JP6875415B2 - コンピュータ断層撮影ボリュームからの投影画像を再構成するためのシステムおよび方法 - Google Patents

コンピュータ断層撮影ボリュームからの投影画像を再構成するためのシステムおよび方法 Download PDF

Info

Publication number
JP6875415B2
JP6875415B2 JP2018550440A JP2018550440A JP6875415B2 JP 6875415 B2 JP6875415 B2 JP 6875415B2 JP 2018550440 A JP2018550440 A JP 2018550440A JP 2018550440 A JP2018550440 A JP 2018550440A JP 6875415 B2 JP6875415 B2 JP 6875415B2
Authority
JP
Japan
Prior art keywords
measurement data
view direction
imaging system
volume
volume dataset
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018550440A
Other languages
English (en)
Other versions
JP2019516083A5 (ja
JP2019516083A (ja
Inventor
マイケル・エイチ・シュミット
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Leidos Security Detection and Automation Inc
Original Assignee
L3 Communications Security and Detection Systems Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by L3 Communications Security and Detection Systems Inc filed Critical L3 Communications Security and Detection Systems Inc
Publication of JP2019516083A publication Critical patent/JP2019516083A/ja
Publication of JP2019516083A5 publication Critical patent/JP2019516083A5/ja
Application granted granted Critical
Publication of JP6875415B2 publication Critical patent/JP6875415B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T11/002D [Two Dimensional] image generation
    • G06T11/003Reconstruction from projections, e.g. tomography
    • G06T11/008Specific post-processing after tomographic reconstruction, e.g. voxelisation, metal artifact correction
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T11/002D [Two Dimensional] image generation
    • G06T11/003Reconstruction from projections, e.g. tomography
    • G06T11/006Inverse problem, transformation from projection-space into object-space, e.g. transform methods, back-projection, algebraic methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0012Biomedical image inspection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10072Tomographic images
    • G06T2207/10081Computed x-ray tomography [CT]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10116X-ray image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2211/00Image generation
    • G06T2211/40Computed tomography
    • G06T2211/424Iterative
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2211/00Image generation
    • G06T2211/40Computed tomography
    • G06T2211/428Real-time

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Physics (AREA)
  • Pure & Applied Mathematics (AREA)
  • Algebra (AREA)
  • Medical Informatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Quality & Reliability (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Description

