JP6874522B2 - Composition for laser marking and its use - Google Patents

Composition for laser marking and its use Download PDF

Info

Publication number
JP6874522B2
JP6874522B2 JP2017100828A JP2017100828A JP6874522B2 JP 6874522 B2 JP6874522 B2 JP 6874522B2 JP 2017100828 A JP2017100828 A JP 2017100828A JP 2017100828 A JP2017100828 A JP 2017100828A JP 6874522 B2 JP6874522 B2 JP 6874522B2
Authority
JP
Japan
Prior art keywords
infrared absorbing
absorbing dye
group
parts
production
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017100828A
Other languages
Japanese (ja)
Other versions
JP2018193516A (en
Inventor
清水 宏明
宏明 清水
昌平 坂本
昌平 坂本
澄洋 相京
澄洋 相京
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Ink SC Holdings Co Ltd
Toyocolor Co Ltd
Original Assignee
Toyo Ink SC Holdings Co Ltd
Toyocolor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Ink SC Holdings Co Ltd, Toyocolor Co Ltd filed Critical Toyo Ink SC Holdings Co Ltd
Priority to JP2017100828A priority Critical patent/JP6874522B2/en
Publication of JP2018193516A publication Critical patent/JP2018193516A/en
Application granted granted Critical
Publication of JP6874522B2 publication Critical patent/JP6874522B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、特定の近赤外線吸収色素を含むことを特徴とするレーザーマーキング用組成物及びその利用に関するものである。 The present invention relates to a composition for laser marking, which comprises a specific near-infrared absorbing dye, and its use.

近年、シート、包装シート、卵パック、カード、食品、化粧品、トイレタリー用品、医薬品等の各種容器、容器類のキャップ等の表面に対する印刷・印字はインクジェット方式が主流であるが、インキのニジミ、文字の欠け、あるいは装置のメンテナンス面において、多くの問題点を抱えている。その一方、マーキング工程の自動化、無人化を進める動きの中で、非接触で且つマーキング速度の早い、レーザー光によるマーキング方法が普及しつつある。 In recent years, the inkjet method has been the mainstream for printing and printing on the surfaces of various containers such as sheets, packaging sheets, egg packs, cards, foods, cosmetics, toiletries, pharmaceuticals, and caps of containers, but ink stains and characters There are many problems in terms of lack of ink or equipment maintenance. On the other hand, in the movement to automate and unmanned the marking process, a non-contact marking method using a laser beam, which has a high marking speed, is becoming widespread.

特許文献1、及び特許文献2において、近赤外領域の波長のレーザー光による無接触の記録方式が提案されている。一般に、レーザーマーキング用インキは、発色剤、顕色剤及び近赤外線吸収色素によりインキを構成されている。このインキの塗工物に対して、レーザー光を照射すると、近赤外線吸収色素がレーザー光を吸収し、発熱することで、照射部分の発色剤と顕色剤が反応して発色する。 Patent Document 1 and Patent Document 2 propose a non-contact recording method using laser light having a wavelength in the near infrared region. Generally, a laser marking ink is composed of a color former, a color developer, and a near-infrared absorbing dye. When the coated object of this ink is irradiated with a laser beam, the near-infrared absorbing dye absorbs the laser beam and generates heat, so that the color-developing agent and the color-developing agent in the irradiated portion react to develop a color.

良好な発色能を得るためには、レーザー照射前は無色であり、且つレーザー照射時は近赤外領域の光を強く吸収し、効率的に熱変換する近赤外線吸収色素の選択が重要であり、フタロシアニン(特許文献3)、シアニン(特許文献4)、スクアリリウム(特許文献5)を使用することが提案されている。しかしながら、フタロシアニン系の材料は、可視光領域に構造由来の吸収帯があり、それ自体が着色しているため、不可視性に課題がある。また、シアニン系やスクアリリウム系の材料は、不可視性は良好ではあるが、一般的に凝集性が強い構造が多く、分散・溶解させにくいため、インキとしての粘度・保存安定性に課題がある。 In order to obtain good color development ability, it is important to select a near-infrared absorbing dye that is colorless before laser irradiation, strongly absorbs light in the near-infrared region during laser irradiation, and efficiently converts heat. , Phthalocyanine (Patent Document 3), Cyanin (Patent Document 4), and Squalylium (Patent Document 5) have been proposed. However, the phthalocyanine-based material has a structure-derived absorption band in the visible light region and is colored by itself, so that there is a problem in invisibility. Further, although cyanine-based and squarylium-based materials have good invisibility, they generally have a structure with strong cohesiveness and are difficult to disperse and dissolve, so that there is a problem in viscosity and storage stability as an ink.

特開昭58−209594公報JP-A-58-209594 特開昭58−094494公報JP-A-58-094494 特開2005−119262公報JP-A-2005-119262 特開平11−254830公報JP-A-11-254830 特開平7−25153号公報Japanese Unexamined Patent Publication No. 7-25153

本発明が解決しようとする課題は、不可視性・近赤外線吸収能が極めて高く、粘度・保存安定性に優れ、且つレーザー照射した際の発色性に優れるレーザーマーキング用組成物、及びその記録方法を提供することである。 The problem to be solved by the present invention is a composition for laser marking, which has extremely high invisibility and near-infrared absorbing ability, excellent viscosity and storage stability, and excellent color development when irradiated with a laser, and a recording method thereof. To provide.

すなわち本発明は、近赤外線吸収色素[A]、発色剤[B]、顕色剤[C]及び樹脂[D]を含有するレーザーマーキング用組成物であって、
近赤外線吸収色素[A]が、下記一般式(1)で表される化合物、下記一般式(2)で表される化合物及び下記一般式(3)で表される化合物からなる群から選ばれる少なくとも一種の化合物を含有するレーザーマーキング用組成物に関する。
That is, the present invention is a composition for laser marking containing a near-infrared absorbing dye [A], a coloring agent [B], a developing agent [C], and a resin [D].
The near-infrared absorbing dye [A] is selected from the group consisting of a compound represented by the following general formula (1), a compound represented by the following general formula (2), and a compound represented by the following general formula (3). The present invention relates to a composition for laser marking containing at least one compound.

一般式(1)

Figure 0006874522
[一般式(1)中、
〜Rは、それぞれ独立に、水素原子、置換基を有してもよいアルキル基、置換基を有してもよいアリール基、置換基を有してもよいアルコキシ基、置換基を有してもよいアリールオキシ基、スルホ基、SO 、−SONR、−COOR、−CONR10、ニトロ基、シアノ基又はハロゲン原子を表す。
〜X10は、それぞれ独立に、水素原子、置換基を有してもよいアルキル基、置換基を有してもよいアルケニル基、置換基を有してもよいアリール基、置換基を有してもよいアラルキル基、置換基を有してもよいアルコキシ基、置換基を有してもよいアリールオキシ基、アミノ基、置換アミノ基、スルホ基、−SONR1112、−COOR13、−CONR1415、ニトロ基、シアノ基又はハロゲン原子を表す。X〜X10は、置換基同士が結合して環を形成してもよい。
は、無機又は有機のカチオンを表し、R〜R15は、それぞれ独立に、水素原子又は置換基を有してもよいアルキル基を表す。] General formula (1)
Figure 0006874522
[In general formula (1),
R 1 to R 5 independently have a hydrogen atom, an alkyl group which may have a substituent, an aryl group which may have a substituent, an alkoxy group which may have a substituent, and a substituent. an aryloxy group which may have a sulfo group, SO 3 - M a +, -SO 2 NR 6 R 7, -COOR 8, -CONR 9 R 10, a nitro group, a cyano group or a halogen atom.
X 1 to X 10 independently have a hydrogen atom, an alkyl group which may have a substituent, an alkenyl group which may have a substituent, an aryl group which may have a substituent, and a substituent. Aralkyl group which may have, alkoxy group which may have substituent, aryloxy group which may have substituent, amino group, substituted amino group, sulfo group, -SO 2 NR 11 R 12 ,- Represents COOR 13 , -CONR 14 R 15 , nitro group, cyano group or halogen atom. In X 1 to X 10 , the substituents may be bonded to each other to form a ring.
M a + denotes an inorganic or organic cation, R 6 to R 15 each independently represent an alkyl group which may have a hydrogen atom or a substituent. ]

一般式(2)

Figure 0006874522
[一般式(2)中、
Yは、置換基を有してもよい複素環を表す。
16〜R20は、それぞれ独立に、水素原子、置換基を有してもよいアルキル基、置換基を有してもよいアリール基、置換基を有してもよいアルコキシ基、置換基を有してもよいアリールオキシ基、スルホ基、SO 、−SONR2122、−COOR23、−CONR2425、ニトロ基、シアノ基又はハロゲン原子を表す。
は、無機又は有機のカチオンを表し、R21〜R25は、それぞれ独立に、水素原子又は置換基を有してもよいアルキル基を表す。] General formula (2)
Figure 0006874522
[In general formula (2),
Y represents a heterocycle which may have a substituent.
R 16 to R 20 independently have a hydrogen atom, an alkyl group which may have a substituent, an aryl group which may have a substituent, an alkoxy group which may have a substituent, and a substituent. an aryloxy group which may have a sulfo group, SO 3 - M b +, -SO 2 NR 21 R 22, -COOR 23, -CONR 24 R 25, a nitro group, a cyano group or a halogen atom.
M b + represents an inorganic or organic cation, and R 21 to R 25 each independently represent an alkyl group which may have a hydrogen atom or a substituent. ]

一般式(3)

Figure 0006874522
[一般式(3)中、
、Q、Q及びQは、それぞれ独立に、炭素原子又は窒素原子を表す。Q、Q、Q又はQが窒素原子の場合、それぞれに結合するX11、X14、X15又はX18はないものとする。
26〜R30は、それぞれ独立に、水素原子、スルホ基、−SO 又はハロゲン原子を表す。M は、無機又は有機のカチオンを表す。
11〜X18は、それぞれ独立に、水素原子、置換基を有してもよいアルキル基、置換基を有してもよいアルケニル基、置換基を有してもよいアリール基、置換基を有してもよいアラルキル基、置換基を有してもよいアルコキシ基、置換基を有してもよいアリールオキシ基、ヒドロキシル基、アミノ基、−NR3132、スルホ基、−SONR3334、−COOR35、−CONR3637、ニトロ基、シアノ基又はハロゲン原子を表す。X11〜X18は、置換基同士が結合して環を形成してもよい。
31〜R37は、それぞれ独立に、水素原子、置換基を有してもよいアルキル基、置換基を有してもよいアリール基、置換基を有してもよいアシル基又は置換基を有してもよいピリジニル基を表す。R31とR32、R33とR34、36とR37は、置換基同士が結合して環を形成してもよい。] General formula (3)
Figure 0006874522
[In general formula (3),
Q 1 , Q 4 , Q 5 and Q 8 each independently represent a carbon atom or a nitrogen atom. If Q 1 , Q 4 , Q 5 or Q 8 are nitrogen atoms, it is assumed that there are no X 11 , X 14 , X 15 or X 18 bonded to each.
R 26 to R 30 independently represent a hydrogen atom, a sulfo group, -SO 3 - M c + or a halogen atom. Mc + represents an inorganic or organic cation.
X 11 to X 18 independently have a hydrogen atom, an alkyl group which may have a substituent, an alkenyl group which may have a substituent, an aryl group which may have a substituent, and a substituent. Aralkyl group which may have, alkoxy group which may have substituent, aryloxy group which may have substituent, hydroxyl group, amino group, -NR 31 R 32 , sulfo group, -SO 2 NR Represents 33 R 34 , -COOR 35 , -CONR 36 R 37 , nitro group, cyano group or halogen atom. In X 11 to X 18 , substituents may be bonded to each other to form a ring.
R 31 to R 37 each independently have a hydrogen atom, an alkyl group which may have a substituent, an aryl group which may have a substituent, and an acyl group or a substituent which may have a substituent. Represents a pyridinyl group that may have. In R 31 and R 32 , R 33 and R 34, and R 36 and R 37 , the substituents may be bonded to each other to form a ring. ]

また本発明は、近赤外線吸収色素[A]が、一般式(1)で表される化合物を含有する上記レーザーマーキング用組成物に関する。 The present invention also relates to the above-mentioned laser marking composition in which the near-infrared absorbing dye [A] contains a compound represented by the general formula (1).

また本発明は、一般式(1)におけるR〜Rの少なくとも1つ以上が、置換基を有してもよいアルキル基、置換基を有してもよいアリール基、置換基を有してもよいアルコキシ基、置換基を有してもよいアリールオキシ基、スルホ基、SO 、−SONR、−COOR、−CONR10、ニトロ基、シアノ基又はハロゲン原子である上記レーザーマーキング用組成物に関する。 Further, in the present invention, at least one or more of R 1 to R 5 in the general formula (1) has an alkyl group which may have a substituent, an aryl group which may have a substituent, and a substituent. also alkoxy group, an optionally substituted aryloxy group, a sulfo group, SO 3 - M a +, -SO 2 NR 6 R 7, -COOR 8, -CONR 9 R 10, a nitro group, a cyano The present invention relates to the above-mentioned composition for laser marking which is a group or a halogen atom.

また本発明は、一般式(1)におけるR〜Rの少なくとも1つ以上が、スルホ基又はSO である上記レーザーマーキング用組成物に関する。 The present invention also relates to the above-mentioned laser marking composition in which at least one or more of R 1 to R 5 in the general formula (1) is a sulfo group or SO 3 - M a +.

また本発明は、近赤外線吸収色素[A]が、一般式(2)で表される化合物を含有する上記レーザーマーキング用組成物に関する。 The present invention also relates to the above-mentioned laser marking composition in which the near-infrared absorbing dye [A] contains a compound represented by the general formula (2).

また本発明は、一般式(2)におけるYが、置換基を有してもよい、4員環〜7員環の飽和又は不飽和の複素環である上記レーザーマーキング用組成物に関する。 The present invention also relates to the above-mentioned laser marking composition in which Y in the general formula (2) is a saturated or unsaturated heterocycle having a 4-membered ring to a 7-membered ring which may have a substituent.

また本発明は、近赤外線吸収色素[A]が、一般式(3)で表される化合物を含有する上記レーザーマーキング用組成物に関する。 The present invention also relates to the above-mentioned laser marking composition in which the near-infrared absorbing dye [A] contains a compound represented by the general formula (3).

また本発明は、一般式(3)におけるQ、Q、Q及びQが、炭素原子である上記レーザーマーキング用組成物に関する。 The present invention also relates to the above-mentioned laser marking composition in which Q 1 , Q 4 , Q 5 and Q 8 in the general formula (3) are carbon atoms.

また本発明は、レーザーマーキング用組成物の全固形分中、近赤外線吸収色素[A]の含有率が、0.05〜5質量%である上記レーザーマーキング用組成物に関する。 The present invention also relates to the above-mentioned laser marking composition in which the content of the near-infrared absorbing dye [A] in the total solid content of the laser marking composition is 0.05 to 5% by mass.

また本発明は、上記レーザーマーキング用組成物を塗工してなる塗工物に関する。 The present invention also relates to a coated product obtained by coating the above-mentioned laser marking composition.

また本発明は、上記塗工物に、レーザー光を照射して記録してなる記録材に関する。 The present invention also relates to a recording material obtained by irradiating the coated object with a laser beam for recording.

さらに本発明は、上記塗工物に、レーザー光を照射して記録する記録方法に関する。 Further, the present invention relates to a recording method in which the coated object is irradiated with a laser beam and recorded.

本発明のレーザーマーキング用組成物は、光学特性が良好であり、かつ凝集・析出しにくい特定の近赤外線吸収色素を使用することで、不可視性・近赤外線吸収能が極めて高く、粘度・保存安定性に優れ、且つレーザー照射した際の発色性が非常に優れている。 The composition for laser marking of the present invention has excellent invisibility and near-infrared absorbing ability, and has extremely high viscosity and storage stability by using a specific near-infrared absorbing dye which has good optical characteristics and is hard to aggregate and precipitate. It has excellent properties and is very excellent in color development when irradiated with a laser.

<レーザーマーキング用組成物>
本発明のレーザーマーキング用組成物について詳しく説明する。本発明のレーザーマーキング用組成物は、特定の近赤外線吸収色素[A]に加えて、発色剤[B]、顕色剤[C]、樹脂[D]を必須成分として、その他公知の添加剤等から構成される。近赤外線吸収色素は、分散状態と溶解状態のどちらの状態でも使用可能である。
<Laser marking composition>
The composition for laser marking of the present invention will be described in detail. The composition for laser marking of the present invention contains, in addition to the specific near-infrared absorbing dye [A], a color former [B], a color developer [C], and a resin [D] as essential components, and other known additives. Etc. The near-infrared absorbing dye can be used in both the dispersed state and the dissolved state.

<近赤外線吸収色素[A]>
本発明の近赤外線吸収色素[A]は、一般式(1)で表される化合物、一般式(2)で表される化合物及び一般式(3)で表される化合物からなる群から選ばれる少なくとも一種の化合物を含有することを特徴とする。単独で使用しても良いし、2つ以上を併用して使用しても良い。
<Near infrared absorbing pigment [A]>
The near-infrared absorbing dye [A] of the present invention is selected from the group consisting of a compound represented by the general formula (1), a compound represented by the general formula (2), and a compound represented by the general formula (3). It is characterized by containing at least one compound. It may be used alone or in combination of two or more.

(一般式(1)で表される化合物)
一般式(1)

Figure 0006874522
(Compound represented by the general formula (1))
General formula (1)
Figure 0006874522

[一般式(1)中、
〜Rは、それぞれ独立に、水素原子、置換基を有してもよいアルキル基、置換基を有してもよいアリール基、置換基を有してもよいアルコキシ基、置換基を有してもよいアリールオキシ基、スルホ基、SO 、−SONR、−COOR、−CONR10、ニトロ基、シアノ基又はハロゲン原子を表す。
〜X10は、それぞれ独立に、水素原子、置換基を有してもよいアルキル基、置換基を有してもよいアルケニル基、置換基を有してもよいアリール基、置換基を有してもよいアラルキル基、置換基を有してもよいアルコキシ基、置換基を有してもよいアリールオキシ基、アミノ基、置換アミノ基、スルホ基、−SONR1112、−COOR13、−CONR1415、ニトロ基、シアノ基又はハロゲン原子を表す。X〜X10は、置換基同士が結合して環を形成してもよい。
は、無機又は有機のカチオンを表し、R〜R15は、それぞれ独立に、水素原子又は置換基を有してもよいアルキル基を表す。]
[In general formula (1),
R 1 to R 5 independently have a hydrogen atom, an alkyl group which may have a substituent, an aryl group which may have a substituent, an alkoxy group which may have a substituent, and a substituent. an aryloxy group which may have a sulfo group, SO 3 - M a +, -SO 2 NR 6 R 7, -COOR 8, -CONR 9 R 10, a nitro group, a cyano group or a halogen atom.
X 1 to X 10 independently have a hydrogen atom, an alkyl group which may have a substituent, an alkenyl group which may have a substituent, an aryl group which may have a substituent, and a substituent. Aralkyl group which may have, alkoxy group which may have substituent, aryloxy group which may have substituent, amino group, substituted amino group, sulfo group, -SO 2 NR 11 R 12 ,- Represents COOR 13 , -CONR 14 R 15 , nitro group, cyano group or halogen atom. In X 1 to X 10 , the substituents may be bonded to each other to form a ring.
M a + denotes an inorganic or organic cation, R 6 to R 15 each independently represent an alkyl group which may have a hydrogen atom or a substituent. ]

〜Rにおいて「置換基を有してもよいアルキル基」としては、メチル基、エチル基、n−プロピル基、イソプロピル基、tert−ブチル基、tert−アミル基、2−エチルヘキシル基、ステアリル基、クロロメチル基、トリクロロメチル基、トリフルオロメチル基、2−メトキシエチル基、2−クロロエチル基、2−ニトロエチル基、シクロペンチル基、シクロヘキシル基、ジメチルシクロヘキシル基等を挙げることができ、これらの中でもメチル基、エチル基、n−プロピル基が、合成難易度、及び不可視性の観点の観点で好ましい。 In R 1 to R 5 , the "alkyl group which may have a substituent" includes a methyl group, an ethyl group, an n-propyl group, an isopropyl group, a tert-butyl group, a tert-amyl group and a 2-ethylhexyl group. Examples thereof include stearyl group, chloromethyl group, trichloromethyl group, trifluoromethyl group, 2-methoxyethyl group, 2-chloroethyl group, 2-nitroethyl group, cyclopentyl group, cyclohexyl group, dimethylcyclohexyl group and the like. Of these, a methyl group, an ethyl group and an n-propyl group are preferable from the viewpoint of synthetic difficulty and invisibility.

〜Rにおいて「置換基を有してもよいアリール基」としては、フェニル基、ナフチル基、4−メチルフェニル基、3,5−ジメチルフェニル基、ペンタフルオロフェニル基、4−ブロモフェニル基、2−メトキシフェニル基、4−ジエチルアミノフェニル基、3−ニトロフェニル基、4−シアノフェニル基等を挙げることができ、これらの中でもフェニル基、4−メチルフェニル基が、合成難易度、及び不可視性の観点で好ましい。 In R 1 to R 5 , the "aryl group which may have a substituent" includes a phenyl group, a naphthyl group, a 4-methylphenyl group, a 3,5-dimethylphenyl group, a pentafluorophenyl group, and a 4-bromophenyl group. Groups, 2-methoxyphenyl group, 4-diethylaminophenyl group, 3-nitrophenyl group, 4-cyanophenyl group and the like can be mentioned, and among these, the phenyl group and the 4-methylphenyl group have the difficulty of synthesis and the degree of synthesis. Preferred from the viewpoint of invisibility.

〜Rにおいて「置換基を有してもアルコキシ基」としては、メトキシ基、エトキシ基、n−プロポキシ基、イソプロポキシ基、n−ブトキシ基、n−オクチルオキシ基、2−エチルヘキシルオキシ基、トリフルオロメトキシ基、シクロヘキシルオキシ基、ステアリルオキシ基等を挙げることができ、これらの中でもメトキシ基、エトキシ基、トリフルオロメトキシ基が、合成難易度、及び不可視性の観点で好ましい。 In R 1 to R 5 , "alkoxy groups even if they have a substituent" include methoxy group, ethoxy group, n-propoxy group, isopropoxy group, n-butoxy group, n-octyloxy group and 2-ethylhexyloxy. Examples thereof include a group, a trifluoromethoxy group, a cyclohexyloxy group, a stearyloxy group and the like, and among these, a methoxy group, an ethoxy group and a trifluoromethoxy group are preferable from the viewpoint of synthesis difficulty and invisibility.

〜Rにおいて「置換基を有してもよいアリールオキシ基」としては、フェノキシ基、ナフチルオキシ基、4−メチルフェニルオキシ基、3,5−クロロフェニルオキシ基、4−クロロ−2−メチルフェニルオキシ基、4−tert− ブチルフェニルオキシ基、4−メトキシフェニルオキシ基、4−ジエチルアミノフェニルオキシ基、4−ニトロフェニルオキシ基等を挙げることができ、これらの中でもフェノキシ基、4−メチルフェニルオキシ基、ナフチルオキシ基が、合成難易度、及び不可視性の観点で好ましい。 In R 1 to R 5 , the "aryloxy group which may have a substituent" includes a phenoxy group, a naphthyloxy group, a 4-methylphenyloxy group, a 3,5-chlorophenyloxy group and a 4-chloro-2-. Methylphenyloxy group, 4-tert-butylphenyloxy group, 4-methoxyphenyloxy group, 4-diethylaminophenyloxy group, 4-nitrophenyloxy group and the like can be mentioned, and among these, phenoxy group and 4-methyl A phenyloxy group and a naphthyloxy group are preferable from the viewpoint of synthetic difficulty and invisibility.

〜RにおいてM の「無機又は有機のカチオン」としては、公知のものが制限なく採用でき、具体的には、金属原子、アンモニウム化合物、ピリジニウム化合物、イミダゾリウム化合物、ホスホニウム化合物、スルホニウム化合物等を挙げることができる。これらの中でも3価の金属原子、アンモニウム化合物が、合成難易度、及び不可視性の観点で好ましい。 As "organic or inorganic cation" M a + of the R 1 to R 5 may be employed without any known limitation, specifically, a metal atom, an ammonium compound, a pyridinium compound, imidazolium compound, a phosphonium compound, Examples include sulfonium compounds. Among these, trivalent metal atoms and ammonium compounds are preferable from the viewpoint of synthesis difficulty and invisibility.

〜Rにおいて「ハロゲン原子」としては、フッ素、臭素、塩素、ヨウ素が挙げられる。 Examples of the "halogen atom" in R 1 to R 5 include fluorine, bromine, chlorine and iodine.

〜Rは、少なくとも1つ以上が水素原子以外で置換されていることが、不可視性の観点で好ましく、中でも、R〜Rの少なくとも1つ以上が、スルホ基又はSO であることがより好ましい。 From the viewpoint of invisibility, it is preferable that at least one or more of R 1 to R 5 is substituted with a non-hydrogen atom, and among them, at least one or more of R 1 to R 5 is a sulfo group or SO 3 −. More preferably, it is Ma +.

〜R15において「置換基を有してもよいアルキル基」としては、R〜Rと同義である。RとR、RとR10、11とR12、R14とR15は、置換基同士が結合して環を形成してもよい。 In R 6 to R 15 , the "alkyl group which may have a substituent" is synonymous with R 1 to R 5. In R 6 and R 7 , R 9 and R 10, R 11 and R 12 , and R 14 and R 15 , substituents may be bonded to each other to form a ring.

