42%に調整することで、緑化期(場所にもよるが、水稲の場合、通常は4月)における収容体内の温度を約45℃以内に抑えることができた。
一方、800nmの近赤外線の反射率を大きくし過ぎると、育苗期には未だ涼しい時期もあるため、被覆資材の本来の目的である保温性を損なうことになり、発育の遅れの原因等にもなるため、該反射率は略73%以下が好ましい。実験では、800nmの近赤外線の反射率を略72.2%にすることで、育苗期の収容体内の温度を、熱い日(例えば外気温が25℃の日)でも最高温度を約38℃にできると共に、寒い日でも昼間の平均温度を約20℃にすることができた(なお、800nmの近赤外線の反射率が略42%の場合、略73%の場合に比べて温度が低下することはない)。この点、水稲の場合、場所・時期・苗の種類・農法にもよるが、昼間の温度は概ね20〜32℃に保つ必要がある。以上のことから、育苗用被覆資材の800nmの近赤外線の反射率は略42%〜73%にすることが最も好ましい。
そして、このような数値は、白色顔料を含有する外層と、この外層より内側であって銀色となる金属製粒子を含有する内層とで、達成できることが実験により分かった。即ち、従来のようにシルバーポリと呼ばれる銀色の層だけであると、確かに保温性には優れているが、800nmの波長の赤外線の反射率を約35〜36%程度にしか抑えられない。そこで、この銀の層で保温性の効果を維持させつつ、その上に、反射率に効果の高い白色顔料の含有した白層を設けた。但し、従来の白色顔料では90%以上等の高い遮光性を有しているため、白色顔料の含有量及び厚みを工夫した白層とすることで、800nmの波長の赤外線の反射率を略42〜73%にしている。なお、白層は、1層であっても、或いは、連続した2層以上であっても構わず、白層全体に対して白色顔料が所定の含有量を有すると共に、白層がトータルで所定の厚みを有していればよい。
また、白層における白色顔料の含有率を所定量にすることで、380nm〜750nmの波長領域(以下、「可視光線領域」という)の波長を有する可視光の透過率5〜20%(緑化期に必要とされる公知の透過率)を維持することもできた。この5〜20%の透過率は従来からの育苗用被覆資材で実施されている公知の透過率が属し、これにより、従来の製品と変わりなく、例えば緑化期に必要とされる光量を確保することができる。なお、可視光領域内であれば光の透過率の誤差は小さく、このため、可視光線領域の範囲内の一部の可視光の透過率を略5〜20%となるように白色顔料等の量を設定すればよく、好ましくは、500nmの可視光の透過率が略5〜20%となるように設定するとよい。
According to the above configuration, by setting the reflectance to near infrared rays of 800 nm to about 42 to 73%, even if the outside air temperature becomes 20 to 25 ° C., the covering material can be used without turning over the hem of the house or the covering material. The covered containment can be kept within at least 45 ° C to prevent seedling burns, the containment can be kept warm within the required temperature range, and the seedlings can be exposed to the light required for the greening period. ..
That is, the reflectance for infrared rays having a wavelength of 800 nm can be used as a guide for reflecting the near infrared region that has a great influence on the temperature, and increasing this reflectance can effectively suppress the high temperature. Therefore, it is preferable to increase the reflectance of near-infrared rays, and by adjusting the reflectance of near-infrared rays at 800 nm to approximately 42%, accommodation during the greening period (depending on the location, usually April in the case of paddy rice) is accommodated. The temperature inside the body could be suppressed within about 45 ° C.
On the other hand, if the reflectance of near-infrared rays of 800 nm is increased too much, there is still a cool period during the seedling raising period, which impairs the heat retention property, which is the original purpose of the covering material, and may cause a delay in growth. Therefore, the reflectance is preferably about 73% or less. In the experiment, by setting the reflectance of near infrared rays at 800 nm to about 72.2%, the temperature inside the containment during the seedling raising period was raised to about 38 ° C even on a hot day (for example, a day when the outside temperature was 25 ° C). At the same time, the average daytime temperature could be set to about 20 ° C even on a cold day (note that when the reflectance of near infrared rays at 800 nm is about 42%, the temperature is lower than when it is about 73%. Not). In this respect, in the case of paddy rice, it is necessary to keep the daytime temperature at about 20 to 32 ° C, although it depends on the place, time, type of seedling, and farming method. From the above, it is most preferable that the reflectance of the coating material for raising seedlings at 800 nm is approximately 42% to 73%.
Then, it was found by experiments that such a numerical value can be achieved by the outer layer containing the white pigment and the inner layer containing the metal particles which are inside the outer layer and become silvery. That is, if only the silver layer called silver poly as in the conventional case is used, the heat retention is certainly excellent, but the reflectance of infrared rays having a wavelength of 800 nm can be suppressed to only about 35 to 36%. Therefore, while maintaining the heat-retaining effect with this silver layer, a white layer containing a white pigment having a high reflectance effect was provided on the silver layer. However, since the conventional white pigment has a high light-shielding property such as 90% or more, the reflectance of infrared rays having a wavelength of 800 nm can be substantially reduced by forming a white layer in which the content and thickness of the white pigment are devised. It is set to ~ 73%. The white layer may be one layer or two or more consecutive layers, and the white pigment has a predetermined content with respect to the entire white layer, and the white layer has a predetermined total. It suffices to have the thickness of.
Further, by setting the content of the white pigment in the white layer to a predetermined amount, the transmittance of visible light having a wavelength in the wavelength region of 380 nm to 750 nm (hereinafter referred to as “visible light region”) is 5 to 20% (greening period). It was also possible to maintain the known transmittance required for the above. This 5 to 20% transmittance belongs to the known transmittance that has been practiced in conventional coating materials for raising seedlings, thereby ensuring the same amount of light as conventional products, for example, during the greening period. be able to. If it is within the visible light region, the error in the light transmittance is small. Therefore, a white pigment or the like is used so that the transmittance of a part of the visible light within the visible light region is approximately 5 to 20%. The amount may be set, and preferably the transmittance of visible light at 500 nm is set to be about 5 to 20%.

