JP6880119B2 - Mtc機器のpucch転送方法 - Google Patents

Mtc機器のpucch転送方法 Download PDF

Info

Publication number
JP6880119B2
JP6880119B2 JP2019135163A JP2019135163A JP6880119B2 JP 6880119 B2 JP6880119 B2 JP 6880119B2 JP 2019135163 A JP2019135163 A JP 2019135163A JP 2019135163 A JP2019135163 A JP 2019135163A JP 6880119 B2 JP6880119 B2 JP 6880119B2
Authority
JP
Japan
Prior art keywords
pucch
sub
uplink
mtc device
mtc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019135163A
Other languages
English (en)
Other versions
JP2020005265A (ja
Inventor
デスン ワン
デスン ワン
ユンジュン イ
ユンジュン イ
ソクチェル ヤン
ソクチェル ヤン
ハンビョル セオ
ハンビョル セオ
ソンミン リ
ソンミン リ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LG Electronics Inc
Original Assignee
LG Electronics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LG Electronics Inc filed Critical LG Electronics Inc
Publication of JP2020005265A publication Critical patent/JP2020005265A/ja
Application granted granted Critical
Publication of JP6880119B2 publication Critical patent/JP6880119B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/30Definitions, standards or architectural aspects of layered protocol stacks
    • H04L69/32Architecture of open systems interconnection [OSI] 7-layer type protocol stacks, e.g. the interfaces between the data link level and the physical level
    • H04L69/322Intralayer communication protocols among peer entities or protocol data unit [PDU] definitions
    • H04L69/324Intralayer communication protocols among peer entities or protocol data unit [PDU] definitions in the data link layer [OSI layer 2], e.g. HDLC
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/0012Hopping in multicarrier systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0057Physical resource allocation for CQI
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/70Services for machine-to-machine communication [M2M] or machine type communication [MTC]

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)