〜X10において「置換基を有してもよいアルキル基」としては、メチル基、エチル基、n−プロピル基、イソプロピル基、tert−ブチル基、tert−アミル基、2−エチルヘキシル基、ステアリル基、クロロメチル基、トリクロロメチル基、トリフルオロメチル基、2−メトキシエチル基、2−クロロエチル基、2−ニトロエチル基、シクロペンチル基、シクロヘキシル基、ジメチルシクロヘキシル基等を挙げることができ、これらの中でもメチル基、エチル基、n−プロピル基が合成難易度、保存安定性、及び不可視性の観点で好ましく、特にメチル基が好ましい。 In X 1 to X 10 , the "alkyl group which may have a substituent" includes a methyl group, an ethyl group, an n-propyl group, an isopropyl group, a tert-butyl group, a tert-amyl group and a 2-ethylhexyl group. Examples thereof include stearyl group, chloromethyl group, trichloromethyl group, trifluoromethyl group, 2-methoxyethyl group, 2-chloroethyl group, 2-nitroethyl group, cyclopentyl group, cyclohexyl group, dimethylcyclohexyl group and the like. Of these, a methyl group, an ethyl group and an n-propyl group are preferable from the viewpoint of synthesis difficulty, storage stability and invisibility, and a methyl group is particularly preferable.

〜X10において「置換基を有してもよいアルケニル基」としては、ビニル基、1−プロペニル基、アリル基、2−ブテニル基、3−ブテニル基、イソプロペニル基、イソブテニル基、1−ペンテニル基、2−ペンテニル基、3−ペンテニル基、4−ペンテニル基、1−ヘキセニル基、2−ヘキセニル基、3−ヘキセニル基、4−ヘキセニル基、5−ヘキセニル基等を挙げることができ、これらの中でもビニル基、アリル基が、合成難易度、保存安定性、及び不可視性の観点で好ましい。 In X 1 to X 10 , the "alkenyl group which may have a substituent" includes a vinyl group, a 1-propenyl group, an allyl group, a 2-butenyl group, a 3-butenyl group, an isopropenyl group, an isobutenyl group and 1 -Pentenyl group, 2-pentenyl group, 3-pentenyl group, 4-pentenyl group, 1-hexenyl group, 2-hexenyl group, 3-hexenyl group, 4-hexenyl group, 5-hexenyl group and the like can be mentioned. Among these, a vinyl group and an allyl group are preferable from the viewpoint of synthesis difficulty, storage stability, and invisibility.

〜X10において「置換基を有してもよいアリール基」としては、フェニル基、ナフチル基、4−メチルフェニル基、3,5−ジメチルフェニル基、ペンタフルオロフェニル基、4−ブロモフェニル基、2−メトキシフェニル基、4−ジエチルアミノフェニル基、3−ニトロフェニル基、4−シアノフェニル基等を挙げることができ、これらの中でもフェニル基、4−メチルフェニル基が合成難易度、保存安定性、及び不可視性の観点で好ましい。 In X 1 to X 10 , the "aryl group which may have a substituent" includes a phenyl group, a naphthyl group, a 4-methylphenyl group, a 3,5-dimethylphenyl group, a pentafluorophenyl group, and a 4-bromophenyl group. Groups, 2-methoxyphenyl group, 4-diethylaminophenyl group, 3-nitrophenyl group, 4-cyanophenyl group and the like can be mentioned. Among these, phenyl group and 4-methylphenyl group are difficult to synthesize and stable in storage. It is preferable from the viewpoint of sex and invisibility.

〜X10において「置換基を有してもよいアラルキル基」としては、ベンジル基、フェネチル基、フェニルプロピル基、ナフチルメチル基等を挙げることができ、これらの中でもベンジル基が、合成難易度、保存安定性、及び不可視性の観点で好ましい。 Examples of the "aralkyl group which may have a substituent" in X 1 to X 10 include a benzyl group, a phenethyl group, a phenylpropyl group, a naphthylmethyl group and the like, and among these, the benzyl group is difficult to synthesize. It is preferable from the viewpoint of degree, storage stability, and invisibility.

〜X10において「置換基を有してもアルコキシ基」としては、メトキシ基、エトキシ基、n−プロポキシ基、イソプロポキシ基、n−ブトキシ基、n−オクチルオキシ基、2−エチルヘキシルオキシ基、トリフルオロメトキシ基、シクロヘキシルオキシ基、ステアリルオキシ基等を挙げることができ、これらの中でもメトキシ基、エトキシ基、トリフルオロメトキシ基が、合成難易度、保存安定性、及び不可視性の観点で好ましい。 In X 1 to X 10 , "alkoxy groups even if they have a substituent" include methoxy group, ethoxy group, n-propoxy group, isopropoxy group, n-butoxy group, n-octyloxy group and 2-ethylhexyloxy. Examples include a group, a trifluoromethoxy group, a cyclohexyloxy group, a stearyloxy group, etc. Among these, a methoxy group, an ethoxy group, and a trifluoromethoxy group are selected from the viewpoint of synthesis difficulty, storage stability, and invisibility. preferable.

〜X10において「置換基を有してもよいアリールオキシ基」としては、フェノキシ基、ナフチルオキシ基、4−メチルフェニルオキシ基、3,5−クロロフェニルオキシ基、4−クロロ−2−メチルフェニルオキシ基、4−tert− ブチルフェニルオキシ基、4−メトキシフェニルオキシ基、4−ジエチルアミノフェニルオキシ基、4−ニトロフェニルオキシ基等を挙げることができ、これらの中でもフェノキシ基、ナフチルオキシ基が、合成難易度、保存安定性、及び不可視性の観点で好ましい。 In X 1 to X 10 , the "aryloxy group which may have a substituent" includes a phenoxy group, a naphthyloxy group, a 4-methylphenyloxy group, a 3,5-chlorophenyloxy group and a 4-chloro-2-. Examples thereof include a methylphenyloxy group, a 4-tert-butylphenyloxy group, a 4-methoxyphenyloxy group, a 4-diethylaminophenyloxy group, a 4-nitrophenyloxy group, and among these, a phenoxy group and a naphthyloxy group. However, it is preferable from the viewpoint of synthesis difficulty, storage stability, and invisibility.

〜X10において「置換アミノ基」としては、メチルアミノ基、エチルアミノ基、イソプロピルアミノ基、n−ブチルアミノ基、シクロヘキシルアミノ基、ステアリルアミノ基、ジメチルアミノ基、ジエチルアミノ基、ジブチルアミノ基、N,N−ジ(2−ヒドロキシエチル)アミノ基、フェニルアミノ基、ナフチルアミノ基、4−tert−ブチルフェニルアミノ基、ジフェニルアミノ基、N−フェニル−N−エチルアミノ基等を挙げることができ、これらの中でもジメチルアミノ基、ジエチルアミノ基が、合成難易度、保存安定性、及び不可視性の観点で好ましい。 In X 1 to X 10 , the "substituted amino group" includes a methylamino group, an ethylamino group, an isopropylamino group, an n-butylamino group, a cyclohexylamino group, a stearylamino group, a dimethylamino group, a diethylamino group and a dibutylamino group. , N, N-di (2-hydroxyethyl) amino group, phenylamino group, naphthylamino group, 4-tert-butylphenylamino group, diphenylamino group, N-phenyl-N-ethylamino group and the like. Of these, dimethylamino groups and diethylamino groups are preferable from the viewpoints of difficulty in synthesis, storage stability, and invisibility.

〜X10において「ハロゲン原子」としては、フッ素、臭素、塩素、ヨウ素が挙げられる。 Examples of the "halogen atom" in X 1 to X 10 include fluorine, bromine, chlorine and iodine.

〜X10は、置換基同士が結合して環を形成してもよく、例として以下の構造が挙げられるが、これらに限定されるものではない。 In X 1 to X 10 , substituents may be bonded to each other to form a ring, and examples thereof include, but are not limited to, the following structures.

Figure 0006874522
Figure 0006874522

〜X10は、特に近赤外線吸収能の観点で、無置換のアルキル基を含むことが好ましく、X、X、X及びXの少なくとも一つが無置換のアルキル基であることがより好ましく、X及びXが無置換のアルキル基であることが特に好ましい。無置換のアルキル基としてはメチル基であることが好ましい。 X 1 to X 10 preferably contain an unsubstituted alkyl group, particularly from the viewpoint of near-infrared absorbing ability, and at least one of X 3 , X 4 , X 7 and X 8 is an unsubstituted alkyl group. Is more preferable, and it is particularly preferable that X 3 and X 7 are unsubstituted alkyl groups. The unsubstituted alkyl group is preferably a methyl group.

(一般式(2)で表される化合物)
一般式(2)

Figure 0006874522
(Compound represented by the general formula (2))
General formula (2)
Figure 0006874522

[一般式(2)中、
Yは、置換基を有してもよい複素環を表す。
16〜R20は、それぞれ独立に、水素原子、置換基を有してもよいアルキル基、置換基を有してもよいアリール基、置換基を有してもよいアルコキシ基、置換基を有してもよいアリールオキシ基、スルホ基、SO 、−SONR2122、−COOR23、−CONR2425、ニトロ基、シアノ基又はハロゲン原子を表す。
は、無機又は有機のカチオンを表し、R21〜R25は、それぞれ独立に、水素原子又は置換基を有してもよいアルキル基を表す。]
[In general formula (2),
Y represents a heterocycle which may have a substituent.
R 16 to R 20 independently have a hydrogen atom, an alkyl group which may have a substituent, an aryl group which may have a substituent, an alkoxy group which may have a substituent, and a substituent. an aryloxy group which may have a sulfo group, SO 3 - M b +, -SO 2 NR 21 R 22, -COOR 23, -CONR 24 R 25, a nitro group, a cyano group or a halogen atom.
M b + represents an inorganic or organic cation, and R 21 to R 25 each independently represent an alkyl group which may have a hydrogen atom or a substituent. ]

Yにおける複素環とは、環系を構成する原子の中に、炭素原子以外の原子(ヘテロ原子)が1個以上含まれるものを指す。代表的なヘテロ原子としては、窒素原子、酸素原子、硫黄原子が挙げられ、1つの複素環中にヘテロ原子が複数種含まれていても良い。複素環のヘテロ原子として酸素原子及び/又は硫黄原子を含むものが、分光特性、耐久性付与及び合成難易度の観点で好ましい。また、複素環としては、3員環〜10員環の飽和又は不飽和の複素環が挙げられ、4員環〜7員環の飽和又は不飽和の複素環が、合成難易度、近赤外線吸収能、及び不可視性の観点で好ましく、中でも6員環の飽和又は不飽和の複素環が好ましく、無置換のテトラヒドロピラン環又は無置換のテトラヒドロチオピラン環がより好ましい。 The heterocycle in Y refers to an atom containing one or more atoms (heteroatoms) other than carbon atoms among the atoms constituting the ring system. Typical heteroatoms include nitrogen atoms, oxygen atoms, and sulfur atoms, and one heterocycle may contain a plurality of heteroatoms. Those containing an oxygen atom and / or a sulfur atom as the heteroatom of the heterocycle are preferable from the viewpoint of spectral characteristics, durability imparting and synthesis difficulty. Examples of the heterocycle include saturated or unsaturated heterocycles of 3 to 10 membered rings, and saturated or unsaturated heterocycles of 4 to 7 membered rings have difficulty in synthesis and absorption of near infrared rays. From the viewpoint of ability and invisibility, a 6-membered saturated or unsaturated heterocycle is preferable, and an unsubstituted tetrahydropyran ring or an unsubstituted tetrahydrothiopyran ring is more preferable.

Yにおける「置換基」としては、前述のR〜R及びX〜X10における、「置換基を有してもよいアルキル基」、「置換基を有してもよいアリール基」、「置換基を有してもアルコキシ基」、「置換基を有してもよいアリールオキシ基」、「ハロゲン原子」、「置換基を有してもよいアルケニル基」、「置換基を有してもよいアラルキル基」、「置換アミノ基」のほか、ヒドロキシル基、アミノ基、オキソ基、等が挙げられ、置換基同士が結合して環を形成してもよい。また、1つの複素環は複数の置換基を有してもよい。 Examples of the "substituent" in Y include the "alkyl group which may have a substituent" and the "aryl group which may have a substituent" in R 1 to R 5 and X 1 to X 10 described above. "Halkyl group having a substituent", "aryloxy group having a substituent", "halogen atom", "alkenyl group having a substituent", "having a substituent" In addition to the "aralkyl group" and the "substituted amino group", a hydroxyl group, an amino group, an oxo group and the like may be mentioned, and the substituents may be bonded to each other to form a ring. Moreover, one heterocycle may have a plurality of substituents.

Yにおける「置換基を有してもよい複素環」の具体例として、以下の構造を挙げるが、これらに限定されるものではない。 Specific examples of the "heterocycle which may have a substituent" in Y include, but are not limited to, the following structures.

Figure 0006874522
Figure 0006874522

16〜R20において「置換基を有してもよいアルキル基」としては、メチル基、エチル基、n−プロピル基、イソプロピル基、tert−ブチル基、tert−アミル基、2−エチルヘキシル基、ステアリル基、クロロメチル基、トリクロロメチル基、トリフルオロメチル基、2−メトキシエチル基、2−クロロエチル基、2−ニトロエチル基、シクロペンチル基、シクロヘキシル基、ジメチルシクロヘキシル基等を挙げることができ、これらの中でもメチル基、エチル基、n−プロピル基が、合成難易度、及び不可視性の観点で好ましい。 In R 16 to R 20 , the "alkyl group which may have a substituent" includes a methyl group, an ethyl group, an n-propyl group, an isopropyl group, a tert-butyl group, a tert-amyl group and a 2-ethylhexyl group. Examples thereof include stearyl group, chloromethyl group, trichloromethyl group, trifluoromethyl group, 2-methoxyethyl group, 2-chloroethyl group, 2-nitroethyl group, cyclopentyl group, cyclohexyl group, dimethylcyclohexyl group and the like. Of these, a methyl group, an ethyl group and an n-propyl group are preferable from the viewpoint of synthetic difficulty and invisibility.

16〜R20において「置換基を有してもよいアリール基」としては、フェニル基、ナフチル基、4−メチルフェニル基、3,5−ジメチルフェニル基、ペンタフルオロフェニル基、4−ブロモフェニル基、2−メトキシフェニル基、4−ジエチルアミノフェニル基、3−ニトロフェニル基、4−シアノフェニル基等を挙げることができ、これらの中でもフェニル基、4−メチルフェニル基が、合成難易度、及び不可視性の観点で好ましい。 In R 16 to R 20 , the "aryl group which may have a substituent" includes a phenyl group, a naphthyl group, a 4-methylphenyl group, a 3,5-dimethylphenyl group, a pentafluorophenyl group, and a 4-bromophenyl group. Groups, 2-methoxyphenyl group, 4-diethylaminophenyl group, 3-nitrophenyl group, 4-cyanophenyl group and the like can be mentioned. Among these, the phenyl group and the 4-methylphenyl group have the difficulty of synthesis and the synthesis difficulty. Preferred from the viewpoint of invisibility.

16〜R20において「置換基を有してもアルコキシ基」としては、メトキシ基、エトキシ基、n−プロポキシ基、イソプロポキシ基、n−ブトキシ基、n−オクチルオキシ基、2−エチルヘキシルオキシ基、トリフルオロメトキシ基、シクロヘキシルオキシ基、ステアリルオキシ基等を挙げることができ、これらの中でもメトキシ基、エトキシ基、トリフルオロメトキシ基が、合成難易度、及び不可視性の観点で好ましい。 In R 16 to R 20 , "alkoxy groups even if they have a substituent" include methoxy group, ethoxy group, n-propoxy group, isopropoxy group, n-butoxy group, n-octyloxy group and 2-ethylhexyloxy. Examples thereof include a group, a trifluoromethoxy group, a cyclohexyloxy group, a stearyloxy group and the like, and among these, a methoxy group, an ethoxy group and a trifluoromethoxy group are preferable from the viewpoint of synthesis difficulty and invisibility.

16〜R20において「置換基を有してもよいアリールオキシ基」としては、フェノキシ基、ナフチルオキシ基、4−メチルフェニルオキシ基、3,5−クロロフェニルオキシ基、4−クロロ−2−メチルフェニルオキシ基、4−tert− ブチルフェニルオキシ基、4−メトキシフェニルオキシ基、4−ジエチルアミノフェニルオキシ基、4−ニトロフェニルオキシ基等を挙げることができ、これらの中でもフェノキシ基、4−メチルフェニルオキシ基、ナフチルオキシ基が、合成難易度、及び不可視性の観点で好ましい。 In R 16 to R 20 , the "aryloxy group which may have a substituent" includes a phenoxy group, a naphthyloxy group, a 4-methylphenyloxy group, a 3,5-chlorophenyloxy group and a 4-chloro-2-. Methylphenyloxy group, 4-tert-butylphenyloxy group, 4-methoxyphenyloxy group, 4-diethylaminophenyloxy group, 4-nitrophenyloxy group and the like can be mentioned, and among these, phenoxy group and 4-methyl A phenyloxy group and a naphthyloxy group are preferable from the viewpoint of synthetic difficulty and invisibility.

16〜R20においてM の「無機又は有機のカチオン」としては、公知のものが制限なく採用でき、有機のカチオンの場合、低分子タイプと高分子タイプのどちらでも良い。具体的には、金属原子、アンモニウム化合物、ピリジニウム化合物、イミダゾリウム化合物、ホスホニウム化合物、スルホニウム化合物等を挙げることができる。高分子タイプの場合、例えば、「4級アンモニウム塩基を有する樹脂」などを挙げることができるが、これに限定されるものではない。
これらの中でも3価の金属原子、アンモニウム化合物、4級アンモニウム塩基を有する樹脂が、合成難易度及び不可視性の観点で好ましい。
As the "inorganic or organic cation" of M b + in R 16 to R 20 , known ones can be adopted without limitation, and in the case of an organic cation, either a low molecular weight type or a high molecular weight type may be used. Specific examples thereof include metal atoms, ammonium compounds, pyridinium compounds, imidazolium compounds, phosphonium compounds, and sulfonium compounds. In the case of the polymer type, for example, "resin having a quaternary ammonium base" and the like can be mentioned, but the present invention is not limited thereto.
Among these, a resin having a trivalent metal atom, an ammonium compound, and a quaternary ammonium base is preferable from the viewpoint of synthesis difficulty and invisibility.

16〜R20において「ハロゲン原子」としては、フッ素、臭素、塩素、ヨウ素が挙げられる。 Examples of the "halogen atom" in R 16 to R 20 include fluorine, bromine, chlorine and iodine.

16〜R20は、不可視性の観点から、全て水素原子であるか、又はR16〜R20のうち4つが水素原子であり、1つがスルホ基若しくは−SO であることが特に好ましい。 From the viewpoint of invisibility, R 16 to R 20 are all hydrogen atoms, or four of R 16 to R 20 are hydrogen atoms and one is a sulfo group or -SO 3 - M b +. Is particularly preferable.

21〜R25において「置換基を有してもよいアルキル基」としては、R16〜R20と同義である。 In R 21 to R 25 , the "alkyl group which may have a substituent" is synonymous with R 16 to R 20.

(一般式(3)で表される化合物)
一般式(3)

Figure 0006874522
(Compound represented by the general formula (3))
General formula (3)
Figure 0006874522

[一般式(3)中、
、Q、Q及びQは、それぞれ独立に、炭素原子又は窒素原子を表す。Q、Q、Q又はQが窒素原子の場合、それぞれに結合するX11、X14、X15又はX18はないものとする。
26〜R30は、それぞれ独立に、水素原子、スルホ基、−SO 又はハロゲン原子を表す。M は、無機又は有機のカチオンを表す。
11〜X18は、それぞれ独立に、水素原子、置換基を有してもよいアルキル基、置換基を有してもよいアルケニル基、置換基を有してもよいアリール基、置換基を有してもよいアラルキル基、置換基を有してもよいアルコキシ基、置換基を有してもよいアリールオキシ基、ヒドロキシル基、アミノ基、−NR3132、スルホ基、−SONR3334、−COOR35、−CONR3637、ニトロ基、シアノ基又はハロゲン原子を表す。X11〜X18は、置換基同士が結合して環を形成してもよい。
31〜R37は、それぞれ独立に、水素原子、置換基を有してもよいアルキル基、置換基を有してもよいアリール基、置換基を有してもよいアシル基又は置換基を有してもよいピリジニル基を表す。R31とR32、R33とR34、36とR37は、置換基同士が結合して環を形成してもよい。]
[In general formula (3),
Q 1 , Q 4 , Q 5 and Q 8 each independently represent a carbon atom or a nitrogen atom. If Q 1 , Q 4 , Q 5 or Q 8 are nitrogen atoms, it is assumed that there are no X 11 , X 14 , X 15 or X 18 bonded to each.
R 26 to R 30 independently represent a hydrogen atom, a sulfo group, -SO 3 - M c + or a halogen atom. Mc + represents an inorganic or organic cation.
X 11 to X 18 independently have a hydrogen atom, an alkyl group which may have a substituent, an alkenyl group which may have a substituent, an aryl group which may have a substituent, and a substituent. Aralkyl group which may have, alkoxy group which may have substituent, aryloxy group which may have substituent, hydroxyl group, amino group, -NR 31 R 32 , sulfo group, -SO 2 NR Represents 33 R 34 , -COOR 35 , -CONR 36 R 37 , nitro group, cyano group or halogen atom. In X 11 to X 18 , substituents may be bonded to each other to form a ring.
R 31 to R 37 each independently have a hydrogen atom, an alkyl group which may have a substituent, an aryl group which may have a substituent, and an acyl group or a substituent which may have a substituent. Represents a pyridinyl group that may have. In R 31 and R 32 , R 33 and R 34, and R 36 and R 37 , the substituents may be bonded to each other to form a ring. ]

、Q、Q及びQとしては、炭素原子がより好ましい。 As Q 1 , Q 4 , Q 5 and Q 8 , carbon atoms are more preferable.

26〜R30において「ハロゲン原子」としては、フッ素、臭素、塩素、ヨウ素が挙げられる。 Examples of the "halogen atom" in R 26 to R 30 include fluorine, bromine, chlorine and iodine.

26〜R30においてM の「無機又は有機のカチオン」としては、公知のものが制限なく採用でき、有機のカチオンの場合、低分子タイプと高分子タイプのどちらでも良い。具体的には、金属原子、アンモニウム化合物、ピリジニウム化合物、イミダゾリウム化合物、ホスホニウム化合物、スルホニウム化合物等を挙げることができる。高分子タイプの場合、例えば、「4級アンモニウム塩基を有する樹脂」などを挙げることができるが、これに限定されるものではない。これらの中でも3価の金属原子、アンモニウム化合物、4級アンモニウム塩基を有する樹脂が、合成難易度及び不可視性の観点で好ましい。 As "organic or inorganic cation" M c + of the R 26 to R 30 may be employed without a known limitations, the organic cation may be either a low molecular type and a polymer type. Specific examples thereof include metal atoms, ammonium compounds, pyridinium compounds, imidazolium compounds, phosphonium compounds, and sulfonium compounds. In the case of the polymer type, for example, "resin having a quaternary ammonium base" and the like can be mentioned, but the present invention is not limited thereto. Among these, a resin having a trivalent metal atom, an ammonium compound, and a quaternary ammonium base is preferable from the viewpoint of synthesis difficulty and invisibility.

26〜R30は、不可視性の観点から、全て水素原子であるか、又はR26〜R30のうち4つが水素原子であり、1つがスルホ基若しくは−SO であることが特に好ましい。 It is M c + - R 26 ~R 30, from the viewpoint of invisibility, or all hydrogen atom, or a four are hydrogen atom of R 26 to R 30, 1 single sulfo group or -SO 3 Is particularly preferable.

11〜X18において「置換基を有してもよいアルキル基」としては、メチル基、エチル基、n−プロピル基、イソプロピル基、tert−ブチル基、イソブチル基、tert−アミル基、2−エチルヘキシル基、ステアリル基、クロロメチル基、トリクロロメチル基、トリフルオロメチル基、2−メトキシエチル基、2−クロロエチル基、2−ニトロエチル基、シクロペンチル基、シクロヘキシル基、ジメチルシクロヘキシル基等を挙げることができ、これらの中でもメチル基、エチル基が、合成難易度の観点で好ましい。 In X 11 to X 18 , the "alkyl group which may have a substituent" includes a methyl group, an ethyl group, an n-propyl group, an isopropyl group, a tert-butyl group, an isobutyl group, a tert-amyl group and 2-. Ethylhexyl group, stearyl group, chloromethyl group, trichloromethyl group, trifluoromethyl group, 2-methoxyethyl group, 2-chloroethyl group, 2-nitroethyl group, cyclopentyl group, cyclohexyl group, dimethylcyclohexyl group and the like can be mentioned. Of these, a methyl group and an ethyl group are preferable from the viewpoint of difficulty in synthesis.

11〜X18において「置換基を有してもよいアルケニル基」としては、ビニル基、1−プロペニル基、アリル基、2−ブテニル基、3−ブテニル基、イソプロペニル基、イソブテニル基、1−ペンテニル基、2−ペンテニル基、3−ペンテニル基、4−ペンテニル基、1−ヘキセニル基、2−ヘキセニル基、3−ヘキセニル基、4−ヘキセニル基、5−ヘキセニル基等を挙げることができ、これらの中でもビニル基、アリル基が、合成難易度の観点で好ましい。 In X 11 to X 18 , the "alkenyl group which may have a substituent" includes a vinyl group, a 1-propenyl group, an allyl group, a 2-butenyl group, a 3-butenyl group, an isopropenyl group, an isobutenyl group and 1 -Pentenyl group, 2-pentenyl group, 3-pentenyl group, 4-pentenyl group, 1-hexenyl group, 2-hexenyl group, 3-hexenyl group, 4-hexenyl group, 5-hexenyl group and the like can be mentioned. Of these, a vinyl group and an allyl group are preferable from the viewpoint of difficulty in synthesis.