また、好ましくは、前記白色顔料は酸化チタンであり、前記金属製粒子はアルミニウムであり、前記白層に占める前記酸化チタンの割合が重量%で略6〜24%であることを特徴とする。
これにより、800nmの波長の近赤外線に対する反射率を略42〜73%の範囲に収めることができる。即ち、実験により、酸化チタンを白層に略6重量%配合した場合、800nmの波長の近赤外線の反射率を約42.6%にすることができ、酸化チタンを白層に略24重量%配合した場合、同反射率を約72.2%にすることができた。
なお、実験の結果、金属製粒子がアルミニウムの場合、これを増減しても、800nmの波長の近赤外線の反射率には殆ど影響を及ぼさないことが分かった。このため、近赤外線の上記好ましい反射率を得るためには、白層の所定の厚みにおける酸化チタンの配合だけを考慮すればよい。
ところで、白層に占める酸化チタンの配合は、可視光線領域の波長を有する可視光の透過率に影響を及ぼすことが分かったが、該酸化チタンの割合を略6〜24重量%にすれば、所定のアルミニウムの配合量の下、可視光線領域の波長を有する可視光の透過率を5〜20%にできることも分かった。従って、近赤外線に対する所望の反射率を得るために、酸化チタンの配合を調整し、その調整の結果得られた可視光線領域の波長の透過率については、アルミニウムの配合を調整することで、可視光線領域の波長の所望する透過率を得ることができる。
また、好ましくは、前記銀層に占めるアルミニウムの割合が重量%で略2〜5%であることを特徴とする。
これにより、800nmの波長の近赤外線に対する反射率を変えずに、可視光線領域の波長の可視光の透過率として略5〜20%の透過率を得ることができる。
また、好ましくは、前記白層は、最も外側の層である第1の白層と、前記第1の白層と前記銀層とに挟まれた第2の白層と、を有し、前記第1の白層と前記第2の白層と前記銀層とは連続して形成され、前記第1の白層と前記第2の白層と前記銀層との間に他の層は介在せず、前記第1の白層の厚みと前記第2の白層の厚みと前記銀層の厚みとは同じ厚みを有することを特徴とする。
これにより、育苗用被覆資材と、収容体に入れられた土と、の間における内側空間の温度の上昇のし過ぎを抑制することができる。
Further, preferably, the white pigment is titanium oxide, the metal particles are aluminum, and the ratio of the titanium oxide to the white layer is approximately 6 to 24% by weight.
As a result, the reflectance for near infrared rays having a wavelength of 800 nm can be kept in the range of about 42 to 73%. That is, according to an experiment, when titanium oxide is blended in the white layer in an amount of about 6% by weight, the reflectance of near infrared rays having a wavelength of 800 nm can be set to about 42.6%, and titanium oxide is added in the white layer in an amount of about 24% by weight. When blended, the reflectance could be about 72.2%.
As a result of the experiment, it was found that when the metal particles are aluminum, increasing or decreasing the amount has almost no effect on the reflectance of near infrared rays having a wavelength of 800 nm. Therefore, in order to obtain the above-mentioned preferable reflectance of near infrared rays, it is only necessary to consider the blending of titanium oxide at a predetermined thickness of the white layer.
By the way, it has been found that the composition of titanium oxide in the white layer affects the transmittance of visible light having a wavelength in the visible light region, but if the proportion of the titanium oxide is set to about 6 to 24% by weight, It was also found that the transmittance of visible light having a wavelength in the visible light region can be set to 5 to 20% under a predetermined amount of aluminum. Therefore, in order to obtain the desired reflectance for near infrared rays, the composition of titanium oxide is adjusted, and the transmittance of the wavelength in the visible light region obtained as a result of the adjustment is visible by adjusting the composition of aluminum. The desired transmittance of the wavelength in the light region can be obtained.
Further, it is preferable that the ratio of aluminum to the silver layer is about 2 to 5% by weight.
As a result, it is possible to obtain a transmittance of approximately 5 to 20% as the transmittance of visible light having a wavelength in the visible light region without changing the reflectance to near infrared rays having a wavelength of 800 nm.
Further, preferably, the white layer has a first white layer which is the outermost layer, and a second white layer sandwiched between the first white layer and the silver layer. The first white layer, the second white layer, and the silver layer are continuously formed, and another layer is interposed between the first white layer, the second white layer, and the silver layer. Instead, the thickness of the first white layer, the thickness of the second white layer, and the thickness of the silver layer have the same thickness.
As a result, it is possible to suppress an excessive rise in the temperature of the inner space between the seedling raising covering material and the soil contained in the container.

以上述べたように、本発明によれば、外気温が高い場合であっても、苗やけしない温度に管理可能であって、しかも、育苗に必要な光を取り込むことができる育苗用被覆資材を提供することができる。 As described above, according to the present invention, a coating material for raising seedlings that can be controlled to a temperature that does not burn seedlings even when the outside air temperature is high and that can take in the light required for raising seedlings. Can be provided.

水稲の育苗期におけるハウス内の様子を示す図であり、図1(A)はハウスの概略縦断面図、図1(B)は本発明の実施形態に係る育苗用被覆資材の部分縦断面拡大図。It is a figure which shows the state in the house at the time of raising seedlings of paddy rice, FIG. 1A is a schematic vertical sectional view of a house, and FIG. Figure. 光の波長と放射エネルギーの関係を示す図。The figure which shows the relationship between the wavelength of light and radiant energy. 実験により得られた4月14日〜19日の収容体内の温度データ。Temperature data in the containment from April 14th to 19th obtained by the experiment. 実験により得られた5月6日〜14日の収容体内の温度データ。Temperature data in the containment from May 6 to 14 obtained by the experiment. 所望の反射率と透過率を得るために含有される酸化チタンとアルミニウムの割合に関するテストデータ。Test data on the proportion of titanium oxide and aluminum contained to obtain the desired reflectance and transmittance. 育苗用被覆資材を白層と銀層の二層構造にした場合の酸化チタンとアルミニウムの割合に関するテストデータ。Test data on the ratio of titanium oxide and aluminum when the coating material for raising seedlings has a two-layer structure of white layer and silver layer. 本発明の実施形態の変形例であって、図1(B)に対応した断面図。A cross-sectional view which is a modification of the embodiment of the present invention and corresponds to FIG. 1 (B).

以下、この発明の好適な実施形態を添付図面を参照しながら、詳細に説明する。
尚、以下に述べる実施形態は、本発明の好適な具体例であるから、技術的に好ましい種々の限定が付されているが、本発明の範囲は、以下の説明において特に本発明を限定する旨の記載がない限り、これらの態様に限られるものではない。また、各図において付した同じ符号は同様の構成を有している。
Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.
Since the embodiments described below are suitable specific examples of the present invention, various technically preferable limitations are added, but the scope of the present invention particularly limits the present invention in the following description. Unless otherwise stated, the present invention is not limited to these aspects. Further, the same reference numerals given in each figure have the same structure.

図1は、水稲の育苗期におけるハウス10内の様子を示す図であり、図1(A)はハウス10の概略縦断面図である。図1に示すように、水稲栽培では、水田に苗を植える前に、ハウス10内において、苗を所定の長さ(例えば12cm)になるまで育成を行う育苗を行う。ハウス10は、所謂ビニールハウスと呼ばれる公知のものであり、略透明な塩化ビニールフィルムや特殊ポリオレフィン系フィルムなどの樹脂製フィルムを略ドーム状にすることで形成されている。このハウス10の内側空間S1の温度は、日本本土において、例えば外気温が概ね14℃前後の場合は最高温度が18〜20℃前後、外気温が20〜25℃の場合は最高温度が30〜35℃となる。なお、本発明においてハウス10は必須条件ではなく、例えば、トンネルと呼ばれるものの内側での利用も可能である。 FIG. 1 is a diagram showing the inside of the house 10 during the seedling raising period of paddy rice, and FIG. 1 (A) is a schematic vertical sectional view of the house 10. As shown in FIG. 1, in paddy rice cultivation, before planting seedlings in a paddy field, seedlings are raised in a house 10 until they reach a predetermined length (for example, 12 cm). The house 10 is a known so-called vinyl house, and is formed by forming a resin film such as a substantially transparent vinyl chloride film or a special polyolefin film into a substantially dome shape. In mainland Japan, the temperature of the inner space S1 of the house 10 is, for example, a maximum temperature of about 18 to 20 ° C when the outside air temperature is about 14 ° C., and a maximum temperature of 30 to 30 when the outside air temperature is 20 to 25 ° C. It becomes 35 ° C. The house 10 is not an essential condition in the present invention, and can be used inside what is called a tunnel, for example.