Description

本発明は、移動通信に関する。
UMTS(Universal Mobile Telecommunications System)の向上である 3GPP(3rd Generation Partnership Project)LTE(long term evolution) は、3GPPリリース(release)8で紹介されている。3GPP LTEは、ダウ ンリンクでOFDMA(orthogonal frequency division multiple access)を使用し 、アップリンクでSC−FDMA(Single Carrier−frequency division multiple access)を使用する。最大4個のアンテナを有するMIMO(multiple input multiple output)を採用する。最近、3GPP LTEの進化である3GPP L TE−A(LTE−Advanced)に対する議論が進行中である。
3GPP TS 36.211 V10.4.0(2011−12) “Evolved Universal Terrestrial Radio Access (E−UTRA); Physical Channels and Modulation (Release 10)”に開示されているように、LTEにおいて、物理 チャネルは、ダウンリンクチャネルであるPDSCH(Physical Downlink Shared Channel)とPDCCH(Physical Downlink Control Channel)、アップ リンクチャネルであるPUSCH(Physical Uplink Shared Channel)とPUCC H(Physical Uplink Control Channel)に分けられる。
一方、最近には人との相互作用(human interaction)無しで、即ち人の介 入無しで装置間または装置とサーバとの間に生じる通信、即ちMTC(Machine Type Communication)に対する研究が活発に行われている。前記MTCは、人間が使用する端末でない機械装置が既存の無線通信ネットワークを用いて通信する概念をいう。
前記MTCの特性は一般的な端末と異なるので、MTC通信に最適化されたサービスは人対人(human to human)通信に最適化されたサービスと異なることがある。MTC通信は、現在の移動ネットワーク通信サービス(Mobile Network Communication Service)と比較して、互いに異なるマーケットシナリオ(market scenario)、データ通信、少ない費用と努力、潜在的に非常に多い数のMTC機器、広いサービス領域、及びMTC機器当たり低いトラフィック(traffic)などに特徴できる。
MTC機器の単価を低めるための一つの方案に、セルのシステム帯域幅に関わらず、前記MTC機器は縮小された帯域、即ち副帯域のみ使用することができる.
アップリンクチャンネルのうち、PUCCHはセルのアップリンクシステム帯域幅の全体を基準に両端で転送されるようになっている。したがって、既存の技術によれば、前記MTC機器はPUCCHを前記いずれか一つの副帯域上で転送できないという問題点がある。
したがって、本明細書の開示は、前述した問題点を解決することを目的とする。
前述した目的を達成するために、本明細書の開示はMTCが動作する副帯域内でPUCCHを転送できるようにする方案を提示する。
具体的に、本明細書の開示はMTC(Machine Type communication)機器がPUCCH(Physical Uplink control channel)を転送する方法を提示する。前記PUCCH転送方法はPUCCHの反復水準別の独立的なPUCCHリソースに対する設定を受信するステップと;前記設定に基づいて、反復水準に該当するPUCCHリソースを決定するステップと;前記決定されたリソース上で、前記PUCCHを反復転送するステップとを含むことができる。
前記方法は、前記反復水準によって前記PUCCHを反復して転送する回数を決定するステップをさらに含むことができる。
前記PUCCHの反復転送は、前記MTC機器がセルのカバレッジ拡張地域に位置した場合に遂行できる。
前記PUCCHリソースに対する設定は、セル−特定的に(cell−specific)定まる値を含むことができる。
一方、本明細書の開示は、MTC(Machine Type communication)機器がPUCCH(Physical Uplink control channel)を転送する方法をまた提供する。前記方法は、PUCCHを複数個のサブフレーム上で反復転送するステップと;前記反復転送遂行の途中に、前記PUCCHに対する周波数ホッピングを遂行するステップを含むことができる。ここで、前記PUCCHが転送される周波数領域位置は前記複数個のうち、少なくともn個のサブフレーム区間には同一に維持できる。
前記PUCCHが転送される周波数領域位置はスロット単位でホッピングされないことがある。
前記PUCCHが転送される周波数領域はアップリンクシステム帯域のうち、一部の副帯域内に位置することができる。
前記周波数ホッピングは、前記副帯域内で遂行できる。
代案的に、前記周波数ホッピングは前記副帯域単位で遂行できる。
例えば、本願発明は以下の項目を提供する。
(項目1)
MTC(Machine Type communication)機器がPUCCH(Physical Uplink control channel)を転送する方法であって、
PUCCHの反復水準別の独立的なPUCCHリソースに対する設定を受信するステップと、
前記設定に基づいて反復水準に該当するPUCCHリソースを決定するステップと、
前記決定されたリソース上で、前記PUCCHを反復転送するステップと、
を含むことを特徴とする、PUCCH転送方法。
(項目2)
前記反復水準によって前記PUCCHを反復して転送する回数を決定するステップをさらに含むことを特徴とする、項目1に記載のPUCCH転送方法。
(項目3)
前記PUCCHの反復転送は、
前記MTC機器がセルのカバレッジ拡張地域に位置した場合に遂行されることを特徴とする、項目1に記載のPUCCH転送方法。
(項目4)
前記PUCCHリソースに対する設定は、
セル−特定的に(cell−specific)定まる値を含むことを特徴とする、項目1に記載のPUCCH転送方法。
(項目5)
前記セル−特定的に(cell−specific)定まる値は、
循環桁移動(Cyclic shift)で区分可能な個数を指定することに用いられるパラメータ、HARQ−ACKを含むPUCCHリソースの開始位置を指定することに使用できるパラメータ、CSIを含むPUCCHリソースが含まれることができるスロット当たりPRB個数を示すパラメータのうち、一つ以上を含むことを特徴とする、項目4に記載のPUCCH転送方法。
(項目6)
MTC(Machine Type communication)機器がPUCCH(Physical Uplink control channel)を転送する方法であって、
PUCCHを複数個のサブフレーム上で反復転送するステップと、
前記反復転送遂行の途中に、前記PUCCHに対する周波数ホッピングを遂行するステップとを含み、
ここで、前記PUCCHが転送される周波数領域位置は前記複数個のうち、少なくともn個のサブフレーム区間には同一に維持されることを特徴とする、PUCCH転送方法。
(項目7)
前記PUCCHが転送される周波数領域位置はスロット単位でホッピングできないことを特徴とする、項目6に記載のPUCCH転送方法。
(項目8)
前記PUCCHが転送される周波数領域は、アップリンクシステム帯域のうち、一部の副帯域内に位置することを特徴とする、項目6に記載のPUCCH転送方法。
(項目9)
前記周波数ホッピングは、
前記副帯域内で遂行されることを特徴とする、項目8に記載のPUCCH転送方法。
(項目10)
前記周波数ホッピングは、
前記副帯域単位で遂行されることを特徴とする、項目8に記載のPUCCH転送方法。
本明細書の開示によれば、前述した従来技術の問題点が解決できる。
具体的に、本明細書の開示によれば、システム帯域全体でない一部副帯域上で動作するMTC機器がPUCCH領域を効率的に設定することができ、したがって、既存の一般UEと他のMTC機器に対するPUSCHのRB割り当てに柔軟性を増大させることができる。
無線通信システムである。 3GPP LTEにおいて、FDDによる無線フレーム(radio frame)の構造を示す。 3GPP LTEにおいて、一つのアップリンクまたはダウンリンクスロットに対するリソースグリッド(resource grid)を示す例示図である。 ダウンリンクサブフレームの構造を示す。 3GPP LTEにおいて、アップリンクサブフレームの構造を示す。 PUCCHフォーマットに従う転送領域を示す例示図である。 EPDCCHを有するサブフレームの一例である。 MTC(Machine Type communication)通信の一例を示す。 MTC機器のためのセルカバレッジ拡張の例示である。 アップリンクチャンネルの束を転送する例を示す例示図である。 セルのダウンリンクシステム帯域幅のうちの一部副帯域だけをMTC機器が使用する例を示す例示図である。 MTC機器のためにシステム帯域の両端でない、副帯域の両端にPUCCHを割り当てる例を示す。 MTC機器のためにシステム帯域の両端でない、副帯域のある一端にPUCCHを割り当てる例を示す。 PUCCHの反復水準別にPUCCH領域に対する設定をシグナリングする例を示す。 PUCCHが反復転送される場合、周波数ホッピングが適用される例を示す。 PUCCHが反復転送される場合、周波数ホッピングが適用される例を示す。 複数のMTC機器の間にアップリンク副帯域またはダウンリンク副帯域が同一な状況を示す例示図である。 本明細書の開示が具現される無線通信システムを示すブロック図である。
以下、3GPP(3rd Generation Partnership Project)LTE(long term evolution)または3GPP LTE−A(LTE−Advanced)に基づいて本発 明が適用されることを記述する。これは例示に過ぎず、本発明は、多様な無線通信システムに適用されることができる。以下、LTEとは、LTE及び/またはLTE−Aを含む。
本明細書で使われる技術的用語は、単に特定の実施例を説明するために使われたものであり、本発明を限定するものではないことに留意しなければならない。また、本明細書で使われる技術的用語は、本明細書で特別に他の意味で定義されない限り、本発明が属する技術分野において、通常の知識を有する者により一般的に理解される意味で解釈されなければならず、過度に包括的な意味または過度に縮小された意味で解釈されてはならない。また、本明細書で使われる技術的な用語が本発明の思想を正確に表現することができない技術的用語である場合、当業者が正確に理解することができる技術的用語に変えて理解しなければならない。また、本発明で使われる一般的な用語は、辞書の定義によってまたは前後の文脈によって解釈されなければならず、過度に縮小された意味で解釈されてはならない。
また、本明細書で使われる単数の表現は、文脈上、明白に異なる意味ではない限り、複数の表現を含む。本出願において、“構成される”または“有する”などの用語は、明細書上に記載された複数の構成要素、または複数のステップを必ず全部含むと解釈されてはならず、そのうち一部構成要素または一部ステップは含まないこともあり、または追加的な構成要素またはステップをさらに含むこともあると解釈されなければならない。
また、本明細書で使われる第1及び第2などのように序数を含む用語は、多様な構成要素の説明に使われることができるが、前記構成要素は、前記用語により限定されてはならない。前記用語は、一つの構成要素を他の構成要素から区別する目的としてのみ使われる。例えば、本発明の権利範囲を外れない限り、第1の構成要素は第2の構成要素と命名することができ、同様に、第2の構成要素も第1の構成要素と命名することができる。
一構成要素が他の構成要素に“連結されている”または“接続されている”と言及された場合、該当他の構成要素に直接的に連結されており、または接続されていることもあるが、中間に他の構成要素が存在することもある。それに対し、一構成要素が他の構成要素に“直接連結されている”または“直接接続されている”と言及された場合、中間に他の構成要素が存在しないと理解しなければならない。
以下、添付図面を参照して本発明による好ましい実施例を詳細に説明し、図面符号に関係なしに同じまたは類似の構成要素は同じ参照番号を付与し、これに対する重なる説明は省略する。また、本発明を説明するにあたって、関連した公知技術に対する具体的な説明が本発明の要旨を不明にすると判断される場合、その詳細な説明を省略する。また、添付図面は、本発明の思想を容易に理解することができるようにするためのものであり、添付図面により本発明の思想が制限されると解釈されてはならないことに留意しなければならない。本発明の思想は、添付図面外に全ての変更、均等物乃至代替物にまで拡張されると解釈されなければならない。
以下で使われる用語である基地局は、一般的に無線機器と通信する固定局(fixed station)を意味し、eNodeB(evolved−NodeB)、eNB(evolved− NodeB)、BTS(Base Transceiver System)、アクセスポイント(Access Poin t)等、他の用語で呼ばれることもある。
また、以下で使われる用語であるUE(User Equipment)は、固定されて もよいし、移動性を有してもよく、機器(Device)、無線機器(Wireless Devic e)、端末(Terminal)、MS(mobile station)、UT(user terminal)、SS (subscriber station)、MT(mobile terminal)等、他の用語で呼ばれることも ある。