11〜X18において「置換基を有してもよいアリール基」としては、フェニル基、ナフチル基、4−メチルフェニル基、3,5−ジメチルフェニル基、ペンタフルオロフェニル基、4−ブロモフェニル基、2−メトキシフェニル基、4−ジエチルアミノフェニル基、3−ニトロフェニル基、4−シアノフェニル基等を挙げることができ、これらの中でもフェニル基、4−メチルフェニル基が、合成難易度の観点で好ましい。 In X 11 to X 18 , the "aryl group which may have a substituent" includes a phenyl group, a naphthyl group, a 4-methylphenyl group, a 3,5-dimethylphenyl group, a pentafluorophenyl group, and a 4-bromophenyl group. Groups, 2-methoxyphenyl group, 4-diethylaminophenyl group, 3-nitrophenyl group, 4-cyanophenyl group and the like can be mentioned, and among these, the phenyl group and 4-methylphenyl group are considered from the viewpoint of difficulty in synthesis. Is preferable.

11〜X18において「置換基を有してもよいアラルキル基」としては、ベンジル基、フェネチル基、フェニルプロピル基、ナフチルメチル基等を挙げることができ、これらの中でもベンジル基が、合成難易度の観点で好ましい。 As the "optionally substituted aralkyl group" in X 11 to X 18, a benzyl group, phenethyl group, phenylpropyl group, and a naphthylmethyl group, a benzyl group Among these, synthetic difficulty Preferred from the viewpoint of degree.

11〜X18において「置換基を有してもアルコキシ基」としては、メトキシ基、エトキシ基、n−プロポキシ基、イソプロポキシ基、n−ブトキシ基、n−オクチルオキシ基、2−エチルヘキシルオキシ基、トリフルオロメトキシ基、シクロヘキシルオキシ基、ステアリルオキシ基、2−(ジエチルアミノ)エトキシ基等を挙げることができ、これらの中でもメトキシ基、エトキシ基、トリフルオロメトキシ基、2−(ジエチルアミノ)エトキシが、合成難易度の観点で好ましい。 In X 11 to X 18 , "alkoxy groups even if they have a substituent" include methoxy group, ethoxy group, n-propoxy group, isopropoxy group, n-butoxy group, n-octyloxy group and 2-ethylhexyloxy. Examples thereof include a group, a trifluoromethoxy group, a cyclohexyloxy group, a stearyloxy group, a 2- (diethylamino) ethoxy group, and among these, a methoxy group, an ethoxy group, a trifluoromethoxy group, and a 2- (diethylamino) ethoxy group. , Preferred from the viewpoint of synthesis difficulty.

11〜X18において「置換基を有してもよいアリールオキシ基」としては、フェノキシ基、ナフチルオキシ基、4−メチルフェニルオキシ基、3,5−クロロフェニルオキシ基、4−クロロ−2−メチルフェニルオキシ基、4−tert− ブチルフェニルオキシ基、4−メトキシフェニルオキシ基、4−ジエチルアミノフェニルオキシ基、4−ニトロフェニルオキシ基等を挙げることができ、これらの中でもフェノキシ基、ナフチルオキシ基が、合成難易度の観点で好ましい。 In X 11 to X 18 , the "aryloxy group which may have a substituent" includes a phenoxy group, a naphthyloxy group, a 4-methylphenyloxy group, a 3,5-chlorophenyloxy group and a 4-chloro-2-. Examples thereof include a methylphenyloxy group, a 4-tert-butylphenyloxy group, a 4-methoxyphenyloxy group, a 4-diethylaminophenyloxy group, a 4-nitrophenyloxy group, and among these, a phenoxy group and a naphthyloxy group. However, it is preferable from the viewpoint of the difficulty of synthesis.

11〜X18において「ハロゲン原子」としては、フッ素、臭素、塩素、ヨウ素が挙げられる。 Examples of the "halogen atom" in X 11 to X 18 include fluorine, bromine, chlorine and iodine.

11〜X18は、置換基同士が結合して環を形成してもよく、例として以下の構造が挙げられるが、これらに限定されるものではない。 In X 11 to X 18 , substituents may be bonded to each other to form a ring, and examples thereof include, but are not limited to, the following structures.

Figure 0006874522
Figure 0006874522

11〜X18は、特に近赤外線吸収能の観点から、全て水素原子であることが特に好ましい。 It is particularly preferable that all of X 11 to X 18 are hydrogen atoms, particularly from the viewpoint of near-infrared absorbing ability.

31〜R37において「置換基を有してもよいアルキル基」としては、メチル基、エチル基、n−プロピル基、イソプロピル基、tert−ブチル基、イソブチル基、sec−ブチル基、tert−アミル基、2−エチルヘキシル基、ステアリル基、クロロメチル基、トリクロロメチル基、トリフルオロメチル基、2−メトキシエチル基、2−クロロエチル基、2−ニトロエチル基、シクロペンチル基、シクロヘキシル基、ジメチルシクロヘキシル基等を挙げることができ、これらの中でもメチル基、エチル基が、合成難易度の観点で好ましい。 In R 31 to R 37 , the "alkyl group which may have a substituent" includes a methyl group, an ethyl group, an n-propyl group, an isopropyl group, a tert-butyl group, an isobutyl group, a sec-butyl group and a tert-. Amil group, 2-ethylhexyl group, stearyl group, chloromethyl group, trichloromethyl group, trifluoromethyl group, 2-methoxyethyl group, 2-chloroethyl group, 2-nitroethyl group, cyclopentyl group, cyclohexyl group, dimethylcyclohexyl group, etc. Among these, a methyl group and an ethyl group are preferable from the viewpoint of the difficulty of synthesis.

31〜R37において「置換基を有してもよいアリール基」としては、フェニル基、ナフチル基、4−メチルフェニル基、3,5−ジメチルフェニル基、ペンタフルオロフェニル基、4−ブロモフェニル基、2−メトキシフェニル基、4−ジエチルアミノフェニル基、3−ニトロフェニル基、4−シアノフェニル基等を挙げることができ、これらの中でもフェニル基、4−メチルフェニル基が、合成難易度の観点で好ましい。 In R 31 to R 37 , the "aryl group which may have a substituent" includes a phenyl group, a naphthyl group, a 4-methylphenyl group, a 3,5-dimethylphenyl group, a pentafluorophenyl group, and a 4-bromophenyl group. Groups, 2-methoxyphenyl group, 4-diethylaminophenyl group, 3-nitrophenyl group, 4-cyanophenyl group and the like can be mentioned, and among these, the phenyl group and 4-methylphenyl group are considered from the viewpoint of difficulty in synthesis. Is preferable.

31〜R37において「置換基を有してもよいアシル基」としては、アセチル基、プロピオイル基、ベンゾイル基、アクリロイル基、トリフルオロアセチル基等を挙げることができ、これらの中でもアセチル基が、合成難易度の観点で好ましい。 Examples of the "acyl group which may have a substituent" in R 31 to R 37 include an acetyl group, a propioil group, a benzoyl group, an acryloyl group, a trifluoroacetyl group and the like, and among these, the acetyl group is used. , Preferred from the viewpoint of synthesis difficulty.

31〜R37において「置換基を有してもよいピリジニル基」としては、2−ピリジニル基、3−ピリジニル基、4−ピリジニル基、2−メチル−4−ピリジニル基等を挙げることができ、これらの中でも4−ピリジニル基が、合成難易度の観点で好ましい。 Examples of the "pyridinyl group which may have a substituent" in R 31 to R 37 include 2-pyridinyl group, 3-pyridinyl group, 4-pyridinyl group, 2-methyl-4-pyridinyl group and the like. Of these, the 4-pyridinyl group is preferable from the viewpoint of the difficulty of synthesis.

31とR32、R33とR34、36とR37は、置換基同士が結合して環を形成してもよい。 In R 31 and R 32 , R 33 and R 34, and R 36 and R 37 , the substituents may be bonded to each other to form a ring.

(近赤外線吸収色素[A]の製造方法)
一般式(1)で表される近赤外線吸収色素[A]の製造方法としては、下記一般式(4)に示した1,8−ジアミノナフタレン類と、下記一般式(5)に示したケトン類とを、触媒とともに溶媒中で加熱還流して縮合させた後、下記式(6)に示した3,4−ジヒドロキシ−3−シクロブテン−1,2−ジオンを加えてさらに加熱還流させて縮合し、一般式(1)で示されるスクアリリウム色素を得る製造方法が考えられる。また、R〜Rのうち少なくとも1つがSO である場合は、スルホ基で置換された色素のスルホ基の水素イオンと、目的のカチオンを有する化合物とのカウンター交換により、SO a で置換された色素を得る製造方法が考えられ、カウンター交換は公知の方法で行うことができる。
一般式(2)及び一般式(3)で表される近赤外線吸収色素[A]に関しても、前述と同様にして、対応するケトン類を変更することで製造できるが、本発明に使用される近赤外線吸収色素[A]はこれらの製造方法によって限定されるものではない。
(Manufacturing method of near-infrared absorbing dye [A])
As a method for producing the near-infrared absorbing dye [A] represented by the general formula (1), 1,8-diaminonaphthalene represented by the following general formula (4) and a ketone represented by the following general formula (5) are used. After heating and refluxing in a solvent together with a catalyst to condense the species, 3,4-dihydroxy-3-cyclobutene-1,2-dione represented by the following formula (6) is added and further heated to reflux to condense. Then, a production method for obtaining the squarylium dye represented by the general formula (1) can be considered. When at least one of R 1 to R 5 is SO 3 - M + , SO is obtained by counter-exchange the hydrogen ion of the sulfo group of the dye substituted with the sulfo group with the compound having the desired cation. A production method for obtaining a dye substituted with 3- M a + can be considered, and the counter can be replaced by a known method.
The near-infrared absorbing dye [A] represented by the general formula (2) and the general formula (3) can also be produced by changing the corresponding ketones in the same manner as described above, but is used in the present invention. The near-infrared absorbing dye [A] is not limited by these production methods.

Figure 0006874522
Figure 0006874522

<発色剤[B]>
発色剤[B]としては、電子供与性のロイコ染料が挙げられ、各種公知の化合物が使用できる。これらは、単独又は2種以上を混合して使用することもでき、用途や要求される品質特性によって適宜選択される。具体例を示すと次のような化合物が挙げられるが、これらに限定されるものではない。
<Color former [B]>
Examples of the color former [B] include electron-donating leuco dyes, and various known compounds can be used. These can be used alone or in combination of two or more, and are appropriately selected depending on the application and required quality characteristics. Specific examples include, but are not limited to, the following compounds.

(1)トリアリールメタン化合物
3,3’−ビス(4−ジメチルアミノフェニル)−6−ジメチルアミノフタリド<商品名:クリスタルバイオレットラクトン、CVL>、3−(4−ジメチルアミノ−2−メチルフェニル)−3−(4−ジメチルアミノフェニル)フタリド、3,3’−ビス(2−(4−ジメチルアミノフェニル)−2−(4−メトキシフェニル)エテニル)−4,5,6,7−テトラクロロフタリド<NIR−Black>、3,3’−ビス(4−ジメチルアミノフェニル)フタリド<MGL>、3−(4−ジメチルアミノフェニル)−3−(1,2−ジメチルインドール−3−イル)フタリド、3−(4−ジメチルアミノフェニル)−3−(2−フェニルインドール−3−イル)フタリド、3,3’−ビス(4−エチルカルバゾール−3−イル)−3−ジメチルアミノフタリド、3,3’−ビス(1−エチル−−メチルインドール−3−イル)フタリド<インドリルレッド>、3,3’−ビス(2−フェニルインドール−3−イル)−5−ジメチルアミノフタリド、トリス(4−ジメチルアミノフェニル)メタン<LCV>等。
(1) Triarylmethane compound 3,3'-bis (4-dimethylaminophenyl) -6-dimethylaminophthalide <trade name: crystal violet lactone, CVL>, 3- (4-dimethylamino-2-methylphenyl) ) -3- (4-Dimethylaminophenyl) phthalide, 3,3'-bis (2- (4-dimethylaminophenyl) -2- (4-methoxyphenyl) ethenyl) -4,5,6,7-tetra Chlorophthalide <NIR-Black>, 3,3'-bis (4-dimethylaminophenyl) phthalide <MGL>, 3- (4-dimethylaminophenyl) -3- (1,2-dimethylindole-3-yl) ) Phtalide, 3- (4-dimethylaminophenyl) -3- (2-phenylindole-3-yl) phthalide, 3,3'-bis (4-ethylcarbazole-3-yl) -3-dimethylaminophthalide , 3,3'-bis (1-ethyl-methylindole-3-yl) phthalide <Indrill Red>, 3,3'-bis (2-phenylindole-3-yl) -5-dimethylaminophthalide , Tris (4-dimethylaminophenyl) methane <LCV>, etc.

(2)ジフェニルメタン系化合物
4,4−ビス(ジメチルアミノ)ベンズヒドリンベンジルエーテル、N−ハロフェニル−ロイコオーラミン、N−2,4,5−トリクロロフェニルロイコオーラミン等。
(2) Diphenylmethane-based compounds 4,4-bis (dimethylamino) benzhydrinbenzyl ether, N-halophenyl-leuco auramine, N-2,4,5-trichlorophenyl leucooramine and the like.

(3)キサンテン系化合物
ローダミンB−アニリノラクタム、3−ジエチルアミノ−7−ジベンジルアミノフルオラン、3−ジエチルアミノ−7−ブチルアミノフルオラン、3−ジエチルアミノ−7−アニリノフルオラン<Green−2>、3−ジエチルアミノ−7−(2−クロロアニリノ)フルオラン、3−ジブチルアミノ−7−(2−クロロアニリノ)フルオラン<TH−107>、3−ジエチルアミノ−7−(3−トリフルオロメチルアニリノ)フルオラン<Black−100>、3−ジエチルアミノ−6−メチル−7−アニリノフルオラン<ODB>、3−ジブチルアミノ−6−メチル−7−アニリノフルオラン<ODB−2>、3−ピペリジノ−6−メチル−7−アニリノフルオラン、3−(N−イソアミル−N−エチルアミノ)−6−メチル−7−アニリノフルオラン<S−205>、3−(N−エチル−N−トリルアミノ)−6−メチル−7−アニリノフルオラン、3−(N−シクロヘキシル−N−メチルアミノ)−6−メチル−7−アニリノフルオラン<PSD−150>、3−ジエチルアミノ−6−クロロ−7−(β−エトキシエチルアミノ)フルオラン、3−ジエチルアミノ−6−クロロ−7−(γ−クロロプロピルアミノ)フルオラン、3−シクロヘキシルアミノ−6−クロロフルオラン<OR−55>、3−ジエチルアミノ−6−クロロ−7−アニリノフルオラン、3−(N−シクロヘキシル−N−メチルアミノ)−6−メチル−7−アニリノフルオラン、3−ジエチルアミノ−7−フェニルフルオラン等。
(3) Xanthene compounds Rhodamine B-anilinolactam, 3-diethylamino-7-dibenzylaminofluorane, 3-diethylamino-7-butylaminofluorane, 3-diethylamino-7-anilinofluorane <Green-2 >, 3-Diethylamino-7- (2-chloroanilino) fluorane, 3-dibutylamino-7- (2-chloroanilino) fluorane <TH-107>, 3-diethylamino-7- (3-trifluoromethylanilino) fluorane <Black-100>, 3-diethylamino-6-methyl-7-anilinofluorane <ODB>, 3-dibutylamino-6-methyl-7-anilinofluorane <ODB-2>, 3-piperidino-6 -Methyl-7-anilinofluorane, 3- (N-isoamyl-N-ethylamino) -6-methyl-7-anilinofluorane <S-205>, 3- (N-ethyl-N-tolylamino) -6-Methyl-7-anilinofluorane, 3- (N-cyclohexyl-N-methylamino) -6-methyl-7-anilinofluorane <PSD-150>, 3-diethylamino-6-chloro-7 -(Β-ethoxyethylamino) fluorane, 3-diethylamino-6-chloro-7- (γ-chloropropylamino) fluorane, 3-cyclohexylamino-6-chlorofluorane <OR-55>, 3-diethylamino-6 -Chloro-7-anilinofluorane, 3- (N-cyclohexyl-N-methylamino) -6-methyl-7-anilinofluorane, 3-diethylamino-7-phenylfluorane, etc.

(4)チアジン系化合物
ベンゾイルロイコメチレンブルー、p−ニトロベンゾイルロイコメチレンブルー等。
(4) Thiazine compounds Benzoyl leucomethylene blue, p-nitrobenzoyl leucomethylene blue and the like.

(5)スピロ系化合物
3−メチルスピロジナフトピラン、3−エチルスピロジナフトピラン、3−ベンジルスピロジナフトピラン、3−メチルナフト−(6’−メトキシベンゾ)スピロピラン等が挙げられる。
(5) Spiro-based compounds Examples thereof include 3-methylspirodinaphthopyran, 3-ethylspirinaftopyran, 3-benzylspirodinaphthopyran, 3-methylnaphtho- (6'-methoxybenzo) spiropyran and the like.

(6)ペンタジエン化合物
1,1,5,5−テトラキス(4−ジメチルアミノフェニル)−3−メトキシ−1,4−ペンタジエン、1,1,5,5−テトラキス(4−ジメチルアミノフェニル)−1,4−ペンタジエン等。
(6) Pentadiene compound 1,1,5,5-tetrakis (4-dimethylaminophenyl) -3-methoxy-1,4-pentadiene, 1,1,5,5-tetrakis (4-dimethylaminophenyl) -1 , 4-Pentadiene, etc.

<顕色剤[C]>
顕色剤[C]としては、電子受容性の化合物が挙げられ、各種公知の化合物が使用できる。これらは、単独又は2種以上を混合して使用することができ、用途や要求品質に応じて、適宜選択される。具体例を示すと次のような化合物が挙げられるが、これらに限定されるものではない。
<Color developer [C]>
Examples of the color developer [C] include electron-accepting compounds, and various known compounds can be used. These can be used alone or in combination of two or more, and are appropriately selected according to the intended use and required quality. Specific examples include, but are not limited to, the following compounds.

活性白土、アタパルジャイト、コロイダルシリカ、珪酸アルミニウム等の無機酸性物質、4−ヒドロキシ安息香酸ベンジル、4−ヒドロキシ安息香酸エチル、4−ヒドロキシ安息香酸ノルマルプロピル、4−ヒドロキシ安息香酸イソプロピル、4−ヒドロキシ安息香酸ブチルなどの4−ヒドロキシ安息香酸エステル類、4−ヒドロキシフタル酸ジメチル、4−ヒドロキシフタル酸ジイソプロピル、4−ヒドロキシフタル酸ジベンジル、4−ヒドロキシフタル酸ジヘキシルなどの4−ヒドロキシフタル酸ジエステル類、フタル酸モノベンジルエステル、フタル酸モノシクロヘキシルエステル、フタル酸モノフェニルエステル、フタル酸モノメチルフェニルエステルなどのフタル酸モノエステル類、ビス(4−ヒドロキシ−3−tert−ブチル−6−メチルフェニル)スルフィド、ビス(4−ヒドロキシ−2,5−ジメチルフェニル)スルフィド、ビス(4−ヒドロキシ−5−エチル−2−メチルフェニル)スルフィドなどのビスヒドロキシフェニルスルフィド類、3,4−ビスフェノールA、1,1−ビス(4−ヒドロキシフェニル)エタン、2,2−ビス(4−ヒドロキシフェニル)プロパン<ビスフェノールA>、ビス(4−ヒドロキシフェニル)メタン<ビスフェノールF>、2,2−ビス(4−ヒドロキシフェニル)ヘキサン、テトラメチルビスフェノールA、1,1−ビス(4−ヒドロキシフェニル)−1−フェニルエタン、1,4−ビス(2−(4−ヒドロキシフェニル)プロピル)ベンゼン。 Inorganic acidic substances such as active white clay, atapargite, colloidal silica, aluminum silicate, benzyl 4-hydroxybenzoate, ethyl 4-hydroxybenzoate, normal propyl 4-hydroxybenzoate, isopropyl 4-hydroxybenzoate, 4-hydroxybenzoic acid 4-Hydroxybenzoic acid esters such as butyl, 4-hydroxyphthalic acid diesters such as dimethyl 4-hydroxyphthalate, diisopropyl 4-hydroxyphthalate, dibenzyl 4-hydroxyphthalate, dihexyl 4-hydroxyphthalate, and phthalic acid Phyrate monoesters such as monobenzyl ester, phthalic acid monocyclohexyl ester, phthalic acid monophenyl ester, phthalic acid monomethylphenyl ester, bis (4-hydroxy-3-tert-butyl-6-methylphenyl) sulfide, bis ( Bishydroxyphenyl sulfides such as 4-hydroxy-2,5-dimethylphenyl) sulfide, bis (4-hydroxy-5-ethyl-2-methylphenyl) sulfide, 3,4-bisphenol A, 1,1-bis ( 4-Hydroxyphenyl) ethane, 2,2-bis (4-hydroxyphenyl) propane <bisphenol A>, bis (4-hydroxyphenyl) methane <bisphenol F>, 2,2-bis (4-hydroxyphenyl) hexane, Tetramethylbisphenol A, 1,1-bis (4-hydroxyphenyl) -1-phenylethane, 1,4-bis (2- (4-hydroxyphenyl) propyl) benzene.

1,3−ビス(2−(4−ヒドロキシフェニル)プロピル)ベンゼン、1,4−ビス(4−ヒドロキシフェニル)シクロヘキサン、2,2’−ビス−(4−ヒドロキシ−3−イソプロピルフェニル)プロパン、1,4−ビス(1−(4−(2−(4−ヒドロキシフェニル)−2−プロピル)フェニル)エチル)ベンゼンなどのビスフェノール類、4−ヒドロキシ−4’−イソプロポキシジフェニルスルホン、4−ヒドロキシ−4’−メトキシジフェニルスルホン、4−ヒドロキシ−4’−ノルマルプロポキシジフェニルスルホンなどの4−ヒドロキシフェニルアリールスルホン類、ビス(4−ヒドロキシフェニル)スルホン<ビスフェノールS>、テトラメチルビスフェノールS、ビス(3−エチル−4−ヒドロキシフェニル)スルホン、ビス(3−プロピル−4−ヒドロキシフェニル)スルホン、ビス(3−イソプロピル−4−ヒドロキシフェニル)スルホン、ビス(3−tert−ブチル−4−ヒドロキシ−6−メチルフェニル)スルホン、ビス(3−クロロ−4−ヒドロキシフェニル)スルホン、ビス(3−ブロモ−4−ヒドロキシフェニル)スルホン、2−ヒドロキシフェニル−4’−ヒドロキシフェニルスルホンなどのビスヒドロキシフェニルスルホン類、4−ヒドロキシベンゼンスルホナート、4−ヒドロキシフェニル−p−トリルスルホナート、4−ヒドロキシフェニル−p−クロロベンゼンスルホナートなどの4−ヒドロキシフェニルアリールスルホナート類、4−ヒドロキシベンゾイルオキシ安息香酸ベンジル、4−ヒドロキシベンゾイルオキシ安息香酸エチル、4−ヒドロキシベンゾイルオキシ安息香酸ノルマルプロピル、4−ヒドロキシベンゾイルオキシ安息香酸イソプロピル、4−ヒドロキシベンゾイルオキシ安息香酸ブチルなどの4−ヒドロキシベンゾイルオキシ安息香酸エステル類、2,4−ジヒドロキシベンゾフェノン、α,α’−ビス−(3−メチル−4−ヒドロキシフェニル)−m−ジイソプロピルベンゾフェノン、2,3,4,4’−テトラヒドロキシベンゾフェノンなどのベンゾフェノン類、N−ステアリル−p−アミノフェノール、4−ヒドロキシサリチルアニリド、4,4’−ジヒドロキシジフェニルエーテル、n−ブチルビス(ヒドロキシフェニル)アセテート、α,α’,α”−トリス(4−ヒドロキシフェニル)−1,3,5−トリイソプロピルベンゼン、没食子酸ステアリル。 1,3-bis (2- (4-hydroxyphenyl) propyl) benzene, 1,4-bis (4-hydroxyphenyl) cyclohexane, 2,2'-bis- (4-hydroxy-3-isopropylphenyl) propane, Bisphenols such as 1,4-bis (1- (4- (2- (4-hydroxyphenyl) -2-propyl) phenyl) ethyl) benzene, 4-hydroxy-4'-isopropoxydiphenyl sulfone, 4-hydroxy 4-Hydroxyphenylaryl sulfones such as -4'-methoxydiphenyl sulfone and 4-hydroxy-4'-normal propoxydiphenyl sulfone, bis (4-hydroxyphenyl) sulfone <bisphenol S>, tetramethylbisphenol S, bis (3) -Ethyl-4-hydroxyphenyl) sulfone, bis (3-propyl-4-hydroxyphenyl) sulfone, bis (3-isopropyl-4-hydroxyphenyl) sulfone, bis (3-tert-butyl-4-hydroxy-6- Bishydroxyphenyl sulfones such as methylphenyl) sulfone, bis (3-chloro-4-hydroxyphenyl) sulfone, bis (3-bromo-4-hydroxyphenyl) sulfone, 2-hydroxyphenyl-4'-hydroxyphenyl sulfone, 4-Hydroxyphenylaryl sulfonates such as 4-hydroxybenzene sulphonate, 4-hydroxyphenyl-p-tolyl sulphonate, 4-hydroxyphenyl-p-chlorobenzene sulphonate, benzyl 4-hydroxybenzoyloxybenzoate, 4-. 4-Hydroxybenzoyloxy benzoate esters such as ethyl hydroxybenzoyloxy benzoate, normal propyl 4-hydroxybenzoyloxy benzoate, isopropyl 4-hydroxybenzoyloxy benzoate, butyl 4-hydroxybenzoyloxy benzoate, 2,4- Dihydroxybenzophenone, α, α'-bis- (3-methyl-4-hydroxyphenyl) -m-diisopropylbenzophenone, benzophenones such as 2,3,4,4'-tetrahydroxybenzophenone, N-stearyl-p-amino Phenol, 4-hydroxysalitylanilide, 4,4'-dihydroxydiphenyl ether, n-butylbis (hydroxyphenyl) acetate, α, α', α "-tris (4-hydroxyphenyl) -1,3,5-triisopropylbenzene , Sulfone Allyl.