そして、育苗期では、ハウス10内に種苗を収容する収容体20を置き、この収容体20に育苗用被覆資材(以下、「被覆資材」という)30を被せている。
収容体20は樹脂製或いは木製であって、育苗箱とも呼ばれ、上側が開口したトレー状であり、底に複数の小穴が開いている。この収容体20には土CRが入れられ、その上に種(不図示)がまかれ(藩種)、さらにその上に薄く土CRが被せられる。図1の収容体20は2列づつ、計4列に配置されているが、一列〜三列であっても構わず、或いは五列以上であっても構わない。
Then, in the seedling raising period, an accommodating body 20 for accommodating seedlings is placed in the house 10, and the accommodating body 20 is covered with a seedling raising covering material (hereinafter, referred to as “covering material”) 30.
The housing 20 is made of resin or wood, is also called a nursery box, has a tray shape with an open upper side, and has a plurality of small holes at the bottom. Soil CR is put in the housing 20, seeds (not shown) are sown on it (clan seeds), and soil CR is thinly covered on the seeds (clan seeds). The accommodating bodies 20 in FIG. 1 are arranged in two rows, for a total of four rows, but may be in one to three rows, or in five or more rows.

被覆資材30は、土CRとの間に内側空間S2を形成すると共に、この内側空間S2を封止するように収容体20の上に被せられる薄いシートである。
この被覆資材30は、収容体20の内側空間S2内を保温して、出芽、及び出芽をした後の苗の成長を促すための保温材であり、出芽期と緑化期に続けて使用される。内側空間S2の適切な温度は、育苗の種類・時期・地域などにより異なるが、水稲の場合、概ね、出芽期(4月上旬)の昼は約30〜32℃、緑化期(4月中旬)の昼は約20〜25℃となるように保温するのが好ましい。なお、夜については、出芽期及び緑化期の双方とも概ね15℃以上となるのが好ましい。
また、被覆資材30は、日よけとしても利用される。即ち、光を不要とする出芽期の後、緑化期に移行した際、急に強い光を当てると苗が白化するため、薄暗い曇りのような光を入れるための日よけとなる。従って、出芽期から緑化期にかけて用いられる被覆資材30については、保温性だけでなく、薄暗い光が差し込む程度の光透過性が必要とされる。この光透過性については、公知の事実として可視光線領域の波長の可視光の透過率が略5〜20%であることが好ましいとされている。該透過率が5%を下回ると光合成・保温不足などにより苗の成長に支障が生じ易くなり、20%を上回ると急に強い光が当たることで苗が白化する恐れがあるためである。なお、この20%の透過率を超えると必ず苗の白化が生じるものではないが、保温性と高温障害の防止という相反する観点のバランスを考慮しても20%の透過率を超えない方が好ましい。
The covering material 30 is a thin sheet that forms an inner space S2 with the soil CR and is placed on the housing 20 so as to seal the inner space S2.
The covering material 30 is a heat insulating material for heat-retaining the inside space S2 of the housing 20 to promote the growth of seedlings after budding and budding, and is used continuously in the budding period and the greening period. .. The appropriate temperature of the inner space S2 varies depending on the type, time, and area of raising seedlings, but in the case of paddy rice, it is generally about 30 to 32 ° C during the daytime during the emergence period (early April) and during the greening period (mid-April). It is preferable to keep the temperature at about 20 to 25 ° C during the daytime. At night, it is preferable that the temperature is about 15 ° C. or higher in both the germination period and the greening period.
The covering material 30 is also used as a shade. That is, when the seedlings are whitened when suddenly exposed to strong light when the seedlings are suddenly exposed to strong light after the germination stage, which does not require light, the seedlings become a shade for dim and cloudy light. Therefore, the coating material 30 used from the budding stage to the greening stage is required to have not only heat retention but also light transmission to the extent that dim light can be inserted. Regarding this light transmittance, as a known fact, it is preferable that the transmittance of visible light having a wavelength in the visible light region is about 5 to 20%. This is because if the transmittance is less than 5%, the growth of seedlings is likely to be hindered due to insufficient photosynthesis and heat retention, and if it exceeds 20%, the seedlings may be whitened due to sudden exposure to strong light. If the transmittance exceeds 20%, whitening of seedlings does not always occur, but it is better not to exceed 20% transmittance even considering the balance between heat retention and prevention of high temperature damage. preferable.

図1(B)は、本発明の実施形態に係る被覆資材30(図1(A)のPA部分)の縦断面図である。
この図に示すように、被覆資材30は、白色の層である白層40と、銀色の層である銀層32とからなっている。白層40は図1(A)の収容体20の外側(即ち、内側空間S1)に露出する外層であり、図1(B)の銀層32は図1(A)の収容体20の内側(即ち、内側空間S2)に露出する内層である。
FIG. 1B is a vertical cross-sectional view of the covering material 30 (PA portion of FIG. 1A) according to the embodiment of the present invention.
As shown in this figure, the covering material 30 is composed of a white layer 40 which is a white layer and a silver layer 32 which is a silver layer. The white layer 40 is an outer layer exposed to the outside of the housing 20 of FIG. 1 (A) (that is, the inner space S1), and the silver layer 32 of FIG. 1 (B) is the inside of the housing 20 of FIG. 1 (A). It is an inner layer exposed to (that is, the inner space S2).

銀層32は、主に、内側空間S2の温度を維持するために利用され、内側空間S2の放射熱を跳ね返して、放射熱の外部への放出を有効に防止している。
本実施形態の銀層32は、透明度の高い直鎖状低密度ポリエチレン(LLDPE)をベースにしている。この直鎖状低密度ポリエチレンは軟質性を有するため取扱い性に優れているが、耐候性に劣る。そこで、この直鎖状低密度ポリエチレンに対して、略透明な耐候剤(紫外線吸収剤)、酸化防止剤、及びメタロセン直鎖状低密度ポリエチレン(M−LLDPE)を配合し、より長期間(育苗期間以外のシート保管状態に左右されるものの10年を越える場合もあり)の使用を可能としている。
さらに、銀層32には、銀色となる金属製粒子が配合されている。金属製粒子にはアルミニウムが好適に用いられ、銀層32に占めるアルミニウムの割合は重量%で略2〜5%の範囲で好ましく適用でき、本実施形態の場合は2%とされている。このアルミニウムの割合は、後述する白層40中の酸化チタンの配合割合に基づいて決めるとよい。
The silver layer 32 is mainly used for maintaining the temperature of the inner space S2, repels the radiant heat of the inner space S2, and effectively prevents the radiant heat from being released to the outside.
The silver layer 32 of this embodiment is based on highly transparent linear low density polyethylene (LLDPE). Since this linear low-density polyethylene has softness, it is excellent in handleability, but it is inferior in weather resistance. Therefore, a substantially transparent weathering agent (ultraviolet absorber), an antioxidant, and metallocene linear low-density polyethylene (M-LLDPE) are blended with this linear low-density polyethylene for a longer period of time (seedling raising). Although it depends on the sheet storage condition other than the period, it may exceed 10 years).
Further, the silver layer 32 is blended with silver-colored metal particles. Aluminum is preferably used for the metal particles, and the ratio of aluminum to the silver layer 32 is preferably in the range of about 2 to 5% by weight, and is 2% in the case of the present embodiment. The ratio of this aluminum may be determined based on the blending ratio of titanium oxide in the white layer 40, which will be described later.