図1は、無線通信システムである。
図1を参照して分かるように、無線通信システムは、少なくとも一つの基地局(base station、BS)20を含む。各基地局20は、特定の地理的領域(一般的にセルという)20a、20b、20cに対して通信サービスを提供する。また、セルは、複数の領域(セクターという)に分けられる。
UEは、通常的に、一つのセルに属し、UEが属するセルをサービングセル(serving cell)という。サービングセルに対して通信サービスを提供する基地局をサービング基地局(serving BS)という。無線通信システムは、セルラーシステム(cellular system)であるため、サービングセルに隣接する他のセルが存在する。サービングセルに隣接する他のセルを隣接セル(neighbor cell)という。隣接セルに対して通信サービスを提供する基地局を隣接基地局(neighbor BS)という。サービングセル及び隣接セルは、UEを基準にして相対的に決定される。
以下、ダウンリンクは、基地局20からUE10への通信を意味し、アップリンクは、UE10から基地局20への通信を意味する。ダウンリンクにおいて、送信機は基地局20の一部分であり、受信機はUE10の一部分である。アップリンクにおいて、送信機はUE10の一部分であり、受信機は基地局20の一部分である。
一方、無線通信システムは、大いに、FDD(frequency division duplex) 方式とTDD(time division duplex)方式とに分けられる。FDD方式によると、アップリンク送信とダウンリンク送信が互いに異なる周波数帯域を占めて行われる。TDD方式によると、アップリンク送信とダウンリンク送信が同じ周波数帯域を占めて互いに異なる時間に行われる。TDD方式のチャネル応答は、実質的に相互的(reciprocal)である。これは与えられた周波数領域でダウンリンクチャネル応答とアップリンクチャネル応答がほぼ同じであるということを意味する。したがって、TDDに基づく無線通信システムにおいて、ダウンリンクチャネル応答は、アップリンクチャネル応答から得られることができるという長所がある。TDD方式は、全体周波数帯域をアップリンク送信とダウンリンク送信が時分割されるため、基地局によるダウンリンク送信とUEによるアップリンク送信が同時に実行されることができない。アップリンク送信とダウンリンク送信がサブフレーム単位で区分されるTDDシステムにおいて、アップリンク送信とダウンリンク送信は、互いに異なるサブフレームで実行される。
以下、LTEシステムに対し、より詳細に説明する。
図2は、3GPP LTEにおいて、FDDによる無線フレーム(radio frame)の構造を示す。
図2に示す無線フレームは、3GPP TS 36.211 V10.4.0(2011−12)“Evolved Universal Terrestrial Radio Access (E−UTRA); Physical Channels and Modulation (Release 10)”の5節を参照することができる。
図2を参照すると、無線フレームは、10個のサブフレーム(subframe)を含み、一つのサブフレームは、2個のスロット(slot)を含む。無線フレーム内のスロットは、0から19までのスロット番号が付けられる。一つのサブフレームの送信にかかる時間を送信時間区間(Transmission Time interval:TTI)という。TTIは、データ送信のためのスケジューリング単位である。例えば、一つの無線フレームの長さは10msであり、一つのサブフレームの長さは1msであり、一つのスロットの長さは0.5msである。
無線フレームの構造は、例示に過ぎず、無線フレームに含まれるサブフレームの数またはサブフレームに含まれるスロットの数等は、多様に変更されることができる。
一方、一つのスロットは、複数のOFDM(orthogonal frequency divisi on multiplexing)シンボルを含むことができる。一つのスロットに含まれるOFDMシンボルの数は、循環前置(cyclic prefix:CP)によって変わることができる。ノーマル(normal)CPで、1スロットは7OFDMシンボルを含み、拡張(extended)CPで、1スロットは6OFDMシンボルを含む。ここで、OFDMシンボルは、3GPP LTEがダウンリンク(downlink、DL)でOFDMA(orothogonal frequency division multiple access)を使用するため、時間領域で一つのシンボル区間(symbol period)を表現するためのものに過ぎず、多重接続方式や名称に制限をおくものではない。例えば、OFDMシンボルは、SC−FDMA(single carrier−frequency division multiple access)シンボル、シンボル区間など、他の名称で呼ばれることもある。
図3は、3GPP LTEにおいて、一つのアップリンクまたはダウンリンクスロットに対するリソースグリッド(resource grid)を示す例示図である。
図3を参照すると、スロットは時間領域(time domain)で複数のOFD M(orthogonal frequency division multiplexing)シンボルを含み、周波数 領域(frequency domain)でNRB個のリソースブロック(RB)を含む。例えば、LTEシステムにおけるリソースブロック(RB)の個数、即ちNRBは6から110のうちのいずれかの一つでありうる。
リソースブロック(resource block:RB)はリソース割り当て単位で、一つのスロットで複数の副搬送波を含む。例えば、一つのスロットが時間領域で7個のOFDMシンボルを含み、リソースブロックは周波数領域で12個の副搬送波を含まれば、一つのリソースブロックは7×12個のリソースエレメント(resource element:RE)を含むことができる。
一方、一つのOFDMシンボルで副搬送波の数は128、256、512、1024、1536、及び2048のうち、一つを選定して使用することができる。
図3の3GPP LTEで一つのアップリンクスロットに対するリソースグリッドはダウンリンクスロットに対するリソースグリッドにも適用できる。
図4は、ダウンリンクサブフレームの構造を示す。
図4ではノーマルCPを仮定して例示的に一つのスロット内に7OFDMシンボルが含むものとして図示した。
DL(downlink)サブフレームは、時間領域で制御領域(control region) とデータ領域(data region)とに分けられる。制御領域は、サブフレーム内の最初のスロットの先の最大3個のOFDMシンボルを含むが、制御領域に含まれるOFDMシンボルの個数は変わることがある。制御領域にはPDCCH(Physical Downlink Control Channel)及び他の制御チャンネルが割り当てられ、データ領域にはPDSCHが割り当てられる。
3GPP LTEで物理チャンネルはデータチャンネルであるPDSCH (Physical Downlink Shared Channel)とPUSCH(Physical Uplink Shared Channel)、及び制御チャンネルであるPDCCH(Physical Downlink Control Channel)、PCFICH(Physical Control Format Indicator Channel)、PH ICH(Physical Hybrid−ARQ Indicator Channel)、及びPUCCH(Physical Uplink Control Channel)に分けられる。
図5は、3GPP LTEでアップリンクサブフレームの構造を示す。
図5を参照すると、アップリンクサブフレームは周波数領域で制御領域とデータ領域とに分けられる。制御領域にはアップリンク制御情報が転送されるためのPUCCH(Physical Uplink Control Channel)が割り当てられる。データ領域は、データ(場合によって制御情報も共に転送できる)が転送されるためのPUSCH(Physical Uplink Shared Channel)が割り当てられる。
一つのUEに対するPUCCHはサブフレームでリソースブロック対(RB pair)で割り当てられる。リソースブロック対に属するリソースブロックは、第1スロットと第2スロットの各々で互いに異なる副搬送波を占める。PUCCHに割り当てられるリソースブロック対に属するリソースブロックが占める周波数は、スロット境界(slot boundary)を基準に変更される。これをPUCCHに割り当てられるRB対がスロット境界で周波数がホッピング(frequency−hopped)されたという。
UEがアップリンク制御情報を時間によって互いに異なる副搬送波を通じて転送することによって、周波数ダイバーシティ(frequency diversity)利得を得ることができる。mはサブフレーム内でPUCCHに割り当てられたリソースブロック対の論理的な周波数領域位置を示す位置インデックスである。
PUCCH上に転送されるアップリンク制御情報にはHARQ(hybrid automatic repeat request)ACK(acknowledgement)/NACK(non−ack nowledgement)、ダウンリンクチャンネル状態を示すCQI(channel quality indicator)、アップリンク無線リソース割り当て要請であるSR(scheduling re quest)などがある。
PUSCHは転送チャンネル(transport channel)であるUL−SCHにマッピングされる。PUSCH上に転送されるアップリンクデータは、転送時間区間(TTI)の間転送されるUL−SCHのためのデータブロックである転送ブロック(transport block)でありうる。前記転送ブロックは、ユーザ情報でありうる。または、アップリンクデータは多重化された(multiplexed)データでありうる。多重化されたデータはUL−SCHのための転送ブロックと制御情報が多重化されたものでありうる。例えば、データに多重化される制御情報には、CQI、PMI(Precoding Matrix indicator)、HARQ、RI(rank indicator)などがありうる。または、アップリンクデータは制御情報だけで構成されることもできる。
図6は、PUCCHフォーマットに従う転送領域を示す例示図である。
図6を参照してPUCCHフォーマット(PUCCH format)について説明する。
PUCCHフォーマット1は、スケジューリング要請(SR;Scheduling Request)を運ぶ。この際、OOK(On−Off Keying)方式が適用できる。PUCCHフォーマット1aは一つのコードワード(codeword)に対してBPSK(Binary Phase Shift Keying)方式により変調されたACK/NACK(Acknowledgement/Non−Acknowledgement)を運ぶ。PUCCHフォーマット1bは、2個のコードワードに対してQPSK(Quadrature Phase Shift Keying)方式により変調されたACK/NACKを運ぶ。PUCCHフォーマット2は、QPSK方式により変調されたCQI(Channel Quality Indicator)を運ぶ。PUCCHフォーマット2aと2bは、CQIとACK/NACKを運ぶ。
以下の表はPUCCHフォーマットを示す。
Figure 0006880119
各PUCCHフォーマットはPUCCH領域にマッピングされて転送される。例えば、PUCCHフォーマット2/2a/2bは、端末に割り当てられた帯域の縁のリソースブロック(図6で、m=0,1)にマッピングされて転送される。混合PUCCHリソースブロック(mixed PUCCH RB)は、前記PUCCHフォーマット2/2a/2bが割り当てられるリソースブロックに前記帯域の中心方向に隣接したリソースブロック(例えば、m=2)にマッピングされて転送できる。SR、ACK/NACKが転送されるPUCCHフォーマット1/1a/1bは、m=4またはm=5のリソースブロックに配置できる。CQIが転送されるPUCCHフォーマット2/2a/2bに使用できるリソースブロックの数(N(2)RB)はブロードキャスティングされる信号を通じて端末に指示できる。
<搬送波集成>
ここに、搬送波集成(carrier aggregation:CA)システムについて説明する。
搬送波集成システムは、多数の要素搬送波(component carrier:CC)を集成することを意味する。このような搬送波集成によって、既存のセルの意味が変更された。搬送波集成によれば、セルとは、ダウンリンク要素搬送波とアップリンク要素搬送波との組み合せ、または単独のダウンリンク要素搬送波を意味することができる。
また、搬送波集成でセルは、プライマリセル(primary cell)、セコンダリーセル(secondary cell)、及びサービングセル(serving cell)に区分できる。プライマリセルはプライマリ周波数で動作するセルを意味し、UEが基地局との最初連結確立過程(initial connection establishment procedure)または連結再確立過程を遂行するセル、またはハンドオーバー過程でプライマリセルとして指示されたセルを意味する。セコンダリーセルはセコンダリー周波数で動作するセルを意味し、一旦RRC連結が確立されれば設定され、追加的な無線リソースを提供することに使われる。
前述したように、搬送波集成システムでは単一搬送波システムとは異なり、複数の要素搬送波(CC)、即ち、複数のサービングセルを支援することができる。