4,4’−チオビス(6−t−ブチル−m−クレゾール)、2,2−ビス(3−アリル−4−ヒドロキシフェニル)スルホン、ビス(4−ヒドロキシフェニル)サルファイド、ビス(4−ヒドロキシ−3−メチルフェニル)サルファイド、p−tert−ブチルフェノール、p−フェニルフェノール、p−ベンジルフェノール、1−ナフトール、2−ナフトール等のフェノール性化合物、N,N’−ジ−m−クロロフェニルチオウレア等のチオ尿素化合物、安息香酸、p−tert−ブチル安息香酸、トリクロロ安息香酸、3−sec−ブチル−4−ヒドロキシ安息香酸、3−シクロヘキシル−4−ヒドロキシ安息香酸、3,5−ジメチル−4−ヒドロキシ安息香酸、テレフタル酸、サリチル酸、3−イソプロピルサリチル酸、3−tert−ブチルサリチル酸、4−(2−(p−メトキシフェノキシ)エチルオキシ)サリチル酸、4−(3−(p−トリルスルホニル)プロピルオキシ)サリチル酸、5−(p−(2−(p−メトキシフェノキシ)エトキシ)クミル)サリチル酸等の芳香族カルボン酸、及びこれら芳香族カルボン酸の亜鉛、マグネシウム、アルミニウム、カルシウム、チタン、マンガン、スズ、ニッケル等の多価金属との塩、さらにはチオシアン酸亜鉛のアンチピリン錯体、テレフタルアルデヒド酸と他の芳香族カルボン酸との複合亜鉛塩等の有機酸性物質等。 4,4'-thiobis (6-t-butyl-m-cresol), 2,2-bis (3-allyl-4-hydroxyphenyl) sulfone, bis (4-hydroxyphenyl) sulfide, bis (4-hydroxy- 3-Methylphenyl) Sulfide, p-tert-butylphenol, p-phenylphenol, p-benzylphenol, 1-naphthol, 2-naphthol and other phenolic compounds, N, N'-di-m-chlorophenylthiourea and the like. Urea compound, benzoic acid, p-tert-butyl benzoic acid, trichlorobenzoic acid, 3-sec-butyl-4-hydroxybenzoic acid, 3-cyclohexyl-4-hydroxybenzoic acid, 3,5-dimethyl-4-hydroxybenzoic acid Acids, terephthalic acid, salicylic acid, 3-isopropylsalicylic acid, 3-tert-butylsalicylic acid, 4- (2- (p-methoxyphenoxy) ethyloxy) salicylic acid, 4- (3- (p-tolylsulfonyl) propyloxy) salicylic acid, Aromatic carboxylic acids such as 5- (p- (2- (p-methoxyphenoxy) ethoxy) cumyl) salicylic acid, and zinc, magnesium, aluminum, calcium, titanium, manganese, tin, nickel and the like of these aromatic carboxylic acids. Salts with polyvalent metals, as well as organic acidic substances such as antipyrine complexes of zinc thiocyanate and complex zinc salts of terephthalaldehyde acid and other aromatic carboxylic acids.

<樹脂[D]>
樹脂[D]としては、水溶性樹脂として、セルロース、メチルセルロース、メトキシセルロース、ヒドロキシエチルセルロース、カルボキシメチルセルロース、ポリビニルアルコール、ポリアクリルアミド、ポリアクリル酸、カゼイン、ゼラチン、スチレン/無水マレイン酸共重合体塩、イソブチレン/無水マレイン酸共重合体塩、ポリアクリル酸エステル、ポリウレタン樹脂、アクリル/スチレン樹脂等が挙げられる。また、溶剤型樹脂としては、スチレン/マレイン酸、アクリル/スチレン樹脂、ポリスチレン、ポリエステル、ポリカーボネイト、エポキシ樹脂、ポリウレタン樹脂、ポリブチラール樹脂、ポリアクリル酸エステル、スチレン/ブタジエン共重合体、スチレン/ブタジエン/アクリル酸共重合体、ポリ酢酸ビニル、フッ素樹脂、フェノール樹脂、アクリルシリコン・変性シリコン樹脂、アミノアルキド樹脂、フタル酸樹脂等が挙げられ、水溶性樹脂が好ましい。
尚、組成物として使用する際に、表面保護層の膜強度、耐熱性、耐水性、耐溶剤性等の向上を目的に硬化剤を併用することができる。
樹脂[D]の含有量は、レーザーマーキング用組成物全固形分に対して5〜50質量%が好ましく、更に好ましくは5〜30質量%である。樹脂[D]としては、中でも、ポリビニルアルコール、ポリアクリルアミド、ポリアクリル酸、ポリアクリル酸エステル、ポリウレタン樹脂及びアクリル/スチレン樹脂からなる群から選ばれる少なくとも一種がより好ましい。
<Resin [D]>
As the resin [D], as a water-soluble resin, cellulose, methyl cellulose, methoxy cellulose, hydroxyethyl cellulose, carboxymethyl cellulose, polyvinyl alcohol, polyacrylamide, polyacrylic acid, casein, gelatin, styrene / maleic anhydride copolymer salt, isobutylene. / Maleic anhydride copolymer salt, polyacrylic acid ester, polyurethane resin, acrylic / styrene resin and the like. As the solvent type resin, styrene / maleic acid, acrylic / styrene resin, polystyrene, polyester, polycarbonate, epoxy resin, polyurethane resin, polybutyral resin, polyacrylic acid ester, styrene / butadiene copolymer, styrene / butadiene / Acrylic acid copolymers, polyvinyl acetate, fluororesins, phenol resins, acrylic silicon / modified silicon resins, aminoalkyd resins, phthalic acid resins and the like can be mentioned, and water-soluble resins are preferable.
When used as a composition, a curing agent can be used in combination for the purpose of improving the film strength, heat resistance, water resistance, solvent resistance, etc. of the surface protective layer.
The content of the resin [D] is preferably 5 to 50% by mass, more preferably 5 to 30% by mass, based on the total solid content of the laser marking composition. As the resin [D], at least one selected from the group consisting of polyvinyl alcohol, polyacrylamide, polyacrylic acid, polyacrylic acid ester, polyurethane resin and acrylic / styrene resin is more preferable.

<その他公知の添加剤>
その他公知の添加剤として、増感剤、保存安定剤、填料、分散剤、界面活性剤、消泡剤、蛍光増白剤、耐水化剤、滑剤、紫外線吸収剤、酸化防止剤などが、用途や要求品質に応じて使用できる。
<Other known additives>
Other known additives include sensitizers, storage stabilizers, fillers, dispersants, surfactants, defoamers, optical brighteners, water resistant agents, lubricants, UV absorbers, antioxidants, etc. And can be used according to the required quality.

<レーザーマーキング用組成物の製造方法>
本発明のレーザーマーキング用組成物は従来公知の方法によって製造することができる。レーザーマーキング用組成物の各種塗液の調製方法については特に限定するものではなく、一般に水を分散媒体とし、本発明の近赤外線吸収色素[A]、発色剤[B]、顕色剤[C]、樹脂[D]や必要に応じてその他公知の添加剤を混合撹拌して調製することができる。本発明の近赤外線吸収色素[A]、発色剤[B]及び顕色剤[C]、それぞれ別々に水系でサンドグラインダー、アトライター、ボールミルなどで粉砕、分散した後、混合することによって水系の塗液を得る方法や、本発明の近赤外線吸収色素[A]、発色剤[B]及び顕色剤[C]のいずれかをマイクロカプセル化した後に水系の塗液を得る方法などが知られている。
<Manufacturing method of laser marking composition>
The composition for laser marking of the present invention can be produced by a conventionally known method. The method for preparing various coating liquids for the laser marking composition is not particularly limited, and generally, water is used as a dispersion medium, and the near-infrared absorbing dye [A], the coloring agent [B], and the coloring agent [C] of the present invention are used. ], Resin [D] and, if necessary, other known additives can be mixed and stirred. The near-infrared absorbing dye [A], the coloring agent [B], and the coloring agent [C] of the present invention are separately crushed and dispersed in an aqueous system with a sand grinder, an attritor, a ball mill, etc., and then mixed to form an aqueous system. A method of obtaining a coating liquid and a method of obtaining an aqueous coating liquid after microencapsulating any one of the near-infrared absorbing dye [A], the coloring agent [B] and the coloring agent [C] of the present invention are known. ing.

発色剤[B]及び顕色剤[C]の使用比率は、用いる発色剤[B]や顕色剤[C]の種類に応じて適宜選択され特に限定するものではないが、発色剤[B]1質量部に対して、0.1〜50質量部、好ましくは0.1〜10質量部程度の顕色剤[C]が使用される。 The ratio of the color-developing agent [B] and the color-developing agent [C] to be used is appropriately selected according to the type of the color-developing agent [B] and the color-developing agent [C] to be used, and is not particularly limited. ] A color developer [C] of about 0.1 to 50 parts by mass, preferably about 0.1 to 10 parts by mass is used with respect to 1 part by mass.

本発明の近赤外線吸収色素[A]は、発色剤[B]1質量部に対して0.1質量部以下、好ましくは0.001〜0.08質量部の範囲で使用される。レーザーマーキング用組成物全固形分に対しては、好ましくは0.05〜5質量%、より好ましくは、0.05〜3質量%の範囲で使用される。 The near-infrared absorbing dye [A] of the present invention is used in the range of 0.1 parts by mass or less, preferably 0.001 to 0.08 parts by mass, with respect to 1 part by mass of the color former [B]. The laser marking composition is preferably used in the range of 0.05 to 5% by mass, more preferably 0.05 to 3% by mass, based on the total solid content.

本発明の近赤外線吸収色素[A]、発色剤[B]、顕色剤[C]は平均粒径3μmを越えないように微粒化するのがより好ましい。本発明の近赤外線吸収色素[A]に関しては、前述のとおり、溶解状態でも使用することができるため、その際は、本発明の近赤外線吸収色素[A]の平均粒径を留意しなくてもよい。微粒化の理由としては、材料を微粒化すればするだけ、発色した印字部のドット径が光源であるレーザー光のスポット径とほとんど同じで、かつ均一なドット径となり、高画質で鮮明な印字や線描が得られると考えられるからである。 It is more preferable that the near-infrared absorbing dye [A], the coloring agent [B], and the coloring agent [C] of the present invention are atomized so as not to exceed the average particle size of 3 μm. As described above, the near-infrared absorbing dye [A] of the present invention can be used even in a dissolved state. Therefore, in that case, the average particle size of the near-infrared absorbing dye [A] of the present invention must be taken into consideration. May be good. The reason for atomization is that the more the material is atomized, the more the dot diameter of the colored printing part is almost the same as the spot diameter of the laser beam that is the light source, and the uniform dot diameter is obtained, resulting in high-quality and clear printing. This is because it is thought that a line drawing can be obtained.

<塗工物>
本発明のレーザーマーキング用組成物は、公知の基材に塗工して塗工物とすることができる。公知の基材は、プラスチックフィルム、紙、金属箔、ガラス、セラミック、木材等からなるものであって良く、基材の形状及び大きさは、任意であってよい。プラスチックフィルムを構成する合成樹脂の種類は特に限定されず、熱可塑性樹脂でも熱硬化性樹脂もしくは、UV/EB硬化系の樹脂でもよい。熱可塑性樹脂の例としては、ポリオレフィン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリスチレン、ポリ酢酸ビニル、ポリテトラフルオロエチレン、アクリロニトリルブタジエンスチレン、ポリアクリルメタクリレート、ポリアミド、ナイロン、ポリアセタール、ポリカーボネート、ポリブチレンテレフタレート、ポリエチレンテレフタレート、ポリフェニレンスルファイド、ポリスルホン、ポリイミド、ポリアミド、及びこれらの混合物及びこれらをベースとした共重合体等が挙げられる。熱硬化性樹脂の例としては、フェノール樹脂、エポキシ樹脂、メラミン樹脂、尿素樹脂、不飽和ポリエステル樹脂、アルキド樹脂、ポリウレタン、熱硬化性ポリイミド及びこれらの混合物等が挙げられる。
<Coated material>
The composition for laser marking of the present invention can be coated on a known base material to obtain a coated product. The known base material may be made of a plastic film, paper, metal leaf, glass, ceramic, wood, or the like, and the shape and size of the base material may be arbitrary. The type of synthetic resin constituting the plastic film is not particularly limited, and may be a thermoplastic resin, a thermosetting resin, or a UV / EB curable resin. Examples of thermoplastic resins include polyolefin, polyvinylidene chloride, polyvinylidene chloride, polystyrene, polyvinylacetate, polytetrafluoroethylene, acrylonitrile butadiene styrene, polyacrylic methacrylate, polyamide, nylon, polyacetal, polycarbonate, polybutylene terephthalate, and polyethylene. Examples thereof include terephthalate, polyvinylidene chloride, polysulfone, polyimide, polyamide, mixtures thereof, and copolymers based on these. Examples of thermosetting resins include phenol resins, epoxy resins, melamine resins, urea resins, unsaturated polyester resins, alkyd resins, polyurethanes, thermosetting polyimides, and mixtures thereof.

(塗工方法)
塗工方法としては、スプレーコートやスピンコート、スリットコート、ロールコート、インクジェット、スクリーン、グラビア、オフセット、フレキソなどの印刷方式などが挙げられるが、これらに限定されることはない。
(Coating method)
Examples of the coating method include, but are not limited to, spray coating, spin coating, slit coating, roll coating, inkjet, screen, gravure, offset, flexo and other printing methods.

<記録材、レーザー>
前記塗工物は、レーザー光を照射することで記録材とすることができる。レーザーマーキングに用いられるレーザー光としては、近赤外レーザー光であれば特に制限はなく、半導体レーザー、色素(パルス)レーザー、アレキサンドライトレーザー等のレーザー光を挙げることができる。本発明の近赤外線吸収色素は750〜950nmの領域に吸収帯が存在するため、使用するレーザーの波長は750〜950nmの範囲内が好ましい。レーザー照射条件は、塗工方法、塗工条件、基材の種類等により適宜選択される。
<Recording material, laser>
The coated material can be used as a recording material by irradiating it with a laser beam. The laser beam used for laser marking is not particularly limited as long as it is a near-infrared laser beam, and examples thereof include laser beams such as semiconductor lasers, dye (pulse) lasers, and Alexandrite lasers. Since the near-infrared absorbing dye of the present invention has an absorption band in the region of 750 to 950 nm, the wavelength of the laser used is preferably in the range of 750 to 950 nm. The laser irradiation conditions are appropriately selected depending on the coating method, coating conditions, type of base material, and the like.

以下に、実施例により本発明をより具体的に説明するが、本発明はその要旨を超えない限り、以下の実施例に限定されるものではない。なお、実施例及び比較例中、「部」及び「%」とは「質量部」及び「質量%」をそれぞれ意味する。 Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to the following Examples as long as the gist of the present invention is not exceeded. In the examples and comparative examples, "parts" and "%" mean "parts by mass" and "% by mass", respectively.

(近赤外線吸収色素[A]の同定方法)
本発明に用いた近赤外線吸収色素[A]の同定には、MALDITOF−MSスペクトルを用いた。MALDITOF−MSスペクトルは、ブルカー・ダルトニクス社製MALDI質量分析装置autoflexIIIを用い、得られたマススペクトラムの分子イオンピークと、計算によって得られる質量数との一致をもって、得られた化合物の同定を行った。
(Method for identifying near-infrared absorbing dye [A])
The MALDITF-MS spectrum was used to identify the near-infrared absorbing dye [A] used in the present invention. For the MALDIOF-MS spectrum, the obtained compound was identified by matching the molecular ion peak of the obtained mass spectrum with the mass number obtained by calculation using the MALDI mass spectrometer autoflex III manufactured by Bruker Daltonics. ..

(側鎖に4級アンモニウム塩基を有する樹脂の重量平均分子量(Mw))
本発明に用いた側鎖に4級アンモニウム塩基を有する樹脂の重量平均分子量(Mw)は、TSKgelカラム(東ソー社製)を用い、RI検出器を装備したGPC(東ソー社製、HLC−8120GPC)で、展開溶媒にTHFを用いて測定したポリスチレン換算の重量平均分子量(Mw)である。
(Weight average molecular weight (Mw) of a resin having a quaternary ammonium base in the side chain)
The weight average molecular weight (Mw) of the resin having a quaternary ammonium base in the side chain used in the present invention is a GPC equipped with an RI detector using a TSKgel column (manufactured by Tosoh Corporation) (HLC-8120 GPC manufactured by Tosoh Corporation). It is a polystyrene-equivalent weight average molecular weight (Mw) measured using THF as a developing solvent.

(側鎖に4級アンモニウム塩基を有する樹脂の4級アンモニウム塩価)
本発明に用いた側鎖に4級アンモニウム塩基を有する樹脂の4級アンモニウム塩価は、5%クロム酸カリウム水溶液を指示薬として、0.1Nの硝酸銀水溶液で滴定して求めた後、水酸化カリウムの当量に換算した。4級アンモニウム塩価は、固形分の4級アンモニウム塩価を示す。
(Quaternary ammonium salt value of a resin having a quaternary ammonium base in the side chain)
The quaternary ammonium salt value of the resin having a quaternary ammonium base in the side chain used in the present invention was determined by titrating with a 0.1 N silver nitrate aqueous solution using a 5% potassium chromate aqueous solution as an indicator, and then potassium hydroxide. Converted to the equivalent of. The quaternary ammonium salt value indicates the quaternary ammonium salt value of the solid content.

<近赤外線吸収色素[A]の製造方法>
[一般式(1)で表される化合物[A]の製造方法]
(近赤外線吸収色素[A−1]の製造)
トルエン400部に、1,8−ジアミノナフタレン40.0部、シクロヘキサノン25.1部、p−トルエンスルホン酸一水和物0.087部を混合し、窒素ガスの雰囲気中で加熱攪拌し、3時間還流させた。反応中に生成した水は共沸蒸留により系中から除去した。反応終了後、トルエンを蒸留して得られた暗茶色固体をアセトンで抽出し、アセトンとエタノールの混合溶媒から再結晶することにより精製した。得られた茶色固体を、トルエン240部とn−ブタノール160部の混合溶媒に溶解させ、3,4−ジヒドロキシ−3−シクロブテン−1,2−ジオン13.8部を加えて、窒素ガスの雰囲気中で加熱撹拌し、8時間還流反応させた。反応中に生成した水は共沸蒸留により系中から除去した。反応終了後、溶媒を蒸留し、得られた反応混合物を攪拌しながら、ヘキサン200部を加えた。得られた黒茶色沈殿物を濾別した後、順次ヘキサン、エタノール及びアセトンで洗浄を行い、減圧下で乾燥させ、近赤外線吸収色素[A−1]61.9部(収率:92%)を得た。TOF−MSによる質量分析の結果、近赤外線吸収色素[A−1]であることを同定した。
<Manufacturing method of near-infrared absorbing dye [A]>
[Method for producing compound [A] represented by general formula (1)]
(Manufacturing of near-infrared absorbing dye [A-1])
To 400 parts of toluene, 40.0 parts of 1,8-diaminonaphthalene, 25.1 parts of cyclohexanone, and 0.087 parts of p-toluenesulfonic acid monohydrate are mixed, heated and stirred in an atmosphere of nitrogen gas, and 3 It was refluxed for hours. The water produced during the reaction was removed from the system by azeotropic distillation. After completion of the reaction, the dark brown solid obtained by distilling toluene was extracted with acetone and purified by recrystallization from a mixed solvent of acetone and ethanol. The obtained brown solid was dissolved in a mixed solvent of 240 parts of toluene and 160 parts of n-butanol, and 13.8 parts of 3,4-dihydroxy-3-cyclobutene-1,2-dione was added to create an atmosphere of nitrogen gas. The mixture was heated and stirred inside, and the mixture was refluxed for 8 hours. The water produced during the reaction was removed from the system by azeotropic distillation. After completion of the reaction, the solvent was distilled and 200 parts of hexane was added while stirring the obtained reaction mixture. The obtained black-brown precipitate was filtered off, washed successively with hexane, ethanol and acetone, dried under reduced pressure, and 61.9 parts of the near-infrared absorbing dye [A-1] (yield: 92%). Got As a result of mass spectrometry by TOF-MS, it was identified as a near-infrared absorbing dye [A-1].

近赤外線吸収色素[A−1]

Figure 0006874522
Near-infrared absorbing dye [A-1]
Figure 0006874522

(近赤外線吸収色素[A−2]の製造)
近赤外線吸収色素[A−1]の製造で使用したシクロヘキサノン25.1部の代わりに、2,6−ジメチルシクロヘキサノン32.2部を使用した以外は、近赤外線吸収色素[A−1]の製造と同様の操作を行い、近赤外線吸収色素[A−2]71.9部(収率:97%)を得た。TOF−MSによる質量分析の結果、近赤外線吸収色素[A−2]であることを同定した。
(Manufacturing of near-infrared absorbing dye [A-2])
Production of near-infrared absorbing dye [A-1] except that 32.2 parts of 2,6-dimethylcyclohexanone was used instead of 25.1 parts of cyclohexanone used in the production of near-infrared absorbing dye [A-1]. The same operation as in the above was carried out to obtain 71.9 parts (yield: 97%) of the near-infrared absorbing dye [A-2]. As a result of mass spectrometry by TOF-MS, it was identified as a near-infrared absorbing dye [A-2].

近赤外線吸収色素[A−2]

Figure 0006874522
Near-infrared absorbing dye [A-2]
Figure 0006874522

(近赤外線吸収色素[A−3]の製造)
近赤外線吸収色素[A−1]の製造で使用したシクロヘキサノン25.1部の代わりに、3,5−ジメチルシクロヘキサノン32.2部を使用した以外は、近赤外線吸収色素[A−1]の製造と同様の操作を行い、近赤外線吸収色素[A−3]72.6部(収率:98%)を得た。TOF−MSによる質量分析の結果、近赤外線吸収色素[A−3]であることを同定した。
(Manufacture of near-infrared absorbing dye [A-3])
Production of near-infrared absorbing dye [A-1] except that 32.2 parts of 3,5-dimethylcyclohexanone was used instead of 25.1 parts of cyclohexanone used in the production of near-infrared absorbing dye [A-1]. The same operation as in the above was carried out to obtain 72.6 parts (yield: 98%) of the near-infrared absorbing dye [A-3]. As a result of mass spectrometry by TOF-MS, it was identified as a near-infrared absorbing dye [A-3].

近赤外線吸収色素[A−3]

Figure 0006874522
Near-infrared absorbing dye [A-3]
Figure 0006874522

(近赤外線吸収色素[A−4]の製造)
近赤外線吸収色素[A−1]の製造で使用したシクロヘキサノン25.1部の代わりに、4−メチルシクロヘキサノン28.6部を使用した以外は、近赤外線吸収色素[A−1]の製造と同様の操作を行い、近赤外線吸収色素[A−4]67.2部(収率:95%)を得た。TOF−MSによる質量分析の結果、近赤外線吸収色素[A−4]であることを同定した。
(Manufacturing of near-infrared absorbing dye [A-4])
Similar to the production of the near-infrared absorbing dye [A-1], except that 28.6 parts of 4-methylcyclohexanone was used instead of 25.1 parts of the cyclohexanone used in the production of the near-infrared absorbing dye [A-1]. To obtain 67.2 parts (yield: 95%) of the near-infrared absorbing dye [A-4]. As a result of mass spectrometry by TOF-MS, it was identified as a near-infrared absorbing dye [A-4].

近赤外線吸収色素[A−4]

Figure 0006874522
Near-infrared absorbing dye [A-4]
Figure 0006874522

(近赤外線吸収色素[A−5]の製造)
近赤外線吸収色素[A−1]の製造で使用したシクロヘキサノン25.1部の代わりに、3,3,5−トリメチルシクロヘキサノン35.8部を使用した以外は、近赤外線吸収色素[A−1]の製造と同様の操作を行い、近赤外線吸収色素[A−5]71.3部(収率:92%)を得た。TOF−MSによる質量分析の結果、近赤外線吸収色素[A−5]であることを同定した。
(Manufacturing of near-infrared absorbing dye [A-5])
Near-infrared absorbing dye [A-1], except that 35.8 parts of 3,3,5-trimethylcyclohexanone was used instead of 25.1 parts of cyclohexanone used in the production of the near-infrared absorbing dye [A-1]. The same operation as in the production of the above was carried out to obtain 71.3 parts (yield: 92%) of the near-infrared absorbing dye [A-5]. As a result of mass spectrometry by TOF-MS, it was identified as a near-infrared absorbing dye [A-5].