白層40は、主に、内側空間S2の温度の上昇のし過ぎを抑制するために利用される層であり、酸化チタン(TiO)などの白色顔料を配合することで白色化が可能である。
本実施形態の白層40は更に二層に分かれており、このため、被覆資材30は、最も外側の層である第1の白層34と、この第1の白層34と銀層32とに挟まれた第2の白層36と、最も内側の銀層32との三層構造となっている。なお、第1の白層34、第2の白層36、銀層32とは連続して形成され、その間に他の層(空気の層も含む)は介在しない。第1の白層34の厚みD1と第2の白層36の厚みD2と銀層32の厚みD3とは同様の厚みを有し、図の場合は夫々0.015mmである。このため、銀層32の厚みD3に対して、第1及び第2の白層34,36の全体の厚みD4は略2倍とされている。
The white layer 40 is a layer mainly used for suppressing an excessive rise in the temperature of the inner space S2, and can be whitened by blending a white pigment such as titanium oxide (TiO 2). is there.
The white layer 40 of the present embodiment is further divided into two layers, and therefore, the covering material 30 includes the first white layer 34, which is the outermost layer, the first white layer 34, and the silver layer 32. It has a three-layer structure consisting of a second white layer 36 sandwiched between the white layers 36 and the innermost silver layer 32. The first white layer 34, the second white layer 36, and the silver layer 32 are continuously formed, and no other layer (including an air layer) intervenes between them. The thickness D1 of the first white layer 34, the thickness D2 of the second white layer 36, and the thickness D3 of the silver layer 32 have the same thickness, and in the case of the figure, each is 0.015 mm. Therefore, the total thickness D4 of the first and second white layers 34 and 36 is substantially doubled with respect to the thickness D3 of the silver layer 32.

図の第1の白層34も、透明度が高く、軟質性に優れた直鎖状低密度ポリエチレン(LLDPE)をベースにしている。そして、この直鎖状低密度ポリエチレンに対して、略透明な低密度ポリエチレン(Low Density Polyethylene)、耐候剤(紫外線吸収剤)、及び酸化防止剤を配合して、耐用年数を伸ばしている。さらに、本実施形態の第1の白層34には、白色を形成するための酸化チタンが配合されている。本実施形態の場合、第1の白層34に占める酸化チタンの割合は重量%で略16%とされている。
また、図の第2の白層36も、透明度が高く、軟質性に優れた直鎖状低密度ポリエチレン(LLDPE)をベースにして、これに白色を形成するための酸化チタンを配合している。本実施形態の場合、第2の白層36に占める酸化チタンの割合は重量%で略32%とされている。なお、第2の白層36は中間層であり、光の照射が少ないため、耐候剤や酸化防止剤は配合されていない。
The first white layer 34 in the figure is also based on linear low density polyethylene (LLDPE), which has high transparency and excellent softness. Then, the linear low-density polyethylene is blended with a substantially transparent low-density polyethylene (Low Density Polyethylene), a weathering agent (ultraviolet absorber), and an antioxidant to extend the service life. Further, the first white layer 34 of the present embodiment contains titanium oxide for forming white color. In the case of the present embodiment, the proportion of titanium oxide in the first white layer 34 is approximately 16% by weight.
Further, the second white layer 36 in the figure is also based on linear low density polyethylene (LLDPE) having high transparency and excellent softness, and titanium oxide for forming white color is blended therein. .. In the case of the present embodiment, the proportion of titanium oxide in the second white layer 36 is approximately 32% by weight. Since the second white layer 36 is an intermediate layer and is less irradiated with light, it does not contain a weather resistant agent or an antioxidant.

このように、第1の白層34の酸化チタンを略16重量%、第2の白層34の酸化チタンを略32重量%とし、さらに、銀層32のアルミニウムを略2重量%とすることで、被覆資材30は、800nmの波長の近赤外線に対する反射率が略72.2%、可視光線領域内の波長の可視光(本実施形態の場合は500nmの波長の可視光)の透過率が略9.5%とされている。従って、光の波長と放射エネルギーとの関係を表す図2に示す近赤外線の範囲FRの大半の吸収および透過を防止することができ、図1の内側空間S2の温度の上昇のし過ぎを抑制できる。即ち、近赤外線は温度に大きな影響を与えるため、その反射率を高めて苗やけするような高温化を効果的に抑制でき、そして、このように近赤外線の吸収および透過を防止しつつ、緑化期に必要な光を取り入れることもできる。 As described above, the titanium oxide of the first white layer 34 is approximately 16% by weight, the titanium oxide of the second white layer 34 is approximately 32% by weight, and the aluminum of the silver layer 32 is approximately 2% by weight. The coating material 30 has a reflectance of about 72.2% for near infrared rays having a wavelength of 800 nm, and a transmittance of visible light having a wavelength within the visible light region (visible light having a wavelength of 500 nm in the case of the present embodiment). It is said to be approximately 9.5%. Therefore, it is possible to prevent absorption and transmission of most of the near-infrared range FR shown in FIG. 2, which shows the relationship between the wavelength of light and radiant energy, and suppress the excessive rise in temperature of the inner space S2 in FIG. it can. That is, since near-infrared rays have a great influence on the temperature, the reflectance can be increased to effectively suppress the high temperature such as burning seedlings, and greening while preventing the absorption and transmission of near-infrared rays in this way. You can also take in the light you need for the period.

図3及び図4は、図1の被覆資材(800nmの波長の近赤外線に対する反射率が略72.2%、500μmの波長の可視光の透過率が略9.5%である被覆資材)30の既存の被覆資材に比べた温度的優位性を示す実験データである。
図の6番のグラフは図1の被覆資材30を用いたデータである。また、1番から5番のグラフは従来の被覆資材を用いたデータであり、1番では銀色のシートのみからなるシルバーポリと呼ばれるものを用いている。2番では1番のシルバーポリの内側にアイホッカ♯40(商標)と呼ばれる不織布を設けたものを用いている。3番では発泡シートから形成された健苗シート(商標)と呼ばれるものを用いている。4番ではアルミニウムを蒸着した被覆資材でポリシャイン(商標)と呼ばれるものを用いている。5番では1番のシルバーポリの内側にラブシート(商標)と呼ばれる不織布を設けたものを用いている。
先ず、図3を用いて該優位性を説明する。図3は4月14日〜19日(新潟県における一般的な緑化期)に新潟県農業総合試験所において、被覆資材内(図1の内側空間S2)で一時間おきに測定した温度データである。この実験では、通常の育苗と同じ条件にするため、4月12日に播種をし、その後(午前11時に)被覆資材で被覆した。
3 and 4 show the covering material of FIG. 1 (coating material having a reflectance of about 72.2% for near infrared rays having a wavelength of 800 nm and a transmittance of visible light having a wavelength of 500 μm of about 9.5%) 30. This is experimental data showing the thermal superiority over the existing coating materials of.
The sixth graph in the figure is data using the covering material 30 in FIG. Further, the graphs Nos. 1 to 5 are data using the conventional covering material, and No. 1 uses what is called silver poly consisting of only a silver sheet. No. 2 uses a non-woven fabric called Aihokka # 40 (trademark) provided inside the No. 1 silver poly. No. 3 uses what is called a healthy seedling sheet (trademark) formed from a foam sheet. No. 4 uses a coating material with aluminum vapor deposition called Polyshine (trademark). No. 5 uses a non-woven fabric called a love sheet (trademark) provided inside the No. 1 silver poly.
First, the superiority will be described with reference to FIG. Fig. 3 shows the temperature data measured every hour in the covering material (inner space S2 in Fig. 1) at the Niigata Prefectural Agricultural Research Institute from April 14th to 19th (general greening period in Niigata Prefecture). is there. In this experiment, the seedlings were sown on April 12 and then covered with a covering material (at 11:00 am) in order to obtain the same conditions as normal seedling raising.