このような搬送波集成システムは、交差搬送波スケジューリングを支援することができる。交差搬送波スケジューリング(cross−carrier scheduling)は、特定要素搬送波を通じて転送されるPDCCHを介して他の要素搬送波を通じて転送されるPDSCHのリソース割り当て及び/又は前記特定要素搬送波と基本的にリンクされている要素搬送波の以外の他の要素搬送波を通じて転送されるPUSCHのリソース割り当てを行うことができるスケジューリング方法である。
<EPDCCH(Enhanced Physical Downlink Control Channel)>
一方、PDCCHはサブフレーム内の制御領域という限定された領域でモニタリングされ、またPDCCHの復調のためには前帯域で転送されるCRSが使われる。制御情報の種類が多様化し、制御情報の量が増加するにつれて、既存のPDCCHだけではスケジューリングの柔軟性が落ちる。また、CRS転送による負担を減らすために、EPDCCH(enhanced PDCCH)が導入されている。
図7は、EPDCCHを有するサブフレームの一例である。
サブフレームは0または一つのPDCCH領域410及び0またはその以上のEPDCCH領域420、430を含むことができる。
EPDCCH領域420、430は、無線機器がEPDCCHをモニタリングする領域である。PDCCH領域410は、サブフレームの先の最大4個のOFDMシンボル内で位置するが、EPDCCH領域420、430はPDCCH領域410の以後のOFDMシンボルで柔軟にスケジューリングできる。
無線機器に一つ以上のEPDCCH領域420、430が指定され、無線機器は指定されたEPDCCH領域420、430でEPDCCHをモニタリングすることができる。
EPDCCH領域420、430の個数/位置/サイズ、及び/又はEPDCCHをモニタリングするサブフレームに関する情報は、基地局が無線機器にRRCメッセージなどを通じて知らせることができる。
PDCCH領域410ではCRSに基づいてPDCCHを復調することができる。EPDCCH領域420、430ではEPDCCHの復調のためにCRSでないDM(demodulation) RSを定義することができる。関連したDM RSは対応するEPDCCH領域420、430で転送できる。
各EPDCCH領域420、430は、互いに異なるセルのためのスケジューリングに使用できる。例えば、EPDCCH領域420内のEPDCCHは、1次セルのためのスケジューリング情報を運び、EPDCCH領域430内のEPDCCHは2次セルのためのスケジューリング情報を運ぶことができる。
EPDCCH領域420、430でEPDCCHが多重アンテナを介して転送される時、EPDCCH領域420、430内のDM RSはEPDCCHと同一なプリコーディングが適用できる。
PDCCHが転送リソース単位でCCEを使用することと比較して、EPCCHのための転送リソース単位をECCE(Enhanced Control Channel Element)という。集合レベル(aggregation level)は、EPDCCHをモニタリングするリソース単位で定義できる。例えば、1ECCEがEPDCCHのための最小リソースという時、集合レベルL={1,2,4,8,16}のように定義できる。
以下で、EPDDCH検索空間(search space)はEPDCCH領域に対応できる。EPDCCH検索空間では一つまたはその以上の集合レベル毎に一つまたはその以上のEPDCCH候補がモニタリングできる。
<MTC(Machine Type communication)通信>
一方、以下、MTCについて説明する。
図8aは、MTC(Machine Type communication)通信の一例を示す。
MTC(Machine Type Communication)は、人間相互作用(human interaction)を伴わないMTC機器100の間に基地局200を通じての情報交換、またはMTC機器100とMTCサーバ700との間に基地局を通じての情報交換をいう。
MTCサーバ700は、MTC機器100と通信する個体(entity)である。MTCサーバ700はMTCアプリケーションを実行し、MTC機器にMTC特定サービスを提供する。
MTC機器100はMTC通信を提供する無線機器であって、固定されるか、または移動性を有することができる。
MTCを通じて提供されるサービスは既存の人が介入する通信でのサービスとは差別性を有し、追跡(Tracking)、計量(Metering)、支払い(Payment)、医療分野サービス、遠隔調整など、多様な範疇のサービスが存在する。より具体的に、MTCを通じて提供されるサービスは、計量器検針、水位測定、監視カメラの活用、自販機の在庫報告などがありうる。
MTC機器の特異性は、転送データ量が少なく、アップ/ダウンリンクデータ送受信が時たまに発生するため、このような低いデータ転送率に合せてMTC機器の単価を低めて、バッテリー消耗を減らすことが効率的である。このようなMTC機器は移動性が少ないことを特徴とし、したがって、チャンネル環境がほとんど変わらない特性を有している。
図8bは、MTC機器のためのセルカバレッジ拡張の例示である。
最近、MTC機器100のために基地局のセルカバレッジ(coverage ExtensionまたはCoverage Enhancement:CE)を拡張することを考慮しており、セルカバレッジ拡張のための多様な技法が論議されている。
ところで、セルのカバレッジが拡張される場合に、前記カバレッジ拡張地域に位置するMTC機器がアップリンクチャンネルを転送すれば、前記基地局はこれを受信することに困難性を経るようになる。
図8cは、アップリンクチャンネルの束を転送する例を示す例示図である。
図8cを参照して分かるように、カバレッジ拡張領域に位置するMTC機器100は、アップリンクチャンネル(例えば、PUCCH及び/又はPUSCH)を多数のサブフレーム(例えば、N個のサブフレーム)上で反復して転送する。このように、前記多数のサブフレーム上で反復されているアップリンクチャンネルをアップリンクチャンネルの束(bundle)という。
一方、前記基地局はアップリンクチャンネルの束を多数のサブフレーム上で受信し、束の一部または全体をデコーディングすることによって、デコーディング成功率を高めることができる。
一方、前記基地局も同様に、前記カバレッジ拡張地域に位置するMTC機器にダウンリンクチャンネル(例えば、PDCCH及び/又はPDSCH)の束を多数のサブフレーム上で転送することができる。
図9は、セルのダウンリンクシステム帯域幅のうちの一部の副帯域だけをMTC機器が使用する例を示す例示図である。
MTC機器のコスト低減(low−cost)の一つ方案に、図9に示すように、セルのダウンリンクシステム帯域幅を一定サイズ単位(例えば、1.4MHz単位、または幾つかのRB単位)の多数の副帯域(sub−band)に分けて、MTC機器が前記多数の副帯域(sub−band)のうちのいずれか一つのみでダウンリンクチャンネルを受信するようにすることができる。
同様に、セルのアップリンクシステム帯域幅を一定サイズの多数の副帯域に分けて、MTC機器が前記多数の副帯域(sub−band)のうちのいずれか一つのみでアップリンクチャンネルを転送するようにすることができる。
ところで、アップリンクチャンネルのうち、PUCCHはセルのアップリンクシステム帯域幅の全体を基準に両端で転送されるようになっている。したがって、既存の技術によれば、前記MTC機器はPUCCHを前記セルのアップリンクシステム帯域幅のうちのいずれか一つの副帯域上で転送できないという問題点がある。
<本明細書の開示>
したがって、本明細書の開示はこのような問題点を解決する方案を提示することを目的とする。
簡略に、本明細書の開示はMTC機器がセルのアップリンクシステム帯域の全体でない、一部のアップリンク帯域(即ち、副帯域)上でアップリンクチャンネルを転送することができるようにするための、前記アップリンクチャンネルのマッピング方式と転送方式などを提示する。
言い換えると、本明細書の開示はMTC機器がセルのアップリンクシステム帯域の全体でない、一部のアップリンク帯域(即ち、副帯域)上でPUCCHを転送する場合、前記PUCCH領域を設定する方案と前記PUCCHをリソースにマッピングする方案を提示する。この際、一つのMTC機器に複数の副帯域が割り当てられることができ、前記MTC機器は前記複数の副帯域のうち、いずれか一つを状況によって選択して使用することができる。前記副帯域のサイズはセル内の全てのMTC機器に同一でありうる。ダウンリンク副帯域とアップリンク副帯域がMTC機器にそれぞれ設定できる。例えば、MTC機器1はアップリンク副帯域1とダウンリンク副帯域2の割り当てを受けて、MTC機器2はアップリンク副帯域2とダウンリンク副帯域2の割り当てを受けることができる。または、複数のMTC機器が一つのダウンリンク副帯域を同一に割り当てを受けて、アップリンク副帯域は互いに異なるように割り当てを受けることができる。
一方、以下、PUCCHのマッピングはPRB単位でなされることと説明される。但し、周波数ホッピング(frequency hopping)またはアップリンク/ダウンリンク副帯域単位のホッピングを考慮する場合には、前記PRBはまたVRB(virtual RB)と再解析することができる。この際、前記VRBをまた一連の過程を通じてPRBにマッピングできる。
以下、本明細書の開示を各節に分けて説明する。
I.PUCCH領域設定
PUCCHフォーマット1/フォーマット2は、アップリンクシステム帯域幅の両端に対応するRBからマッピングされて転送される。PUCCHフォーマット3系列は、RRC段で設定した値に基づいてPRB位置が定まる。また、PUCCHはスロット単位ホッピングが適用されて、偶数スロットと奇数スロットで転送されるPRB位置が異なることがある。より詳しくは、PUCCHはシステム帯域幅を基準に互いに対称するようにマッピング(一例に、PUCCHが偶数スロットでPRB0にマッピングされれば、奇数ではシステム帯域幅−1に対応するPRBにマッピング)される。即ち、PUSCHの連続的なRB割り当てを最大化できるように、PUCCH領域(PUCCHフォーマット3を除外)が設計された。MTC機器が実質的な動作帯域としてアップリンクシステム帯域の全体でない、一部の副帯域(例えば、6個のRB)の割り当てを受けた場合、前記MTC機器のPUCCH領域を前記一部の副帯域の両端に配置する場合に、一般UEのPUSCHを連続的なRBに割り当てることに制約が生じる。また、前記MTC機器が割り当てを受けた副帯域の位置と異なる位置に副帯域の割り当てを受けた他のMTC機器のPUSCHを連続的なRBに割り当てることにも制約が生じることがある。これについて図面を参照して説明する。
図10aは、MTC機器のためにシステム帯域の両端でない、副帯域の両端にPUCCHを割り当てる例を示す。
図10aを参照して分かるように、既存UEは前記MTC機器に割り当てられた副帯域によって、PUSCHを連続的なRBに割り当てを受けることができない。
また、図10aを参照して分かるように、前記MTC機器のPUCCH領域を前記アップリンクシステム帯域の両端でない、副帯域の両端に配置する場合に、既存UEは前記MTC機器の副帯域のPUSCH領域も使用し難くなる。
PUSCHを非連続的に割り当てられたRB上で転送可能なUEとしても、システム帯域幅によって設定されたRBGに従ってMTC機器の副帯域に含まれたRBG使用に制約が生じることもある。
このような問題はセルのアップリンクシステム帯域内に複数のMTC副帯域が設定される場合にさらに加重させることができる。
このような問題を解決するためには、PUCCH領域設定をMTC機器のために再設計することによって、迂回または軽減させることができる。既存に、PUCCH領域をシステム帯域の両端に配置させる理由は、PUCCH転送時、スロット単位周波数ホッピングを遂行するためである。既存に、PUCCHは一つのスロットでシステム帯域幅の一側端RBと異なるスロットでシステム帯域幅の他側端RBを対として使用して転送される形態を帯び、このようなスロット単位ホッピングを通じてPUCCH転送時、ダイバーシティ(diversity)効果を得ることを期待することができる。しかしながら、費用低減次元でシステム帯域の全体でない一部の副帯域のみを使用するMTC機器は主に固定された場所に設置されることと期待されるので、チャンネル状態が変動無しで静的(static)であることと予測され、またシステム帯域全体でない、一部の副帯域のみで動作するので、スロット単位周波数ホッピングの効果は大きくないことと予測される。したがって、MTC機器がシステム帯域全体でない、一部の副帯域のみで動作する場合、PUCCH転送を行うことにおいて、スロット単位の周波数ホッピングを遂行しないようにすることができる。また、この場合、PUCCH領域はシステム帯域幅の両端でなく、システム帯域幅の一側端部分に配置されることを考慮することができる。このようにすれば、既存UEのPUSCHを連続的なRBに割り当てられないという問題が多少軽減できる。
図10bは、MTC機器のためにシステム帯域の両端でない、副帯域のある一端にPUCCHを割り当てる例を示す。
図10bを参照して分かるように、前記MTC機器のPUCCH領域を前記アップリンクシステム帯域の両端でない、副帯域の一側端に配置する場合に、既存UEのPUSCHを連続的なRBに割り当てることがより容易になることができる。
特に、既存UEのPUSCH領域は前記MTC機器のためのPUSCH領域と付いているので、前記MTC機器のためのPUSCH領域も前記既存UEが活用することができる余地がある。
以下、MTC機器のためのPUCCH領域を割り当てる(または、設定する)具体的な方案について説明する。