近赤外線吸収色素[A−5]

Figure 0006874522
Near infrared absorbing dye [A-5]
Figure 0006874522

(近赤外線吸収色素[A−6]の製造)
近赤外線吸収色素[A−1]の製造で使用したシクロヘキサノン25.1部の代わりに、3,5−ジエチルシクロヘキサノン39.4部を使用した以外は、近赤外線吸収色素[A−1]の製造と同様の操作を行い、近赤外線吸収色素[A−6]76.9部(収率:95%)を得た。TOF−MSによる質量分析の結果、近赤外線吸収色素[A−6]であることを同定した。
(Manufacturing of near-infrared absorbing dye [A-6])
Production of near-infrared absorbing dye [A-1] except that 39.4 parts of 3,5-diethylcyclohexanone was used instead of 25.1 parts of cyclohexanone used in the production of near-infrared absorbing dye [A-1]. The same operation as in the above was carried out to obtain 76.9 parts (yield: 95%) of the near-infrared absorbing dye [A-6]. As a result of mass spectrometry by TOF-MS, it was identified as a near-infrared absorbing dye [A-6].

近赤外線吸収色素[A−6]

Figure 0006874522
Near infrared absorbing dye [A-6]
Figure 0006874522

(近赤外線吸収色素[A−7]の製造)
近赤外線吸収色素[A−1]の製造で使用したシクロヘキサノン25.1部の代わりに、5−イソプロピル−2−メチルシクロヘキサノン39.4部を使用した以外は、近赤外線吸収色素[A−1]の製造と同様の操作を行い、近赤外線吸収色素[A−7]76.9部(収率:95%)を得た。TOF−MSによる質量分析の結果、近赤外線吸収色素[A−7]であることを同定した。
(Manufacturing of near-infrared absorbing dye [A-7])
Near-infrared absorbing dye [A-1], except that 39.4 parts of 5-isopropyl-2-methylcyclohexanone was used instead of 25.1 parts of cyclohexanone used in the production of the near-infrared absorbing dye [A-1]. The same operation as in the production of the above was carried out to obtain 76.9 parts (yield: 95%) of the near-infrared absorbing dye [A-7]. As a result of mass spectrometry by TOF-MS, it was identified as a near-infrared absorbing dye [A-7].

近赤外線吸収色素[A−7]

Figure 0006874522
Near-infrared absorbing dye [A-7]
Figure 0006874522

(近赤外線吸収色素[A−8]の製造)
近赤外線吸収色素[A−1]の製造で使用したシクロヘキサノン25.1部の代わりに、2−シクロヘキシルシクロヘキサノン46.0部を使用した以外は、近赤外線吸収色素[A−1]の製造と同様の操作を行い、近赤外線吸収色素[A−8]79.4部(収率:91%)を得た。TOF−MSによる質量分析の結果、近赤外線吸収色素[A−8]であることを同定した。
(Manufacturing of near-infrared absorbing dye [A-8])
Similar to the production of the near-infrared absorbing dye [A-1], except that 46.0 parts of 2-cyclohexylcyclohexanone was used instead of 25.1 parts of the cyclohexanone used in the production of the near-infrared absorbing dye [A-1]. To obtain 79.4 parts (yield: 91%) of the near-infrared absorbing dye [A-8]. As a result of mass spectrometry by TOF-MS, it was identified as a near-infrared absorbing dye [A-8].

近赤外線吸収色素[A−8]

Figure 0006874522
Near infrared absorbing dye [A-8]
Figure 0006874522

(近赤外線吸収色素[A−9]の製造)
近赤外線吸収色素[A−1]の製造で使用したシクロヘキサノン25.1部の代わりに、2−ノルボルナノン28.1部を使用した以外は、近赤外線吸収色素[A−1]の製造と同様の操作を行い、近赤外線吸収色素[A−9]64.6部(収率:92%)を得た。TOF−MSによる質量分析の結果、近赤外線吸収色素[A−9]であることを同定した。
(Manufacturing of near-infrared absorbing dye [A-9])
Similar to the production of the near-infrared absorbing dye [A-1], except that 28.1 parts of 2-norbornenanone was used instead of 25.1 parts of cyclohexanone used in the production of the near-infrared absorbing dye [A-1]. The operation was carried out to obtain 64.6 parts (yield: 92%) of the near-infrared absorbing dye [A-9]. As a result of mass spectrometry by TOF-MS, it was identified as a near-infrared absorbing dye [A-9].

近赤外線吸収色素[A−9]

Figure 0006874522
Near-infrared absorbing dye [A-9]
Figure 0006874522

(近赤外線吸収色素[A−10]の製造)
近赤外線吸収色素[A−1]の製造で使用したシクロヘキサノン25.1部の代わりに、スピロ[5.5]ウンデカン−1−オン42.5部を使用した以外は、近赤外線吸収色素[A−1]の製造と同様の操作を行い、近赤外線吸収色素[A−10]78.8部(収率:94%)を得た。TOF−MSによる質量分析の結果、近赤外線吸収色素[A−10]であることを同定した。
(Manufacturing of near-infrared absorbing dye [A-10])
Near-infrared absorbing dye [A-1] except that 42.5 parts of spiro [5.5] undecane-1-one was used instead of 25.1 parts of cyclohexanone used in the production of the near-infrared absorbing dye [A-1]. The same operation as in the production of -1] was carried out to obtain 78.8 parts (yield: 94%) of the near-infrared absorbing dye [A-10]. As a result of mass spectrometry by TOF-MS, it was identified as a near-infrared absorbing dye [A-10].

近赤外線吸収色素[A−10]

Figure 0006874522
Near infrared absorbing dye [A-10]
Figure 0006874522

(近赤外線吸収色素[A−11]の製造)
近赤外線吸収色素[A−1]の製造で使用したシクロヘキサノン25.1部の代わりに、3−メチル−3,4,4a,5,8,8a−ヘキサヒドロナフタレン−1(2H)−オン41.9部を使用した以外は、近赤外線吸収色素[A−1]の製造と同様の操作を行い、近赤外線吸収色素[A−11]76.7部(収率:92%)を得た。TOF−MSによる質量分析の結果、近赤外線吸収色素[A−11]であることを同定した。
(Manufacturing of near-infrared absorbing dye [A-11])
Instead of 25.1 parts of cyclohexanone used in the production of the near-infrared absorbing dye [A-1], 3-methyl-3,4,4a, 5,8,8a-hexahydronaphthalen-1 (2H) -one 41 The same operation as in the production of the near-infrared absorbing dye [A-1] was carried out except that 9 parts were used, and 76.7 parts (yield: 92%) of the near-infrared absorbing dye [A-11] was obtained. .. As a result of mass spectrometry by TOF-MS, it was identified as a near-infrared absorbing dye [A-11].

近赤外線吸収色素[A−11]

Figure 0006874522
Near-infrared absorbing dye [A-11]
Figure 0006874522

(近赤外線吸収色素[A−12]の製造)
近赤外線吸収色素[A−1]の製造で使用したシクロヘキサノン25.1部の代わりに、3−(2−クロロエチル)シクロヘキサノン41.0部を使用した以外は、近赤外線吸収色素[A−1]の製造と同様の操作を行い、近赤外線吸収色素[A−12]77.5部(収率:94%)を得た。TOF−MSによる質量分析の結果、近赤外線吸収色素[A−12]であることを同定した。
(Manufacturing of near-infrared absorbing dye [A-12])
Near-infrared absorbing dye [A-1], except that 41.0 parts of 3- (2-chloroethyl) cyclohexanone was used instead of 25.1 parts of cyclohexanone used in the production of the near-infrared absorbing dye [A-1]. The same operation as in the production of the above was carried out to obtain 77.5 parts (yield: 94%) of the near-infrared absorbing dye [A-12]. As a result of mass spectrometry by TOF-MS, it was identified as a near-infrared absorbing dye [A-12].

近赤外線吸収色素[A−12]

Figure 0006874522
Near infrared absorbing dye [A-12]
Figure 0006874522

(近赤外線吸収色素[A−13]の製造)
近赤外線吸収色素[A−1]の製造で使用したシクロヘキサノン25.1部の代わりに、3,5−ジ(トリフルオロメチル)シクロヘキサノン59.8部を使用した以外は、近赤外線吸収色素[A−1]の製造と同様の操作を行い、近赤外線吸収色素[A−13]93.3部(収率:93%)を得た。TOF−MSによる質量分析の結果、近赤外線吸収色素[A−13]であることを同定した。
(Manufacturing of near-infrared absorbing dye [A-13])
Near-infrared absorbing dye [A-1] except that 59.8 parts of 3,5-di (trifluoromethyl) cyclohexanone was used instead of 25.1 parts of cyclohexanone used in the production of the near-infrared absorbing dye [A-1]. The same operation as in the production of -1] was carried out to obtain 93.3 parts (yield: 93%) of the near-infrared absorbing dye [A-13]. As a result of mass spectrometry by TOF-MS, it was identified as a near-infrared absorbing dye [A-13].

近赤外線吸収色素[A−13]

Figure 0006874522
Near-infrared absorbing dye [A-13]
Figure 0006874522

(近赤外線吸収色素[A−14]の製造)
近赤外線吸収色素[A−1]の製造で使用したシクロヘキサノン25.1部の代わりに、2−フェニルシクロヘキサノン44.5部を使用した以外は、近赤外線吸収色素[A−1]の製造と同様の操作を行い、近赤外線吸収色素[A−14]78.9部(収率:92%)を得た。TOF−MSによる質量分析の結果、近赤外線吸収色素[A−14]であることを同定した。
(Manufacturing of near-infrared absorbing dye [A-14])
Similar to the production of the near-infrared absorbing dye [A-1], except that 44.5 parts of 2-phenylcyclohexanone was used instead of 25.1 parts of the cyclohexanone used in the production of the near-infrared absorbing dye [A-1]. To obtain 78.9 parts (yield: 92%) of a near-infrared absorbing dye [A-14]. As a result of mass spectrometry by TOF-MS, it was identified as a near-infrared absorbing dye [A-14].

近赤外線吸収色素[A−14]

Figure 0006874522
Near-infrared absorbing dye [A-14]
Figure 0006874522

(近赤外線吸収色素[A−15]の製造)
近赤外線吸収色素[A−1]の製造で使用したシクロヘキサノン25.1部の代わりに、4−p−トリルシクロヘキサノン48.1部を使用した以外は、近赤外線吸収色素[A−1]の製造と同様の操作を行い、近赤外線吸収色素[A−15]84.7部(収率:95%)を得た。TOF−MSによる質量分析の結果、近赤外線吸収色素[A−15]であることを同定した。
(Manufacturing of near-infrared absorbing dye [A-15])
Production of near-infrared absorbing dye [A-1] except that 48.1 parts of 4-p-tolylcyclohexanone was used instead of 25.1 parts of cyclohexanone used in the production of near-infrared absorbing dye [A-1]. The same operation as in the above was carried out to obtain 84.7 parts (yield: 95%) of the near-infrared absorbing dye [A-15]. As a result of mass spectrometry by TOF-MS, it was identified as a near-infrared absorbing dye [A-15].

近赤外線吸収色素[A−15]

Figure 0006874522
Near-infrared absorbing dye [A-15]
Figure 0006874522

(近赤外線吸収色素[A−16]の製造)
近赤外線吸収色素[A−1]の製造で使用したシクロヘキサノン25.1部の代わりに、4−ベンジルシクロヘキサノン48.1部を使用した以外は、近赤外線吸収色素[A−1]の製造と同様の操作を行い、近赤外線吸収色素[A−16]85.6部(収率:96%)を得た。TOF−MSによる質量分析の結果、近赤外線吸収色素[A−16]であることを同定した。
(Manufacturing of near-infrared absorbing dye [A-16])
Similar to the production of the near-infrared absorbing dye [A-1], except that 48.1 parts of 4-benzylcyclohexanone was used instead of 25.1 parts of the cyclohexanone used in the production of the near-infrared absorbing dye [A-1]. 85.6 parts (yield: 96%) of the near-infrared absorbing dye [A-16] was obtained. As a result of mass spectrometry by TOF-MS, it was identified as a near-infrared absorbing dye [A-16].

近赤外線吸収色素[A−16]

Figure 0006874522
Near infrared absorbing dye [A-16]
Figure 0006874522

(近赤外線吸収色素[A−17]の製造)
近赤外線吸収色素[A−1]の製造で使用したシクロヘキサノン25.1部の代わりに、4−エトキシシクロヘキサノン36.3部を使用した以外は、近赤外線吸収色素[A−1]の製造と同様の操作を行い、近赤外線吸収色素[A−17]71.0部(収率:91%)を得た。TOF−MSによる質量分析の結果、近赤外線吸収色素[A−17]であることを同定した。
(Manufacturing of near-infrared absorbing dye [A-17])
Similar to the production of the near-infrared absorbing dye [A-1], except that 36.3 parts of 4-ethoxycyclohexanone was used instead of 25.1 parts of the cyclohexanone used in the production of the near-infrared absorbing dye [A-1]. 71.0 parts (yield: 91%) of the near-infrared absorbing dye [A-17] was obtained. As a result of mass spectrometry by TOF-MS, it was identified as a near-infrared absorbing dye [A-17].

近赤外線吸収色素[A−17]

Figure 0006874522
Near-infrared absorbing dye [A-17]
Figure 0006874522

(近赤外線吸収色素[A−18]の製造)
近赤外線吸収色素[A−1]の製造で使用したシクロヘキサノン25.1部の代わりに、2,6−ジ(トリフルオロメトキシ)シクロヘキサノン68.0部を使用した以外は、近赤外線吸収色素[A−1]の製造と同様の操作を行い、近赤外線吸収色素[A−18]100.5部(収率:93%)を得た。TOF−MSによる質量分析の結果、近赤外線吸収色素[A−18]であることを同定した。
(Manufacturing of near-infrared absorbing dye [A-18])
Near-infrared absorbing dye [A-1] except that 68.0 parts of 2,6-di (trifluoromethoxy) cyclohexanone was used instead of 25.1 parts of cyclohexanone used in the production of the near-infrared absorbing dye [A-1]. The same operation as in the production of -1] was carried out to obtain 100.5 parts (yield: 93%) of the near-infrared absorbing dye [A-18]. As a result of mass spectrometry by TOF-MS, it was identified as a near-infrared absorbing dye [A-18].

近赤外線吸収色素[A−18]

Figure 0006874522
Near-infrared absorbing dye [A-18]
Figure 0006874522

(近赤外線吸収色素[A−19]の製造)
近赤外線吸収色素[A−1]の製造で使用したシクロヘキサノン25.1部の代わりに、4−フェノキシシクロヘキサノン48.6部を使用した以外は、近赤外線吸収色素[A−1]の製造と同様の操作を行い、近赤外線吸収色素[A−19]82.5部(収率:92%)を得た。TOF−MSによる質量分析の結果、近赤外線吸収色素[A−19]であることを同定した。
(Manufacturing of near-infrared absorbing dye [A-19])
Similar to the production of the near-infrared absorbing dye [A-1], except that 48.6 parts of 4-phenoxycyclohexanone was used instead of 25.1 parts of the cyclohexanone used in the production of the near-infrared absorbing dye [A-1]. 82.5 parts (yield: 92%) of the near-infrared absorbing dye [A-19] was obtained. As a result of mass spectrometry by TOF-MS, it was identified as a near-infrared absorbing dye [A-19].

近赤外線吸収色素[A−19]

Figure 0006874522
Near-infrared absorbing dye [A-19]
Figure 0006874522

(近赤外線吸収色素[A−20]の製造)
近赤外線吸収色素[A−1]の製造で使用したシクロヘキサノン25.1部の代わりに、3−オキソ−シクロヘキサンスルホン酸ナトリウム塩51.1部を使用した以外は、近赤外線吸収色素[A−1]の製造と同様の操作を行い、近赤外線吸収色素[A−20]83.3部(収率:96%)を得た。TOF−MSによる質量分析の結果、近赤外線吸収色素[A−20]であることを同定した。
(Manufacturing of near-infrared absorbing dye [A-20])
Near-infrared absorbing dye [A-1] except that 51.1 parts of 3-oxo-cyclohexanesulfonic acid sodium salt was used instead of 25.1 parts of cyclohexanone used in the production of near-infrared absorbing dye [A-1]. ] Was carried out in the same manner as in the production of the near-infrared absorbing dye [A-20] to obtain 83.3 parts (yield: 96%). As a result of mass spectrometry by TOF-MS, it was identified as a near-infrared absorbing dye [A-20].

近赤外線吸収色素[A−20]

Figure 0006874522
Near infrared absorbing dye [A-20]
Figure 0006874522

(近赤外線吸収色素[A−21]の製造)
近赤外線吸収色素[A−1]の製造で使用したシクロヘキサノン25.1部の代わりに、N−エチル−3−オキソシクロヘキサン−1−スルホアミド52.4部を使用した以外は、近赤外線吸収色素[A−1]の製造と同様の操作を行い、近赤外線吸収色素[A−21]87.7部(収率:94%)を得た。TOF−MSによる質量分析の結果、近赤外線吸収色素[A−21]であることを同定した。
(Manufacturing of near-infrared absorbing dye [A-21])
Near-infrared absorbing dye [A-1] except that 52.4 parts of N-ethyl-3-oxocyclohexane-1-sulfoamide was used instead of 25.1 parts of cyclohexanone used in the production of the near-infrared absorbing dye [A-1]. The same operation as in the production of A-1] was carried out to obtain 87.7 parts (yield: 94%) of the near-infrared absorbing dye [A-21]. As a result of mass spectrometry by TOF-MS, it was identified as a near-infrared absorbing dye [A-21].

近赤外線吸収色素[A−21]

Figure 0006874522
Near-infrared absorbing dye [A-21]
Figure 0006874522

(近赤外線吸収色素[A−22]の製造)
近赤外線吸収色素[A−1]の製造で使用したシクロヘキサノン25.1部の代わりに、4−オキソシクロヘキサンカルボン酸36.3部を使用した以外は、近赤外線吸収色素[A−1]の製造と同様の操作を行い、近赤外線吸収色素[A−22]71.0部(収率:91%)を得た。TOF−MSによる質量分析の結果、近赤外線吸収色素[A−22]であることを同定した。
(Manufacturing of near-infrared absorbing dye [A-22])
Production of near-infrared absorbing dye [A-1] except that 36.3 parts of 4-oxocyclohexanecarboxylic acid was used instead of 25.1 parts of cyclohexanone used in the production of near-infrared absorbing dye [A-1]. The same operation as in the above was carried out to obtain 71.0 parts (yield: 91%) of the near-infrared absorbing dye [A-22]. As a result of mass spectrometry by TOF-MS, it was identified as a near-infrared absorbing dye [A-22].

近赤外線吸収色素[A−22]

Figure 0006874522
Near-infrared absorbing dye [A-22]
Figure 0006874522

(近赤外線吸収色素[A−23]の製造)
近赤外線吸収色素[A−1]の製造で使用したシクロヘキサノン25.1部の代わりに、2−オキソシクロヘキサンカルボン酸エチル43.5部を使用した以外は、近赤外線吸収色素[A−1]の製造と同様の操作を行い、近赤外線吸収色素[A−23]78.9部(収率:93%)を得た。TOF−MSによる質量分析の結果、近赤外線吸収色素[A−23]であることを同定した。
(Manufacturing of near-infrared absorbing dye [A-23])
Of the near-infrared absorbing dye [A-1], except that 43.5 parts of ethyl 2-oxocyclohexanecarboxylic acid was used instead of 25.1 parts of cyclohexanone used in the production of the near-infrared absorbing dye [A-1]. The same operation as in the production was carried out to obtain 78.9 parts (yield: 93%) of the near-infrared absorbing dye [A-23]. As a result of mass spectrometry by TOF-MS, it was identified as a near-infrared absorbing dye [A-23].

近赤外線吸収色素[A−23]

Figure 0006874522
Near-infrared absorbing dye [A-23]
Figure 0006874522

(近赤外線吸収色素[A−24]の製造)
近赤外線吸収色素[A−1]の製造で使用したシクロヘキサノン25.1部の代わりに、4−オキソ−N−プロピルシクロヘキサンカルボキシアミド46.8部を使用した以外は、近赤外線吸収色素[A−1]の製造と同様の操作を行い、近赤外線吸収色素[A−24]87.1部(収率:99%)を得た。TOF−MSによる質量分析の結果、近赤外線吸収色素[A−24]であることを同定した。
(Manufacturing of near-infrared absorbing dye [A-24])
Near-infrared absorbing dye [A-] except that 46.8 parts of 4-oxo-N-propylcyclohexanecarboxamide was used instead of 25.1 parts of cyclohexanone used in the production of the near-infrared absorbing dye [A-1]. The same operation as in the production of 1] was carried out to obtain 87.1 parts (yield: 99%) of the near-infrared absorbing dye [A-24]. As a result of mass spectrometry by TOF-MS, it was identified as a near-infrared absorbing dye [A-24].

近赤外線吸収色素[A−24]

Figure 0006874522
Near infrared absorbing dye [A-24]
Figure 0006874522

(近赤外線吸収色素[A−25]の製造)
近赤外線吸収色素[A−1]の製造で使用したシクロヘキサノン25.1部の代わりに、4−アミノシクロヘキサノン28.9部を使用した以外は、近赤外線吸収色素[A−1]の製造と同様の操作を行い、近赤外線吸収色素[A−25]68.1部(収率:96%)を得た。TOF−MSによる質量分析の結果、近赤外線吸収色素[A−25]であることを同定した。
(Manufacturing of near-infrared absorbing dye [A-25])
Similar to the production of the near-infrared absorbing dye [A-1], except that 28.9 parts of 4-aminocyclohexanone was used instead of 25.1 parts of the cyclohexanone used in the production of the near-infrared absorbing dye [A-1]. To obtain 68.1 parts (yield: 96%) of the near-infrared absorbing dye [A-25]. As a result of mass spectrometry by TOF-MS, it was identified as a near-infrared absorbing dye [A-25].

近赤外線吸収色素[A−25]

Figure 0006874522
Near infrared absorbing dye [A-25]
Figure 0006874522

(近赤外線吸収色素[A−26]の製造)
近赤外線吸収色素[A−1]の製造で使用したシクロヘキサノン25.1部の代わりに、4−(ジメチルアミノ)シクロヘキサノン36.1部を使用した以外は、近赤外線吸収色素[A−1]の製造と同様の操作を行い、近赤外線吸収色素[A−26]73.9部(収率:95%)を得た。TOF−MSによる質量分析の結果、近赤外線吸収色素[A−26]であることを同定した。
(Manufacturing of near-infrared absorbing dye [A-26])
Of the near-infrared absorbing dye [A-1], except that 36.1 parts of 4- (dimethylamino) cyclohexanone was used instead of 25.1 parts of cyclohexanone used in the production of the near-infrared absorbing dye [A-1]. The same operation as in the production was carried out to obtain 73.9 parts (yield: 95%) of the near-infrared absorbing dye [A-26]. As a result of mass spectrometry by TOF-MS, it was identified as a near-infrared absorbing dye [A-26].

近赤外線吸収色素[A−26]

Figure 0006874522
Near infrared absorbing dye [A-26]
Figure 0006874522

(近赤外線吸収色素[A−27]の製造)
近赤外線吸収色素[A−1]の製造で使用したシクロヘキサノン25.1部の代わりに、4−オキソシクロヘキサンカルボニトリル31.4部を使用した以外は、近赤外線吸収色素[A−1]の製造と同様の操作を行い、近赤外線吸収色素[A−27]67.5部(収率:92%)を得た。TOF−MSによる質量分析の結果、近赤外線吸収色素[A−27]であることを同定した。
(Manufacturing of near-infrared absorbing dye [A-27])
Production of near-infrared absorbing dye [A-1] except that 31.4 parts of 4-oxocyclohexanecarbonitrile was used instead of 25.1 parts of cyclohexanone used in the production of near-infrared absorbing dye [A-1]. The same operation as in the above was carried out to obtain 67.5 parts (yield: 92%) of the near-infrared absorbing dye [A-27]. As a result of mass spectrometry by TOF-MS, it was identified as a near-infrared absorbing dye [A-27].

近赤外線吸収色素[A−27]

Figure 0006874522
Near-infrared absorbing dye [A-27]
Figure 0006874522

(近赤外線吸収色素[A−28]の製造)
近赤外線吸収色素[A−1]の製造で使用したシクロヘキサノン25.1部の代わりに、4−ニトロシクロヘキサノン36.6部を使用した以外は、近赤外線吸収色素[A−1]の製造と同様の操作を行い、近赤外線吸収色素[A−28]72.0部(収率:92%)を得た。TOF−MSによる質量分析の結果、近赤外線吸収色素[A−28]であることを同定した。
(Manufacturing of near-infrared absorbing dye [A-28])
Similar to the production of the near-infrared absorbing dye [A-1], except that 36.6 parts of 4-nitrocyclohexanone was used instead of 25.1 parts of the cyclohexanone used in the production of the near-infrared absorbing dye [A-1]. 72.0 parts (yield: 92%) of the near-infrared absorbing dye [A-28] was obtained. As a result of mass spectrometry by TOF-MS, it was identified as a near-infrared absorbing dye [A-28].