図3に示すように、1番、2番、5番では、4月中旬でも根の伸長に悪影響を与える恐れがある40℃以上となる日があり、また、2番では苗やけの恐れがある45℃を超える日があるため、温暖化が進行する近年では好ましくはない。また、4番では、反対に日中でも25℃を下回る時間帯が続く日があり、保温を目的とする本来の被覆資材の役割を十分に果たしているとは言えない。
3番と6番については、日中では概ね25℃〜35℃の範囲にあり、高温化を防止できると共に保温性にも優れている。しかし、3番の被覆資材は発泡材で形成されており、短期間での経年劣化が免れない。即ち、被覆資材は10年は使用されることも多いのに対して、3番の被覆資材は長くても3年でヒビや割れが生じ、そこから日光があたって苗やけをするという問題が生じる。また、3番の被覆資材は厚みもあるため、作業性にも問題がある。この点、6番(本実施形態)の被覆資材は、図1(B)で説明したように、白層40及び銀層32は双方とも、軟質性の高い低密度ポリエチレンをベースにしているため取扱い性に優れ、長期間の使用にも耐え得る。
As shown in Fig. 3, in Nos. 1, 2 and 5, there are days when the temperature rises above 40 ° C, which may adversely affect root growth even in mid-April, and in No. 2, there is a risk of seedling burning. Since there are days when the temperature exceeds 45 ° C., it is not preferable in recent years when global warming progresses. On the other hand, in No. 4, there are days when the temperature is below 25 ° C even during the day, and it cannot be said that the original covering material for the purpose of heat retention is sufficiently fulfilled.
Nos. 3 and 6 are generally in the range of 25 ° C to 35 ° C during the daytime, and can prevent high temperatures and have excellent heat retention. However, the coating material No. 3 is made of a foaming material, and is inevitably deteriorated over time in a short period of time. That is, while the covering material is often used for 10 years, the No. 3 covering material has a problem that cracks and cracks occur in 3 years at the longest, and the seedlings are burnt when exposed to sunlight. Occurs. In addition, since the No. 3 covering material is thick, there is a problem in workability. In this regard, as described in FIG. 1 (B), the coating material of No. 6 (the present embodiment) is based on low-density polyethylene having high softness in both the white layer 40 and the silver layer 32. It has excellent handleability and can withstand long-term use.

なお、本実施形態の6番の被覆資材は800nmの波長の近赤外線に対する反射率が略72.2%であって、緑化期であることが多い4月14日〜19日の最高温度を約34℃に抑えることができたが、800nmの波長の近赤外線の反射率を略42%にした場合、緑化期の最高温度を約45℃以内に抑制できることも分かった(不図示)。このことから、現在の温暖化のレベルにおいては、800nmの波長の近赤外線の反射率を略42%〜略73%にすることで、少なくとも緑化期における苗やけを防止できることが分かる。
このように、本実施形態の被覆資材は苗やけを防止できるが、図3からは保温性についても問題なく発揮していることが分かる。図3の時期で日中DYの温度が最も低いのが4月18日であるが、6番(本実施形態)の被覆資材を利用した場合、該18日の日中DYの平均温度は緑化期に必要とされている約20℃を超えている。
The No. 6 coating material of the present embodiment has a reflectance of about 72.2% for near infrared rays having a wavelength of 800 nm, and has a maximum temperature of about April 14 to 19, which is often in the greening period. Although it was possible to suppress the temperature to 34 ° C., it was also found that the maximum temperature during the greening period could be suppressed to within about 45 ° C. when the reflectance of near infrared rays having a wavelength of 800 nm was set to about 42% (not shown). From this, it can be seen that at the current level of global warming, seedling burning can be prevented at least during the greening period by setting the reflectance of near infrared rays having a wavelength of 800 nm to about 42% to about 73%.
As described above, the covering material of the present embodiment can prevent seedling burning, but it can be seen from FIG. 3 that the heat retention property is also exhibited without any problem. The temperature of the daytime DY was the lowest on April 18 at the time of FIG. 3, but when the covering material of No. 6 (the present embodiment) was used, the average temperature of the daytime DY on the 18th was greening. It exceeds about 20 ° C required for the period.

図4は5月6日〜14日に新潟県農業総合試験所において、被覆資材内(図1の内側空間S2)で一時間おきに測定した温度データである。この実験でも、通常の育苗と同じ条件にするため、5月6日に播種をし、その後(午前11時)被覆資材で被覆した。
従来のこの時期は、新潟県では緑化期後の硬化期に入った時期であるが、今後の温暖化の促進により、この時期の気温が4月に生じる恐れが想定されるし、場所、種苗種類、農法等の条件によって、この時期が緑化期になる場合もある。この点、例えば、図4の5月13日の外気温は最高25℃に達しているが、本実施形態の6番の被覆資材では、根の伸長への悪影響を防止できる40℃未満という結果を唯一得ることができた。
これに対し、3番の発泡シートからなる被覆資材では、外気温が25℃の5月13日に40℃を超えてしまっており、他の日についても、3番の発泡シートに比べて6番の被覆資材の方が温度が低い。この図4と上述した図3により、外気温が高くなるに従って発泡シートよりも本実施形態の被覆資材の方が高温化防止の効果が高くなることが分かる。
なお、夜間の温度については、1番〜6番のいずれの被覆資材を使っても、温度に余り差はない。
FIG. 4 is temperature data measured every hour in the covering material (inner space S2 in FIG. 1) at the Niigata Prefectural Agricultural Research Institute from May 6 to 14. In this experiment as well, the seedlings were sown on May 6 and then covered with a covering material (11:00 am) in order to obtain the same conditions as normal seedling raising.
In the past, this period was the period when Niigata Prefecture entered the hardening period after the greening period, but due to the promotion of global warming in the future, it is expected that the temperature during this period will occur in April, and the location and seedlings Depending on the conditions such as type and farming method, this period may be the greening period. In this regard, for example, the outside air temperature on May 13 in FIG. 4 reached a maximum of 25 ° C, but the result was that the coating material No. 6 of the present embodiment had a temperature of less than 40 ° C, which could prevent an adverse effect on root elongation. Was the only one I could get.
On the other hand, in the coating material composed of the No. 3 foam sheet, the outside temperature exceeded 40 ° C on May 13 at 25 ° C, and on other days, it was 6 compared to the No. 3 foam sheet. The temperature of the covering material is lower. From FIG. 4 and FIG. 3 described above, it can be seen that the coating material of the present embodiment is more effective in preventing high temperature than the foamed sheet as the outside air temperature increases.
Regarding the nighttime temperature, there is not much difference in temperature regardless of which of the covering materials No. 1 to No. 6 is used.