第1の方案として、システム帯域の全体でない、一部の副帯域のみを使用するMTC機器のためのPUCCH領域は、上位階層シグナルを通じて割り当て/設定できる。前記上位階層シグナルを通じての割り当て/設定は、前記MTC機器のためのPUCCH領域をアップリンクシステム帯域幅の両端に配置する方式、アップリンクシステム帯域幅の上側のみに配置する方式、アップリンクシステム帯域幅の下方のみに配置する方式を含むことができる。また、PUCCHをスロット単位で周波数ホッピングするかに対する設定を上位階層シグナルを通じてMTC機器に設定してくれることができる。但し、スロット単位の周波数ホッピングは、前記MTC機器のためのPUCCH領域が前記アップリンクシステム帯域幅の両端に配置される場合のみに可能でありうる。このように、前記PUCCH領域がアップリンクシステム帯域幅の両端に配置される場合には、前記MTC機器は別途のシグナリングがなくても前記スロット単位の周波数ホッピングを遂行することができることと仮定することができる。しかしながら、PUCCH領域がアップリンクシステム帯域幅の一側端のみに配置する場合には、前記MTC機器は別途のシグナリングがなくても、スロット単位の周波数ホッピングを遂行しないことと仮定することができる。
第2の方案として、システム帯域の全体でない、一部の副帯域のみを使用するMTC機器のためのPUCCH領域は、前記副帯域の一側端に対してのみ配置できる。この場合に、前記MTC機器のための副帯域の中間のRE、またはある一側端のREが前記アップリンクシステム帯域の中間より上に位置する場合には、前記MTC機器のためのPUCCH領域は、前記アップリンクシステム帯域幅の上側に対応する領域に配置できる。または、反対に、前記MTC機器のための副帯域の中間のRE、またはある一側端のREが前記アップリンクシステム帯域幅の中間より下に位置する場合には、前記MTC機器のためのPUCCH領域は、MTCアップリンクシステム帯域幅の下方に対応する領域に配置できる。
第3の方案として、システム帯域の全体でない、一部の副帯域のみを使用するMTC機器のためのPUCCH領域は、前記アップリンクシステム帯域幅の一側端付近のみに配置されるように設定できる。この場合に、前記MTC機器の副帯域の中間のRE、またはある一側端のREが前記アップリンクシステム帯域幅が属したRBGの中心RE、またはRE境界より上に位置する場合には、前記MTC機器のためのPUCCH領域は、前記システム帯域幅の上側に対応する領域に配置できる。または、反対に、前記MTC機器の副帯域の中間のRE、またはある一側端のREが前記アップリンクシステム帯域幅が属したRBGの中心RE、またはRE境界より下に位置する場合には、前記アップリンクシステム帯域幅の下側に対応する領域に配置できる。前記MTC機器の副帯域が複数のRBGに亘った場合には、多く亘った側のRBGを基準にPUCCH領域を前記のような方式により設定する。同一RB個数が複数のRBGに重なった場合には、RBGインデックスが小さいものを基準にPUCCH領域を設定することを考慮することができる。
前述した方案により既存UEまたは前記MTC機器の副帯域と異なる副帯域を使用する他のMTC機器に対するPUSCH RB割り当ての柔軟性を高めることができる。前記MTC機器の副帯域内にPUCCH領域を設定する方案には、前記副帯域の両端の他にも中間RB領域に前記PUCCH領域を設定することをさらに考慮することもできる。前記上位階層シグナルを通じて指示する方案に対するより具体的な例に、RRCシグナルを通じてPUCCH(または、HARQ−ACK)が転送される副帯域及び/又はPRB領域に対する候補を複数個指定することができ、またDCIを通じて最終的にPUCCH(または、HARQ−ACK)を転送する副帯域及び/又はPRB組み合せを指示することができる。前記DCIは、ダウンリンクリソース割り当て(assignment)のためのDCIでありうる。前記RRCシグナルにより指示された候補のうちのいずれか一つを指示するインディケーションは、前記DCI内にARI(AN resource indicator)形態に追加されるものであるか、またはTPCフィールドを再使用するものでありうる。この際、前記TPCフィールドの再使用は、前記MTC機器がTPCを活用した閉ループパワー制御(closed−loop power control)を遂行しない時のみに可能でありうる。
更に他の方案には、PUCCH(または、HARQ−ACK)が転送されるPRB開始位置、そして/または終了位置をオフセット形態に上位階層シグナルを通じてMTC機器に指定してくれることを考慮することができる。オフセットのより具体的な例には、一部ビットはシステム帯域幅またはMTC機器の副帯域の開始を基準にするか、または終了を基準にするかを表現することができ、残りのビットは適用するオフセット値を称するものでありうる。一方、前記PUCCHの反復回数が反復水準(repetition level)(または、CE水準)によって決定される場合に、基地局は各反復水準(または、CE水準)別に、独立的に前記オフセットを前記MTC機器にシグナリングして設定することができる。前記反復水準(または、CE水準)は反復を遂行しないものも含むことができる。例えば、反復水準(または、CE水準)が0の場合、前記PUCCHの反復は遂行できないことがある。そして、前記反復水準(または、CE水準)が1の場合には、前記PUCCHが1回反復されて、最終的に同一なPUCCHが2個のサブフレーム上で転送されることを意味することができる。そして、前記反復水準(または、CE水準)が2の場合には、同一なPUCCHが4個のサブフレーム上で反復的に転送されることを意味することができる。
一方、PUCCH領域がスロット別に同一に設定された場合には、MTC機器はPUCCH転送時にスロット単位の周波数ホッピングを遂行しないことと解析することができ、この場合に、MTC機器はPUCCH領域がスロット別に同一位置のRBに配置されることを考慮することができる。または、PUCCH領域が複数の連続的なRBを含む場合には、前記MTC機器は前記複数のRBのうち、スロット単位でホッピングを行うことを考慮することもできる。
他の一方、MTC機器が特定サブフレームまたはサブフレーム領域上のみで転送するように、前記MTC機器の副帯域または前記PUCCH領域が設定されることもできる。前記転送が許容されないか、または前記副帯域またはPUCCH領域が設定されないサブフレーム上で前記MTC機器はPUCCHなどのアップリンク物理チャンネルの全体または一部を転送しないことがある。
I.1カバレッジ拡張地域に位置したMTC機器のためのPUCCH領域設定
前述したように、カバレッジ拡張(CE)地域に位置したMTC機器は、各チャンネル別に異なる反復水準が設定できる。この際、互いに異なる反復水準にアップリンク物理チャンネルが転送されれば、基地局の立場では受信パワーが異なることがある。特に、複数のUEによりそれぞれ転送されたPUCCHのようなチャンネルは、基地局ではCDM形態に受信されるが、この際、チャンネル別に受信パワーの差が大きい場合に、具現によって基地局がチャンネルを区分できないことがある。これは、PUCCH検出性能の劣化をもたらすことがある。したがって、受信パワーが似ている水準のチャンネルのみに限ってCDMされる方式を考慮することができる。この場合に、反復水準または反復水準のセット別にPUCCH領域を区分することを考慮することができる。ここで、PUCCH領域を区分するということは、反復水準(repetition level)が異なるチャンネルの間にはFDM/TDMなどを通じて異なるPUCCH領域を有することができるようにすることと理解することができる。一例に、既存の一般的なUEに対するPUCCH領域の次に、反復水準の順にPUCCH領域をさらに設定することを考慮することができる。
より具体的に、PUCCH設定を反復水準別に独立的に遂行できる。具体的には、図11を参照して説明する。
図11は、PUCCHの反復水準別にPUCCH領域に対する設定をシグナリングする例を示す。
図11を参照して分かるように、基地局はPUCCHの反復水準別にPUCCHリソースに対する設定をMTC機器にシグナリングしてくれることができる。
すると、前記MTC機器はPUCCHの反復水準を決定し、前記反復水準によってPUCCHの反復転送回数を決定することができる。
次に、前記MTC機器は前記設定に基づいて、前記反復水準に該当するPUCCHリソースを決定する。そして、前記決定されたリソース上で、前記MTC機器は前記PUCCHを前記反復回数だけ転送する。
前記PUCCH設定は、セル−特定的に(cell−specific)設定される値を含むことを意味することができる。例えば、PUCCH設定は循環桁移動(Cyclic shift)で区分可能な個数を指定することに用いられるdeltaPUCC−shift、HARQ−ACKを含むPUCCHリソースの開始位置を指定することに使用できるn1PUCCH−AN nCS−AN、CSIを含むPUCCHリソースが含まれることができるスロット当たりPRB個数を示すnRB−CQIなどの全体または一部の組み合せを含むことができる。この際、各PUCCH領域はPUCCHリソースとPUCCH狭帯域(narrowband)に対する情報をパラメータで表現されるものでありうる。
一方、カバレッジ拡張(CE)地域に位置するMTC機器は、PUCCHの反復回数を減らすための一環としてスロット単位の周波数ホッピングをまた適用することを考慮することができる。この際、カバレッジ拡張(CE)地域に位置するMTC機器は、無線チャンネル推定性能を高めるための一環として周波数ホッピング(hopping)をスロット単位の代りに複数のサブフレームまたは複数のスロット単位で遂行することを考慮することもできる。
図12a及び図12bは、PUCCHが反復転送される場合、周波数ホッピングが適用される例を示す。
図12aを参照して分かるように、MTC機器がPUCCHをN回(例えば、8回)反復を遂行する場合に、最初のN/2サブフレーム(例えば、図示された1−4番サブフレーム)上ではMTC機器のための副帯域内で周波数インデックス(例えば、サブキャリアインデックス)が低い(高い)領域を通じて前記PUCCHが転送され、次のN/2サブフレーム(例えば、図示された5−8番サブフレーム)上では前記MTC機器のための副帯域内で周波数インデックス(例えば、サブキャリアインデックス)が高い(低い)領域を通じて前記PUCCHが転送されることを考慮することができる。更に他の方案に、既存の一般UEまたは他のMTC機器のPUSCHに対する連続的なRBの割り当てを保証するための目的として、2個の周波数領域で各PUCCHの反復が転送されるサブフレームの個数を異なるようにすることも考慮することができる。一例に、PUCCHが反復転送される回数がNとすると、N=N1+N2と仮定する。ここで、N1>N2と仮定する。N1個のサブフレーム上でPUCCHの反復が転送される周波数領域と次のN2サブフレーム上でPUCCHの反復が転送される周波数領域を異なるようにすることを考慮することができる。ここで、N1とN2は予め設定された値であるか、または上位階層シグナルによって指定される値でありうる。一方、前記PUCCHの周波数ホッピングは、前記PUCCHがN回反復される間に一回遂行されるものであるか、または複数回遂行されるものでありうる。前記周波数ホッピングを複数回遂行する例は、予めまたは上位階層シグナルによって設定されたNstepを基準にそれぞれ異なる周波数領域を通じてPUCCHの反復を転送するものでありうる。
一方、図12bを参照して分かるように、MTC機器がPUCCHをN回(例えば、8回)反復を遂行する場合に、最初のN/2サブフレーム(例えば、図示された1−4番サブフレーム)上ではMTC機器のための副帯域1を通じて前記PUCCHが転送され、次のN/2サブフレーム(例えば、図示された5−8番サブフレーム)上では前記MTC機器のための副帯域2内で前記PUCCHが転送されることを考慮することができる。
代案的に、図示してはいないが、MTC機器が第1のPUCCHをN個のサブフレーム上で反復して転送し、第2のPUCCHはM個のサブフレーム上で反復して転送する場合、前記第1のPUCCHは前記N個のサブフレーム上ではMTC機器のための副帯域1を通じて転送され、前記第2のPUCCHは前記M個のサブフレーム上ではMTC機器のための副帯域2を通じて転送されることもできる。
II.PUCCHリソースマッピング
MTC機器のダウンリンク副帯域とアップリンク副帯域とが互いにペアを組む(paired)ように設定されることもでき、各々独立的に設定されることもできる。一例に、ダウンリンクトラフィックの量がアップリンクトラフィックの量より小さな状況で、複数のMTC機器が一つのダウンリンク副帯域は共有するが、アップリンク副帯域はそれぞれ異なるように設定される場合を考慮することもできる。ここで、複数のMTC機器の間に(E)CCEインデックスが互いに異なるように指定された場合には、PUCCHリソースが区分されるようになって、PUCCHリソース使用に対する効率が落ちることもある。例えば、MTC機器1とMTC機器2は一つのダウンリンク副帯域は同一に割り当てを受けて、アップリンク副帯域は互いに異なるように割り当てを受けたと仮定する。そして、前記同一な一つのダウンリンク副帯域でMTC機器1はECCE1の割り当てを受けて、MTC機器2はECCE2の割り当てを受けたと仮定する。すると、前記MTC機器1はPUCCHリソース1の割り当てを受けるようになり、前記MTC機器2はPUCCHリソース2の割り当てを受けるようになる。しかしながら、前記MTC機器1とMTC機器2との間にアップリンク副帯域は互いに異なるので、PUCCHリソースが敢えて互いに異なるように指定される必要はないことがある。即ち、ある一つのアップリンク副帯域内にPUCCHリソースをぎゅうぎゅう押し詰めるためには、AROなどを用いてECCE2に対しても場合によってはPUCCHリソース1が割り当てられる方がよいこともある。反対に、複数のMTC機器はアップリンク副帯域を同一に割り当てを受けるが、ダウンリンク副帯域は互いに異なるように割り当てを受ける状況を考慮することもできる。ここで、前記MTC機器がPUCCHリソースマッピングを遂行する時に、前記ダウンリンク副帯域領域は互いに異なるが、アップリンク副帯域が同一であるため、PUCCHリソースが同一になる問題が発生することもある。これに対し、図13を参照して説明する。