関連出願
本出願は、その内容全体が参照により本明細書に組み込まれる、2016年3月25日に出願した米国特許出願第15/080,741号に対する優先権を主張するものである。
X線またはガンマ線のような透過性放射線を組み込んだ画像化技術は、医用画像および貨物検査のように多様な応用例において広範囲な用途を見出している。X線画像化技術は、画像化される物体に放射線のビームを向け、物体を通って受け取られるX線の強度を測定することを伴う。X線ビームの減衰は、質量密度または実効原子番号のような物体の材料特性に依存する。物体を通る経路の範囲にわたってそのような減衰データを取得することによって、物体の3次元画像または投影2次元画像を再構成することができる。
セキュリティ応用例では、3次元ボリューム画像または2次元投影画像は、手荷物または貨物内に隠された疑わしいまたは危険な物体、たとえば、密輸品を検出するために使用することができる。
Y. Yeら、「Minimum detection windows, PI-line existence and uniqueness for helical cone-beam scanning of variable pitch」、Medical physics 31.3(2004年):566〜572頁
最小限のアーティファクトでコンピュータ断層撮影(CT:computed tomography)ボリュームからの高解像度2次元投影画像の再構成を可能にするデバイス、非一時的コンピュータ可読媒体、および方法が本明細書で教示される。本明細書で教示されるデバイス、非一時的コンピュータ可読媒体、および方法は、最小限のアーティファクトで複数のビュー方向に沿った高解像度投影画像の再構成を、それらのビュー方向に沿った追加の測定データの取得を必要とすることなく可能にする。
本明細書で教示されるいくつかの実施形態では、物体の再構成投影画像を生成する方法が開示される。例示的な方法は、少なくとも1つの処理ユニットを使用して、X線と物体の少なくとも一部との相互作用を表す測定データを受信するステップと、第1のボクセル寸法を有する複数のボクセルを有する第1のボリュームデータセットを受信するステップとを含む。例示的な方法は、少なくとも1つの処理ユニットを使用して、物体の一部の投影画像のビュー方向と実質的に平行なX線から得られたデータに対応する測定データのサブセットを選択するステップと、少なくとも1つの処理ユニットを使用して、第2のボクセル寸法を有する複数のボクセルを有する再構成された第2のボリュームデータセットを、第1のボリュームデータセットと測定データの選択されたサブセットとを使用して計算するステップとをさらに含む。再構成された第2のボリュームデータセットからビュー方向に沿った物体の一部の投影画像を生成するために、グラフィックユニットが使用される。
本明細書で教示されるいくつかの実施形態では、X線源と、検出器アレイと、メモリと、プログラム可能な処理ユニットとを含む例示的な画像化システムが開示される。X線源は、物体の少なくとも一部にX線放射線のビームを照射する。検出器アレイは、X線と物体の少なくとも一部との相互作用を示す測定データを検出する。メモリは、直接再構成技術、反復再構成技術、またはその両方のためのプロセッサ実行可能命令を記憶する。プログラム可能な処理ユニットは、中央処理ユニットを有し、メモリに通信可能に結合される。プロセッサ実行可能命令が実行されると、プログラム可能な処理ユニットは、検出器アレイからの測定データを受信するように動作する。プログラム可能な処理ユニットは、第1のボクセル寸法を有する複数のボクセルを有する第1のボリュームデータセットを受信するようにも動作する。プログラム可能な処理ユニットは、物体の一部の投影画像のビュー方向と実質的に平行なX線から得られたデータに対応する測定データのサブセットを選択するようにさらに動作する。プログラム可能な処理ユニットは、第1のボリュームデータセットと測定データの選択されたサブセットとを使用して、第2のボクセル寸法を有する複数のボクセルを有する再構成された第2のボリュームデータセットを計算するようにさらに動作する。プログラム可能な処理ユニットは、再構成された第2のボリュームデータセットからビュー方向に沿った物体の一部の投影画像をグラフィックユニットに生成させるようにさらに動作する。
いくつかの実施形態において本明細書では、中央処理ユニットを有する処理デバイスによって実行可能な命令を記憶する1つまたは複数の非一時的機械可読媒体が開示される。命令の実行は、物体の再構成された投影画像を生成するための方法を少なくとも1つの処理デバイスに実行させる。1つまたは複数の機械可読媒体は、X線と物体の少なくとも一部との相互作用を表す測定データを受信し、第1のボクセル寸法を有する複数のボクセルを有する第1のボリュームデータセットを受信するための命令を含む。1つまたは複数の機械可読媒体は、物体の一部の投影画像のビュー方向と実質的に平行なX線から得られたデータに対応する測定データのサブセットを選択し、第1のボリュームデータセットと測定データの選択されたサブセットとを使用して、第2のボクセル寸法を有する複数のボクセルを有する再構成された第2のボリュームデータセットを計算するための命令も含む。1つまたは複数の機械可読媒体は、グラフィックユニットを使用して、再構成された第2のボリュームデータセットからビュー方向に沿った物体の一部の投影画像を生成するための命令も含む。
当業者は、図面が、主に説明の目的のためのものであり、本明細書で説明される主題の範囲を限定することを意図してないことを理解するであろう。図面は、必ずしも一定の縮尺ではなく、いくつかの例では、本明細書で開示される主題の様々な態様は、異なる特徴の理解を容易にするために、図面中で誇張されるかまたは拡大されて示されている場合がある。図面において、同様の参照符号は、一般に同様の特徴(たとえば、機能的に類似または構造的に類似の要素)を指す。
本開示によって提供される前述のおよび他の特徴および利点は、添付図面と共に読まれた場合、例示的な実施形態の以下の説明からより完全に理解されるであろう。
本開示の実施形態による例示的な画像化システムを示す図である。 本開示の実施形態による、再構成ジオメトリの例示的な3次元表現を示す図である。 本開示の実施形態による、再構成ジオメトリの例示的な2次元表現を示す図である。 本開示の実施形態による、再構成ジオメトリの例示的な3次元表現を表す図である。 本開示の実施形態による、再構成ジオメトリの例示的な3次元表現を表す図である。 本開示の様々な実施形態による、再構成ジオメトリの例示的な3次元表現を表す図である。 本開示のいくつかの実施形態による例示的な画像再構成方法論のフローチャートである。 本開示のいくつかの実施形態による例示的な画像再構成方法論のフローチャートである。 従来の方法を使用して生成された2mmのピクセル寸法を有する試験片の再構成された投影画像を示す図である。 本発明の様々な実施形態による、1mmのピクセル寸法でより高解像度において再サンプリングされた試験片の再構成された投影画像を示す図である。 本発明の様々な実施形態による、1mmのピクセル寸法でより高解像度において再サンプリングされ、投影画像のビュー方向と実質的に平行なX線から得られたデータに対応する測定データの一部を使用して反復的に生成された試験片の再構成された投影画像を示す図である。 本開示の実施形態による例示的なコンピューティングデバイスを示す図である。
本明細書では、コンピュータ断層撮影(CT)ボリュームから最小限のアーティファクトで高解像度2次元投影画像を再構成するための方法論、コンピュータ可読媒体、およびシステムに関する様々な概念、およびそれらの例が教示される。具体的には、複数のビュー方向に沿った2次元画像の再構成を、これらのビュー方向に沿った追加の測定データの取得の必要なしに改善する画像再構成方法が教示される。画像再構成プロセスにおいて所望のビュー方向と実質的に平行なX線に対応する測定データの一部を識別および選択するために測定データをビニングすることによって改善された画像再構成を提供する方法が教示される。第1のボリュームデータセット、たとえば、ボクセルの第1のアレイが計算され、第2のボリュームデータセット、たとえば、ボクセルの第2のアレイの計算への入力として使用される。計算は、直接再構成方法、反復再構成方法、またはその両方を含むことができる。本明細書で教示されるデバイス、方法、および非一時的コンピュータ可読媒体は、再構成された2次元投影画像における改善された解像度および画像化アーティファクトの低減を有利に可能にする。
本明細書で使用される場合、「測定データ」は、X線放射線と物体の少なくとも一部との相互作用を示すデータである。測定データは、限定はしないが、物体の一部の密度または実効原子番号を示すデータを含むことができる。
本明細書で使用される場合、「高解像度」は、従来の手段によって第1のボリュームデータセットから生成された投影画像に対してより精細な固有解像度を有する投影画像を指す。固有解像度は、線対または点拡がり関数の任意の適切な尺度を識別する能力によって記述することができる。
本明細書で使用される場合、「最小限のアーティファクト」を有する画像は、金属もしくは他の高密度物体による、または、画像ボクセルもしくはピクセル強度値における不完全な測定データによる再構成アーティファクトの影響が、従来の画像再構成方法と比較して少なくとも90%低減された画像を指す。
本明細書で使用される場合、「実質的に平行」は、2つ以上の経路間のオフセットに対して測定して0°以上だが、約45°未満の上限角度を超えない角度だけ平行度が異なる経路、たとえば、ビュー方向に沿ってプラスマイナス5度だけ平行度が異なるビュー方向に沿った経路、または、ビュー方向に沿ってプラスマイナス4度だけ平行度が異なるビュー方向に沿った経路、または、ビュー方向に沿ってプラスマイナス3度だけ平行度が異なるビュー方向に沿った経路、または、ビュー方向に沿ってプラスマイナス2度だけ平行度が異なるビュー方向に沿った経路、または、ビュー方向に沿ってプラスマイナス1度だけ平行度が異なるビュー方向に沿った経路、または、ビュー方向に沿って0度と1度との間で、もしくはビュー方向に沿ってとられた任意の他の適切な角度範囲で平行度が異なるビュー方向に沿った経路を指す。
本明細書で使用される場合、「ビニング」は、幾何学的制約のような、指定された基準を満たすデータ、または指定された基準を満たす物理的プロセスによって生成されるデータを識別および選択するプロセスである。
本明細書で使用される場合、「再サンプリング」は、個々の要素が第1の寸法を有する第1のデータセットを個々の要素が第2の寸法を有する第2のデータセットに変換するプロセスを指す。いくつかの実施形態では、第2の寸法は、第1の寸法とは異なる。いくつかの実施形態では、第2の寸法は、第1の寸法に対して回転された座標軸によって定義される。
X線と物体の少なくとも一部との相互作用を表す測定データに基づいて物体の高解像度再構成投影画像の生成を容易にするために、例示的な方法論、システム、装置、および非一時的コンピュータ可読媒体が本明細書で説明される。測定データは、様々な角度から物体の一部に向けられたX線の相互作用から収集することができる。測定データは、限定はしないが直接再構成方法または反復再構成方法のような再構成方法を使用してボリュームデータセットを生成するために使用することができる。本明細書で説明される例示的な方法論、システム、装置、および非一時的コンピュータ可読媒体を使用して、再構成投影画像を再構成ボリュームデータセットから生成することができる。例示的な投影画像は、所望のビュー方向からのボリュームデータセットの2次元表現を提供する。結果として、本明細書で説明される例示的な方法論、システム、装置、および非一時的コンピュータ可読媒体は、複数のビュー方向に沿った物体の高解像度再構成投影画像を、最小限のアーティファクトで、それらのビュー方向に沿った追加の測定データの取得を必要とすることなく生成するために使用することができる。
図1は、本開示の一実施形態による、物体130の少なくとも一部の再構成画像を生成するための例示的な画像化システム100を示す。画像化システム100は、画像化室110と、物体130を搬送するための搬送システム120と、コンピューティングデバイス140と、X線源150と、検出器160とを含む。画像化室は、通路122を囲む。コンピューティングデバイス140は、視覚表示デバイス142と、入力デバイス144と、処理ユニット145と、グラフィックユニット146とを含むことができる。コンピューティングデバイス140は、グラフィックユニット146を使用して視覚表示デバイス142上に画像および他のインターフェースをレンダリングするために使用することができる。
搬送システム120は、画像化室110の通路122の少なくとも一部を通して物体130を搬送するように構成することができる。様々な実施形態によれば、搬送システム120は、限定はしないが、コンベアベルト124、一連のローラ、または、画像化室110に結合し、物体130を画像化室110内に引き込むことができるケーブルなどの物体搬送機構を含むことができる。搬送システム120は、物体130をある範囲の速度で画像化室110の通路122に搬送するように構成することができる。搬送システム120は、物体130の測定データの収集を可能にする任意の速度で物体130を搬送することができる。
X線源150は、物体130の少なくとも一部に照射するために、物体130の搬送方向に対して走査経路105上のコンベア124の周りの軌道に沿った複数の点においてX線放射線(またはガンマ線、または他の放射線)の円錐ビームを放射するように構成することができる。いくつかの実施形態では、物体130の搬送方向に対する走査経路105上のコンベア124の周りの軌道は、180°よりも小さくてもまたは大きくてもよい。いくつかの実施形態では、線源150は、ガンマ線を放射することができる。検出器160は、X線放射線と物体130の一部との相互作用を示す測定データを検出するように構成することができる。検出器160は、走査経路105に沿った測定データを検出するようにX線源150に対して配置される。いくつかの実施形態では、線源150および検出器160は、固定された空間的関係を有することができ、たとえば、ガントリー上のように、画像化システム100の長手方向軸の周りを回転することができる。いくつかの実施形態では、1つまたは複数の線源150および検出器160は、搬送システム120に対して固定することができる。いくつかの実施形態では、X線源150および検出器160の位置は、物体130の走査中の時間の関数として完全に知ることができる。
コンピューティングデバイス140は、少なくとも1つの中央処理ユニット(CPU)を含む少なくとも1つの処理ユニット145を含む。コンピューティングデバイス140は、検出器160によって取得された測定データを受信するように構成することができる。処理ユニット145は、以下でより詳細に説明するように、最小限のアーティファクトで物体130の高解像度再構成投影画像を生成するためにプロセッサ実行可能命令を実行するようにプログラム可能である。
中央処理ユニットは、再構成ボリュームデータを導出するために反復再構成の少なくとも1つの反復を測定データに適用することによって、物体130のボリュームを表す再構成ボリュームデータを計算するようにプログラム可能である。コンピューティングデバイス140および処理ユニット145については、図6に関してより詳細に論じる。
処理ユニット145を含むコンピューティングデバイス140は、ワイヤレスで、1つまたは複数のワイヤもしくはケーブル170を介して、画像化システム100の他の構成要素のうちの少なくとも1つと、データまたは命令、またはデータと命令の両方を交換するように構成することができる。一例として、処理ユニット145を含むコンピューティングデバイス140は、各々の動作を制御し、検出器160から測定データを受信するために、X線源150または検出器160と通信することができる。処理ユニット145を含むコンピューティングデバイス140は、物体130のボリュームを表す測定データを受信することができ、再構成されたボリュームデータを導出するために反復再構成の少なくとも1つの反復を測定データに適用するように構成またはプログラムすることができる。いくつかの実施形態では、コンピューティングデバイス140は、物体130に対する検出器160の瞬時の位置に相関する検出器方位データを受信するように構成することができる。検出器方位データは、線源150、検出器160、もしくは走査経路においてもしくはその近傍に配置された位置センサによって提供することができ、または、画像化システム100の他の幾何学的量に基づいて計算することができる。いくつかの実施形態では、検出器方位データは、測定データに直接符号化することができる。