図5及び図6は、上述した所望の近赤外線の反射率と可視光の透過率の双方を同時に得るために行った、白層に配合される酸化チタンと、銀層に配合されるアルミニウムの割合に関するテスト結果である。
図5は被覆資材を図1(B)のように三層構造にした場合のテスト結果であり、図6は図7に示すように被覆資材を白層40と銀層32の二層構造にした場合のテスト結果である。なお、図5及び図6の「反射率」は800nmの波長の近赤外線に対する反射率であり、「透過率」は500nmの波長の可視光の透過率である。500nmの波長を測定対象とするのは、可視光線領域内における各波長の透過率を比較すると、その誤差が数%の範囲に収まることに基づき、基準値として好ましいからである。また、図5の第1の白層、第2の白層、銀層の夫々の厚みは0.015mmであり、図6の白層の厚み(図7のD4)は0.03mm、銀層の厚み(図7のD3)は0.015mmである。また、図5の「白トータル」は第1及び第2の白層の全体に占める酸化チタンの割合を重量%で示している。
このテストを行ったのは、上述したように、少なくとも苗やけを防止するには800nmの波長の近赤外線の反射率を略42%〜略73%に、苗を問題なく成長させるには可視光線領域の波長の可視光の透過率を略5〜20%にするのが好ましく、そのために酸化チタンとアルミニウムの配合をどの程度にすべきかを把握するためである。
なお、これらのテストでは、光を各被覆資材に照射し、紫外可視近赤外分光光度計 V−770ST型(日本分光株式会社製)を用いて上記反射率と透過率を測定した。
5 and 6 show the titanium oxide blended in the white layer and the aluminum blended in the silver layer, which were carried out to simultaneously obtain both the desired near-infrared reflectance and visible light transmittance described above. It is a test result about the ratio.
FIG. 5 shows the test results when the covering material has a three-layer structure as shown in FIG. 1 (B), and FIG. 6 shows the coating material having a two-layer structure of a white layer 40 and a silver layer 32 as shown in FIG. It is a test result when. The "reflectance" of FIGS. 5 and 6 is the reflectance for near infrared rays having a wavelength of 800 nm, and the "transmittance" is the transmittance of visible light having a wavelength of 500 nm. The wavelength of 500 nm is the measurement target because when the transmittance of each wavelength in the visible light region is compared, the error is within a range of several%, which is preferable as a reference value. The thickness of each of the first white layer, the second white layer, and the silver layer in FIG. 5 is 0.015 mm, the thickness of the white layer in FIG. 6 (D4 in FIG. 7) is 0.03 mm, and the silver layer. The thickness of (D3 in FIG. 7) is 0.015 mm. Further, the “white total” in FIG. 5 indicates the proportion of titanium oxide in the entire first and second white layers in% by weight.
As mentioned above, this test was carried out by increasing the reflectance of near-infrared rays with a wavelength of 800 nm to approximately 42% to 73% at least to prevent seedling burns, and to grow seedlings without problems with visible light. It is preferable that the transmittance of visible light having a wavelength in the region is about 5 to 20%, and for this purpose, it is necessary to understand how much the mixture of titanium oxide and aluminum should be.
In these tests, each coating material was irradiated with light, and the reflectance and transmittance were measured using an ultraviolet-visible near-infrared spectrophotometer V-770ST (manufactured by JASCO Corporation).

図5及び図6のテスト結果から、以下のことが分かった。
先ず、図5のテスト1〜7により、第1及び第2の白層の全体に占める酸化チタンの割合が高くなるに従って近赤外線の反射率が高まることが分かった(把握項目1)。
また、図5のテスト11とテスト12とは、第1の白層と第2の白層の酸化チタンの割合を逆にしたものだが、いずれの場合も反射率は57%前後であり、このことから、外層の酸化チタンの割合と中間層の酸化チタンの割合とは、近赤外線に対する反射率について、略無関係であることも分かった(把握項目2)。
また、例えば図5のテスト1と図6のテスト15とは、共に白層全体に占める酸化チタンの割合が6重量%であり、反射率も同様の43%前後であった。同様にして、図5のテスト3と図6のテスト14とも、白層全体における酸化チタンの割合及び反射率が同様であった。このことから、白層が1層であっても複数層であっても、白層全体として同じ厚みであれば、反射率は左程変わらないことが分かった(把握項目3)
From the test results of FIGS. 5 and 6, the following was found.
First, from tests 1 to 7 in FIG. 5, it was found that the reflectance of near infrared rays increases as the proportion of titanium oxide in the entire first and second white layers increases (grasping item 1).
Further, in Test 11 and Test 12 of FIG. 5, the ratios of titanium oxide in the first white layer and the second white layer were reversed, but in each case, the reflectance was around 57%. From this, it was also found that the ratio of titanium oxide in the outer layer and the ratio of titanium oxide in the intermediate layer are substantially irrelevant to the reflectance to near infrared rays (grasp item 2).
Further, for example, in Test 1 of FIG. 5 and Test 15 of FIG. 6, the proportion of titanium oxide in the entire white layer was 6% by weight, and the reflectance was also about 43%. Similarly, in Test 3 of FIG. 5 and Test 14 of FIG. 6, the proportion and reflectance of titanium oxide in the entire white layer were similar. From this, it was found that the reflectance does not change as much as the left as long as the white layer as a whole has the same thickness regardless of whether the white layer is one layer or multiple layers (grasping item 3).

以上のことから、白層が1層であっても、複数層であっても、或いは、複数層の夫々の白層に含有する酸化チタンの割合が区々であっても、白層全体に占める酸化チタンの合計重量の割合に追従して、近赤外線に対する反射率が変化する(酸化チタンが多くなれば反射率も下がる)ことが分かった。
また、図5の白層全体に占める酸化チタンの割合が同じ24重量%であるのに対して、銀層に占めるアルミニウムの割合を変えていったテスト7〜10からは、アルミニウムの重量の割合が増加しても、反射率は左程変わらないことが分かった(把握項目4)。
従って、800nmの波長の近赤外線の反射率を略42%〜略73%にしたい場合は、白層全体に占める酸化チタンの割合を6重量%(図5のテスト1参照)〜24重量%(図5のテスト7参照)にすればよいことが分かった(把握項目5)。
From the above, regardless of whether the white layer is one layer, multiple layers, or the proportion of titanium oxide contained in each of the multiple layers is different, the entire white layer is covered. It was found that the reflectance to near-infrared rays changes (the higher the titanium oxide, the lower the reflectance), following the ratio of the total weight of titanium oxide to the total weight.
Further, while the proportion of titanium oxide in the entire white layer in FIG. 5 was the same 24% by weight, the proportion of aluminum in weight was changed from tests 7 to 10 in which the proportion of aluminum in the silver layer was changed. It was found that the reflectance did not change as much as the left even if the amount increased (grasping item 4).
Therefore, if the reflectance of near-infrared rays having a wavelength of 800 nm is to be approximately 42% to 73%, the proportion of titanium oxide in the entire white layer is 6% by weight (see test 1 in FIG. 5) to 24% by weight (see Test 1 in FIG. 5). It was found that the test 7 in FIG. 5) should be performed (grasp item 5).