近赤外線吸収色素[A−28]

Figure 0006874522
Near-infrared absorbing dye [A-28]
Figure 0006874522

(近赤外線吸収色素[A−29]の製造)
近赤外線吸収色素[A−1]の製造で使用したシクロヘキサノン25.1部の代わりに、3,5−ジフルオロシクロヘキサノン34.3部を使用した以外は、近赤外線吸収色素[A−1]の製造と同様の操作を行い、近赤外線吸収色素[A−29]70.7部(収率:93%)を得た。TOF−MSによる質量分析の結果、近赤外線吸収色素[A−29]であることを同定した。
(Manufacturing of near-infrared absorbing dye [A-29])
Production of near-infrared absorbing dye [A-1] except that 34.3 parts of 3,5-difluorocyclohexanone was used instead of 25.1 parts of cyclohexanone used in the production of near-infrared absorbing dye [A-1]. The same operation as in the above was carried out to obtain 70.7 parts (yield: 93%) of the near-infrared absorbing dye [A-29]. As a result of mass spectrometry by TOF-MS, it was identified as a near-infrared absorbing dye [A-29].

近赤外線吸収色素[A−29]

Figure 0006874522
Near infrared absorbing dye [A-29]
Figure 0006874522

(近赤外線吸収色素[A−30]の製造)
近赤外線吸収色素[A−1]の製造で使用したシクロヘキサノン25.1部の代わりに、2−クロロシクロヘキサノン33.9部を使用した以外は、近赤外線吸収色素[A−1]の製造と同様の操作を行い、近赤外線吸収色素[A−30]71.1部(収率:94%)を得た。TOF−MSによる質量分析の結果、近赤外線吸収色素[A−30]であることを同定した。
(Manufacturing of near-infrared absorbing dye [A-30])
Similar to the production of the near-infrared absorbing dye [A-1], except that 33.9 parts of 2-chlorocyclohexanone was used instead of 25.1 parts of the cyclohexanone used in the production of the near-infrared absorbing dye [A-1]. To obtain 71.1 parts (yield: 94%) of the near-infrared absorbing dye [A-30]. As a result of mass spectrometry by TOF-MS, it was identified as a near-infrared absorbing dye [A-30].

近赤外線吸収色素[A−30]

Figure 0006874522
Near infrared absorbing dye [A-30]
Figure 0006874522

(近赤外線吸収色素[A−31]の製造)
近赤外線吸収色素[A−1]の製造で使用したシクロヘキサノン25.1部の代わりに、3,3−ジブロモシクロヘキサノン65.4部を使用した以外は、近赤外線吸収色素[A−1]の製造と同様の操作を行い、近赤外線吸収色素[A−31]99.3部(収率:94%)を得た。TOF−MSによる質量分析の結果、近赤外線吸収色素[A−31]であることを同定した。
(Manufacturing of near-infrared absorbing dye [A-31])
Production of near-infrared absorbing dye [A-1] except that 65.4 parts of 3,3-dibromocyclohexanone was used instead of 25.1 parts of cyclohexanone used in the production of near-infrared absorbing dye [A-1]. The same operation as in the above was carried out to obtain 99.3 parts (yield: 94%) of the near-infrared absorbing dye [A-31]. As a result of mass spectrometry by TOF-MS, it was identified as a near-infrared absorbing dye [A-31].

近赤外線吸収色素[A−31]

Figure 0006874522
Near-infrared absorbing dye [A-31]
Figure 0006874522

(近赤外線吸収色素[A−32]の製造)
トルエン400部に、1,8−ジアミノ−3−メチルナフタレン43.5部、シクロヘキサノン25.1部、p−トルエンスルホン酸一水和物0.087部を混合し、窒素ガスの雰囲気中で加熱攪拌し、3時間還流させた。反応中に生成した水は共沸蒸留により系中から除去した。反応終了後、トルエンを蒸留して得られた暗茶色固体をアセトンで抽出し、アセトンとエタノールの混合溶媒から再結晶することにより精製した。得られた茶色固体を、トルエン240部とn−ブタノール160部の混合溶媒に溶解させ、3,4−ジヒドロキシ−3−シクロブテン−1,2−ジオン13.8部を加えて、窒素ガスの雰囲気中で加熱撹拌し、8時間還流反応させた。反応中に生成した水は共沸蒸留により系中から除去した。反応終了後、溶媒を蒸留し、得られた反応混合物を攪拌しながら、ヘキサン200部を加えた。得られた黒茶色沈殿物を濾別した後、順次ヘキサン、エタノール及びアセトンで洗浄を行い、減圧下で乾燥させ、近赤外線吸収色素[A−32]64.4部(収率:91%)を得た。TOF−MSによる質量分析の結果、近赤外線吸収色素[A−32]であることを同定した。
(Manufacturing of near-infrared absorbing dye [A-32])
400 parts of toluene is mixed with 43.5 parts of 1,8-diamino-3-methylnaphthalene, 25.1 parts of cyclohexanone, and 0.087 parts of p-toluenesulfonic acid monohydrate, and heated in an atmosphere of nitrogen gas. The mixture was stirred and refluxed for 3 hours. The water produced during the reaction was removed from the system by azeotropic distillation. After completion of the reaction, the dark brown solid obtained by distilling toluene was extracted with acetone and purified by recrystallization from a mixed solvent of acetone and ethanol. The obtained brown solid was dissolved in a mixed solvent of 240 parts of toluene and 160 parts of n-butanol, and 13.8 parts of 3,4-dihydroxy-3-cyclobutene-1,2-dione was added to create an atmosphere of nitrogen gas. The mixture was heated and stirred inside, and the mixture was refluxed for 8 hours. The water produced during the reaction was removed from the system by azeotropic distillation. After completion of the reaction, the solvent was distilled and 200 parts of hexane was added while stirring the obtained reaction mixture. The obtained black-brown precipitate was filtered off, washed successively with hexane, ethanol and acetone, dried under reduced pressure, and 64.4 parts of the near-infrared absorbing dye [A-32] (yield: 91%). Got As a result of mass spectrometry by TOF-MS, it was identified as a near-infrared absorbing dye [A-32].

近赤外線吸収色素[A−32]

Figure 0006874522
Near infrared absorbing dye [A-32]
Figure 0006874522

(近赤外線吸収色素[A−33]の製造)
近赤外線吸収色素[A−32]の製造で使用した1,8−ジアミノ−3−メチルナフタレン43.5部及びシクロヘキサノン25.1部の代わりに、1,8−ジアミノ−4−トリフルオロメチルナフタレン57.2部及び2,6−ジメチルシクロヘキサノン32.2部を使用した以外は、近赤外線吸収色素[A−32]の製造と同様の操作を行い、近赤外線吸収色素[A−33]84.3部(収率:93%)を得た。TOF−MSによる質量分析の結果、近赤外線吸収色素[A−33]であることを同定した。
(Manufacturing of near-infrared absorbing dye [A-33])
Instead of 43.5 parts of 1,8-diamino-3-methylnaphthalene and 25.1 parts of cyclohexanone used in the production of the near-infrared absorbing dye [A-32], 1,8-diamino-4-trifluoromethylnaphthalene The same operation as in the production of the near-infrared absorbing dye [A-32] was performed except that 57.2 parts and 32.2 parts of 2,6-dimethylcyclohexanone were used, and the near-infrared absorbing dye [A-33] 84. Three parts (yield: 93%) were obtained. As a result of mass spectrometry by TOF-MS, it was identified as a near-infrared absorbing dye [A-33].

近赤外線吸収色素[A−33]

Figure 0006874522
Near-infrared absorbing dye [A-33]
Figure 0006874522

(近赤外線吸収色素[A−34]の製造)
近赤外線吸収色素[A−32]の製造で使用した1,8−ジアミノ−3−メチルナフタレン43.5部及びシクロヘキサノン25.1部の代わりに、1,8−ジアミノ−3−フェニルナフタレン59.2部及び3,5−ジメチルシクロヘキサノン32.2部を使用した以外は、近赤外線吸収色素[A−32]の製造と同様の操作を行い、近赤外線吸収色素[A−34]88.9部(収率:96%)を得た。TOF−MSによる質量分析の結果、近赤外線吸収色素[A−34]であることを同定した。
(Manufacturing of near-infrared absorbing dye [A-34])
Instead of 43.5 parts of 1,8-diamino-3-methylnaphthalene and 25.1 parts of cyclohexanone used in the production of the near-infrared absorbing dye [A-32], 1,8-diamino-3-phenylnaphthalene 59. The same operation as in the production of the near-infrared absorbing dye [A-32] was performed except that 2 parts and 32.2 parts of 3,5-dimethylcyclohexanone were used, and 88.9 parts of the near-infrared absorbing dye [A-34] were used. (Yield: 96%) was obtained. As a result of mass spectrometry by TOF-MS, it was identified as a near-infrared absorbing dye [A-34].

近赤外線吸収色素[A−34]

Figure 0006874522
Near-infrared absorbing dye [A-34]
Figure 0006874522

(近赤外線吸収色素[A−35]の製造)
近赤外線吸収色素[A−32]の製造で使用した1,8−ジアミノ−3−メチルナフタレン43.5部及びシクロヘキサノン25.1部の代わりに、1,8−ジアミノ−3−p−トリルナフタレン62.8部及び4−メチルシクロヘキサノン28.6部を使用した以外は、近赤外線吸収色素[A−32]の製造と同様の操作を行い、近赤外線吸収色素[A−35]85.2部(収率:92%)を得た。TOF−MSによる質量分析の結果、近赤外線吸収色素[A−35]であることを同定した。
(Manufacturing of near-infrared absorbing dye [A-35])
Instead of 43.5 parts of 1,8-diamino-3-methylnaphthalene and 25.1 parts of cyclohexanone used in the production of the near-infrared absorbing dye [A-32], 1,8-diamino-3-p-tolylnaphthalene Except for the use of 62.8 parts and 28.6 parts of 4-methylcyclohexanone, the same operation as in the production of the near-infrared absorbing dye [A-32] was carried out, and 85.2 parts of the near-infrared absorbing dye [A-35] was performed. (Yield: 92%) was obtained. As a result of mass spectrometry by TOF-MS, it was identified as a near-infrared absorbing dye [A-35].

近赤外線吸収色素[A−35]

Figure 0006874522

Near-infrared absorbing dye [A-35]
Figure 0006874522

(近赤外線吸収色素[A−36]の製造)
近赤外線吸収色素[A−32]の製造で使用した1,8−ジアミノ−3−メチルナフタレン43.5部及びシクロヘキサノン25.1部の代わりに、1,8−ジアミノ−3−メトキシナフタレン47.6部及び3,3,5−トリメチルシクロヘキサノン35.8部を使用した以外は、近赤外線吸収色素[A−32]の製造と同様の操作を行い、近赤外線吸収色素[A−36]79.7部(収率:94%)を得た。TOF−MSによる質量分析の結果、近赤外線吸収色素[A−36]であることを同定した。
(Manufacturing of near-infrared absorbing dye [A-36])
Instead of 43.5 parts of 1,8-diamino-3-methylnaphthalene and 25.1 parts of cyclohexanone used in the production of the near-infrared absorbing dye [A-32], 1,8-diamino-3-methoxynaphthalene 47. Except for the use of 6 parts and 35.8 parts of 3,3,5-trimethylcyclohexanone, the same operation as in the production of the near-infrared absorbing dye [A-32] was carried out, and the near-infrared absorbing dye [A-36] 79. 7 parts (yield: 94%) were obtained. As a result of mass spectrometry by TOF-MS, it was identified as a near-infrared absorbing dye [A-36].

近赤外線吸収色素[A−36]

Figure 0006874522
Near infrared absorbing dye [A-36]
Figure 0006874522

(近赤外線吸収色素[A−37]の製造)
近赤外線吸収色素[A−32]の製造で使用した1,8−ジアミノ−3−メチルナフタレン43.5部及びシクロヘキサノン25.1部の代わりに、1,8−ジアミノ−2−トリフルオロメトキシナフタレン61.2部及び3,5−ジエチルシクロヘキサノン39.4部を使用した以外は、近赤外線吸収色素[A−32]の製造と同様の操作を行い、近赤外線吸収色素[A−37]92.2部(収率:90%)を得た。TOF−MSによる質量分析の結果、近赤外線吸収色素[A−37]であることを同定した。
(Manufacture of near-infrared absorbing dye [A-37])
Instead of 43.5 parts of 1,8-diamino-3-methylnaphthalene and 25.1 parts of cyclohexanone used in the production of the near-infrared absorbing dye [A-32], 1,8-diamino-2-trifluoromethoxynaphthalene Except for the use of 61.2 parts and 39.4 parts of 3,5-diethylcyclohexanone, the same operation as in the production of the near-infrared absorbing dye [A-32] was carried out, and the near-infrared absorbing dye [A-37] 92. Two parts (yield: 90%) were obtained. As a result of mass spectrometry by TOF-MS, it was identified as a near-infrared absorbing dye [A-37].

近赤外線吸収色素[A−37]

Figure 0006874522
Near infrared absorbing dye [A-37]
Figure 0006874522

(近赤外線吸収色素[A−38]の製造)
近赤外線吸収色素[A−32]の製造で使用した1,8−ジアミノ−3−メチルナフタレン43.5部及びシクロヘキサノン25.1部の代わりに、1,8−ジアミノ−2−フェノキシナフタレン63.3部及び5−イソプロピル−2−メチルシクロヘキサノン39.4部を使用した以外は、近赤外線吸収色素[A−32]の製造と同様の操作を行い、近赤外線吸収色素[A−38]95.0部(収率:92%)を得た。TOF−MSによる質量分析の結果、近赤外線吸収色素[A−38]であることを同定した。
(Manufacturing of near-infrared absorbing dye [A-38])
Instead of 43.5 parts of 1,8-diamino-3-methylnaphthalene and 25.1 parts of cyclohexanone used in the production of the near-infrared absorbing dye [A-32], 1,8-diamino-2-phenoxynaphthalene 63. The same operation as in the production of the near-infrared absorbing dye [A-32] was carried out except that 3 parts and 39.4 parts of 5-isopropyl-2-methylcyclohexanone were used, and the near-infrared absorbing dye [A-38] 95. 0 parts (yield: 92%) were obtained. As a result of mass spectrometry by TOF-MS, it was identified as a near-infrared absorbing dye [A-38].

近赤外線吸収色素[A−38]

Figure 0006874522
Near-infrared absorbing dye [A-38]
Figure 0006874522

(近赤外線吸収色素[A−39]の製造)
近赤外線吸収色素[A−32]の製造で使用した1,8−ジアミノ−3−メチルナフタレン43.5部及びシクロヘキサノン25.1部の代わりに、1,8−ジアミノ−3−p−トリルオキシナフタレン66.8部及び2−シクロヘキシルシクロヘキサノン46.0部を使用した以外は、近赤外線吸収色素[A−32]の製造と同様の操作を行い、近赤外線吸収色素[A−39]104.0部(収率:92%)を得た。TOF−MSによる質量分析の結果、近赤外線吸収色素[A−39]であることを同定した。
(Manufacturing of near-infrared absorbing dye [A-39])
Instead of 43.5 parts of 1,8-diamino-3-methylnaphthalene and 25.1 parts of cyclohexanone used in the production of the near-infrared absorbing dye [A-32], 1,8-diamino-3-p-tolyloxy Except for the use of 66.8 parts of naphthalene and 46.0 parts of 2-cyclohexylcyclohexanone, the same operation as in the production of the near-infrared absorbing dye [A-32] was carried out, and the near-infrared absorbing dye [A-39] 104.0 was performed. Part (yield: 92%) was obtained. As a result of mass spectrometry by TOF-MS, it was identified as a near-infrared absorbing dye [A-39].

近赤外線吸収色素[A−39]

Figure 0006874522
Near-infrared absorbing dye [A-39]
Figure 0006874522

(近赤外線吸収色素[A−40]の製造)
近赤外線吸収色素[A−32]の製造で使用した1,8−ジアミノ−3−メチルナフタレン43.5部の代わりに、4,5−ジアミノナフタレン−1−スルホン酸60.2部を使用した以外は、近赤外線吸収色素[A−32]の製造と同様の操作を行い、近赤外線吸収色素[A−40]80.7部(収率:93%)を得た。TOF−MSによる質量分析の結果、近赤外線吸収色素[A−40]であることを同定した。
(Manufacturing of near-infrared absorbing dye [A-40])
Instead of 43.5 parts of 1,8-diamino-3-methylnaphthalene used in the production of the near-infrared absorbing dye [A-32], 60.2 parts of 4,5-diaminonaphthalene-1-sulfonic acid was used. Except for the above, the same operation as in the production of the near-infrared absorbing dye [A-32] was carried out to obtain 80.7 parts (yield: 93%) of the near-infrared absorbing dye [A-40]. As a result of mass spectrometry by TOF-MS, it was identified as a near-infrared absorbing dye [A-40].

近赤外線吸収色素[A−40]

Figure 0006874522
Near infrared absorbing dye [A-40]
Figure 0006874522

(近赤外線吸収色素[A−41]の製造)
近赤外線吸収色素[A−40]の製造で使用したシクロヘキサノン25.1部の代わりに、2,6−ジメチルシクロヘキサノン32.2部を使用した以外は、近赤外線吸収色素[A−40]の製造と同様の操作を行い、近赤外線吸収色素[A−41]87.0部(収率:93%)を得た。TOF−MSによる質量分析の結果、近赤外線吸収色素[A−41]であることを同定した。
(Manufacturing of near-infrared absorbing dye [A-41])
Production of near-infrared absorbing dye [A-40], except that 32.2 parts of 2,6-dimethylcyclohexanone was used instead of 25.1 parts of cyclohexanone used in the production of near-infrared absorbing dye [A-40]. The same operation as in the above was carried out to obtain 87.0 parts (yield: 93%) of the near-infrared absorbing dye [A-41]. As a result of mass spectrometry by TOF-MS, it was identified as a near-infrared absorbing dye [A-41].

近赤外線吸収色素[A−41]

Figure 0006874522
Near-infrared absorbing dye [A-41]
Figure 0006874522

(近赤外線吸収色素[A−42]の製造)
近赤外線吸収色素[A−40]の製造で使用したシクロヘキサノン25.1部の代わりに、3,5−ジメチルシクロヘキサノン32.2部を使用した以外は、近赤外線吸収色素[A−40]の製造と同様の操作を行い、近赤外線吸収色素[A−42]87.0部(収率:93%)を得た。TOF−MSによる質量分析の結果、近赤外線吸収色素[A−42]であることを同定した。
(Manufacturing of near-infrared absorbing dye [A-42])
Production of near-infrared absorbing dye [A-40], except that 32.2 parts of 3,5-dimethylcyclohexanone was used instead of 25.1 parts of cyclohexanone used in the production of near-infrared absorbing dye [A-40]. The same operation as in the above was carried out to obtain 87.0 parts (yield: 93%) of the near-infrared absorbing dye [A-42]. As a result of mass spectrometry by TOF-MS, it was identified as a near-infrared absorbing dye [A-42].

近赤外線吸収色素[A−42]

Figure 0006874522
Near-infrared absorbing dye [A-42]
Figure 0006874522

(近赤外線吸収色素[A−43]の製造)
近赤外線吸収色素[A−40]の製造で使用したシクロヘキサノン25.1部の代わりに、4−メチルシクロヘキサノン28.6部を使用した以外は、近赤外線吸収色素[A−40]の製造と同様の操作を行い、近赤外線吸収色素[A−43]83.8部(収率:93%)を得た。TOF−MSによる質量分析の結果、近赤外線吸収色素[A−43]であることを同定した。
(Manufacturing of near-infrared absorbing dye [A-43])
Similar to the production of the near-infrared absorbing dye [A-40], except that 28.6 parts of 4-methylcyclohexanone was used instead of 25.1 parts of the cyclohexanone used in the production of the near-infrared absorbing dye [A-40]. 83.8 parts (yield: 93%) of the near-infrared absorbing dye [A-43] was obtained. As a result of mass spectrometry by TOF-MS, it was identified as a near-infrared absorbing dye [A-43].

近赤外線吸収色素[A−43]

Figure 0006874522
Near-infrared absorbing dye [A-43]
Figure 0006874522

(近赤外線吸収色素[A−44]の製造)
近赤外線吸収色素[A−32]の製造で使用した1,8−ジアミノ−3−メチルナフタレン43.5部及びシクロヘキサノン25.1部の代わりに、4,5−ジアミノ−N−エチルナフタレン−1−スルホアミド67.1部及び2−ノルボルナノン28.1部を使用した以外は、近赤外線吸収色素[A−32]の製造と同様の操作を行い、近赤外線吸収色素[A−44]90.5部(収率:94%)を得た。TOF−MSによる質量分析の結果、近赤外線吸収色素[A−44]であることを同定した。
(Manufacturing of near-infrared absorbing dye [A-44])
Instead of 43.5 parts of 1,8-diamino-3-methylnaphthalene and 25.1 parts of cyclohexanone used in the production of the near-infrared absorbing dye [A-32], 4,5-diamino-N-ethylnaphthalene-1 The same operation as in the production of the near-infrared absorbing dye [A-32] was carried out except that 67.1 parts of −sulfoamide and 28.1 parts of 2-norbornenanone were used, and the near-infrared absorbing dye [A-44] 90.5 was performed. Part (yield: 94%) was obtained. As a result of mass spectrometry by TOF-MS, it was identified as a near-infrared absorbing dye [A-44].

近赤外線吸収色素[A−44]

Figure 0006874522
Near-infrared absorbing dye [A-44]
Figure 0006874522

(近赤外線吸収色素[A−45]の製造)
近赤外線吸収色素[A−32]の製造で使用した1,8−ジアミノ−3−メチルナフタレン43.5部及びシクロヘキサノン25.1部の代わりに、4,5−ジアミノ−1−ナフトエ酸51.1部及びスピロ[5.5]ウンデカン−1−オン42.5部を使用した以外は、近赤外線吸収色素[A−32]の製造と同様の操作を行い、近赤外線吸収色素[A−45]86.0部(収率:91%)を得た。TOF−MSによる質量分析の結果、近赤外線吸収色素[A−45]であることを同定した。
(Manufacturing of near-infrared absorbing dye [A-45])
Instead of 43.5 parts of 1,8-diamino-3-methylnaphthalene and 25.1 parts of cyclohexanone used in the production of the near-infrared absorbing dye [A-32], 4,5-diamino-1-naphthoic acid 51. The same operation as in the production of the near-infrared absorbing dye [A-32] was performed except that 1 part and 42.5 parts of the spiro [5.5] undecane-1-one were used, and the near-infrared absorbing dye [A-45] was used. ] 86.0 parts (yield: 91%) was obtained. As a result of mass spectrometry by TOF-MS, it was identified as a near-infrared absorbing dye [A-45].

近赤外線吸収色素[A−45]

Figure 0006874522
Near-infrared absorbing dye [A-45]
Figure 0006874522

(近赤外線吸収色素[A−46]の製造)
近赤外線吸収色素[A−32]の製造で使用した1,8−ジアミノ−3−メチルナフタレン43.5部及びシクロヘキサノン25.1部の代わりに、4,5−ジアミノ−1−ナフトエ酸メチル54.7部及び3−メチル−3,4,4a,5,8,8a−ヘキサヒドロナフタレン−1(2H)−オン41.9部を使用した以外は、近赤外線吸収色素[A−32]の製造と同様の操作を行い、近赤外線吸収色素[A−46]89.7部(収率:92%)を得た。TOF−MSによる質量分析の結果、近赤外線吸収色素[A−46]であることを同定した。
(Manufacturing of near-infrared absorbing dye [A-46])
Methyl 4,5-diamino-1-naphthoate 54 instead of 43.5 parts of 1,8-diamino-3-methylnaphthalene and 25.1 parts of cyclohexanone used in the production of the near-infrared absorbing dye [A-32] .. 7 parts and 3-methyl-3,4,4a, 5,8,8a-hexahydronaphthalene-1 (2H) -one 41.9 parts are used, but the near-infrared absorbing dye [A-32] The same operation as in the production was carried out to obtain 89.7 parts (yield: 92%) of the near-infrared absorbing dye [A-46]. As a result of mass spectrometry by TOF-MS, it was identified as a near-infrared absorbing dye [A-46].

近赤外線吸収色素[A−46]

Figure 0006874522
Near infrared absorbing dye [A-46]
Figure 0006874522

(近赤外線吸収色素[A−47]の製造)
近赤外線吸収色素[A−32]の製造で使用した1,8−ジアミノ−3−メチルナフタレン43.5部及びシクロヘキサノン25.1部の代わりに、4,5−ジアミノ−N−エチルナフトアミド58.0部及び3−(2−クロロエチル)シクロヘキサノン41.0部を使用した以外は、近赤外線吸収色素[A−32]の製造と同様の操作を行い、近赤外線吸収色素[A−47]90.8部(収率:91%)を得た。TOF−MSによる質量分析の結果、近赤外線吸収色素[A−47]であることを同定した。
(Manufacturing of near-infrared absorbing dye [A-47])
Instead of 43.5 parts of 1,8-diamino-3-methylnaphthalene and 25.1 parts of cyclohexanone used in the production of the near-infrared absorbing dye [A-32], 4,5-diamino-N-ethylnaphthamide 58 The same operation as in the production of the near-infrared absorbing dye [A-32] was performed except that 0 part and 41.0 parts of 3- (2-chloroethyl) cyclohexanone were used, and the near-infrared absorbing dye [A-47] 90 was performed. 8. 8 parts (yield: 91%) was obtained. As a result of mass spectrometry by TOF-MS, it was identified as a near-infrared absorbing dye [A-47].