検出器160からの出力は、物体130のボリューム情報に対応する測定データを生成するために処理ユニット145によって処理することができる。グラフィックユニット146は、視覚表示デバイス142上に物体130の再構成画像を表示するように構成することができる。グラフィックユニット146は、画像化システム100のオペレータが入力デバイス144を用いてコンピューティングデバイス140のユーザインターフェースと対話することを可能にするために、視覚表示デバイス142上にユーザインターフェースをレンダリングすることができる。一実施形態では、ユーザインターフェースは、グラフィカルユーザインターフェース(GUI)である。入力デバイス144は、キーボード、マウス、トラックボール、タッチパッド、スタイラス、視覚表示デバイス142のタッチスクリーン、または、ユーザがコンピューティングデバイスと対話することを可能にする任意の他の適切なデバイスとすることができる。いくつかの実施形態では、GUIは、ユーザが情報またはデータを入力することを可能にするために、タッチスクリーン上にレンダリングすることができる。
画像化室110は、物体130に対するX線源150および検出器160の所望の間隔および向きを可能にする適切な金属またはプラスチック材料で作られてもよい。いくつかの実施形態では、画像化室110は、鉛などの放射線停止または吸収材料を含んでもよい。
画像化されるべき物体130は、通路122を通って画像化室110に入ることができる。通路122のサイズは、応用例に特有の要件を満たす任意の形状とすることができる。たとえば、通路122は、機内持ち込み手荷物、預け荷物、貨物、輸送コンテナ、または任意の他のタイプの物体の搬送を可能にするようなサイズの通路で構成されてもよい。通路122は、任意の幾何学的形態を有するように構成されてもよい。非限定的な例として、通路122は、円形断面、正方形断面、長方形断面、六角形断面、楕円形断面、または他の多角形断面を有することができる。別の例では、通路122は、不規則な形状の断面を有することができる。
画像化室110は、1つまたは複数のX線源150と検出器160とを収容することができる。様々な実施形態によれば、X線源150は、X線源またはガンマ線源であってもよい。X線源150は、物体130と相互作用するように放射線の円錐ビームを放射するように構成することができ、放射線と物体の任意の部分との相互作用を示す放射線を検出するように構成することができる。非限定的な例として、検出器160は、物体130の一部を通過した減衰放射線を検出することができる。いくつかの実施形態では、X線源150および検出器160は、ヘリカルコーンビームを形成するために物体130の動きに対して定義することができる円形走査経路に沿って協働して移動することができる。たとえば、走査経路は、物体130が円の中央部分を通過する線に沿って移動する一定の半径の部分的または完全な円であってもよい。いくつかの実施形態のX線源150は、高エネルギー電子ビームと、拡張されたターゲットまたはターゲットのアレイとを含むことができる。いくつかの実施形態では、本明細書で教示される画像化システムは、2つ以上の線源および検出器を有することができる。
いくつかの実施形態では、検出器160は、検出器アレイ内の複数の検出器要素で構成されてもよい。
処理ユニット145は、任意の適切な画像再構成方法論を使用して、検出器160によって検出された放射線からボリュームデータを生成するように構成することができる。いくつかの実施形態でボリュームデータを再構成するために使用することができる直接再構成技法の例は、フィルタ補正逆投影方法論、分析円錐ビーム方法論、近似円錐ビーム方法論、フーリエ再構成方法論、拡張平行逆投影方法論、動的ピッチを用いるフィルタ補正逆投影方法論、パイラインベースの画像再構成方法論、Feldkamp型再構成方法論、傾斜面Feldkamp型再構成方法論、または、応用例に特有の要件を満たす任意の他の直接再構成技法を含む。
ボリュームデータを再構成するために、システム100において反復再構成技法が用いられてもよい。反復再構成技法の例は、同時代数的再構成技法(SART:simultaneous algebraic reconstruction technique)、同時反復再構成技法(SIRT:simultaneous iterative reconstruction technique)、順序付きサブセットコンベックス技法(OSC:ordered subset convex technique)、順序付きサブセット最大尤度方法論、順序付きサブセット期待値最大化(OSEM:ordered subset expectation maximization)方法論、適応的統計的反復再構成技法(ASIR:adaptive statistical iterative reconstruction technique)方法論、最小二乗QR方法論、期待値最大化(EM:expectation maximization)方法論、OS分離可能放物線サロゲート技法(OS-SPS:OS-separable paraboloidal surrogates technique)、代数的再構成技法(ART:algebraic reconstruction technique)、Kacsmarz再構成技法、または、応用例に特有の要件を満たす任意の他の反復再構成技法もしくは方法論を含む。いくつかの実施形態では、再構成の速度を高めるために、疎行列または圧縮検知技法を使用することができる。
反復再構成技法の実施では、連続的な反復ステップが実行される前に、初期状態が定義される。空集合または均一集合を使用して初期化される場合、反復再構成技法は、収束を達成する前に多くの反復を実行してもよい。各反復ステップは、計算集約的なので、多くの反復ステップを実行することは、データ再構成のための合計時間を許容し得ないほど増加させる可能性がある。解を達成するための反復回数を減らすことは、画像再構成計算の速度および効率を大幅に増加させる可能性がある。様々な実施形態によれば、反復再構成のプロセスは、限定はしないがフィルタ補正逆投影方法論を含む直接再構成技法からの出力を使用して初期化することができる。直接再構成技法からの出力の使用は、収束に達するまでの反復回数を大幅に削減し、総処理時間を高速化することができる。
同様に、多数のボクセルの使用は、結果として得られるボリュームデータセットの解像度を改善することができるが、各反復のための計算時間を増加させる可能性もある。様々な実施形態によれば、再構成された第1のボリュームデータセットは、第1のボクセル寸法を有するように計算することができる。いくつかの実施形態では、第1のボクセル寸法は、直接または反復再構成プロセスを使用して迅速に計算することができる粗いボクセルに対応することができる。以下でより詳細に説明するように、第1のボリュームデータセットは、空気または水のような均一な材料に対応するゼロまたは一定の値のような設定値を含むように初期化することもできる。第1のボリュームデータセットは、反復再構成技法への初期化された入力として作用することができ、第2のボクセル寸法を有する再構成された第2のボリュームデータセットを生成するために再サンプリングすることができる。いくつかの実施形態では、第2のボクセル寸法は、改善された画像解像度を提供するために、第1のボクセル寸法よりも小さくすることができる。第1のボクセル寸法または第2のボクセル寸法は、正方形(すなわち、第1のボクセル寸法がすべて等しい)または長方形(すなわち、3つのボクセル寸法のうちの少なくとも1つが別のものと異なることができる)であるボクセルを生成することができる。いくつかの実施形態では、第1のボリュームデータセットは、技法への出力として第2のボリュームデータセットを生成するために、反復再構成技法に入力することができる。
様々な実施形態によれば、検出器160から得られた測定値は、物体130の特性の3次元(すなわち、ボリューム)表現を再構成するために処理ユニット145によって使用されてもよい。ボリュームデータセットは、密輸品を識別するために検査中である可能性がある、画像化されている物体130の1つまたは複数の特性を表すことができる。たとえば、X線源150によって放射された放射線は、検出器160に衝突する前に、物体130の一部を通過するときに減衰する可能性がある。この減衰は、それが通過して進行する物体130の一部の密度に比例する。したがって、ボリュームデータセットは、物体の一部の密度に関する情報を表すことができる。別の実施形態では、2つの異なるエネルギーレベルにおける放射線が、それらが物体130の一部を通過するように向けられてもよい。2つの異なるエネルギーレベルにおけるビーム間の減衰の比は、物体130の一部の原子番号または元素組成に関する情報を提供することができる。本明細書で教示される原理によるシステム100は、物体130のボリュームの一部の密度、または原子番号、または密度特性と原子番号特性の両方に対応するボリュームデータを計算するように構成されてもよい。様々な実施形態では、測定データ、または再構成された画像もしくは表現は、後日の分析のために記憶および検索されてもよく、または、視覚表示デバイス142上でユーザに対して表示されてもよい。いくつかの実施形態では、検出器160において収集された測定データは、仮想アレイ上に補間されてもよく、または、誤作動または欠落した検出器位置に関連するデータ値を修正または置換するために補間が使用されてもよい。
図2Aは、ボクセル200の第1のボリュームデータセットとしての物体130の3次元表現を示す。いくつかの実施形態では、第1のボリュームデータセットは、ボクセルの第1のアレイとして編成することができる。実際の再構成における物体130は、はるかにより多くのボクセル200によって表されるのに対して、物体130は、27のボクセル200の第1のボリュームデータセットによって図2A中に表されている。ボクセル200は、長さ202と、幅204と、高さ206とを含むボクセル寸法を有する。この例では、ボクセル200は、正方形であるが、ボクセルは、長方形とすることができ、または非直交座標系において定義することができることは、当業者には明らかであろう。
図2Aでは、いくつかのボクセルに番号が付けられている(すなわち、V(1,1,1)、V(1,1,2)、V(1,1,3)、V(2,2,3)、およびV(3,3,3))。光線は、X線源150から発し、検出器160に当たる前に、ボクセル200によって表される物体130を通過する。本開示では、検出器からの測定出力に基づいてボクセルの各々に関する質量密度または原子番号のような材料特性の値を含むボリュームデータセットを計算するために、ボリューム画像再構成が使用される。いくつかの実施形態では、再構成は、各ボクセル内の1つまたは複数の材料特性の平均値を決定するために使用することができる。たとえば、平均材料特性は、密度、原子番号、または密度と原子番号の両方とすることができる。本明細書で教示されるように、物体130は、いくつかの実施形態では、ボリュームデータ再構成の初期段階中は、各ボクセルが第1のボクセル寸法202、204、206を有するボクセル200の第1のボリュームデータセットによって表されてもよく、ボリュームデータ再構成のより後の段階では、各ボクセルが第2のボクセル寸法222、224、226を有するボクセル220の第2のボリュームデータセットによって表されてもよい。いくつかの実施形態では、第1のボリュームデータセットは、以前の再構成の取り組みから受け取った値を使用して初期化することができる。様々な実施形態によれば、第1のボリュームデータセットは、データ値のすべてまたは一部を、空気、水、金属、布またはなにか他の適切な材料のような材料の密度を表す0または定数に設定することによって初期化することができる。第1のボリュームデータセットは、上記で説明したように、処理ユニット145を使用して測定データから計算されてもよい。第2のボリュームデータセットについて、図2Cおよび図2Eを参照して以下でより詳細に論じる。いくつかの実施形態では、第2のボリュームデータセットは、ボクセルの第2のアレイとして編成することができる。いくつかの実施形態では、ボクセル寸法は、ボリュームデータセットを計算する際の計算スループットを改善するように選択することができる。
様々な実施形態によれば、第1または第2の再構成ボリュームデータセットから投影画像を生成することができる。投影画像は、特定のビュー方向205からのボリュームデータセットの2次元表現を提供することができる。投影画像は、様々なビュー方向再構成方法論を使用して生成することができる。いくつかの実施形態では、投影画像の各ピクセルは、たとえば、ビュー方向205に沿ったボクセルの列の値のすべてを合計することによって、ボリュームデータセットの1つの次元を折り畳むことによって生成することができる。いくつかの実施形態では、投影画像の各ピクセルは、ビュー方向205に沿って並べられたボクセルの各列からボリュームデータセットの最大値を選択することによって生成することができる。いくつかの実施形態では、ビュー方向再構成方法論は、ビュー方向205に沿って方向付けられたボクセルの列を生成するためにボリュームデータセット内のデータを補間することができる。2次元投影は、物体130のスライスに沿ってとられたデータを含んでもよい。いくつかの実施形態では、投影画像の各ピクセルは、ビュー方向205に対して垂直なボリュームデータセットを通る同じスライスから選択される。物体130のスライスは、アレイの各要素が長手方向座標(すなわち、通路122を通る物体130の搬送の方向に沿った座標)の同じ値を有するデータの2次元アレイとして定義することができる。いくつかの実施形態では、スライスの向きは走査経路105が存在する平面によって定義することができる。スライスは、必要に応じて、動きの方向に対して垂直に、または任意の他の次元に沿って配向されてもよい。本明細書で教示されるビュー方向再構成方法論は、処理ユニット145またはコンピューティングデバイス140における特定の実装に限定されない。本明細書で教示される1つまたは複数のビュー方向再構成方法論は、図6を参照して以下で詳細に説明するように、コンピューティングデバイス140のストレージ424内に記憶されたビュー方向再構成コード427を使用して処理ユニット145によって実行されてもよい。
0°および90°以外のビュー方向205に関する投影画像を生成するために、いくつかの方法を使用することができる。たとえば、第2のボリュームデータセットを再構成することができ、ビュー方向に沿ったデータ値をビュー方向205に沿って補間することができる。非法線ビュー方向について、ボリュームデータセットの座標系軸の回転は、いくつかの場合では、投影画像の生成を単純化することができる。いくつかの実施形態では、第1または第2のボリュームデータセットの座標系は、ビュー方向205と整列するように回転させることができる。非限定的な例として、ボリュームデータセットの座標系の回転は、線形補間、直交座標から極座標へのマッピング、またはその両方を実行することを含むことができる。線形補間は、第1のボリュームデータセットまたは第2のボリュームデータセットに対して実行することができる。たとえば、第2のボリュームデータセットは、本明細書で先に説明したように再構成することができる。次いで、第2のボリュームデータセットの軸は、直交座標から極座標へのマッピングと補間とを使用して回転させることができる。第2のボリュームデータセットは、0°または90°のような法線軸に沿った投影について本明細書で先に説明したように、回転されたXまたはY座標に沿って折り畳むことができる。ビュー方向205と整列するための第1のボリュームデータセットの座標系軸の回転は、補間によって引き起こされる誤差をその後第2のボリュームデータセットの再構成中に修正することができるので、有利である可能性がある。この場合、第2のボリュームデータセットは、回転座標系において再構成することができる。投影画像は、次いで、上記で説明したように、回転された再構成ボリュームデータセットから生成することができる。第1のボリュームデータセットの座標系軸の回転は、第2のボリュームデータセットの再構成中にビュー方向205に沿った細長い(すなわち、非正方形の)ボクセルの使用を可能にすることもできる。
いくつかの実施形態では、X線源150から物体130を通過した後に透過放射線を検出することによって測定が行われる。図2Bに示す具象的な例では、放射線は、X線源150と検出器160の1つまたは複数の位置とを結ぶ光線として描写することができる。物体130が存在するときの測定された強度と、物体130が存在しないときの期待される強度との間の比較は、その光線がとる経路に対応する減衰値を生成する。光線経路の全長と比較したピクセル内の経路線の長さと等しい光線の経路に沿った各ピクセルに、比例した重みを割り当てることができる。十分な数の角度における十分な数の光線に関する減衰値が得られると、減衰データは、各ピクセルに関する材料特性を計算するために処理することができる。
たとえば、図2Bは、X線源150と、検出器160のいくつかの位置とを示す。X線源150から位置α5における検出器160に進む光線は、ピクセルρ2、ρ6、ρ9、ρ10、およびρ12を通過する。結果として、位置α5における検出器160によって検出された値は、それらのピクセルの各々における材料特性に依存する。したがって、X線源150からの光線のα5における検出器160によってとられた測定値は、ピクセルρ2、ρ6、ρ9、ρ10、およびρ12の各々における密度または原子番号のような材料特性の推定の一部として使用されてもよい。