ところで、図5のテスト6と7を見ると、両者とも銀層のアルミニウムの割合は同じであるのに、白層全体に占める酸化チタンが22重量%であるテスト6に比べて、白層全体に占める酸化チタンが24重量%であるテスト7の方が、透過率が1%下がっている。また、図5のテスト1とテスト6を見ると、テスト6の方がテスト1に比べてアルミニウムの割合が低いにもかかわらず、白層全体に占める酸化チタンの割合が高いテスト6の方がテスト1に比べて透過率が低い。このことから、白層全体に占める酸化チタンの合計重量の割合に追従して、可視光に対する透過率も変化する(酸化チタンが多くなれば透過率も下がる)ことが分かる(把握項目6)。
また、図5のテスト1とテスト7を見れば、全体の厚みが0.03mmである白層における酸化チタンを6〜24重量%の範囲内にすれば、銀層におけるアルミニウムを所定量にすることで、透過率を略5〜20%の範囲内にできることが分かる(把握項目7)。
また、図5の白層全体に占める酸化チタンの割合が同じ24重量%であるのに対して、銀層に占めるアルミニウムの重量の割合を変えていったテスト7〜10からは、アルミニウムの重量の割合が増加するに従って、(反射率は左程変わらないが)透過率は下がっていく(2重量%増加するに従って透過率は概ね2%前後下がる)ことが分かった(把握項目8)。
以上のことから、全体の厚みが略0.03mmである白層において、白層全体に占める酸化チタンの割合を6〜24重量%の範囲内にして、略42%〜略73%の反射率を実現すると共に、所定の透過率を得て、その後、所定のアルミニウムが配合された銀層を内側に配設すれば、反射率は変えずに略5〜20%の透過率を得ることができる。この略5〜20%の可視光の透過率は緑化期に必要な透過率と従来から考えられており、図のテスト結果から、白層全体に占める酸化チタンを6〜24重量%の範囲内にした場合、銀層に占めるアルミニウムの割合を2〜5重量%にすることで達成できることが想定できた。
By the way, looking at tests 6 and 7 in FIG. 5, although the ratio of aluminum in the silver layer is the same in both cases, the entire white layer is compared with test 6 in which titanium oxide accounts for 22% by weight in the entire white layer. In Test 7, where titanium oxide accounts for 24% by weight, the transmittance is reduced by 1%. Looking at Tests 1 and 6 in FIG. 5, Test 6 has a higher proportion of titanium oxide in the entire white layer, although Test 6 has a lower proportion of aluminum than Test 1. The transmittance is lower than that of Test 1. From this, it can be seen that the transmittance with respect to visible light also changes (the transmittance decreases as the amount of titanium oxide increases) according to the ratio of the total weight of titanium oxide to the entire white layer (grasp item 6).
Further, looking at Tests 1 and 7 of FIG. 5, if the titanium oxide in the white layer having an overall thickness of 0.03 mm is within the range of 6 to 24% by weight, the amount of aluminum in the silver layer is set to a predetermined amount. Therefore, it can be seen that the transmittance can be set within the range of about 5 to 20% (grasp item 7).
Further, while the ratio of titanium oxide to the entire white layer in FIG. 5 was the same 24% by weight, the weight of aluminum was changed from tests 7 to 10 in which the ratio of the weight of aluminum to the silver layer was changed. It was found that the transmittance decreases as the proportion of the above increases (although the reflectance does not change as much as the left) (the transmittance decreases by about 2% as the ratio increases by 2% by weight) (grasp item 8).
From the above, in the white layer having an overall thickness of approximately 0.03 mm, the reflectance of approximately 42% to approximately 73% is set within the range of 6 to 24% by weight of titanium oxide in the entire white layer. If a predetermined transmittance is obtained and then a silver layer containing a predetermined aluminum is arranged inside, a transmittance of approximately 5 to 20% can be obtained without changing the reflectance. it can. This transmittance of approximately 5 to 20% of visible light is conventionally considered to be the transmittance required for the greening period, and from the test results in the figure, titanium oxide occupying the entire white layer is within the range of 6 to 24% by weight. In this case, it can be assumed that this can be achieved by setting the ratio of aluminum to the silver layer to 2 to 5% by weight.

本発明は上述の実施形態に限定されない。各実施形態の各構成はこれらを適宜組み合わせたり、省略し、図示しない他の構成と組み合わせることができる。
例えば、上述した実施形態では、3層構造(2層の白層と1層の銀層)とからなっているが、図7に示すように、2層構造(1層の白層と1層の銀層)であっても構わない。なお、図7のように2層構造の場合、白層40の厚みD4は銀層32の厚みD3の略2倍であるのが好ましい。
また、上記実施形態では、被覆資材を出芽期と緑化期に続けて使用し、硬化期に取り除く(除幕する)ことを想定して説明したが、本発明の被覆資材の使用方法はこれに限られず、例えば出芽期にのみ使用し、緑化期に除幕しても構わない。例えば、天候により外気温が高くて保温の必要性が低く、かつ、ハウスの位置により内側が薄暗い場合などでは、緑化期であっても被覆資材を使用する必要はなく、本発明の被覆資材は緑化期に必ず必要となるわけではない。
また、好ましい被覆資材の態様として、800nmの波長の近赤外線に対する反射率が略42〜73%である旨を説明をしたが、勿論、その前後の波長の近赤外線も反射している。
また、上述したように、本発明は可視光線領域(380nm〜750nm)の範囲内の一部の可視光の透過率が略5〜20%にあればよい。
さらに、本実施形態の育苗用被覆資材は水稲の育苗管理に好適に用いることができるが、例えば玉ねぎの育苗管理における保温に用いられてもよい。
The present invention is not limited to the above-described embodiment. Each configuration of each embodiment may be combined or omitted as appropriate, and may be combined with other configurations (not shown).
For example, in the above-described embodiment, it has a three-layer structure (two layers of white layer and one layer of silver layer), but as shown in FIG. 7, it has a two-layer structure (one layer of white layer and one layer). It does not matter if it is a silver layer of. In the case of a two-layer structure as shown in FIG. 7, it is preferable that the thickness D4 of the white layer 40 is approximately twice the thickness D3 of the silver layer 32.
Further, in the above embodiment, it has been described assuming that the covering material is used continuously in the budding period and the greening period and removed (unveiled) in the curing period, but the method of using the covering material of the present invention is limited to this. However, for example, it may be used only during the budding period and unveiled during the greening period. For example, when the outside air temperature is high due to the weather and the need for heat retention is low, and the inside is dim due to the position of the house, it is not necessary to use the covering material even during the greening period, and the covering material of the present invention is used. It is not always necessary during the greening season.
Further, as a preferred mode of the coating material, it has been explained that the reflectance with respect to near infrared rays having a wavelength of 800 nm is approximately 42 to 73%, but of course, near infrared rays having wavelengths before and after that are also reflected.
Further, as described above, in the present invention, the transmittance of a part of visible light within the visible light region (380 nm to 750 nm) may be approximately 5 to 20%.
Further, the seedling raising coating material of the present embodiment can be suitably used for raising seedling management of paddy rice, but may be used, for example, for heat retention in raising seedling management of onions.