近赤外線吸収色素[A−47]

Figure 0006874522
Near-infrared absorbing dye [A-47]
Figure 0006874522

(近赤外線吸収色素[A−48]の製造)
近赤外線吸収色素[A−32]の製造で使用した1,8−ジアミノ−3−メチルナフタレン43.5部及びシクロヘキサノン25.1部の代わりに、1,8−ジアミノ−3−ニトロフタレン51.4部及び3,5−ジ(トリフルオロメチル)シクロヘキサノン59.8部を使用した以外は、近赤外線吸収色素[A−32]の製造と同様の操作を行い、近赤外線吸収色素[A−48]103.5部(収率:93%)を得た。TOF−MSによる質量分析の結果、近赤外線吸収色素[A−48]であることを同定した。
(Manufacturing of near-infrared absorbing dye [A-48])
Instead of 43.5 parts of 1,8-diamino-3-methylnaphthalene and 25.1 parts of cyclohexanone used in the production of the near-infrared absorbing dye [A-32], 1,8-diamino-3-nitrophthalene 51.4 The same operation as in the production of the near-infrared absorbing dye [A-32] was performed except that 59.8 parts of the part and 3,5-di (trifluoromethyl) cyclohexanone were used, and the near-infrared absorbing dye [A-48] was used. 103.5 parts (yield: 93%) was obtained. As a result of mass spectrometry by TOF-MS, it was identified as a near-infrared absorbing dye [A-48].

近赤外線吸収色素[A−48]

Figure 0006874522
Near-infrared absorbing dye [A-48]
Figure 0006874522

(近赤外線吸収色素[A−49]の製造)
近赤外線吸収色素[A−32]の製造で使用した1,8−ジアミノ−3−メチルナフタレン43.5部及びシクロヘキサノン25.1部の代わりに、1,8−ジアミノ−4−クロロナフタレン48.7部及び3,5−ジメチルシクロヘキサノン32.2部を使用した以外は、近赤外線吸収色素[A−32]の製造と同様の操作を行い、近赤外線吸収色素[A−49]75.9部(収率:92%)を得た。TOF−MSによる質量分析の結果、近赤外線吸収色素[A−49]であることを同定した。
(Manufacturing of near-infrared absorbing dye [A-49])
Instead of 43.5 parts of 1,8-diamino-3-methylnaphthalene and 25.1 parts of cyclohexanone used in the production of the near-infrared absorbing dye [A-32], 1,8-diamino-4-chloronaphthalene 48. The same operation as in the production of the near-infrared absorbing dye [A-32] was performed except that 7 parts and 32.2 parts of 3,5-dimethylcyclohexanone were used, and 75.9 parts of the near-infrared absorbing dye [A-49] were used. (Yield: 92%) was obtained. As a result of mass spectrometry by TOF-MS, it was identified as a near-infrared absorbing dye [A-49].

近赤外線吸収色素[A−49]

Figure 0006874522
Near-infrared absorbing dye [A-49]
Figure 0006874522

(近赤外線吸収色素[A−50]の製造)
近赤外線吸収色素[A−32]の製造で使用した1,8−ジアミノ−3−メチルナフタレン43.5部及びシクロヘキサノン25.1部の代わりに、1,8−ジアミノ−4−クロロナフタレン48.7部及び2−フェニルシクロヘキサノン44.5部を使用した以外は、近赤外線吸収色素[A−32]の製造と同様の操作を行い、近赤外線吸収色素[A−50]90.4部(収率:96%)を得た。TOF−MSによる質量分析の結果、近赤外線吸収色素[A−50]であることを同定した。
(Manufacturing of near-infrared absorbing dye [A-50])
Instead of 43.5 parts of 1,8-diamino-3-methylnaphthalene and 25.1 parts of cyclohexanone used in the production of the near-infrared absorbing dye [A-32], 1,8-diamino-4-chloronaphthalene 48. The same operation as in the production of the near-infrared absorbing dye [A-32] was performed except that 7 parts and 44.5 parts of 2-phenylcyclohexanone were used, and 90.4 parts of the near-infrared absorbing dye [A-50] (collected). Rate: 96%) was obtained. As a result of mass spectrometry by TOF-MS, it was identified as a near-infrared absorbing dye [A-50].

近赤外線吸収色素[A−50]

Figure 0006874522
Near infrared absorbing dye [A-50]
Figure 0006874522

(近赤外線吸収色素[A−51]の製造)
近赤外線吸収色素[A−32]の製造で使用した1,8−ジアミノ−3−メチルナフタレン43.5部及びシクロヘキサノン25.1部の代わりに、1,8−ジアミノ−4−クロロナフタレン48.7部及び4−p−トリルシクロヘキサノン48.1部を使用した以外は、近赤外線吸収色素[A−32]の製造と同様の操作を行い、近赤外線吸収色素[A−51]92.7部(収率:95%)を得た。TOF−MSによる質量分析の結果、近赤外線吸収色素[A−51]であることを同定した。
(Manufacturing of near-infrared absorbing dye [A-51])
Instead of 43.5 parts of 1,8-diamino-3-methylnaphthalene and 25.1 parts of cyclohexanone used in the production of the near-infrared absorbing dye [A-32], 1,8-diamino-4-chloronaphthalene 48. The same operation as in the production of the near-infrared absorbing dye [A-32] was performed except that 7 parts and 48.1 parts of 4-p-tolylcyclohexanone were used, and 92.7 parts of the near-infrared absorbing dye [A-51] were used. (Yield: 95%) was obtained. As a result of mass spectrometry by TOF-MS, it was identified as a near-infrared absorbing dye [A-51].

近赤外線吸収色素[A−51]

Figure 0006874522
Near-infrared absorbing dye [A-51]
Figure 0006874522

(近赤外線吸収色素[A−52]の製造)
近赤外線吸収色素[A−32]の製造で使用した1,8−ジアミノ−3−メチルナフタレン43.5部及びシクロヘキサノン25.1部の代わりに、1,8−ジアミノ−4−クロロナフタレン48.7部及び4−ベンジルシクロヘキサノン48.1部を使用した以外は、近赤外線吸収色素[A−32]の製造と同様の操作を行い、近赤外線吸収色素[A−52]88.8部(収率:91%)を得た。TOF−MSによる質量分析の結果、近赤外線吸収色素[A−52]であることを同定した。
(Manufacturing of near-infrared absorbing dye [A-52])
Instead of 43.5 parts of 1,8-diamino-3-methylnaphthalene and 25.1 parts of cyclohexanone used in the production of the near-infrared absorbing dye [A-32], 1,8-diamino-4-chloronaphthalene 48. The same operation as in the production of the near-infrared absorbing dye [A-32] was performed except that 7 parts and 48.1 parts of 4-benzylcyclohexanone were used, and 88.8 parts of the near-infrared absorbing dye [A-52] (collected). Rate: 91%) was obtained. As a result of mass spectrometry by TOF-MS, it was identified as a near-infrared absorbing dye [A-52].

近赤外線吸収色素[A−52]

Figure 0006874522
Near-infrared absorbing dye [A-52]
Figure 0006874522

(近赤外線吸収色素[A−53]の製造)
近赤外線吸収色素[A−32]の製造で使用した1,8−ジアミノ−3−メチルナフタレン43.5部及びシクロヘキサノン25.1部の代わりに、1,8−ジアミノ−4−クロロナフタレン48.7部及び4−エトキシシクロヘキサノン36.3部を使用した以外は、近赤外線吸収色素[A−32]の製造と同様の操作を行い、近赤外線吸収色素[A−53]80.3部(収率:93%)を得た。TOF−MSによる質量分析の結果、近赤外線吸収色素[A−53]であることを同定した。
(Manufacturing of near-infrared absorbing dye [A-53])
Instead of 43.5 parts of 1,8-diamino-3-methylnaphthalene and 25.1 parts of cyclohexanone used in the production of the near-infrared absorbing dye [A-32], 1,8-diamino-4-chloronaphthalene 48. The same operation as in the production of the near-infrared absorbing dye [A-32] was performed except that 7 parts and 36.3 parts of 4-ethoxycyclohexanone were used, and 80.3 parts of the near-infrared absorbing dye [A-53] (collected). Rate: 93%) was obtained. As a result of mass spectrometry by TOF-MS, it was identified as a near-infrared absorbing dye [A-53].

近赤外線吸収色素[A−53]

Figure 0006874522
Near infrared absorbing dye [A-53]
Figure 0006874522

(近赤外線吸収色素[A−54]の製造)
近赤外線吸収色素[A−32]の製造で使用した1,8−ジアミノ−3−メチルナフタレン43.5部及びシクロヘキサノン25.1部の代わりに、1,8−ジアミノ−4−クロロナフタレン48.7部及び2,6−ジ(トリフルオロメトキシ)シクロヘキサノン68.0部を使用した以外は、近赤外線吸収色素[A−32]の製造と同様の操作を行い、近赤外線吸収色素[A−54]109.5部(収率:94%)を得た。TOF−MSによる質量分析の結果、近赤外線吸収色素[A−54]であることを同定した。
(Manufacturing of near-infrared absorbing dye [A-54])
Instead of 43.5 parts of 1,8-diamino-3-methylnaphthalene and 25.1 parts of cyclohexanone used in the production of the near-infrared absorbing dye [A-32], 1,8-diamino-4-chloronaphthalene 48. The same operation as in the production of the near-infrared absorbing dye [A-32] was performed except that 7 parts and 68.0 parts of 2,6-di (trifluoromethoxy) cyclohexanone were used, and the near-infrared absorbing dye [A-54] was used. ] 109.5 parts (yield: 94%) was obtained. As a result of mass spectrometry by TOF-MS, it was identified as a near-infrared absorbing dye [A-54].

近赤外線吸収色素[A−54]

Figure 0006874522
Near-infrared absorbing dye [A-54]
Figure 0006874522

(近赤外線吸収色素[A−55]の製造)
近赤外線吸収色素[A−32]の製造で使用した1,8−ジアミノ−3−メチルナフタレン43.5部及びシクロヘキサノン25.1部の代わりに、1,8−ジアミノ−4−クロロナフタレン48.7部及び4−フェノキシシクロヘキサノン48.6部を使用した以外は、近赤外線吸収色素[A−32]の製造と同様の操作を行い、近赤外線吸収色素[A−55]91.2部(収率:93%)を得た。TOF−MSによる質量分析の結果、近赤外線吸収色素[A−55]であることを同定した。
(Manufacturing of near-infrared absorbing dye [A-55])
Instead of 43.5 parts of 1,8-diamino-3-methylnaphthalene and 25.1 parts of cyclohexanone used in the production of the near-infrared absorbing dye [A-32], 1,8-diamino-4-chloronaphthalene 48. Except for the use of 7 parts and 48.6 parts of 4-phenoxycyclohexanone, the same operation as in the production of the near-infrared absorbing dye [A-32] was performed, and 91.2 parts of the near-infrared absorbing dye [A-55] (collected). Rate: 93%) was obtained. As a result of mass spectrometry by TOF-MS, it was identified as a near-infrared absorbing dye [A-55].

近赤外線吸収色素[A−55]

Figure 0006874522
Near-infrared absorbing dye [A-55]
Figure 0006874522

(近赤外線吸収色素[A−56]の製造)
近赤外線吸収色素[A−32]の製造で使用した1,8−ジアミノ−3−メチルナフタレン43.5部及びシクロヘキサノン25.1部の代わりに、1,8−ジアミノ−4−クロロナフタレン48.7部及び3−オキソーシクロヘキサンスルホン酸ナトリウム塩51.1部を使用した以外は、近赤外線吸収色素[A−32]の製造と同様の操作を行い、近赤外線吸収色素[A−56]88.5部(収率:93%)を得た。TOF−MSによる質量分析の結果、近赤外線吸収色素[A−56]であることを同定した。
(Manufacturing of near-infrared absorbing dye [A-56])
Instead of 43.5 parts of 1,8-diamino-3-methylnaphthalene and 25.1 parts of cyclohexanone used in the production of the near-infrared absorbing dye [A-32], 1,8-diamino-4-chloronaphthalene 48. The same operation as in the production of the near-infrared absorbing dye [A-32] was carried out except that 7 parts and 51.1 parts of 3-oxo-cyclohexanesulfonic acid sodium salt were used, and the near-infrared absorbing dye [A-56] 88 was performed. .5 parts (yield: 93%) was obtained. As a result of mass spectrometry by TOF-MS, it was identified as a near-infrared absorbing dye [A-56].

近赤外線吸収色素[A−56]

Figure 0006874522
Near infrared absorbing dye [A-56]
Figure 0006874522

(近赤外線吸収色素[A−57]の製造)
近赤外線吸収色素[A−32]の製造で使用した1,8−ジアミノ−3−メチルナフタレン43.5部及びシクロヘキサノン25.1部の代わりに、1,8−ジアミノ−4−クロロナフタレン48.7部及びN−エチルー3−オキソシクロヘキサン−1−スルホアミド52.4部を使用した以外は、近赤外線吸収色素[A−32]の製造と同様の操作を行い、近赤外線吸収色素[A−57]92.5部(収率:91%)を得た。TOF−MSによる質量分析の結果、近赤外線吸収色素[A−57]であることを同定した。
(Manufacturing of near-infrared absorbing dye [A-57])
Instead of 43.5 parts of 1,8-diamino-3-methylnaphthalene and 25.1 parts of cyclohexanone used in the production of the near-infrared absorbing dye [A-32], 1,8-diamino-4-chloronaphthalene 48. The same operation as in the production of the near-infrared absorbing dye [A-32] was performed except that 7 parts and 52.4 parts of N-ethyl-3-oxocyclohexane-1-sulfoamide were used, and the near-infrared absorbing dye [A-57] was used. ] 92.5 parts (yield: 91%) was obtained. As a result of mass spectrometry by TOF-MS, it was identified as a near-infrared absorbing dye [A-57].

近赤外線吸収色素[A−57]

Figure 0006874522
Near-infrared absorbing dye [A-57]
Figure 0006874522

(近赤外線吸収色素[A−58]の製造)
近赤外線吸収色素[A−32]の製造で使用した1,8−ジアミノ−3−メチルナフタレン43.5部及びシクロヘキサノン25.1部の代わりに、1,8−ジアミノ−4−クロロナフタレン48.7部及び4−オキソシクロヘキサンカルボン酸36.3部を使用した以外は、近赤外線吸収色素[A−32]の製造と同様の操作を行い、近赤外線吸収色素[A−58]79.5部(収率:92%)を得た。TOF−MSによる質量分析の結果、近赤外線吸収色素[A−58]であることを同定した。
(Manufacturing of near-infrared absorbing dye [A-58])
Instead of 43.5 parts of 1,8-diamino-3-methylnaphthalene and 25.1 parts of cyclohexanone used in the production of the near-infrared absorbing dye [A-32], 1,8-diamino-4-chloronaphthalene 48. The same operation as in the production of the near-infrared absorbing dye [A-32] was performed except that 7 parts and 36.3 parts of 4-oxocyclohexanecarboxylic acid were used, and 79.5 parts of the near-infrared absorbing dye [A-58] was used. (Yield: 92%) was obtained. As a result of mass spectrometry by TOF-MS, it was identified as a near-infrared absorbing dye [A-58].

近赤外線吸収色素[A−58]

Figure 0006874522
Near infrared absorbing dye [A-58]
Figure 0006874522

(近赤外線吸収色素[A−59]の製造)
近赤外線吸収色素[A−32]の製造で使用した1,8−ジアミノ−3−メチルナフタレン43.5部及びシクロヘキサノン25.1部の代わりに、1,8−ジアミノ−4−クロロナフタレン48.7部及び2−オキソシクロヘキサンカルボン酸エチル43.5部を使用した以外は、近赤外線吸収色素[A−32]の製造と同様の操作を行い、近赤外線吸収色素[A−59]88.5部(収率:95%)を得た。TOF−MSによる質量分析の結果、近赤外線吸収色素[A−59]であることを同定した。
(Manufacturing of near-infrared absorbing dye [A-59])
Instead of 43.5 parts of 1,8-diamino-3-methylnaphthalene and 25.1 parts of cyclohexanone used in the production of the near-infrared absorbing dye [A-32], 1,8-diamino-4-chloronaphthalene 48. The same operation as in the production of the near-infrared absorbing dye [A-32] was performed except that 7 parts and 43.5 parts of ethyl 2-oxocyclohexanecarboxylate were used, and the near-infrared absorbing dye [A-59] 88.5 was performed. Parts (yield: 95%) were obtained. As a result of mass spectrometry by TOF-MS, it was identified as a near-infrared absorbing dye [A-59].

近赤外線吸収色素[A−59]

Figure 0006874522
Near-infrared absorbing dye [A-59]
Figure 0006874522

(近赤外線吸収色素[A−60]の製造)
近赤外線吸収色素[A−32]の製造で使用した1,8−ジアミノ−3−メチルナフタレン43.5部及びシクロヘキサノン25.1部の代わりに、1,8−ジアミノ−4−クロロナフタレン48.7部及び4−オキソーN−プロピルシクロヘキサンカルボキシアミド46.8部を使用した以外は、近赤外線吸収色素[A−32]の製造と同様の操作を行い、近赤外線吸収色素[A−60]89.6部(収率:93%)を得た。TOF−MSによる質量分析の結果、近赤外線吸収色素[A−60]であることを同定した。
(Manufacturing of near-infrared absorbing dye [A-60])
Instead of 43.5 parts of 1,8-diamino-3-methylnaphthalene and 25.1 parts of cyclohexanone used in the production of the near-infrared absorbing dye [A-32], 1,8-diamino-4-chloronaphthalene 48. The same operation as in the production of the near-infrared absorbing dye [A-32] was performed except that 7 parts and 46.8 parts of 4-oxo-N-propylcyclohexanecarboxamide were used, and the near-infrared absorbing dye [A-60] 89 was performed. .6 parts (yield: 93%) was obtained. As a result of mass spectrometry by TOF-MS, it was identified as a near-infrared absorbing dye [A-60].

近赤外線吸収色素[A−60]

Figure 0006874522
Near infrared absorbing dye [A-60]
Figure 0006874522

(近赤外線吸収色素[A−61]の製造)
近赤外線吸収色素[A−32]の製造で使用した1,8−ジアミノ−3−メチルナフタレン43.5部及びシクロヘキサノン25.1部の代わりに、1,8−ジアミノ−4−クロロナフタレン48.7部及び4−アミノシクロヘキサノン28.9部を使用した以外は、近赤外線吸収色素[A−32]の製造と同様の操作を行い、近赤外線吸収色素[A−61]73.0部(収率:92%)を得た。TOF−MSによる質量分析の結果、近赤外線吸収色素[A−61]であることを同定した。
(Manufacturing of near-infrared absorbing dye [A-61])
Instead of 43.5 parts of 1,8-diamino-3-methylnaphthalene and 25.1 parts of cyclohexanone used in the production of the near-infrared absorbing dye [A-32], 1,8-diamino-4-chloronaphthalene 48. Except for the use of 7 parts and 28.9 parts of 4-aminocyclohexanone, the same operation as in the production of the near-infrared absorbing dye [A-32] was carried out, and 73.0 parts of the near-infrared absorbing dye [A-61] (collected). Rate: 92%) was obtained. As a result of mass spectrometry by TOF-MS, it was identified as a near-infrared absorbing dye [A-61].

近赤外線吸収色素[A−61]

Figure 0006874522
Near-infrared absorbing dye [A-61]
Figure 0006874522

(近赤外線吸収色素[A−62]の製造)
近赤外線吸収色素[A−32]の製造で使用した1,8−ジアミノ−3−メチルナフタレン43.5部及びシクロヘキサノン25.1部の代わりに、1,8−ジアミノ−4−クロロナフタレン48.7部及び4−(ジメチルアミノ)シクロヘキサノン36.1部を使用した以外は、近赤外線吸収色素[A−32]の製造と同様の操作を行い、近赤外線吸収色素[A−62]81.0部(収率:94%)を得た。TOF−MSによる質量分析の結果、近赤外線吸収色素[A−62]であることを同定した。
(Manufacturing of near-infrared absorbing dye [A-62])
Instead of 43.5 parts of 1,8-diamino-3-methylnaphthalene and 25.1 parts of cyclohexanone used in the production of the near-infrared absorbing dye [A-32], 1,8-diamino-4-chloronaphthalene 48. The same operation as in the production of the near-infrared absorbing dye [A-32] was performed except that 7 parts and 36.1 parts of 4- (dimethylamino) cyclohexanone were used, and the near-infrared absorbing dye [A-62] 81.0 was performed. Parts (yield: 94%) were obtained. As a result of mass spectrometry by TOF-MS, it was identified as a near-infrared absorbing dye [A-62].

近赤外線吸収色素[A−62]

Figure 0006874522
Near infrared absorbing dye [A-62]
Figure 0006874522

(近赤外線吸収色素[A−63]の製造)
近赤外線吸収色素[A−32]の製造で使用した1,8−ジアミノ−3−メチルナフタレン43.5部及びシクロヘキサノン25.1部の代わりに、1,8−ジアミノ−4−クロロナフタレン48.7部及び4−オキソシクロヘキサンカルボニトリル31.4部を使用した以外は、近赤外線吸収色素[A−32]の製造と同様の操作を行い、近赤外線吸収色素[A−63]77.7部(収率:95%)を得た。TOF−MSによる質量分析の結果、近赤外線吸収色素[A−63]であることを同定した。
(Manufacturing of near-infrared absorbing dye [A-63])
Instead of 43.5 parts of 1,8-diamino-3-methylnaphthalene and 25.1 parts of cyclohexanone used in the production of the near-infrared absorbing dye [A-32], 1,8-diamino-4-chloronaphthalene 48. The same operation as in the production of the near-infrared absorbing dye [A-32] was performed except that 7 parts and 31.4 parts of 4-oxocyclohexanecarbonitrile were used, and 77.7 parts of the near-infrared absorbing dye [A-63] was used. (Yield: 95%) was obtained. As a result of mass spectrometry by TOF-MS, it was identified as a near-infrared absorbing dye [A-63].

近赤外線吸収色素[A−63]

Figure 0006874522
Near-infrared absorbing dye [A-63]
Figure 0006874522

(近赤外線吸収色素[A−64]の製造)
近赤外線吸収色素[A−32]の製造で使用した1,8−ジアミノ−3−メチルナフタレン43.5部及びシクロヘキサノン25.1部の代わりに、1,8−ジアミノ−4−クロロナフタレン48.7部及び4−ニトロシクロヘキサノン36.6部を使用した以外は、近赤外線吸収色素[A−32]の製造と同様の操作を行い、近赤外線吸収色素[A−64]78.8部(収率:91%)を得た。TOF−MSによる質量分析の結果、近赤外線吸収色素[A−64]であることを同定した。
(Manufacturing of near-infrared absorbing dye [A-64])
Instead of 43.5 parts of 1,8-diamino-3-methylnaphthalene and 25.1 parts of cyclohexanone used in the production of the near-infrared absorbing dye [A-32], 1,8-diamino-4-chloronaphthalene 48. Except for the use of 7 parts and 36.6 parts of 4-nitrocyclohexanone, the same operation as in the production of the near-infrared absorbing dye [A-32] was carried out, and 78.8 parts of the near-infrared absorbing dye [A-64] (yield). Rate: 91%) was obtained. As a result of mass spectrometry by TOF-MS, it was identified as a near-infrared absorbing dye [A-64].

近赤外線吸収色素[A−64]

Figure 0006874522
Near infrared absorbing dye [A-64]
Figure 0006874522

(近赤外線吸収色素[A−65]の製造)
近赤外線吸収色素[A−32]の製造で使用した1,8−ジアミノ−3−メチルナフタレン43.5部及びシクロヘキサノン25.1部の代わりに、1,8−ジアミノ−4,5−ジクロロナフタレン57.4部及び3,5−ジフルオロシクロヘキサノン34.3部を使用した以外は、近赤外線吸収色素[A−32]の製造と同様の操作を行い、近赤外線吸収色素[A−65]88.1部(収率:95%)を得た。TOF−MSによる質量分析の結果、近赤外線吸収色素[A−65]であることを同定した。
(Manufacturing of near-infrared absorbing dye [A-65])
Instead of 43.5 parts of 1,8-diamino-3-methylnaphthalene and 25.1 parts of cyclohexanone used in the production of the near-infrared absorbing dye [A-32], 1,8-diamino-4,5-dichloronaphthalene Except for the use of 57.4 parts and 34.3 parts of 3,5-difluorocyclohexanone, the same operation as in the production of the near-infrared absorbing dye [A-32] was carried out, and the near-infrared absorbing dye [A-65] 88. One part (yield: 95%) was obtained. As a result of mass spectrometry by TOF-MS, it was identified as a near-infrared absorbing dye [A-65].

近赤外線吸収色素[A−65]

Figure 0006874522
Near infrared absorbing dye [A-65]
Figure 0006874522

(近赤外線吸収色素[A−66]の製造)
近赤外線吸収色素[A−32]の製造で使用した1,8−ジアミノ−3−メチルナフタレン43.5部及びシクロヘキサノン25.1部の代わりに、1,8−ジアミノ−4,5−ジブロモナフタレン79.9部及び2−クロロシクロヘキサノン33.9部を使用した以外は、近赤外線吸収色素[A−32]の製造と同様の操作を行い、近赤外線吸収色素[A−66]102.6部(収率:90%)を得た。TOF−MSによる質量分析の結果、近赤外線吸収色素[A−66]であることを同定した。
(Manufacturing of near-infrared absorbing dye [A-66])
Instead of 43.5 parts of 1,8-diamino-3-methylnaphthalene and 25.1 parts of cyclohexanone used in the production of the near-infrared absorbing dye [A-32], 1,8-diamino-4,5-dibromonaphthalene Except for the use of 79.9 parts and 33.9 parts of 2-chlorocyclohexanone, the same operation as in the production of the near-infrared absorbing dye [A-32] was carried out, and 102.6 parts of the near-infrared absorbing dye [A-66] was performed. (Yield: 90%) was obtained. As a result of mass spectrometry by TOF-MS, it was identified as a near-infrared absorbing dye [A-66].