検出器160の測定された出力は、反復的数学的技法を使用して物体130の表現のスライスにおける個々のピクセル201の材料特性を表す未知の値について解かれてもよい連立方程式系を定義するために使用されてもよい。測定プロセスにおける変動が、単一の解が連立方程式系におけるすべての方程式を同時に満たすことを妨げる可能性があるので、実際の測定から形成された方程式のシステムを解くことは、方程式を最良に解く値を反復的に求めることを伴う。同様に、複数の角度からの測定値を取得することは、物体130のスライスを表すピクセル201の各々における材料特性が直接的な方法を使用して計算されることを可能にする。
物体130のボリュームデータ表現の解像度は、ボクセル寸法と、関連して、表現を構成するボクセル200の数とに部分的に依存する。しかしながら、前述したように、ボリュームデータセットの反復再構成を計算する際の計算オーバヘッドは、ボクセルの数が増加するにつれて増加する。いくつかの実施形態では、本明細書で説明される例示的なシステム、方法、およびコンピュータ可読媒体は、少なくとも1つの寸法において第1のボリュームデータセットの対応する寸法よりも低いボクセル解像度を有する第2のボリュームデータセットを生成するために使用することができる。1つまたは複数の寸法におけるボクセル解像度要件の緩和は、反復再構成技法に関して計算性能を高速化することができる。例示的な実施形態では、第2のボリュームデータセットは、ビュー方向に沿った寸法において、第1のボリュームデータセットの対応する寸法よりも低いボクセル解像度を有することができる。第2のボリュームデータセットがビュー方向に沿った寸法において第1のボリュームデータセットの対応する寸法よりも低いボクセル解像度を有する実施形態はまた、ビュー方向に関してビニングされたX線の角度の許容可能な上限に対するより大きい制限を有してもよい。ビュー方向に沿った寸法におけるボクセル寸法の減少は、投影画像がビュー方向に沿った第2のボリュームデータセットにおけるデータを合計するか、またはデータの最大値を見つけることによって生成される実施形態に関する結果として得られる投影画像品質にほとんど影響を及ぼさない。いくつかの実施形態では、本明細書で説明される例示的なシステム、方法、およびコンピュータ可読媒体は、少なくとも1つの寸法において第1のボリュームデータセットの対応するボクセル解像度よりも高いボクセル解像度を有する第2のボリュームデータセットを生成するために使用することができる。
様々な実施形態によれば、第2のボリュームデータセットは、反復再構成技法を使用して初期化された第1のボリュームデータセットと組み合わされた幾何学的制約を満たすX線に対応する測定データの選択された部分またはサブセットを使用して生成することができる。図2Cは、ボクセル220の第2のボリュームデータセットとしての物体130の例示的な3次元表現を示す。この例では、ボクセル220の第2のボリュームデータセットは、長さ222と、幅224と、高さ226とを含むボクセル寸法を有する84のボクセルのアレイを含む。いくつかの実施形態では、さらなる処理のための測定データの選択された部分を作成するために、ビニング手順を実行することができる。ビニングプロセスでは、ビュー方向225と実質的に平行な経路上の物体を通過するX線に対応する測定データが識別され、選択される。たとえば、ビュー方向に沿った経路は、ビュー方向225に沿ってプラスまたはマイナス5度だけ平行度が異なってもよく、または、ビュー方向225に沿ってプラスまたはマイナス4度だけ平行度が異なってもよく、または、ビュー方向225に沿ってプラスまたはマイナス3度だけ平行度が異なってもよく、または、ビュー方向225に沿ってプラスまたはマイナス2度だけ平行度が異なってもよく、または、ビュー方向225に沿ってプラスまたはマイナス1度だけ平行度が異なってもよく、または、ビュー方向225に沿ってゼロと1度との間で、もしくは、ビュー方向225に沿ってとられた角度の任意の適切な範囲で平行度が異なってもよい。いくつかの実施形態では、ビュー方向225に対するX線経路の角度が上限、たとえば、90度、45度、15度、5度、または特定の応用例のための必要に応じて任意の他の適切な境界の範囲内である場合、物体130を通過するX線に対応する測定データを選択することができる。
ビュー方向に近い角度の狭い帯域または範囲の使用は、アーティファクトの影響の最大限の低減を提供することができるが、サンプリング制限が、線源/検出器の位置合わせが最小限のコントラストと低い解像度とを生成する画像内の場所を生成する可能性がある。そのような場合、同じ領域を通って進む軸外角度の光線の包含は、物体130が画像化室110を通って進むときに軸外光線が線源150および検出器160に対する物体130の異なる時間および異なる位置において取得され得るので、画像コントラストを改善することができる。したがって、いくつかの実施形態では、ビュー方向225とは異なる第2の方向に対してある角度において進行するX線に対応する測定データのサブセットを選択することができる。第2の方向は、5度、15度、45度、90度、または任意の他の適切な角度のような、ビュー方向225に対するある角度とすることができる。さらに、第2の方向に対する上限(たとえば、90度、45度、15度、5度)の範囲内を進行するX線に対応する測定データを選択することができる。様々な実施形態では、物体130を通過するX線に対応する測定データの選択されたセットは、ビュー方向225および第2の方向に関して進行するX線に対応する測定データを含むことができる。たとえば、ビュー方向225の1度の範囲内、およびビュー方向225に対して5度傾斜した第2の方向の1度の範囲内のX線に対応する測定データが選択されてもよい。いくつかの実施形態では、第2の方向の上限、およびビュー方向225とは異なる第3の方向の範囲内にあるX線に対応する測定データを選択することができる。たとえば、ビュー方向225に対して5度傾斜した方向の1度の範囲内、およびビュー方向225に対して-5度傾斜した方向の1度の範囲内にあるX線に対応する測定データを選択することができる。ビュー方向、第2の方向、および第3の方向が本明細書で説明されているが、当業者は、任意の数の追加の方向が特定の応用例の要求を満たすために選択されてもよいことを理解するであろう。言い換えれば、ビュー方向225と実質的に平行なX線に対応する測定データの選択されたサブセットまたは部分は、角度の2つ以上の非連続的なサブセットを含むことができる。
図2Cの例に示すように、選択された測定データは、ビュー方向225と実質的に平行な経路に沿って進行するX線227(実線の矢印)に対応することができるが、除外された測定データは、ビュー方向225と実質的に平行ではないX線229(破線の矢印)に対応することができる。様々な実施形態によれば、各X線に対応する測定データは、X線がビュー方向225に対して実質的に平行であり、共伝搬または逆伝搬のいずれかであった場合、選択されてもよい。ビュー方向225と実質的に平行であったX線に対応する測定データは、以下でより詳細に説明するように、さらなる処理で使用されてもよい測定データの選択された部分を形成することができる。ビュー方向225と実質的に平行ではないために通常は除外されるX線に対応する特定の測定データが、それにもかかわらず測定データの選択された部分またはサブセット内に含まれてもよいことは、当業者には明らかであろう。
図2Cの例では、ボクセル220の第2のボリュームデータセットの長さ222、幅224、および高さ226のボクセル寸法は、等しくない。様々な実施形態によれば、1つまたは複数の寸法は、ビュー方向225に対して垂直な方向における改善された解像度を提供するように選択することができる。たとえば、第2のボリュームデータセットのボクセルの長さ222および幅224は、第1のボリュームデータセットのボクセルの対応する長さ202および幅204よりも小さくてもよい。投影画像がビュー方向225に沿って形成されるとき、ビュー方向225に沿ったボリュームデータセットの解像度は、投影画像の形成においてその寸法を排除することができるので、重要性を低減することができる。様々な実施形態によれば、ビュー方向225と平行なボクセル寸法は、計算の反復速度を改善するために増加させることができる。たとえば、第2のボリュームデータセットのボクセルの高さ226は、第1のボリュームデータセットのボクセルの対応する高さ206よりも大きくてもよい。ビュー方向に沿った第2のボリュームデータセット内の各ボクセルのボクセル寸法が第1のボリュームデータセット内の各ボクセルの対応するボクセル寸法よりも大きい実施形態では、データ誤差を低減するために、ビュー方向225に対するX線経路の角度に関して小さい上限を使用することが望ましい場合がある。
図2Dは、ボクセル240の回転されたアレイを有する第2のボリュームデータセットとしての物体130の例示的な3次元表現を示す。この例では、回転されたアレイは、各ボクセルが、長さ242と、幅244と、高さ246とを含むボクセル寸法を有する、84のボクセルを含む。図2Dに示す例では、ビュー方向245は、図2Cのビュー方向225に対して90°に向けられている。しかしながら、ビュー方向245がビュー方向225に対して任意の角度に向けられてもよいことは、当業者には明らかであろう。ボクセル240の回転されたアレイは、本開示の様々な実施形態における第2のボリュームデータセットを表すことができる。いくつかの実施形態では、ボクセル240の回転されたアレイを有する第2のボリュームデータセットは、ボクセル220の第2のボリュームデータセットの代わりに使用されてもよい。いくつかの実施形態では、さらなる処理のための測定データの選択された部分を作成するために、ビニング手順を実行することができる。ビニングプロセスでは、ビュー方向245と実質的に平行な経路上の物体130を通過するX線に対応する測定データが識別され、選択される。たとえば、ビュー方向に沿った経路は、ビュー方向245に沿ってプラスまたはマイナス5度だけ平行度が異なってもよく、または、ビュー方向245に沿ってプラスまたはマイナス4度だけ平行度が異なってもよく、または、ビュー方向245に沿ってプラスまたはマイナス3度だけ平行度が異なってもよく、または、ビュー方向245に沿ってプラスまたはマイナス2度だけ平行度が異なってもよく、または、ビュー方向245に沿ってプラスまたはマイナス1度だけ平行度が異なってもよく、または、ビュー方向245に沿ってゼロと1度との間で、もしくは、ビュー方向245に沿ってとられた角度の任意の適切な範囲で平行度が異なってもよい。いくつかの実施形態では、ビュー方向245に対するX線経路の角度が上限、たとえば、90度、45度、15度、5度、または特定の応用例に望まれる任意の他の適切な境界の範囲内である場合、物体130を通過するX線に対応する測定データを選択することができる。
ビュー方向に近い角度の狭い帯域(すなわち、範囲)の使用は、アーティファクトの影響の最大限の低減を提供することができるが、サンプリング制限が、線源/検出器の位置合わせが最小限のコントラストと低い解像度とを生成する画像内の場所を生成する可能性がある。そのような場合、同じ領域を通って進む軸外角度の光線の包含は、物体130が画像化室110を通って進むときに軸外光線が線源150および検出器160に対する物体130の異なる時間および異なる位置において取得され得るので、画像コントラストを改善することができる。したがって、いくつかの実施形態では、ビュー方向245とは異なる第2の方向に対してある角度において進行するX線に対応する測定データのサブセットを選択することができる。第2の方向は、5度、15度、45度、90度、または任意の他の適切な角度のような、ビュー方向245に対するある角度とすることができる。さらに、第2の方向に対する上限(たとえば、90度、45度、15度、5度)の範囲内を進行するX線に対応する測定データを選択することができる。様々な実施形態では、物体130を通過するX線に対応する測定データの選択されたセットは、ビュー方向245および第2の方向に関して進行するX線に対応する測定データを含むことができる。たとえば、ビュー方向245の1度の範囲内、およびビュー方向245に対して5度傾斜した第2の方向の1度の範囲内のX線に対応する測定データが選択されてもよい。いくつかの実施形態では、第2の方向の上限、およびビュー方向245とは異なる第3の方向の範囲内にあるX線に対応する測定データを選択することができる。たとえば、ビュー方向245に対して5度傾斜した方向の1度の範囲内、およびビュー方向245に対して-5度傾斜した方向の1度の範囲内にあるX線に対応する測定データを選択することができる。ビュー方向、第2の方向、および第3の方向が本明細書で説明されているが、当業者は、任意の数の追加の方向が特定の応用例の要求を満たすために選択されてもよいことを理解するであろう。言い換えれば、ビュー方向245と実質的に平行なX線に対応する測定データの選択されたサブセットまたは部分は、角度の2つ以上の非連続的なサブセットを含むことができる。
計算速度を改善するために、またはノイズを低減するために、第2のビュー方向に沿った第2の投影画像の生成中に、第1のビュー方向に沿った第1の投影画像からの情報が使用されてもよい。たとえば、第1の投影画像は、第1のビュー方向に対して垂直な物体130の境界の外側にある1つまたは複数の領域を確立することができ、ボリュームデータセットの対応する値は、計算時間を改善するために、将来のデータ再構成動作中にゼロに設定することができる。
様々な実施形態によれば、再構成された第2のボリュームデータセットは、測定データの選択された部分と、一般的な第1のボリュームデータセット(たとえば、ゼロまたは一定値で初期化されたデータセット)とを使用して直接生成することができる。いくつかの実施形態では、一般的な第1のボリュームデータセットの使用は、再構成された第1のボリュームデータセットを生成するための再構成プロセスに関連する待ちをバイパスすることによって、より低いレイテンシの投影画像を生成することができる。
図2Dに示すように、選択された測定データは、ビュー方向245と実質的に平行な経路に沿って進行するX線227(実線の矢印)に対応することができるが、除外された測定データは、ビュー方向245と実質的に平行ではないX線229(破線の矢印)に対応することができる。様々な実施形態によれば、各X線に対応する測定データは、X線がビュー方向245に対して実質的に平行であり、共伝搬または逆伝搬のいずれかであった場合、選択されてもよい。ビュー方向245と実質的に平行であったX線に対応する測定データは、以下でより詳細に説明するように、さらなる処理で使用されてもよい測定データの選択された部分を形成することができる。ビュー方向245と実質的に平行ではないために通常は除外されるX線に対応する特定の測定データが、それにもかかわらず測定データの選択された部分内に含まれてもよいことは、当業者には明らかであろう。
本明細書で教示されるように、ビュー方向225、245と実質的に平行なX線に対応する測定データの選択は、いくつかの異なる方法で実行することができる。様々な実施形態によれば、Mcolumns×Nrowsのピクセルを有する検出器アレイ160からの測定データは、走査経路105に沿った各位置において選択されてもよい。選択されたデータは、線源150の正反対に最も近い列M0内のピクセルのNn行からのデータを含むことができる。たとえば、列M0は、線源からの最小距離であるすべてのMcolumnsに沿った列を識別することによって計算することができる。言い換えれば、線源150からのX線焦点が位置(X,Y)にある場合、垂直(すなわち、0°ビュー方向225)に関するXの同じ値(すなわち、線源の真上または真下)と、水平(すなわち、90°ビュー方向245)投影に関するYの同じ値とを有する検出器要素の列M0を選択することができる。他のビュー方向に沿った投影画像を生成するために、線源150からの最小距離における列M0の計算は、回転座標フレームにおいて実行することができる。いくつかの実施形態では、許容角度範囲を広げるために、M0のいずれかの側の追加列を選択することができる。
いくつかの実施形態では、ビュー方向225、245と実質的に平行であったX線に対応する測定データは、線源150と検出器アレイ160の列Mcolumnsとの間の2次元光線ベクトルを計算し、ビュー方向225、245に対する所与の閾値角度内のすべての列からのデータを選択することによって実行することができる。いくつかの実施形態では、線源150と検出器アレイ160の列Mcolumnsとの間の3次元光線ベクトルを計算することができ、ビュー方向225、245に対する所与の閾値角度内のすべての列からデータを選択することができる。