図13は、複数のMTC機器の間にアップリンク副帯域またはダウンリンク副帯域が同一な状況を示す例示図である。
図13を参照すると、MTC機器1に対してはダウンリンク副帯域1とアップリンク副帯域1とが互いにペアを組む(paired)ように設定され、MTC機器2に対してはダウンリンク副帯域2とアップリンク副帯域1とが互いにペアを組む(paired)ように設定され、MTC機器3に対してはダウンリンク副帯域1とアップリンク副帯域2とが互いにペアを組む(paired)ように設定され、MTC機器4に対してはダウンリンク副帯域1とアップリンク副帯域2とが互いにペアを組む(paired)ように設定できる。この際、前記MTC機器のアップリンク副帯域またはダウンリンク副帯域はRRCシグナルによって指定されるか、またはDCIなどを通じて指定できる。
前記の図13に図示された例で、MTC機器1とMTC機器2を見ると、ダウンリンク副帯域は互いに異なるように割り当てを受けるが、アップリンク副帯域は互いに同一に割り当てを受けたので、PUCCHリソースが同一になる問題が発生することがある。
このような問題を解決するための方案には、基地局が任意MTC機器にダウンリンク副帯域を同一に割り当てる場合には、アップリンク副帯域も同一に割り当てることができるように、ダウンリンク副帯域とアップリンク副帯域の対を指定してくれて、これをMTC機器にシグナリングすることを考慮することができる。しかしながら、これが意の如くならないか、またはシステム帯域幅の効率良い管理のために、ダウンリンク副帯域とアップリンク副帯域の対を指定せず、各々独立的に設定する場合には、効率良くPUCCHリソース割り当てが遂行されるようにするための方案、またはダウンリンク副帯域は異なるが、CCEインデックスを同一に使用することによって発生するPUCCHリソース衝突問題を解決するための方案を考慮する必要がある。
したがって、本節では次のような方案を提示する。
第1方案として、複数のMTC機器に対し、該当アップリンク副帯域とペアが組まれたDLダウンリンク副帯域が複数の場合には、前記基地局はPDCCHを使用しない。代りに、前記基地局はダウンリンクスケジューリングをEPDCCHを介して遂行する。前記基地局は、EPDCCHのARO(ACK/NACK Resource Offset)などを通じて、前記MTC機器がそれぞれPUCCHリソースマッピングを遂行する時にPUCCHリソースが衝突することを防止することができる。前記EPDCCHに含まれたARO値の範囲はPUCCHリソース選択に対する柔軟性(flexibility)を増大するために拡張されることもできる。このような方案は、MTC機器のアップリンク副帯域とダウンリンク副帯域が一対一(one to one)にペアが組まれない場合のみに適用されるようにすることもできる。
第2方案として、基地局はPDCCH内にARO(ACK/NACK Resource Offset)を追加して転送することを考慮することができる。このようなAROは、前記MTC機器がPUCCHリソースを決定する時にCCE及び上位階層シグナルと共に使用できる。一つのアップリンク副帯域が複数のダウンリンク副帯域とマッピングされた状況で、前記基地局は該当AROの値を調節することによって、前記複数のダウンリンク副帯域の間にCCE値が同一な状況にも、PUCCHリソースが衝突されることを防止することができる。また、一つのダウンリンク副帯域が複数のアップリンク副帯域とマッピングされた状況で、前記一つのダウンリンク副帯域に対して複数のMTC機器が互いに異なるCCE値を使用する場合にも、前記方案は各MTC機器が各自のアップリンク副帯域でPUCCHリソースの活用をより柔軟に利用できるようにする。一方、このような方案は該当アップリンク副帯域とマッピングされたダウンリンク副帯域が複数個の場合のみに遂行されることもできる。または、前記基地局は前記方案の適用するか否かを決定した後、上位階層シグナルを通じて前記適用するか否かを知らせることができる。
第3方案として、システム帯域幅の全体でない、一部の副帯域を使用するMTC機器は、UEID(例えば、UE−RNTI)を追加的に考慮してPUCCHリソースを決定することができる。このような方案は、該当アップリンク副帯域とマッピングされたダウンリンク副帯域が複数個の場合のみに遂行されることもできる。または、前記基地局は前記方案の適用するか否かを決定した後、上位階層シグナルを通じて前記適用するか否かを知らせることができる。
第4方案として、システム帯域幅の全体でない、一部の副帯域を使用するMTC機器は、ダウンリンク副帯域/アップリンク副帯域に対する情報をさらに考慮してPUCCHリソースを決定することができる。より具体的に、前記ダウンリンク副帯域はUSS(UE−specific Search Space)内の(E)PDCCHが転送される領域であるか、またはPDSCHが転送される領域でありうる。一例に、ダウンリンク副帯域/アップリンク副帯域のインデックスが全体システム帯域幅を基準に与えられた状態であれば、前記MTC機器は該当インデックスをPUCCHリソース決定時に用いることができる。このような方案は該当アップリンク副帯域とマッピングされたダウンリンク副帯域が複数個の場合のみに遂行されることもできる。または、前記基地局は前記方案の適用するか否かを決定した後、上位階層シグナルを通じて前記適用するか否かを知らせることができる。
一方、AROなどのインディケーションフィールドは、MTC機器のために新しく追加されるものであるか、または既存のTPCフィールドが再使用されるものでありうる。TPCフィールドの再使用は、MTC機器がTPCフィールドを用いた閉ループ電力制御(closed loop power control)動作を遂行しない場合のみに遂行できる。PUCCHリソースの決定は、同一なPRB内で循環桁移動(cyclic shift)とOCC(orthogonal cover code)を通じて区分されることを称することもでき、他のPRBを指示するものでありうる。
前記羅列した方案は、カバレッジ拡張地域に位置したMTC機器がアップリンクチャンネルまたはダウンリンクチャンネルの反復的な転送を遂行する時に適用できる。
II−2.カバレッジ拡張地域に位置したMTC機器のPUCCHリソースマッピング
一方、前記カバレッジ拡張地域に位置したMTC機器は(E)PDCCHを複数のサブフレーム上で反復的に転送することもできる。この際、各サブフレーム上で転送される(E)PDCCH内で(E)CCEに対する値も変化されることもできる。前記サブフレーム別に変化する(E)CCE値はブラインド復号(blind decoding)の負担を軽減させるために予め設定されたパターンに変化できる。この場合に、物理チャンネルなどの反復水準が互いに異なれば、前記物理チャンネルの開始地点(サブフレーム開始位置)は互いに同一であっても、前記物理チャンネルの終了地点は互いに異なることがある。反対に、前記物理チャンネルの終了地点は互いに同一であるが、前記物理チャンネルの開始地点は互いに異なることがある。仮に、第1反復水準の第1のPDCCHの転送が始まるサブフレームと第2反復水準の第2のPDCCHの転送が始まるサブフレームの位置は異なるが、前記転送開始サブフレーム内でのCCEが同一な場合に、PUCCHリソースは前記同一なCCEに基づいて決定されるので、互いに衝突が発生することがある。これを防止するための方案に、(E)PDCCHが反復転送される場合、前記(E)PDCCHの転送の最後のサブフレームの(E)CCEを基準に、PUCCHリソースが決定されるようにすることもできる。これとは別に、または追加的に、前記PUCCHリソースを決定するための第3のパラメータを導入することを考慮することができ、次は該当内容に対するより具体的な一例である。
第1方案として、カバレッジ拡張(CE)に位置するMTC機器に対し、前記基地局はPDCCHを使用しないことがある。代りに、前記基地局はダウンリンクスケジューリングをEPDCCHを介して遂行する。前記基地局は、EPDCCHのARO(ACK/NACK Resource Offset)などを通じて、前記MTC機器がそれぞれPUCCHリソースマッピングを遂行する時にPUCCHリソースが衝突することを防止することができる。前記EPDCCHに含まれたARO値の範囲はPUCCHリソース選択に対する柔軟性(flexibility)を増大するために拡張されることもできる。
第2方案として、基地局はPDCCH内にARO(ACK/NACK Resource Offset)を追加して転送することを考慮することができる。このようなAROは、前記MTC機器がPUCCHリソースを決定する時にCCE及び上位階層シグナルと共に使用できる。前記基地局は、該当AROの値を調節することによって、反復水準が互いに異なるチャンネルの間に初期CCE値が互いに同一であっても、PUCCHリソースが衝突されることを防止することができる。このような方案の適用するか否かに対して前記基地局は上位階層シグナルを通じてMTC機器に知らせることができる。
第3方案として、カバレッジ拡張地域に位置するMTC機器は、UEID(例えば、UE−RNTI)を追加的に考慮してPUCCHリソースを決定することができる。このような方案の適用するか否かに対して前記基地局は上位階層シグナルを通じてMTC機器に知らせることができる。
第4方案として、カバレッジ拡張地域に位置するMTC機器は、反復水準に対する情報をさらに考慮して、PUCCHリソースを決定することができる。このような方案の適用するか否かに対して前記基地局は上位階層シグナルを通じてMTC機器に知らせることができる。
第5方案として、カバレッジ拡張地域に位置するMTC機器は(E)PDCCH転送の開始時点または終了時点をさらに考慮して、PUCCHリソースを決定することができる。前記開始/終了時点はサブフレームインデックス形態に表現されることもでき、SC−FDMAシンボルインデックスやスロットインデックスで表現されることもできる。
前記方案のうちの一部または全体は組み合せられることもできる。一例に、MTC機器はAROと共に反復水準をさらに考慮して、PUCCHリソースを決定することができる。前記AROのような指示フィールドは、MTC機器のためにPDCCH内に新しく追加されることもでき、既存TPCフィールドを再使用するものでありうる。TPCフィールドの再使用はMTC機器がTPCフィールドを用いた閉ループ電力制御(closed loop power control)動作を遂行しない場合のみに遂行できる。PUCCHリソースの決定は同一なPRB内で循環桁移動(cyclic shift)とOCC(orthogonal cover code)を通じて区分されることを称することもでき、他のPRBを指示するものでありうる。より具体的な例として、MTC機器がPUCCHリソースまたはPUCCHが転送されるRB位置を決定することにダウンリンク副帯域が使われるようにすることができる。前記MTC機器は、USSのモニタリングを遂行するダウンリンク副帯域またはPDSCHが受信されるダウンリンク副帯域によって、HARQ−ACKを含むPUCCHを転送する領域を決定することができる。
今まで説明した、本発明の実施形態は多様な手段を通じて具現できる。例えば、本発明の実施形態は、ハードウェア、ファームウエア(firmware)、ソフトウェア、またはそれらの結合などにより具現できる。具体的には、図面を参照して説明する。
図14は、本明細書の開示が具現される無線通信システムを示すブロック図である。
基地局200は、プロセッサ(processor)201、メモリ(memory)202、及びRF部(RF(radio frequency)unit)203を含む。メモリ202はプロセッサ210と連結されて、プロセッサ210を駆動するための多様な情報を格納する。RF部203はプロセッサ210と連結されて、無線信号を送信及び/又は受信する。プロセッサ210は、提案された機能、過程、及び/又は方法を具現する。前述した実施例で基地局の動作はプロセッサ210により具現できる。
MTC機器100は、プロセッサ101、メモリ102、及びRF部103を含む。メモリ102はプロセッサ101と連結されて、プロセッサ101を駆動するための多様な情報を格納する。RF部103はプロセッサ101と連結されて、無線信号を送信及び/又は受信する。プロセッサ101は、提案された機能、過程、及び/又は方法を具現する。
プロセッサは、ASIC(application−specific integrated circuit)、他の チップセット、論理回路及び/又はデータ処理装置を含むことができる。メモリは、ROM(read−only memory)、RAM( そして、rom access memory)、フラッシュメモリ、メモリカード、格納媒体、及び/又は他の格納装置を含むことができる。RF部は、無線信号を処理するためのベースバンド回路を含むことができる。実施形態がソフトウェアで具現される時、前述した技法は前述した機能を遂行するモジュール(過程、機能など)で具現できる。モジュールはメモリに格納され、プロセッサにより実行できる。メモリはプロセッサの内部または外部にあることができ、よく知られた多様な手段によりプロセッサと連結できる。
前述した例示的なシステムにおいて、方法は一連のステップまたはブロックで順序図に基づいて説明されているが、本発明はステップの順序に限定されるものではなく、あるステップは前述したことと異なるステップと異なる順に、または同時に発生することができる。また、当業者であれば、順序図に示したステップが排他的でなく、異なるステップが含まれるか、または順序図の一つまたはその以上のステップが本発明の範囲に影響を及ぼさないで削除できることを理解することができる。