20・・・収容体、30・・・育苗用被覆資材、32・・・銀層、34・・・第1の白層、36・・・第2の白層、40・・・白層
20 ... containment body, 30 ... coating material for raising seedlings, 32 ... silver layer, 34 ... first white layer, 36 ... second white layer, 40 ... white layer

Claims (4)

種苗の育苗期における保温に用いられ、前記種苗を収容した収容体を覆う育苗用被覆資材であって、
前記収容体の外側に露出し、白色顔料が配合された層である白層と、前記収容体の内側に露出し、銀色となる金属製粒子が配合された層である銀層とを有することで、800nmの波長の近赤外線に対する反射率が略42〜73%となるようにし、可視光線領域の波長の可視光の透過率が略5〜20%となるようにし
ことを特徴とする育苗用被覆資材。
It is used to keep the seedlings warm during the seedling raising period, and is a seedling raising covering material that covers the container containing the seedlings.
It has a white layer that is exposed to the outside of the container and is a layer containing a white pigment, and a silver layer that is a layer that is exposed to the inside of the container and is a layer containing silver-colored metal particles. The seedlings were raised so that the reflectance for near infrared rays having a wavelength of 800 nm was approximately 42 to 73%, and the transmittance for visible light having a wavelength in the visible light region was approximately 5 to 20%. Coating material for.
前記白色顔料は酸化チタンであり、
前記金属製粒子はアルミニウムであり、
前記白層に占める前記酸化チタンの割合が重量%で略6〜24%である
ことを特徴とする請求項1に記載の育苗用被覆資材。
The white pigment is titanium oxide.
The metal particles are aluminum
The coating material for raising seedlings according to claim 1, wherein the ratio of the titanium oxide to the white layer is approximately 6 to 24% by weight.
前記銀層に占める前記アルミニウムの割合が重量%で略2〜5%であることを特徴とする請求項2に記載の育苗用被覆資材。 The coating material for raising seedlings according to claim 2, wherein the ratio of the aluminum to the silver layer is approximately 2 to 5% by weight. 前記白層は、 The white layer is
最も外側の層である第1の白層と、 The outermost layer, the first white layer,
前記第1の白層と前記銀層とに挟まれた第2の白層と、 A second white layer sandwiched between the first white layer and the silver layer,
を有し、 Have,
前記第1の白層と前記第2の白層と前記銀層とは連続して形成され、前記第1の白層と前記第2の白層と前記銀層との間に他の層は介在せず、前記第1の白層の厚みと前記第2の白層の厚みと前記銀層の厚みとは同じ厚みを有することを特徴とする請求項1〜3のいずれか1項に記載の育苗用被覆資材。 The first white layer, the second white layer, and the silver layer are continuously formed, and another layer is formed between the first white layer, the second white layer, and the silver layer. The invention according to any one of claims 1 to 3, wherein the thickness of the first white layer, the thickness of the second white layer, and the thickness of the silver layer have the same thickness without intervening. Coating material for raising seedlings.
JP2016231102A 2016-11-29 2016-11-29 Covering material for raising seedlings Active JP6883411B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016231102A JP6883411B2 (en) 2016-11-29 2016-11-29 Covering material for raising seedlings

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016231102A JP6883411B2 (en) 2016-11-29 2016-11-29 Covering material for raising seedlings

Publications (2)

Publication Number Publication Date
JP2018085957A JP2018085957A (en) 2018-06-07
JP6883411B2 true JP6883411B2 (en) 2021-06-09

Family

ID=62492793

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016231102A Active JP6883411B2 (en) 2016-11-29 2016-11-29 Covering material for raising seedlings

Country Status (1)

Country Link
JP (1) JP6883411B2 (en)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5833226U (en) * 1981-08-28 1983-03-04 みかど化工株式会社 Mulching film for summer
JPH03262419A (en) * 1990-03-14 1991-11-22 Tokan Kogyo Co Ltd Agricultural plastic film
BR9713099B1 (en) * 1996-11-19 2011-07-12 reflective material for plant treatment.
JP4504576B2 (en) * 2000-12-22 2010-07-14 シーアイ化成株式会社 Light-shielding polyolefin resin film for agriculture
JP4173793B2 (en) * 2003-10-30 2008-10-29 みかど化工株式会社 Milky white film for curtain
JP4825011B2 (en) * 2006-01-20 2011-11-30 みかど化工株式会社 Agricultural multi-film
JP4724598B2 (en) * 2006-05-01 2011-07-13 アキレス株式会社 Agricultural coating
JP2014180240A (en) * 2013-03-19 2014-09-29 Sekisui Film Kk Agricultural film

Also Published As

Publication number Publication date
JP2018085957A (en) 2018-06-07

Similar Documents

Publication Publication Date Title
ES2324586B1 (en) POLYMER COVER WITH PROTECTIVE PROPERTIES AGAINST SOLAR RADIATION.
Lamnatou et al. Solar radiation manipulations and their role in greenhouse claddings: Fluorescent solar concentrators, photoselective and other materials
ES2281109T3 (en) MATERIAL AND METHOD FOR TREATMENT OF PLANTS.
Mormile et al. The world of plasticulture
KR20180120155A (en) Agricultural house, plant cultivation method using this agricultural house and heat ray reflective film structure
US20160174474A1 (en) Woven ground cover materials
Leyva et al. Cooling systems in screenhouses: Effect on microclimate, productivity and plant response in a tomato crop
JP2010259374A (en) Method for cultivating plant
US20160219796A1 (en) Greenhouse roofing having temperature-dependent radiation transparency and method for cultivating useful plants
ES2386964T3 (en) Thermoplastic products for acceleration of growth, increase of the harvest and improvement of the quality of useful plants in agriculture
Holcman et al. Vineyard microclimate and yield under different plastic covers
JP6883411B2 (en) Covering material for raising seedlings
CN108094006B (en) PE mulching film
TWI668256B (en) Light transmissive material based on retainment of specific wavelengths, and its insulation composite material and composite carrier thereof
Meinzer et al. balance of Andean giant rosette plants
CN109677070B (en) PE mulching film
Schettini et al. Greenhouse plastic films capable of modifying the spectral distribution of solar radiation
JP4825011B2 (en) Agricultural multi-film
JP6832052B2 (en) Covering material for plant cultivation
JP2008086284A (en) Material for natural lighting for agricultural and horticultural hot house, and agricultural and horticultural hot house
JP4173793B2 (en) Milky white film for curtain
JP6580538B2 (en) Agricultural color scheme film
US20090133325A1 (en) Cover for deflecting light and minimizing heat absorption by a body
US20160174472A1 (en) Ground cover and netting materials
JP6445756B2 (en) Agricultural greenhouse

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191008

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201002

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201012

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210426

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210510

R150 Certificate of patent or registration of utility model

Ref document number: 6883411

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250