図2Eは、図2Cにおける上記の描写と同様の第2のボリュームデータセット220としての物体130の例示的な3次元表現を示す。図2Eの実施形態では、ビュー方向225と実質的に平行で、また、固定点230を通過するX線227に対応する測定データが選択される。いくつかの実施形態では、固定点230は、測定データの生成中の少なくとも1つの瞬間中のX線源150の位置に配置することができる。様々な実施形態によれば、測定データのこの選択された部分に対応する再構成された第2のボリュームデータセットから結果として生じる投影画像は、透視画像とすることができるが、図2Cに示す測定データの選択された部分に対応する再構成された第2のボリュームデータセットから結果として生じる投影画像は、正射影とすることができる。図2Eに示す測定データの選択された部分を使用して生成される透視画像は、消失点を含むことができ、物体から検出器までの距離の関数として異なる物体倍率値を有することができる。図2Cに示す測定データの選択された部分を使用して本明細書で生成される正射影画像は、消失点を含まなくてもよく、検出器に対するすべての物体距離について単一の倍率を有してもよい。
ボリュームデータセットを再構成するプロセス内にある反復再構成技法に特定のX線経路に対応する追加の測定データを提供することは、いくつかの一般的な効果を有することができる。特定のX線経路に対応する追加の測定データを提供することは、追加の測定データを生成した各X線の経路に沿った減衰の総推定を正確に改善することができる。さらに、特定のX線経路に対応する追加の測定データを提供することは、測定データを生成したX線の経路を横断する寸法における画像解像度を改善することができる。さらに、特定のX線経路に対応する追加の測定データを提供することは、測定データを生成したX線の経路と平行な寸法に沿った画像解像度を維持または悪化させる可能性がある。本明細書で説明される例示的なシステム、方法、およびコンピュータ可読媒体によれば、ボリュームデータセットから生成される合計ベースまたは最大値ベースの投影画像は、(たとえば、合計するか、または最大値を見つけることによる)ボリュームデータセットの折り畳み前にビュー方向と実質的に平行なX線に対応する測定データの選択された部分を使用して代数的再構成を実行することによって改善することができる。
様々な実施形態では、連立方程式系は、検出器から取得された測定データのすべてを使用して定義することができ、または、測定データの選択された部分を使用して定義することができる。測定データの選択された部分またはサブセットは、限定はしないが、ビュー方向205と実質的に平行であるような、幾何学的条件を満足するX線の検出によってデータが生成されるかどうかに基づいて選択することができる。いくつかの実施形態では、測定データの選択された部分は、投影画像のビュー方向205またはビュー方向205に対する別の方向に対する、90度未満、45度未満、15度未満、5度未満、または指定された軸に関連する任意の他の角度未満の角度において物体130を通過するX線の検出によって生成されたデータを含む。識別され、測定データの選択された部分内に含まれるために、X線は、ビュー方向205に対して実質的に平行に進行し、共伝搬または逆伝搬のいずれかとすることができる。
本開示の実施形態は、初期の粗いプレビュー画像を迅速に生成し、次いでその後、測定データのフルセットを使用してより精細な解像度におけるボリューム画像の再構成に追加の計算リソースを適用する従来の「マルチスケール」再構成方式とは異なる。本明細書で教示される技法は、幾何学的条件を満たす測定データの一部またはサブセットのみを使用することによって、ボリュームデータセットから高品質の投影画像を生成するために、再サンプリングおよびビニング技法から利益を得ることができる。本明細書で教示される技法は、有利には、生成された投影画像におけるアーティファクトを低減し、解像度を改善し、いくつかの実施形態では、異なる角度における複数の投影画像の生成における計算オーバヘッドを低減することができる。
本出願のデータ再構成方法論で使用される測定データは、古典的に完全な測定、または古典的に完全ではない可能性がある測定からのものであってもよい。本明細書で使用される「古典的に完全な」という用語は、物体の所与の搬送速度において完全なパイラインカバレッジ(または、いくつかの例では帯域制限されたカバレッジ)を提供し、投影測定の分析的逆転を可能にする線源-検出器ジオメトリを指す。古典的に完全なジオメトリの例示的な考察は、たとえば、Y. Yeら、「Minimum detection windows, PI-line existence and uniqueness for helical cone-beam scanning of variable pitch」、Medical physics 31.3(2004年):566〜572頁において提供されている。様々な実施形態によれば、本方法、システム、およびコンピュータ可読媒体は、パイライン不完全性の条件下で取得される測定データから投影画像を生成するために有利に使用することができる。具体的には、測定データの選択された部分は、データ再構成中に物体の一部に関するビュー方向と実質的に平行なX線を表す制限されたまたは不完全なデータの影響を増加させるように選択されてもよい。様々な実施形態によれば、本開示の方法、システム、およびコンピュータ可読媒体は、古典的に完全ではない測定データに基づく投影画像の生成中に生じる可能性があるアーティファクトの影響を低減することができる。
画像化されている物体130内に存在する金属のような特定の材料は、直接または反復再構成技法を使用して計算された再構成されたボリュームデータセットおよび投影画像において誤差またはアーティファクトを引き起こす可能性がある。これらの材料の高い密度および原子番号のために、X線は、遮断または散乱される可能性があり、検出されないか、誤った検出器要素(すなわち、X線ビームの元の経路に沿っていない検出器要素)によって検出される可能性がある。結果として生じる影響は、ボリュームデータセット全体に分散された不一致を生じさせる。これらの材料によって作成された画像化アーティファクトは、データ品質および画像コントラストに影響を及ぼす可能性があり、密輸品のような物体130内の品目の存在を不明瞭にする可能性がある。
上記で説明したように、連立方程式系は、検出器から取得された測定データのすべてを使用して、または測定データの選択された部分を使用して定義することができる。測定データの選択された部分は、データが幾何学的条件を満たすX線の検出によって生成されたかどうかに基づいて選択することができる。いくつかの実施形態では、測定データの選択された部分は、投影画像のビュー方向205またはビュー方向205に対する別の方向に対する、90度未満、45度未満、15度未満、5度未満、または指定された軸に関連する任意の他の角度未満の角度において物体130を通過するX線の検出によって生成されたデータを含む。投影画像が、ビュー方向に沿った第2のボリュームデータセット内のデータを合計するか、またはデータの最大値を見つけることによって生成される実施形態では、連立方程式系を定義するための測定データの選択された部分の使用は、高密度または高原子番号の材料の存在によって引き起こされる投影画像のアーティファクトを制限し、劣化を低減することができる。測定データのすべてではなく、測定データの選択された部分の使用は、画像化アーティファクトが第2のボリュームデータセットにおいてビュー方向に沿って優先して発生する原因になる可能性がある。これらのアーティファクトは、次いで、投影画像が生成されるときに実質的に除去することができる。したがって、不一致は、再構成されたボリュームデータセット内に依然として存在する可能性があるが、生成された投影画像では不可視である。データ不一致は、光線に沿った絶対的な(すなわち全体の)減衰の測定において誤差を生じさせる可能性があるが、生成された投影画像は、しばしば、定性的であり、そのような誤差によって影響を受けない場合がある。いくつかの実施形態では、測定データの選択された部分に含まれるべきであるビュー方向に対するX線経路の角度の上限を増加させることは、最終画像におけるアーティファクトの低減に寄与することができる。
図3および図4は、本明細書で教示される実施形態による物体の再構成された投影画像を生成するための代替的な方法論を表す。図3に示す方法論では、第1のボリュームデータセットは、第1のボクセル寸法を有する複数のボクセルを有して受信し、提供することができる。図4に示す方法論では、再構成された第1のボリュームデータセットは、少なくとも1つの処理ユニットを使用して測定データから計算することができる。
本開示の様々な実施形態による2次元データ再構成方法論300を表すフローチャートが、図3に示されている。図3について、図1〜図2Eおよび図6に関連して以下でより詳細に説明する。以下で説明するステップのうちの1つまたは複数の部分に関するコードは、直接再構成コード424、反復再構成コード425、またはビュー方向再構成コード427内に含まれてもよい。
ステップ301において、X線と物体の少なくとも一部との相互作用を表す測定データが少なくとも1つの処理ユニットを使用して受信される。たとえば、処理ユニット145は、図1の画像化システム100に関して上記で示したように、電磁放射線源150からのX線ビームと物体130の少なくとも一部との相互作用を表す測定データを検出器160から受信することができる。いくつかの実施形態では、測定データは、図6を参照して以下でより詳細に説明するように、コンピューティングデバイス140に関連するコンピュータメモリ406またはデータベース426から取り出すことができる。様々な実施形態によれば、測定データのすべてまたは一部が、先行する、同時の、または後続の3次元または2次元データ再構成方法論で使用される測定データと同一であっても異なっていてもよい。
ステップ303において、第1のボクセル寸法を有する複数のボクセルを有する第1のボリュームデータセットが、少なくとも1つの処理ユニットによって受信される。たとえば、第1のボリュームデータセットの値は、カメラのアレイを使用して物体130の外観を観察することによって少なくとも部分的に推定することができる。代替的には、第1のボリュームデータセット内のデータは、以前の再構成動作の結果を使用して初期化することができ、または、空気、真空、水、鉛もしくは他の金属、もしくは任意の他の適切な材料を表す均一な値に初期化することができる。
ステップ305において、物体の一部の投影画像のビュー方向と実質的に平行なX線から得られたデータに対応する測定データの一部を、少なくとも1つの処理ユニットを使用して選択することができる。たとえば、処理ユニット145は、図2Cを参照して上記で説明したように、物体130の一部の投影画像のビュー方向225と実質的に平行なX線227から得られたデータに対応する測定データの一部を選択することができる。本明細書で説明するように、ビュー方向225は、限定はしないが、90度、45度、15度、5度、または指定された軸に対する任意の他の角度のような、物体の指定された軸に対する任意の角度とすることができる。上記で説明したように、ビュー方向225と実質的に平行であったX線227に対応する測定データを識別し、選択するために、ビュー方向再構成技法を使用することができる。
ステップ307において、第2のボクセル寸法を有する再構成された第2のボリュームデータセットが、少なくとも1つの処理ユニットを使用することによって、第1のボリュームデータセットと、測定データの選択された部分とを使用して計算される。たとえば、処理ユニット145は、第1のボリュームデータセット200と、図2Cを参照して上記で説明したような測定データの選択された部分とを使用して、第2のボクセル寸法222、224、226を有する複数のボクセルを有するボクセル220の再構成された第2のボリュームデータセットを計算することができる。様々な実施形態によれば、第2のボクセル寸法222、224、226を有する第2のボリュームデータセット220は、第1のボリュームデータセット200から再サンプリングすることができる。再構成された第2のボリュームデータセット220を計算するために、測定データの選択された部分は、直接または反復再構成技法への入力として使用することができる。
ステップ309において、ビュー方向に沿った物体の一部の投影画像が、グラフィックユニットを使用して、再構成された第2のボリュームデータセットから生成される。たとえば、グラフィックユニット146は、図1を参照して上記で説明したように、再構成された第2のボリュームデータセット220からビュー方向225に沿った物体130の一部の投影画像を生成することができる。グラフィックユニット146は、ビュー方向225に沿った第2のボリュームデータセットの各列内の値を合計することによって、またはビュー方向に沿った各列における最大値を見つけることによって、物体130の一部の投影画像を生成してもよい。いくつかの実施形態では、グラフィックユニット146は、前述したように、第2のボリュームデータセットからスライスを選択することによって、物体130の一部の投影画像を生成することができる。いくつかの実施形態では、グラフィックユニット146によって生成された投影画像は、視覚表示デバイス142上に表示することができ、または、図6を参照して以下でより詳細に説明するように、コンピューティングデバイス140のメモリ406もしくはデータベース426に保存することができる。
いくつかの実施形態では、方法論300は、複数のビュー方向に関する投影画像を生成するために複数回実行されてもよい。そのような実施形態では、方法論300の複数の実行は、連続してまたは同時に実行することができ、いくつかのステップを共有してもしなくてもよい。当業者は、応用例固有の要件を満たすために、必要に応じて任意の回数の2次元データ再構成方法論300が実行されてもよいことを認識するであろう。
本開示の様々な実施形態による2次元データ再構成方法論400を表すフローチャートが、図4に提示されている。図4について、図1〜図2Eおよび図6に関連して以下でより詳細に説明する。以下で説明するステップのうちの1つまたは複数の部分に関するコードは、直接再構成コード424、反復再構成コード425、またはビュー方向再構成コード427内に含まれてもよい。
ステップ401において、X線と物体の少なくとも一部との相互作用を表す測定データが少なくとも1つの処理ユニットを使用して受信される。たとえば、処理ユニット145は、図1の画像化システム100に関して上記で示したように、電磁放射線源150からのX線ビームと物体130の少なくとも一部との相互作用を表す測定データを検出器160から受信することができる。いくつかの実施形態では、測定データは、図6を参照して以下でより詳細に説明するように、コンピューティングデバイス140に関連するコンピュータメモリ406またはデータベース426から取り出すことができる。様々な実施形態によれば、測定データのすべてまたは一部が、先行する、同時の、または後続の3次元または2次元データ再構成方法論で使用される測定データと同一であっても異なっていてもよい。
ステップ403において、第1のボクセル寸法を有する複数のボクセルを有する再構成された第1のボリュームデータセットが、少なくとも1つの処理ユニットを使用して測定データから計算される。たとえば、処理ユニット145は、図2Aを参照して上記で説明したように、測定データから第1のボクセル寸法202、204、206を有するボクセル200の再構成された第1のボリュームデータセットを計算することができる。第1のボクセル寸法202、204、206は、図2Aおよび図2Bを参照して上記で説明したように、計算需要と所望の解像度とのバランスを取るように選択することができる。再構成された第1のボリュームデータセットは、前述したように直接または反復再構成技法を使用して計算することができる。
ステップ405において、物体の一部の投影画像のビュー方向と実質的に平行なX線から得られたデータに対応する測定データの一部を、少なくとも1つの処理ユニットを使用して選択することができる。たとえば、処理ユニット145は、図2Cを参照して上記で説明したように、物体130の一部の投影画像のビュー方向225と実質的に平行なX線227から得られたデータに対応する測定データの一部を選択することができる。本明細書で説明するように、ビュー方向225は、限定はしないが、90度、45度、15度、5度、または指定された軸に対する任意の他の角度のような、物体の指定された軸に対する任意の角度とすることができる。上記で説明したように、ビュー方向225と実質的に平行であったX線227に対応する測定データを識別し、選択するために、ビュー方向再構成技法を使用することができる。
ステップ407において、第1のボリュームデータセットと、測定データの選択された部分とを使用して、第2のボクセル寸法を有する再構成された第2のボリュームデータセットが、少なくとも1つの処理ユニットを使用して計算される。たとえば、処理ユニット145は、再構成された第1のボリュームデータセット200と、図2Cを参照して上記で説明したような測定データの選択された部分とを使用して、第2のボクセル寸法222、224、226を有する複数のボクセルを有するボクセル220の再構成された第2のボリュームデータセットを計算することができる。様々な実施形態によれば、第2のボクセル寸法222、224、226を有する第2のボリュームデータセット220は、第1のボリュームデータセット200から再サンプリングすることができる。再構成された第2のボリュームデータセット220を計算するために、測定データの選択された部分は、直接または反復再構成技法への入力として使用することができる。