Claims (13)

  1. PUCCH(physical uplink control channel)信号を転送する方法であって、前記方法は、LTE(long term evolution)またはLTE−A(LTE−advanced)ベースのセルに対するカバレッジ拡張を支援する無線機器によって遂行され、
    第1の複数個のサブフレームおよび第2の複数個のサブフレームを含む複数個のサブフレームにわたって反復される前記PUCCH信号を転送することと、
    第1の周波数領域から第2の周波数領域への周波数ホッピングを遂行することと
    を含み、
    前記第1の複数個のサブフレームにわたって反復される前記PUCCH信号は、前記第1の周波数領域において転送され、
    前記第2の複数個のサブフレームにわたって反復される前記PUCCH信号は、前記第2の周波数領域において転送され、
    前記第1の周波数領域および前記第2の周波数領域は、6個のPRB(physical resource block)の副帯域に含まれる、方法。
  2. 前記無線機器は、アップリンクシステム帯域幅内の前記6個のPRBの前記副帯域内で動作するように構成される、請求項1に記載の方法。
  3. 前記周波数ホッピングは、前記副帯域内または前記副帯域の単位で遂行される、請求項に記載の方法。
  4. 反復水準に従って前記PUCCH信号の反復回数を決定することをさらに含む、請求項1に記載の方法。
  5. 前記PUCCH信号は、セルのカバレッジ拡張に位置している前記無線機器に対して反復される、請求項1に記載の方法。
  6. PUCCHリソースに対する構成を受信することであって、前記PUCCHリソースに対する前記構成は、PUCCHの反復水準に従って指定される、ことと、
    前記構成に基づいて対応するPUCCHリソースを決定することと
    をさらに含む、請求項1に記載の方法。
  7. 前記PUCCHリソースに対する前記構成は、セル特定値を含む、請求項6に記載の方法。
  8. 前記セル特定値は、
    循環桁移動で区分可能な前記PUCCH信号の個数を指定するパラメータと、HARQ−ACK(hybrid automatic repeat request−acknowledgement)を含む前記PUCCHリソースの開始位置を指定するパラメータと、前記PUCCHリソースがCSI(channel state information)を含むスロット当たりのPRB(physical resource block)の個数を指定するパラメータとのうちの少なくとも1つを含む、請求項7に記載の方法。
  9. PUCCH(physical uplink control channel)信号を転送する無線機器であって、前記無線機器は、LTE(long term evolution)またはLTE−A(LTE−advanced)ベースのセルに対するカバレッジ拡張を支援し、
    送受信器と、
    前記送受信器に動作可能に接続されたプロセッサと
    を含み、
    前記プロセッサは、
    第1の複数個のサブフレームおよび第2の複数個のサブフレームを含む複数個のサブフレームにわたって反復される前記PUCCH信号を転送することと、
    第1の周波数領域から第2の周波数領域への周波数ホッピングを遂行することと
    を実行するように構成され、
    前記第1の複数個のサブフレームにわたって反復される前記PUCCH信号は、前記第1の周波数領域において転送され、
    前記第2の複数個のサブフレームにわたって反復される前記PUCCH信号は、前記第2の周波数領域において転送され、
    前記第1の周波数領域および前記第2の周波数領域は、6個のPRB(physical resource block)の副帯域に含まれる、無線機器。
  10. 前記無線機器は、アップリンクシステム帯域幅内の前記6個のPRBの前記副帯域内で動作するように構成される、請求項9に記載の無線機器。
  11. 前記周波数ホッピングは、前記副帯域内または前記副帯域の単位で遂行される、請求項に記載の無線機器。
  12. 前記プロセッサは、反復水準に従って前記PUCCH信号の反復回数を決定するようにさらに構成される、請求項9に記載の無線機器。
  13. 前記PUCCH信号は、セルのカバレッジ拡張に位置している前記無線機器に対して反復される、請求項9に記載の無線機器。
JP2019135163A 2014-10-30 2019-07-23 Mtc機器のpucch転送方法 Active JP6880119B2 (ja)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
US201462072445P 2014-10-30 2014-10-30
US62/072,445 2014-10-30
US201562107519P 2015-01-26 2015-01-26
US62/107,519 2015-01-26
US201562148744P 2015-04-17 2015-04-17
US62/148,744 2015-04-17
US201562164005P 2015-05-20 2015-05-20
US62/164,005 2015-05-20

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2017513405A Division JP2017534193A (ja) 2014-10-30 2015-10-21 Mtc機器のpucch転送方法

Publications (2)

Publication Number Publication Date
JP2020005265A JP2020005265A (ja) 2020-01-09
JP6880119B2 true JP6880119B2 (ja) 2021-06-02

Family

ID=55858486

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2017513405A Pending JP2017534193A (ja) 2014-10-30 2015-10-21 Mtc機器のpucch転送方法
JP2019135163A Active JP6880119B2 (ja) 2014-10-30 2019-07-23 Mtc機器のpucch転送方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2017513405A Pending JP2017534193A (ja) 2014-10-30 2015-10-21 Mtc機器のpucch転送方法

Country Status (6)

Country Link
US (2) US10231220B2 (ja)
EP (2) EP3214793B1 (ja)
JP (2) JP2017534193A (ja)
KR (1) KR102134877B1 (ja)
CN (1) CN107113137B (ja)
WO (1) WO2016068542A2 (ja)

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10129000B2 (en) * 2014-03-07 2018-11-13 Lg Electronics Inc. Method and terminal for transmitting uplink control channel in wireless communication system
WO2016068542A2 (ko) 2014-10-30 2016-05-06 엘지전자 주식회사 Mtc 기기의 pucch 전송 방법
US10516517B2 (en) 2015-01-29 2019-12-24 Intel IP Corporation System and methods for support of frequency hopping for UEs with reduced bandwidth support
US11637593B2 (en) * 2015-07-09 2023-04-25 Qualcomm Incorporated Machine type communication (MTC) configuration, interference management, and retuning time for uplink transmissions
WO2017075833A1 (zh) * 2015-11-06 2017-05-11 华为技术有限公司 信息传输的方法、终端和基站
US10492181B2 (en) * 2016-01-20 2019-11-26 Qualcomm Incorporated Communication of uplink control information
US10314037B2 (en) 2016-07-08 2019-06-04 Qualcomm Incorporated Latency reduction techniques in wireless communications
KR20190058628A (ko) 2016-11-03 2019-05-29 텔레폰악티에볼라겟엘엠에릭슨(펍) 업링크 전송 대역폭 제어 및 지원
JP6976337B2 (ja) 2017-01-07 2021-12-08 エルジー エレクトロニクス インコーポレイティドLg Electronics Inc. 無線通信システムにおける端末のアップリンク制御チャネル送信方法及び前記方法を利用する通信装置
US10070393B2 (en) * 2017-01-30 2018-09-04 Blackberry Limited Control of uplink data transmission
US10511415B2 (en) * 2017-03-13 2019-12-17 Qualcomm Incorporated Uplink ACK resource allocation in new radio
JP6974430B2 (ja) 2017-03-21 2021-12-01 エルジー エレクトロニクス インコーポレイティドLg Electronics Inc. 無線通信システムにおける端末と基地局の間の物理上りリンク制御チャネルの送受信方法及びそれをサポートする装置
CN108633021B (zh) * 2017-03-23 2024-01-19 华为技术有限公司 一种上行控制信道的资源映射方法及装置
KR102288629B1 (ko) * 2017-05-04 2021-08-11 삼성전자 주식회사 무선 통신 시스템에서 상향 제어 채널 전송 방법 및 장치
US20200053759A1 (en) * 2017-05-10 2020-02-13 Telefonaktiebolaget Lm Ericsson (Publ) Scheduling of transmissions in radio access networks
CN109392113B (zh) * 2017-08-09 2022-09-02 华为技术有限公司 一种接收控制信息、发送控制信息的方法及设备
KR102662410B1 (ko) 2017-08-11 2024-05-03 주식회사 윌러스표준기술연구소 무선 통신 시스템에서 상향링크 제어채널의 송수신 방법, 장치, 및 시스템
CN109672511B (zh) * 2017-10-13 2020-11-10 维沃移动通信有限公司 发送pucch的方法和用户终端
CN111770578B (zh) * 2017-11-17 2021-09-17 Oppo广东移动通信有限公司 资源确定方法、装置及计算机可读存储介质
WO2019157685A1 (zh) 2018-02-13 2019-08-22 华为技术有限公司 一种物理上行共享信道pusch传输方法及装置
US10771198B2 (en) 2018-05-17 2020-09-08 At&T Intellectual Property I, L.P. Adaptive repetition in wireless communication systems
CN110691412B (zh) 2018-07-04 2021-11-16 维沃移动通信有限公司 Pucch冲突的处理方法和终端
CN110719628B (zh) * 2018-07-11 2021-11-23 维沃移动通信有限公司 传输方法、终端设备及网络设备
KR102212867B1 (ko) * 2018-07-12 2021-02-09 한양대학교 산학협력단 제어정보 수신 장치 및 방법, 신호 측정 장치 그리고 위치 측정 서버 및 방법
US12101626B2 (en) 2018-07-12 2024-09-24 Iucf-Hyu (Industry-University Cooperation Foundation Hanyang University) Control information reception device and method, signal measurement devices, and location measurement server and method
KR102269658B1 (ko) 2018-07-30 2021-06-28 한양대학교 산학협력단 기지국 및 신호 전송 설정 방법, 그리고 신호측정기 및 그 방법
CN118474877A (zh) 2018-07-30 2024-08-09 汉阳大学校产学协力团 基站和信号发送配置方法,以及信号测量装置及其方法
CN114024654B (zh) * 2018-08-08 2023-09-26 北京小米移动软件有限公司 混合自动重传请求harq反馈方法及装置
WO2020087289A1 (zh) 2018-10-30 2020-05-07 Oppo广东移动通信有限公司 一种资源配置方法、网络设备及终端设备
CN109565661B (zh) * 2018-10-30 2022-01-11 北京小米移动软件有限公司 数据传输方法、装置及可读存储介质
CN109618309B (zh) * 2019-01-11 2021-09-28 东南大学 一种基于时隙复用的机器通信随机接入方法
CN110312315A (zh) * 2019-04-19 2019-10-08 展讯通信(上海)有限公司 一种信息传输方法及装置
US11832283B2 (en) * 2019-07-25 2023-11-28 Qualcomm Incorporated Details of physical uplink control channel (PUCCH) repetition with different beams
WO2021142802A1 (zh) * 2020-01-17 2021-07-22 华为技术有限公司 一种上行控制信息的传输方法及装置
EP4224965A3 (en) * 2020-02-21 2023-08-23 CommScope Technologies LLC Spectrum-efficient utilization of an uplink control channel
CN115516952A (zh) * 2020-04-21 2022-12-23 高通股份有限公司 用于室内覆盖空洞的物理上行链路控制信道增强
EP4231573A4 (en) * 2020-10-15 2024-09-11 Lg Electronics Inc PUCCH TRANSFER TO IMPROVE COVERAGE
EP4231556A1 (en) * 2020-10-15 2023-08-23 LG Electronics Inc. Partial pucch transmission method and device using same
KR20230088735A (ko) * 2020-10-22 2023-06-20 엘지전자 주식회사 무선 통신 시스템에서 물리 상향링크 제어 채널의 송수신 방법 및 그 장치
WO2024167341A1 (ko) * 2023-02-10 2024-08-15 엘지전자 주식회사 무선 통신 시스템에서 pucch 반복 전송의 시작 심볼을 설정하기 위한 장치 및 방법

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101306728B1 (ko) * 2006-09-29 2013-09-10 엘지전자 주식회사 상향링크 제어채널에 대한 자원 할당 방법
CN102187726B (zh) * 2008-10-20 2014-07-23 交互数字专利控股公司 载波聚合
EP3490320B1 (en) * 2011-09-30 2023-08-23 InterDigital Patent Holdings, Inc. Device communication using a reduced channel bandwidth
US9131468B2 (en) * 2011-11-08 2015-09-08 Industrial Technology Research Institute Method of handling resource allocation for MTC and related communication device
CN102624489B (zh) * 2012-03-20 2015-05-27 电信科学技术研究院 一种增强的控制信道传输的方法、装置及系统
EP4216646A1 (en) 2012-08-02 2023-07-26 Sun Patent Trust Wireless communication terminal, base station device, resource allocation method
EP3474579B1 (en) * 2012-10-05 2020-12-09 InterDigital Patent Holdings, Inc. Method and apparatus for enhancing coverage of machine type communication (mtc) devices
US10306594B2 (en) * 2012-10-30 2019-05-28 Qualcomm Incorporated Uplink coverage enhancements
KR102257996B1 (ko) * 2014-06-23 2021-05-28 삼성전자주식회사 무선 통신 시스템에서 기계형태통신을 지원하는 방법 및 장치
MY191807A (en) * 2014-06-24 2022-07-16 Sun Patent Trust Terminal, base station, transmission method, and reception method
WO2016004634A1 (en) * 2014-07-11 2016-01-14 Mediatek Singapore Pte. Ltd. Method for enb, ue uplink transmission and reception
CN106664167B (zh) * 2014-07-29 2020-02-21 松下电器(美国)知识产权公司 用于在无线通信系统中接收和发送数据的装置和方法
WO2016025899A1 (en) * 2014-08-15 2016-02-18 Interdigital Patent Holding, Inc. Supporting random access and paging procedures for reduced capability wtrus in an lte system
CA2953323A1 (en) * 2014-08-28 2016-03-03 Sony Corporation Communication control device, communication control method, and program
WO2016068542A2 (ko) * 2014-10-30 2016-05-06 엘지전자 주식회사 Mtc 기기의 pucch 전송 방법
US9929902B2 (en) * 2015-01-30 2018-03-27 Telefonaktiebolaget Lm Ericsson (Publ) Wireless communication system with single-subband user equipment
US9860030B2 (en) * 2015-03-26 2018-01-02 Samsung Electronics Co., Ltd. Transmission of system information for low cost user equipment
US10608696B2 (en) * 2015-03-31 2020-03-31 Lg Electronics Inc. Method and apparatus for performing frequency hopping for MTC UE in wireless communication system
EP3281321A1 (en) * 2015-04-08 2018-02-14 Interdigital Patent Holdings, Inc. Method and device of multi-subband based transmission for a wireless transmit/receive unit (wtru) with reduced capability and coverage enhancement
WO2016182320A1 (en) * 2015-05-10 2016-11-17 Lg Electronics Inc. Method and apparatus for adapting repetition level for uplink transmission in wireless communication system
US11637593B2 (en) * 2015-07-09 2023-04-25 Qualcomm Incorporated Machine type communication (MTC) configuration, interference management, and retuning time for uplink transmissions

Also Published As

Publication number Publication date
KR20170078591A (ko) 2017-07-07
US20170245265A1 (en) 2017-08-24
US20190159200A1 (en) 2019-05-23
JP2017534193A (ja) 2017-11-16
CN107113137B (zh) 2020-09-29
US10863488B2 (en) 2020-12-08
WO2016068542A3 (ko) 2016-06-23
CN107113137A (zh) 2017-08-29
EP3214793A4 (en) 2018-05-30
EP3525384B1 (en) 2021-03-24
EP3214793B1 (en) 2019-06-26
WO2016068542A2 (ko) 2016-05-06
US10231220B2 (en) 2019-03-12
EP3214793A2 (en) 2017-09-06
EP3525384A1 (en) 2019-08-14
KR102134877B1 (ko) 2020-08-26
JP2020005265A (ja) 2020-01-09

Similar Documents

Publication Publication Date Title
JP6880119B2 (ja) Mtc機器のpucch転送方法
US10856321B2 (en) Method and wireless device for receiving PDSCH
US10455565B2 (en) Method and MTC device for receiving downlink control channel
JP6676070B2 (ja) データチャネルを送受信する方法及びlc機器
US10285191B2 (en) Method for transmitting uplink channel and wireless device requiring coverage enhancement
EP2901598B1 (en) Methods and nodes in a wireless communication system
US20200169373A1 (en) Method and apparatus for transmitting uplink control information (uci) in wireless communication system
US11012216B2 (en) One-segment PUCCH formats
US20190029012A1 (en) Uplink control information transmission method and apparatus
CN107996022B (zh) 用于接收下行链路控制信道的无线装置及方法
WO2012118334A2 (ko) 무선 통신 시스템에서 상향링크 harq 수행 방법 및 장치
CN103597766A (zh) 用于在多节点系统中传输信道状态信息的方法和装置
WO2016041570A1 (en) Downlink control channel for single carrier transmission
US20180152271A1 (en) Wireless device and method for uplink transmission using orthogonal spreading code
US20170359805A1 (en) Mtc device operating in only partial band of system band of cell and downlink control channel reception
EP2830255B1 (en) Method of blind decoding of control channel for a wireless communication system
US20190386789A1 (en) A Wireless Device, a Network Node and Methods Therein for Handling Transmissions in a Wireless Communications Network

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200915

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210408

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210430

R150 Certificate of patent or registration of utility model

Ref document number: 6880119

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250