ステップ409において、ビュー方向に沿った物体の一部の投影画像が、グラフィックユニットを使用して、再構成された第2のボリュームデータセットから生成される。たとえば、グラフィックユニット146は、図1を参照して上記で説明したように、再構成された第2のボリュームデータセット220からビュー方向225に沿った物体130の一部の投影画像を生成することができる。グラフィックユニット146は、ビュー方向225に沿った第2のボリュームデータセットの各列内の値を合計することによって、またはビュー方向に沿った各列における最大値を見つけることによって、物体130の一部の投影画像を生成してもよい。いくつかの実施形態では、グラフィックユニット146は、前述したように、第2のボリュームデータセットからスライスを選択することによって、物体130の一部の投影画像を生成することができる。いくつかの実施形態では、グラフィックユニット146によって生成された投影画像は、視覚表示デバイス142上に表示することができ、または、図6を参照して以下でより詳細に説明するように、コンピューティングデバイス140のメモリ406もしくはデータベース426に保存することができる。
いくつかの実施形態では、方法論400は、複数のビュー方向に関する投影画像を生成するために複数回実行されてもよい。そのような実施形態では、方法論400の複数の実行は、連続してまたは同時に実行することができ、いくつかのステップを共有してもしなくてもよい。当業者は、応用例固有の要件を満たすために、必要に応じて任意の回数の2次元データ再構成方法論400が実行されてもよいことを認識するであろう。
本明細書で教示される改善を評価するために、本明細書で教示されるシステムが、コンピュータ断層撮影を使用する画像再構成に典型的には課題を提示する金属階段くさび132のようないくつかの要素を含むテスト物体130の投影画像を生成するために使用された。テスト物体130は、古典的に完全な走査ジオメトリを使用して画像化システム100によって走査された(すなわち、少なくとも180°+αの角度範囲にわたってデータが取得され、ここで、αは、X線源150のファンビームの角度広がりである)。画像データは、フィルタ補正逆投影方法論を使用して計算し、正方形の2mmボクセルを有する第1のボリュームデータセットを用いて再構成された。取得されたデータから再構成された例示的な投影画像が、図5A〜図5Cに示されている。図5A〜図5Cの画像は、バイラテラルフィルタを使用してフィルタリングされているが、それらは、本明細書の教示によって可能な画像品質改善の代表的なものである。図5Aでは、投影画像のピクセル寸法は、2mmであり、画像は、ビュー方向に沿ったデータ値を合計することによって生成された。この画像では、金属階段くさび132は、明瞭さを欠き、いくつかの要素(134)は、アーティファクトノイズのために見えず、いくつかの要素(136)は、不十分にレンダリングされ、微細な細部を欠き、低解像度を有する。
図5Bに示す投影画像は、1mmの投影画像ピクセル寸法を生成するように第2のボリュームデータセットを再サンプリングすることによって生成された。この画像では、要素134および136のようないくつかの特徴の解像度は、改善されるが、アーティファクトノイズは、依然として目に見えて存在する。図5Aおよび図5Bにおける基礎となるデータの本来の解像度は、高くなく、したがって、再サンプリングのみでは、結果として生じる画像の品質における大幅な改善を提供しない。
図5Cに示す投影画像は、本明細で教示される技法を使用して生成された。具体的には、フィルタ補正逆投影方法論を使用して計算された第1のボリュームデータセットは、1mmの寸法を有する立方体ボクセルを有する第2のボリュームデータセットを作成するために再サンプリングされた。測定データの一部(サブセット)は、ビュー方向205に対して0°、-3°、および+3°を中心とするX線に対応する検出器アレイ160のすべての行および選択された列から選択された。順序付きサブセットコンベックス技法を含む反復再構成方法論に、測定データの一部が供給され、再構成された第2のボリュームデータセットが生成された。図5Cの投影画像は、ビュー方向に沿った再構成された第2のボリュームデータセットのデータ値を合計することによって生成された。この画像では、アーティファクトによる筋およびノイズは、ほぼ完全に排除される。金属階段くさび132は、はっきりした境界を有し、変化する厚さによる改善されたコントラストのグラデーションを示す。要素134は、目に見えるが、以前の画像ではノイズによって隠されており、精細な細部は、要素136において初めて見ることができる。線対の解像度も、大幅に改善されている。
図6は、本明細書で説明される画像再構成方法およびシステムの例示的な実施形態を実施するために使用することができる例示的なコンピューティングデバイス140のブロック図である。以下のコンピューティングデバイス140の説明および要素は、前の実施形態を参照して上記で説明した任意のコンピューティングデバイスに適用可能であり得る。コンピューティングデバイス140は、例示的な実施形態を実施するための1つまたは複数のコンピュータ実行可能命令またはソフトウェアを記憶するための1つまたは複数の非一時的コンピュータ可読媒体を含む。非一時的コンピュータ可読媒体は、限定はしないが、1つまたは複数のタイプのハードウェアメモリ、非一時的有形媒体(たとえば、1つまたは複数の磁気記憶ディスク、1つまたは複数の光ディスク、1つまたは複数のフラッシュドライブ、1つまたは複数の固体ディスク)などを含んでもよい。たとえば、コンピューティングデバイス140内に含まれるメモリ606は、画像化システム100の例示的な実施形態を実施するためのコンピュータ可読かつコンピュータ実行可能な命令またはソフトウェアを記憶してもよい。コンピューティングデバイス140は、構成可能またはプログラム可能な処理ユニット145と、関連するコア604も含み、メモリ606内に記憶されたコンピュータ可読かつコンピュータ実行可能な命令またはソフトウェアと、システムハードウェアを制御するための他のプログラムとを実行するための、1つまたは複数の追加の構成可能またはプログラム可能なプロセッサ602'と、関連するコア604'とを含んでもよい(たとえば、複数のプロセッサまたはコアを有するコンピュータシステムの場合)。プロセッサ145およびプロセッサ602'は、各々、シングルコアプロセッサまたはマルチコア(604および604')プロセッサであってもよい。
コンピューティングデバイス内のインフラストラクチャおよびリソースが動的に共有され得るように、コンピューティングデバイス140において仮想化が用いられてもよい。プロセスが複数のコンピューティングリソースではなく1つのコンピューティングリソースのみを使用しているように見えるように、複数のプロセッサ上で実行されているプロセスを処理するために仮想マシン614が提供されてもよい。複数の仮想マシンが、1つのプロセッサで使用されてもよい。
メモリ606は、DRAM、SRAM、EDO RAMなどのような、読出し専用メモリまたはランダムアクセスメモリを含んでもよい。メモリ606は、同様に他のタイプのメモリ、またはそれらの組合せを含んでもよい。いくつかの実施形態では、メモリ606は、測定データ605または再構成されたボリュームデータセット607を記憶するために使用することができる。
ユーザは、グラフィックユニット146が例示的な実施形態によって提供される1つまたは複数のグラフィカルユーザインターフェース622を表示することができるコンピュータモニタのような視覚表示デバイス142を介してコンピューティングデバイス140と対話してもよい。コンピューティングデバイス140は、ユーザから入力を受信するための他のI/Oデバイス、たとえば、キーボードもしくは任意の他の適切なマルチポイントタッチインターフェース608、ポインティングデバイス610(たとえば、マウス)、マイクロフォン628、または画像キャプチャデバイス632(たとえば、カメラもしくはスキャナ)を含んでもよい。マルチポイントタッチインターフェース608(たとえば、キーボード、ピンパッド、スキャナ、タッチスクリーンなど)およびポインティングデバイス610(たとえば、マウス、スタイラスペンなど)は、視覚表示デバイス142に結合されてもよい。コンピューティングデバイス140は、他の適切な従来のI/O周辺機器を含んでもよい。
コンピューティングデバイス140はまた、画像化システム100の例示的な実施形態を実施するデータおよびコンピュータ可読命令またはソフトウェアを記憶するための、ハードドライブ、CD-ROM、または他のコンピュータ可読媒体のような、1つまたは複数の記憶デバイス624を含んでもよい。たとえば、ストレージ624は、図1に関連して上記でさらに論じている、直接再構成実行可能コード623、反復再構成実行可能コード625、またはビュー方向再構成実行可能コード627の1つまたは複数の実装形態を記憶することができる。例示的な記憶デバイス624はまた、例示的な実施形態を実装するために必要な任意の適切な情報を記憶するための1つまたは複数のデータベースを記憶してもよい。たとえば、例示的な記憶デバイス624は、搬送システム速度、走査された品目、アラームトリガの数、センサ情報、システムジオメトリ、X線源較正、最後のシステムメンテナンスからの時間、耐用年数、または、システム100の実施形態によって使用されるべき任意の他の情報のような情報を記憶するための1つまたは複数のデータベース626を記憶することができる。データベースは、データベース内の1つまたは複数のデータ項目を追加、削除、または更新するために、任意の適切な時間に手動または自動で更新されてもよい。
直接再構成コード623は、本明細書で教示される直接再構成技法のうちの1つまたは複数を処理ユニット145に実施させる実行可能コードおよび他のコードを含む。反復再構成コード625は、本明細書で教示される1つまたは複数の反復再構成方法論を処理ユニット145に実行させる実行可能コードおよび他のコードを含む。ビュー方向再構成コード627は、本明細書で教示されるようにビュー方向再構成方法論を処理ユニット145に実行させる実行可能コードおよび他のコードを含む。ストレージ624内の別個の構造として見られるが、直接再構成コード623、反復再構成コード625、およびビュー方向再構成コード627のうちの1つまたは複数は、単一のモジュールまたはルーチンとして実装されてもよい。
コンピューティングデバイス140は、本明細書で説明される例示的な実施形態のいずれかにおいて、データを送信もしくは受信するため、または他のデバイスと通信するために使用することができるネットワークインターフェース612を含むことができる。ネットワークインターフェース612は、限定はしないが、標準的な電話線、LANもしくはWANリンク(たとえば、802.11、T1、T3、56kb、X.25)、ブロードバンド接続(たとえば、ISDN、フレームリレー、ATM)、ワイヤレス接続(Wi-Fi、3G、4G、Bluetooth(登録商標))、コントローラエリアネットワーク(CAN)、または上記のいずれかもしくはすべての何らかの組合せを含む様々な接続を介して、1つまたは複数のネットワーク、たとえば、ローカルエリアネットワーク(LAN)、ワイドエリアネットワーク(WAN)、またはインターネットと、1つまたは複数のネットワークデバイス620を介してインターフェースするように構成することができる。例示的な実施形態では、コンピューティングデバイス140は、コンピューティングデバイス140とネットワークとの間の(たとえば、ネットワークインターフェースを介する)ワイヤレス通信を容易にするために、1つまたは複数のアンテナ630を含むことができる。ネットワークインターフェース612は、内蔵型ネットワークアダプタ、ネットワークインターフェースカード、PCMCIAネットワークカード、カードバスネットワークアダプタ、ワイヤレスネットワークアダプタ、USBネットワークアダプタ、モデム、または、コンピューティングデバイス140を通信が可能な任意のタイプのネットワークにインターフェースし、本明細書で説明される動作を実行するのに適した任意の他のデバイスを含んでもよい。さらに、コンピューティングデバイス140は、ワークステーション、デスクトップコンピュータ、サーバ、ラップトップ、ハンドヘルドコンピュータ、タブレットコンピュータ(たとえば、iPad(登録商標)タブレットコンピュータ)、モバイルコンピューティングもしくは通信デバイス(たとえば、iPhone(登録商標)通信デバイス)、企業内デバイス、または、通信が可能であり、本明細書で説明される動作を実行するのに十分なプロセッサパワーおよびメモリ容量を有する他の形態のコンピューティングもしくは遠距離通信デバイスのような、任意のコンピュータシステムであってもよい。
コンピューティングデバイス140は、Microsoft(登録商標) Windows(登録商標)オペレーティングシステムのバージョンのいずれか、Unix(登録商標)およびLinux(登録商標)オペレーティングシステムの異なるリリース、MacintoshコンピュータのためのMacOS(登録商標)の任意のバージョン、任意の組込みオペレーティングシステム、任意のリアルタイムオペレーティングシステム、任意のオープンソースオペレーティングシステム、任意のプロプライエタリオペレーティングシステム、または、コンピューティングデバイス上で動作することができ、本明細書で説明される動作を実行することができる任意の他のオペレーティングシステムのような、任意のオペレーティングシステム616を実行してもよい。例示的な実施形態では、オペレーティングシステム616は、ネイティブモードまたはエミュレートモードにおいて実行されてもよい。例示的な実施形態では、オペレーティングシステム616は、1つまたは複数のクラウドマシンインスタンス上で実行されてもよい。
例示的な実施形態を説明する際に、明確にするために特定の用語法が使用される。説明の目的のために、各特定の用語は、同様の目的を達成するために類似の方法で動作するすべての技術的および機能的同等物を少なくとも含むことが意図されている。加えて、特定の例示的な実施形態が複数のシステム要素、デバイス構成要素、または方法ステップを含むいくつかの例では、それらの要素、構成要素、またはステップは、単一の要素、構成要素、またはステップで置き換えられてもよい。同様に、単一の要素、構成要素、またはステップは、同じ目的にかなう複数の要素、構成要素、またはステップで置き換えられてもよい。さらに、例示的な実施形態は、その特定の実施形態を参照して示され、説明されているが、当業者は、本発明の範囲から逸脱することなく、形態および詳細における様々な置換および変更がその中でなされてもよいことを理解するであろう。さらに、他の実施形態、機能、および利点も、本発明の範囲内である。
100 画像化システム、システム
105 走査経路
110 画像化室
120 搬送システム
122 通路
124 コンベアベルト、コンベア
130 物体
132 金属階段くさび
134 要素
136 要素
140 コンピューティングデバイス
142 視覚表示デバイス
144 入力デバイス
145 処理ユニット、プロセッサ
146 グラフィックユニット
150 X線源、線源、電磁放射線源
160 検出器、検出器アレイ
170 ケーブル
200 ボクセル、第1のボリュームデータセット
201 ピクセル
202 長さ、第1のボクセル寸法
204 幅、第1のボクセル寸法
205 ビュー方向
206 高さ、第1のボクセル寸法
220 ボクセル、第2のボリュームデータセット
222 第2のボクセル寸法、長さ
224 第2のボクセル寸法、幅
225 ビュー方向
226 第2のボクセル寸法、高さ
227 X線
229 X線
230 固定点
242 長さ
244 幅
245 ビュー方向
246 高さ
406 コンピュータメモリ
424 ストレージ、直接再構成コード
425 反復再構成コード
426 データベース
427 ビュー方向再構成コード
602' プロセッサ
604 コア
604' コア
605 測定データ
606 メモリ
607 再構成されたボリュームデータセット
608 マルチポイントタッチインターフェース
610 ポインティングデバイス
612 ネットワークインターフェース
614 仮想マシン
616 オペレーティングシステム
620 ネットワークデバイス
622 グラフィカルユーザインターフェース
623 直接再構成実行可能コード、直接再構成コード
624 記憶デバイス、ストレージ
625 反復再構成実行可能コード、反復再構成コード
626 データベース
627 ビュー方向再構成実行可能コード、ビュー方向再構成コード
628 マイクロフォン
630 アンテナ
632 画像キャプチャデバイス

Claims (16)

  1. 物体の少なくとも一部にX線放射線のビームを照射するためのX線源と、
    X線と前記物体の少なくとも前記一部との相互作用を示す測定データを検出するための検出器アレイと、
    直接再構成技術、反復再構成技術、またはその両方のためのプロセッサ実行可能命令を記憶するためのメモリと、
    中央処理ユニットを有し、前記メモリに通信可能に結合されたプログラム可能な処理ユニットと
    を備える画像化システムであって、プロセッサ実行可能命令の実行時に、前記プログラム可能な処理ユニットが、
    前記検出器アレイからの測定データを受信し、
    第1のボクセル寸法を有する複数のボクセルを有する第1のボリュームデータセットを受信し、
    前記物体の前記一部の投影画像のビュー方向と実質的に平行なX線から得られたデータに対応する前記測定データの一部を選択し、
    前記第1のボリュームデータセットと前記測定データの前記選択された一部とを使用して、第2のボクセル寸法を有する複数のボクセルを有する再構成された第2のボリュームデータセットを計算し、
    前記再構成された第2のボリュームデータセットから前記ビュー方向に沿った前記物体の前記一部の前記投影画像をグラフィックユニットに生成させるように動作する、画像化システム。
  2. 前記プログラム可能な処理ユニットが、前記測定データから前記第1のボリュームデータセットを計算するように動作する、請求項に記載の画像化システム。
  3. 前記投影画像の前記ビュー方向と実質的に平行なX線に対応する前記測定データの前記一部が、前記ビュー方向に対して0°と約45°との間の角度におけるX線から得られたデータを備える、請求項に記載の画像化システム。
  4. 前記投影画像の前記ビュー方向と実質的に平行なX線に対応する前記測定データの前記一部が、前記ビュー方向に対して0°と約15°との間の角度におけるX線から得られたデータを備える、請求項に記載の画像化システム。
  5. 前記投影画像の前記ビュー方向と実質的に平行なX線に対応する前記測定データの前記一部が、前記ビュー方向に対して0°と約5°との間の角度におけるX線から得られたデータを備える、請求項に記載の画像化システム。
  6. 前記第2のボクセル寸法が前記第1のボクセル寸法と等しい、請求項に記載の画像化システム。
  7. 前記第2のボクセル寸法のうちの少なくとも1つが、対応する第1のボクセル寸法よりも小さい、請求項に記載の画像化システム。
  8. 前記第2のボクセル寸法のうちの少なくとも1つが、対応する第1のボクセル寸法よりも大きい、請求項に記載の画像化システム。
  9. 前記プログラム可能な処理ユニットが、前記第1のボリュームデータセットまたは前記再構成された第2のボリュームデータセットの座標軸を前記ビュー方向と整列するように回転させるようにさらに動作する、請求項に記載の画像化システム。
  10. 前記第1のボリュームデータセットまたは前記再構成された第2のボリュームデータセットの座標軸の前記回転が、線形補間または直交座標から極座標へのマッピングを実行することを備える、請求項に記載の画像化システム。
  11. 前記第1のボリュームデータセットまたは前記再構成された第2のボリュームデータセットの前記計算が、直接再構成技法、または反復再構成技法、またはその両方を適用することを備える、請求項に記載の画像化システム。
  12. 前記反復再構成技法が、同時代数的再構成技法(SART)、同時反復再構成技法(SIRT)、順序付きサブセットコンベックス技法(OSC)、適応的統計的反復再構成技法(ASIR)、OS分離可能放物線サロゲート技法(OS-SPS)、代数的再構成技法(ART)、またはKacsmarz再構成技法のうちの1つまたは複数を備える、請求項11に記載の画像化システム。
  13. 前記測定データが前記物体の少なくとも前記一部の密度を表す、請求項に記載の画像化システム。
  14. 前記測定データが前記物体の少なくとも前記一部の実効原子番号を表す、請求項に記載の画像化システム。
  15. 前記投影画像が正射影である、請求項に記載の画像化システム。
  16. 前記投影画像が透視投影である、請求項に記載の画像化システム。
JP2018550440A 2016-03-25 2017-03-21 コンピュータ断層撮影ボリュームからの投影画像を再構成するためのシステムおよび方法 Active JP6875415B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US15/080,741 2016-03-25
US15/080,741 US10115211B2 (en) 2016-03-25 2016-03-25 Systems and methods for reconstructing projection images from computed tomography volumes
PCT/US2017/023362 WO2017165382A1 (en) 2016-03-25 2017-03-21 Systems and methods for reconstructing projection images from computed tomography volumes

Publications (3)

Publication Number Publication Date
JP2019516083A JP2019516083A (ja) 2019-06-13
JP2019516083A5 JP2019516083A5 (ja) 2020-04-30
JP6875415B2 true JP6875415B2 (ja) 2021-05-26

Family

ID=58548860

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018550440A Active JP6875415B2 (ja) 2016-03-25 2017-03-21 コンピュータ断層撮影ボリュームからの投影画像を再構成するためのシステムおよび方法

Country Status (6)

Country Link
US (1) US10115211B2 (ja)
EP (1) EP3433834B1 (ja)
JP (1) JP6875415B2 (ja)
AU (1) AU2017238075B2 (ja)
CA (1) CA3018964C (ja)
WO (1) WO2017165382A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106706677B (zh) * 2015-11-18 2019-09-03 同方威视技术股份有限公司 检查货物的方法和系统
US10692251B2 (en) * 2017-01-13 2020-06-23 Canon Medical Systems Corporation Efficient variance-reduced method and apparatus for model-based iterative CT image reconstruction
US11721017B2 (en) * 2021-03-31 2023-08-08 James R. Glidewell Dental Ceramics, Inc. CT reconstruction quality control

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH119589A (ja) * 1997-04-30 1999-01-19 Hitachi Medical Corp X線ct装置及び画像再構成方法
US6088423A (en) 1998-06-05 2000-07-11 Vivid Technologies, Inc. Multiview x-ray based system for detecting contraband such as in baggage
US20070242868A1 (en) * 2005-11-09 2007-10-18 Dexela Limited Methods and apparatus for displaying images
US7515675B2 (en) 2005-12-07 2009-04-07 Ge Security, Inc. Apparatus and method for providing a near-parallel projection from helical scan data
JP2009519471A (ja) 2005-12-12 2009-05-14 リビール イメージング テクノロジーズ ずれた放射線によるct検査
US7831012B2 (en) 2006-02-09 2010-11-09 L-3 Communications Security and Detection Systems Inc. Radiation scanning systems and methods
US7606348B2 (en) 2006-02-09 2009-10-20 L-3 Communications Security and Detection Systems Inc. Tomographic imaging systems and methods
US8314811B2 (en) * 2006-03-28 2012-11-20 Siemens Medical Solutions Usa, Inc. MIP-map for rendering of an anisotropic dataset
US7583780B2 (en) * 2006-06-22 2009-09-01 General Electric Company Systems and methods for improving a resolution of an image
WO2010129058A2 (en) 2009-05-08 2010-11-11 L-3 Communications Security and Detection Systems Inc. Dual energy imaging system
US8761478B2 (en) * 2009-12-15 2014-06-24 General Electric Company System and method for tomographic data acquisition and image reconstruction
US8787521B2 (en) * 2009-12-23 2014-07-22 General Electric Company System and method of iterative image reconstruction for computed tomography
US8204172B1 (en) 2010-03-17 2012-06-19 General Electric Company System and method of prior image constrained image reconstruction using short scan image data and objective function minimization
JP5858928B2 (ja) * 2010-12-10 2016-02-10 株式会社日立メディコ X線ct装置及び画像再構成方法
US8644549B2 (en) 2011-02-01 2014-02-04 L-3 Communications Security And Detection Systems, Inc. Reconstruction method using direct and iterative techniques
US9069092B2 (en) 2012-02-22 2015-06-30 L-3 Communication Security and Detection Systems Corp. X-ray imager with sparse detector array
DE102012217940A1 (de) * 2012-10-01 2014-04-03 Siemens Aktiengesellschaft Rekonstruktion von Bilddaten
US20140198899A1 (en) 2013-01-11 2014-07-17 L-3 Communications Security And Detection Systems, Inc. Dual energy imaging system
CN105705096B (zh) * 2013-10-30 2020-11-03 皇家飞利浦有限公司 用于显示医学图像的方法和设备
KR102096410B1 (ko) * 2014-05-02 2020-04-03 삼성전자주식회사 의료 영상 장치 및 그 제어 방법
CN104240210B (zh) * 2014-07-21 2018-08-10 南京邮电大学 基于压缩感知的ct图像迭代重建方法

Also Published As

Publication number Publication date
EP3433834A1 (en) 2019-01-30
WO2017165382A1 (en) 2017-09-28
CA3018964A1 (en) 2017-09-28
CA3018964C (en) 2023-10-03
AU2017238075A1 (en) 2018-10-11
US20170278281A1 (en) 2017-09-28
US10115211B2 (en) 2018-10-30
JP2019516083A (ja) 2019-06-13
EP3433834B1 (en) 2020-05-13
AU2017238075B2 (en) 2022-03-10

Similar Documents

Publication Publication Date Title
CA3022215C (en) Systems and methods for generating projection images
US9911208B2 (en) Apparatus and method of iterative image reconstruction using regularization-parameter control
JP6437652B2 (ja) 材料特性評価のための断層撮影再構成
JP6893920B2 (ja) 高いコンピュータ断層撮影ピッチでの画像再構成のためのシステムおよび方法
US20050078861A1 (en) Tomographic system and method for iteratively processing two-dimensional image data for reconstructing three-dimensional image data
US11475611B2 (en) System and method for image reconstruction
JP6875415B2 (ja) コンピュータ断層撮影ボリュームからの投影画像を再構成するためのシステムおよび方法
EP1846752A2 (en) Apparatus and method for correction or extension of x-ray projections
Jin et al. A model-based 3D multi-slice helical CT reconstruction algorithm for transportation security application
CN111670460A (zh) 用于对象的图像重建的、特别是基于计算机断层摄影的图像重建的方法,以及用于该方法的设备、系统和计算机程序产品
CA2821773A1 (en) Method for generating a 3d representation of an object
Zeng et al. A new iterative reconstruction algorithm for 2D exterior fan-beam CT
Trampert et al. Spherically symmetric volume elements as basis functions for image reconstructions in computed laminography
Van Nieuwenhove Model-based reconstruction algorithms for dynamic X-ray CT

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200319

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200319

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210222

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210324

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210422

R150 Certificate of patent or registration of utility model

Ref document number: 6875415

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE

Ref document number: 6875415

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250