近赤外線吸収色素[A−66]

Figure 0006874522
Near-infrared absorbing dye [A-66]
Figure 0006874522

(近赤外線吸収色素[A−67]の製造)
近赤外線吸収色素[A−32]の製造で使用した1,8−ジアミノ−3−メチルナフタレン43.5部及びシクロヘキサノン25.1部の代わりに、1,8−ジアミノ−2−ナフトニトリル46.3部及び3,3−ジブロモシクロヘキサノン65.4部を使用した以外は、近赤外線吸収色素[A−32]の製造と同様の操作を行い、近赤外線吸収色素[A−67]102.8部(収率:92%)を得た。TOF−MSによる質量分析の結果、近赤外線吸収色素[A−67]であることを同定した。
(Manufacturing of near-infrared absorbing dye [A-67])
Instead of 43.5 parts of 1,8-diamino-3-methylnaphthalene and 25.1 parts of cyclohexanone used in the production of the near-infrared absorbing dye [A-32], 1,8-diamino-2-naphthonitrile 46. Except for the use of 3 parts and 65.4 parts of 3,3-dibromocyclohexanone, the same operation as in the production of the near-infrared absorbing dye [A-32] was carried out, and 102.8 parts of the near-infrared absorbing dye [A-67] was performed. (Yield: 92%) was obtained. As a result of mass spectrometry by TOF-MS, it was identified as a near-infrared absorbing dye [A-67].

近赤外線吸収色素[A−67]

Figure 0006874522
Near infrared absorbing dye [A-67]
Figure 0006874522

(近赤外線吸収色素[A−68]の製造)
近赤外線吸収色素[A−42]20.0部を、水300部に加えて撹拌し再分散した後、26%アンモニア水を用いてpH9.0に調整して溶解させた。この溶液中に、8%ドデシルトリメチルアンモニウムクロリド水溶液179.7部を徐々に添加した。滴下した箇所から析出物が次々に現れ、添加と共に徐々にpHが低下した。添加終了後にはブリードは見られなかった。スラリーから析出物を濾別した後、水洗して、80℃で乾燥し、近赤外線吸収色素[A−68]31.5部(収率:99%)を得た。
(Manufacturing of near-infrared absorbing dye [A-68])
20.0 parts of the near-infrared absorbing dye [A-42] was added to 300 parts of water, stirred and redispersed, and then the pH was adjusted to 9.0 with 26% aqueous ammonia and dissolved. 179.7 parts of an 8% dodecyltrimethylammonium chloride aqueous solution was gradually added to this solution. Precipitates appeared one after another from the dropped portion, and the pH gradually decreased with the addition. No bleeding was observed after the addition was completed. The precipitate was separated from the slurry by filtration, washed with water, and dried at 80 ° C. to obtain 31.5 parts (yield: 99%) of the near-infrared absorbing dye [A-68].

(近赤外線吸収色素[A−69]の製造)
近赤外線吸収色素[A−68]の製造で使用した8%ドデシルトリメチルアンモニウムクロリド水溶液179.7部の代わりに、8%テトラブチルアンモニウムブロミド水溶液219.5部を使用した以外は、近赤外線吸収色素[A−68]の製造と同様の操作を行い、近赤外線吸収色素[A−69]32.2部(収率:99%)を得た。
(Manufacturing of near-infrared absorbing dye [A-69])
Near-infrared absorbing dye except that 219.5 parts of 8% tetrabutylammonium bromide aqueous solution was used instead of 179.7 parts of the 8% dodecyltrimethylammonium chloride aqueous solution used in the production of the near-infrared absorbing dye [A-68]. The same operation as in the production of [A-68] was carried out to obtain 32.2 parts (yield: 99%) of the near-infrared absorbing dye [A-69].

(近赤外線吸収色素[A−70]の製造)
近赤外線吸収色素[A−68]の製造で使用した8%ドデシルトリメチルアンモニウムクロリド水溶液179.7部の代わりに、8%1,2−ジメチル−3−プロピルイミダゾリウムヨージド水溶液181.2部を使用した以外は、近赤外線吸収色素[A−68]の製造と同様の操作を行い、近赤外線吸収色素[A−70]26.6部(収率:98%)を得た。
(Manufacturing of near-infrared absorbing dye [A-70])
Instead of 179.7 parts of the 8% dodecyltrimethylammonium chloride aqueous solution used in the production of the near-infrared absorbing dye [A-68], 181.2 parts of the 8% 1,2-dimethyl-3-propylimidazolium iodide aqueous solution was used. Except for the use, the same operation as in the production of the near-infrared absorbing dye [A-68] was carried out to obtain 26.6 parts (yield: 98%) of the near-infrared absorbing dye [A-70].

(近赤外線吸収色素[A−71]の製造)
近赤外線吸収色素[A−68]の製造で使用した8%ドデシルトリメチルアンモニウムクロリド水溶液179.7部の代わりに、8%1−ブチルピリジニウムクロリド水溶液116.9部を使用した以外は、近赤外線吸収色素[A−68]の製造と同様の操作を行い、近赤外線吸収色素[A−71]26.7部(収率:99%)を得た。
(Manufacturing of near-infrared absorbing dye [A-71])
Near-infrared absorption except that 116.9 parts of 8% 1-butylpyridinium chloride aqueous solution was used instead of 179.7 parts of the 8% dodecyltrimethylammonium chloride aqueous solution used in the production of the near-infrared absorbing dye [A-68]. The same operation as in the production of the dye [A-68] was carried out to obtain 26.7 parts (yield: 99%) of the near-infrared absorbing dye [A-71].

(近赤外線吸収色素[A−72]の製造)
近赤外線吸収色素[A−68]の製造で使用した8%ドデシルトリメチルアンモニウムクロリド水溶液179.7部の代わりに、8%エチルトリフェニルホスホニウムブロミド水溶液252.8部を使用した以外は、近赤外線吸収色素[A−68]の製造と同様の操作を行い、近赤外線吸収色素[A−72]34.7部(収率:99%)を得た。
(Manufacturing of near-infrared absorbing dye [A-72])
Near-infrared absorption except that 252.8 parts of an 8% ethyltriphenylphosphonium bromide aqueous solution was used instead of 179.7 parts of the 8% dodecyltrimethylammonium chloride aqueous solution used in the production of the near-infrared absorbing dye [A-68]. The same operation as in the production of the dye [A-68] was carried out to obtain 34.7 parts (yield: 99%) of the near-infrared absorbing dye [A-72].

(近赤外線吸収色素[A−73]の製造)
近赤外線吸収色素[A−68]の製造で使用した8%ドデシルトリメチルアンモニウムクロリド水溶液179.7部の代わりに、8%トリメチルスルホニウムブロミド水溶液107.0部を使用した以外は、近赤外線吸収色素[A−68]の製造と同様の操作を行い、近赤外線吸収色素[A−73]23.5部(収率:98%)を得た。
(Manufacturing of near-infrared absorbing dye [A-73])
Near-infrared absorbing dye [A-68], except that 107.0 parts of 8% trimethylsulfonium bromide aqueous solution was used instead of 179.7 parts of the 8% dodecyltrimethylammonium chloride aqueous solution used in the production of the near-infrared absorbing dye [A-68]. The same operation as in the production of A-68] was carried out to obtain 23.5 parts (yield: 98%) of the near-infrared absorbing dye [A-73].

(近赤外線吸収色素[A−74]の製造)
近赤外線吸収色素[A−68]の製造で使用した8%ドデシルトリメチルアンモニウムクロリド水溶液179.7部の代わりに、8%硫酸アルミニウム水溶液71.5部を使用した以外は、近赤外線吸収色素[A−68]の製造と同様の操作を行い、近赤外線吸収色素[A−74]20.2部(収率:99%)を得た。
(Manufacturing of near-infrared absorbing dye [A-74])
Near-infrared absorbing dye [A], except that 71.5 parts of 8% aluminum sulfate aqueous solution was used instead of 179.7 parts of the 8% dodecyltrimethylammonium chloride aqueous solution used in the production of the near-infrared absorbing dye [A-68]. The same operation as in the production of −68] was carried out to obtain 20.2 parts (yield: 99%) of the near-infrared absorbing dye [A-74].

[一般式(2)で表される近赤外線吸収色素[A]の製造方法]
(近赤外線吸収色素[A―75]の製造)
トルエン400部に、1,8−ジアミノナフタレン40.0部、テトラヒドロ−4H−ピラン−4−オン25.6部、p−トルエンスルホン酸一水和物0.087部を混合し、窒素ガスの雰囲気中で加熱攪拌し、3時間還流させた。反応中に生成した水は共沸蒸留により系中から除去した。反応終了後、トルエンを蒸留して得られた暗茶色固体をアセトンで抽出し、アセトンとエタノールの混合溶媒から再結晶することにより精製した。得られた茶色固体を、トルエン240部とn−ブタノール160部の混合溶媒に溶解させ、3,4−ジヒドロキシ−3−シクロブテン−1,2−ジオン13.8部を加えて、窒素ガスの雰囲気中で加熱撹拌し、8時間還流反応させた。反応中に生成した水は共沸蒸留により系中から除去した。反応終了後、溶媒を蒸留し、得られた反応混合物を攪拌しながら、ヘキサン200部を加えた。得られた黒茶色沈殿物を濾別した後、順次ヘキサン、エタノール及びアセトンで洗浄を行い、減圧下で乾燥させ、近赤外線吸収色素[A−75]65.8部(収率:97%)を得た。TOF−MSによる質量分析の結果、近赤外線吸収色素[A−75]であることを同定した。
[Manufacturing method of near-infrared absorbing dye [A] represented by the general formula (2)]
(Manufacturing of near-infrared absorbing dye [A-75])
To 400 parts of toluene, 40.0 parts of 1,8-diaminonaphthalene, 25.6 parts of tetrahydro-4H-pyran-4-one, and 0.087 parts of p-toluenesulfonic acid monohydrate are mixed and mixed with nitrogen gas. The mixture was heated and stirred in an atmosphere and refluxed for 3 hours. The water produced during the reaction was removed from the system by azeotropic distillation. After completion of the reaction, the dark brown solid obtained by distilling toluene was extracted with acetone and purified by recrystallization from a mixed solvent of acetone and ethanol. The obtained brown solid was dissolved in a mixed solvent of 240 parts of toluene and 160 parts of n-butanol, and 13.8 parts of 3,4-dihydroxy-3-cyclobutene-1,2-dione was added to create an atmosphere of nitrogen gas. The mixture was heated and stirred inside, and the mixture was refluxed for 8 hours. The water produced during the reaction was removed from the system by azeotropic distillation. After completion of the reaction, the solvent was distilled and 200 parts of hexane was added while stirring the obtained reaction mixture. The obtained black-brown precipitate was filtered off, washed successively with hexane, ethanol and acetone, dried under reduced pressure, and 65.8 parts of a near-infrared absorbing dye [A-75] (yield: 97%). Got As a result of mass spectrometry by TOF-MS, it was identified as a near-infrared absorbing dye [A-75].

近赤外線吸収色素[A−75]

Figure 0006874522
Near infrared absorbing dye [A-75]
Figure 0006874522

(近赤外線吸収色素[A−76]の製造)
近赤外線吸収色素[A−75]の製造で使用したテトラヒドロ−4H−ピラン−4−オン25.6部の代わりに、2,6−ジメチル−ジヒドロ−4H−ピラン−4−オン32.7部を使用した以外は、近赤外線吸収色素[A−75]の製造と同様の操作を行い、近赤外線吸収色素[A−76]70.9部(収率:95%)を得た。TOF−MSによる質量分析の結果、近赤外線吸収色素[A−76]であることを同定した。
(Manufacturing of near-infrared absorbing dye [A-76])
Instead of 25.6 parts of tetrahydro-4H-pyran-4-one used in the production of the near-infrared absorbing dye [A-75], 32.7 parts of 2,6-dimethyl-dihydro-4H-pyran-4-one The same operation as in the production of the near-infrared absorbing dye [A-75] was carried out except that 70.9 parts (yield: 95%) of the near-infrared absorbing dye [A-76] was obtained. As a result of mass spectrometry by TOF-MS, it was identified as a near-infrared absorbing dye [A-76].

近赤外線吸収色素[A−76]

Figure 0006874522
Near-infrared absorbing dye [A-76]
Figure 0006874522

(近赤外線吸収色素[A−77]の製造)
近赤外線吸収色素[A−75]の製造で使用したテトラヒドロ−4H−ピラン−4−オン25.6部の代わりに、1−エチル−4−ピペリドン32.5部を使用した以外は、近赤外線吸収色素[A−75]の製造と同様の操作を行い、近赤外線吸収色素[A−77]70.6部(収率:95%)を得た。TOF−MSによる質量分析の結果、近赤外線吸収色素[A−77]であることを同定した。
(Manufacturing of near-infrared absorbing dye [A-77])
Near-infrared rays, except that 1-ethyl-4-piperidinone was used in place of 25.6 parts of tetrahydro-4H-pyran-4-one used in the production of the near-infrared absorbing dye [A-75]. The same operation as in the production of the absorbing dye [A-75] was carried out to obtain 70.6 parts (yield: 95%) of the near-infrared absorbing dye [A-77]. As a result of mass spectrometry by TOF-MS, it was identified as a near-infrared absorbing dye [A-77].

近赤外線吸収色素[A−77]

Figure 0006874522
Near infrared absorbing dye [A-77]
Figure 0006874522

(近赤外線吸収色素[A−78]の製造)
近赤外線吸収色素[A−75]の製造で使用したテトラヒドロ−4H−ピラン−4−オン25.6部の代わりに、2,2,6,6−テトラメチル−−4−ピペリドン39.6部を使用した以外は、近赤外線吸収色素[A−75]の製造と同様の操作を行い、近赤外線吸収色素[A−78]76.3部(収率:94%)を得た。TOF−MSによる質量分析の結果、近赤外線吸収色素[A−78]であることを同定した。
(Manufacturing of near-infrared absorbing dye [A-78])
Instead of 25.6 parts of tetrahydro-4H-pyran-4-one used in the production of the near-infrared absorbing dye [A-75], 39.6 parts of 2,2,6,6-tetramethyl-4-piperidin The same operation as in the production of the near-infrared absorbing dye [A-75] was carried out except that the above was used to obtain 76.3 parts (yield: 94%) of the near-infrared absorbing dye [A-78]. As a result of mass spectrometry by TOF-MS, it was identified as a near-infrared absorbing dye [A-78].

近赤外線吸収色素[A−78]

Figure 0006874522
Near infrared absorbing dye [A-78]
Figure 0006874522

(近赤外線吸収色素[A−79]の製造)
近赤外線吸収色素[A−75]の製造で使用したテトラヒドロ−4H−ピラン−4−オン25.6部の代わりに、4−オキソチアン29.7部を使用した以外は、近赤外線吸収色素[A−75]の製造と同様の操作を行い、近赤外線吸収色素[A−79]68.8部(収率:96%)を得た。TOF−MSによる質量分析の結果、近赤外線吸収色素[A−79]であることを同定した。
(Manufacturing of near-infrared absorbing dye [A-79])
Near-infrared absorbing dye [A], except that 29.7 parts of 4-oxotian was used instead of 25.6 parts of tetrahydro-4H-pyran-4-one used in the production of the near-infrared absorbing dye [A-75]. The same operation as in the production of −75] was carried out to obtain 68.8 parts (yield: 96%) of the near-infrared absorbing dye [A-79]. As a result of mass spectrometry by TOF-MS, it was identified as a near-infrared absorbing dye [A-79].

近赤外線吸収色素[A−79]

Figure 0006874522
Near infrared absorbing dye [A-79]
Figure 0006874522

(近赤外線吸収色素[A−80]の製造)
近赤外線吸収色素[A−75]の製造で使用したテトラヒドロ−4H−ピラン−4−オン25.6部の代わりに、2−フェニル−1,3−ジチアン−5−オン53.7部を使用した以外は、近赤外線吸収色素[A−75]の製造と同様の操作を行い、近赤外線吸収色素[A−80]88.9部(収率:94%)を得た。TOF−MSによる質量分析の結果、近赤外線吸収色素[A−80]であることを同定した。
(Manufacturing of near-infrared absorbing dye [A-80])
Instead of 25.6 parts of tetrahydro-4H-pyran-4-one used in the production of the near-infrared absorbing dye [A-75], 53.7 parts of 2-phenyl-1,3-dithian-5-on was used. The same operation as in the production of the near-infrared absorbing dye [A-75] was carried out except that 88.9 parts (yield: 94%) of the near-infrared absorbing dye [A-80] was obtained. As a result of mass spectrometry by TOF-MS, it was identified as a near-infrared absorbing dye [A-80].

近赤外線吸収色素[A−80]

Figure 0006874522
Near infrared absorbing dye [A-80]
Figure 0006874522

(近赤外線吸収色素[A−81]の製造)
近赤外線吸収色素[A−75]の製造で使用したテトラヒドロ−4H−ピラン−4−オン25.6部の代わりに、アロキサン36.3部を使用した以外は、近赤外線吸収色素[A−75]の製造と同様の操作を行い、近赤外線吸収色素[A−81]74.9部(収率:96%)を得た。TOF−MSによる質量分析の結果、近赤外線吸収色素[A−81]であることを同定した。
(Manufacturing of near-infrared absorbing dye [A-81])
Near-infrared absorbing dye [A-75], except that 36.3 parts of alloxan was used instead of 25.6 parts of tetrahydro-4H-pyran-4-one used in the production of near-infrared absorbing dye [A-75]. ] Was carried out in the same manner as in the production of the near-infrared absorbing dye [A-81] to obtain 74.9 parts (yield: 96%). As a result of mass spectrometry by TOF-MS, it was identified as a near-infrared absorbing dye [A-81].

近赤外線吸収色素[A−81]

Figure 0006874522
Near-infrared absorbing dye [A-81]
Figure 0006874522

(近赤外線吸収色素[A−82]の製造)
近赤外線吸収色素[A−75]の製造で使用したテトラヒドロ−4H−ピラン−4−オン25.6部の代わりに、3−オキセタノン18.4部を使用した以外は、近赤外線吸収色素[A−75]の製造と同様の操作を行い、近赤外線吸収色素[A−82]56.1部(収率:92%)を得た。TOF−MSによる質量分析の結果、近赤外線吸収色素[A−82]であることを同定した。
(Manufacturing of near-infrared absorbing dye [A-82])
Near-infrared absorbing dye [A], except that 18.4 parts of 3-oxetanone was used instead of 25.6 parts of tetrahydro-4H-pyran-4-one used in the production of the near-infrared absorbing dye [A-75]. The same operation as in the production of −75] was carried out to obtain 56.1 parts (yield: 92%) of the near-infrared absorbing dye [A-82]. As a result of mass spectrometry by TOF-MS, it was identified as a near-infrared absorbing dye [A-82].

近赤外線吸収色素[A−82]

Figure 0006874522
Near-infrared absorbing dye [A-82]
Figure 0006874522

(近赤外線吸収色素[A−83]の製造)
近赤外線吸収色素[A−75]の製造で使用したテトラヒドロ−4H−ピラン−4−オン25.6部の代わりに、テトラヒドロフラン−3−オン22.0部を使用した以外は、近赤外線吸収色素[A−75]の製造と同様の操作を行い、近赤外線吸収色素[A−83]59.9部(収率:93%)を得た。TOF−MSによる質量分析の結果、近赤外線吸収色素[A−83]であることを同定した。
(Manufacturing of near-infrared absorbing dye [A-83])
Near-infrared absorbing dye except that 22.0 parts of tetrahydrofuran-3-on was used instead of 25.6 parts of tetrahydro-4H-pyran-4-one used in the production of the near-infrared absorbing dye [A-75]. The same operation as in the production of [A-75] was carried out to obtain 59.9 parts (yield: 93%) of the near-infrared absorbing dye [A-83]. As a result of mass spectrometry by TOF-MS, it was identified as a near-infrared absorbing dye [A-83].

近赤外線吸収色素[A−83]

Figure 0006874522
Near-infrared absorbing dye [A-83]
Figure 0006874522

(近赤外線吸収色素[A−84]の製造)
近赤外線吸収色素[A−75]の製造で使用したテトラヒドロ−4H−ピラン−4−オン25.6部の代わりに、1−アザビシクロ[3,2,1]オクタン−3−オン32.0部を使用した以外は、近赤外線吸収色素[A−75]の製造と同様の操作を行い、近赤外線吸収色素[A−84]69.4部(収率:94%)を得た。TOF−MSによる質量分析の結果、近赤外線吸収色素[A−84]であることを同定した。
(Manufacturing of near-infrared absorbing dye [A-84])
Instead of the 25.6 parts of tetrahydro-4H-pyran-4-one used in the production of the near-infrared absorbing dye [A-75], 1-azabicyclo [3,2,1] octane-3-one 32.0 parts The same operation as in the production of the near-infrared absorbing dye [A-75] was carried out except that 69.4 parts (yield: 94%) of the near-infrared absorbing dye [A-84] was obtained. As a result of mass spectrometry by TOF-MS, it was identified as a near-infrared absorbing dye [A-84].

近赤外線吸収色素[A−84]

Figure 0006874522
Near infrared absorbing dye [A-84]
Figure 0006874522

(近赤外線吸収色素[A−85]の製造)
近赤外線吸収色素[A−75]の製造で使用した1,8−ジアミノナフタレン40.0部及びテトラヒドロ−4H−ピラン−4−オン25.6部の代わりに、1,8−ジアミノ−3−メチルナフタレン43.5部及び2−ベンジル−6−フェニル−ジヒドロ−4H−ピラン−4−オン68.0部を使用した以外は、近赤外線吸収色素[A−75]の製造と同様の操作を行い、近赤外線吸収色素[A−85]101.5部(収率:91%)を得た。TOF−MSによる質量分析の結果、近赤外線吸収色素[A−85]であることを同定した。
(Manufacturing of near-infrared absorbing dye [A-85])
Instead of 40.0 parts of 1,8-diaminonaphthalene and 25.6 parts of tetrahydro-4H-pyran-4-one used in the production of the near-infrared absorbing dye [A-75], 1,8-diamino-3-3 The same operation as the production of the near-infrared absorbing dye [A-75] was performed except that 43.5 parts of methylnaphthalene and 68.0 parts of 2-benzyl-6-phenyl-dihydro-4H-pyran-4-one were used. This was carried out to obtain 101.5 parts (yield: 91%) of the near-infrared absorbing dye [A-85]. As a result of mass spectrometry by TOF-MS, it was identified as a near-infrared absorbing dye [A-85].

近赤外線吸収色素[A−85]

Figure 0006874522
Near-infrared absorbing dye [A-85]
Figure 0006874522

(近赤外線吸収色素[A−86]の製造)
近赤外線吸収色素[A−75]の製造で使用した1,8−ジアミノナフタレン40.0部及びテトラヒドロ−4H−ピラン−4−オン25.6部の代わりに、1,8−ジアミノ−4−トリフルオロメチルナフタレン57.2部及び2−メチル−2−アザビシクロ[2,2,2]オクタン−5−オン35.5部を使用した以外は、近赤外線吸収色素[A−75]の製造と同様の操作を行い、近赤外線吸収色素[A−86]87.2部(収率:93%)を得た。TOF−MSによる質量分析の結果、近赤外線吸収色素[A−86]であることを同定した。
(Manufacturing of near-infrared absorbing dye [A-86])
Instead of 40.0 parts of 1,8-diaminonaphthalene and 25.6 parts of tetrahydro-4H-pyran-4-one used in the production of the near-infrared absorbing dye [A-75], 1,8-diamino-4-one Production of near-infrared absorbing dye [A-75], except that 57.2 parts of trifluoromethylnaphthalene and 35.5 parts of 2-methyl-2-azabicyclo [2,2,2] octane-5-one were used. The same operation was carried out to obtain 87.2 parts (yield: 93%) of the near-infrared absorbing dye [A-86]. As a result of mass spectrometry by TOF-MS, it was identified as a near-infrared absorbing dye [A-86].

近赤外線吸収色素[A−86]

Figure 0006874522
Near infrared absorbing dye [A-86]
Figure 0006874522

(近赤外線吸収色素[A−87]の製造)
近赤外線吸収色素[A−75]の製造で使用した1,8−ジアミノナフタレン40.0部及びテトラヒドロ−4H−ピラン−4−オン25.6部の代わりに、1,8−ジアミノ−3−フェニルナフタレン59.2部及び1−イソプロピルオクタヒドロキノリン−4(1H)−オン49.9部を使用した以外は、近赤外線吸収色素[A−75]の製造と同様の操作を行い、近赤外線吸収色素[A−87]103.9部(収率:95%)を得た。TOF−MSによる質量分析の結果、近赤外線吸収色素[A−87]であることを同定した。
(Manufacturing of near-infrared absorbing dye [A-87])
Instead of 40.0 parts of 1,8-diaminonaphthalene and 25.6 parts of tetrahydro-4H-pyran-4-one used in the production of the near-infrared absorbing dye [A-75], 1,8-diamino-3-3 Except for the use of 59.2 parts of phenylnaphthalene and 49.9 parts of 1-isopropyloctahydroquinoline-4 (1H) -on, the same operation as for the production of the near-infrared absorbing dye [A-75] was performed to carry out near-infrared rays. 103.9 parts (yield: 95%) of the absorbent dye [A-87] was obtained. As a result of mass spectrometry by TOF-MS, it was identified as a near-infrared absorbing dye [A-87].

近赤外線吸収色素[A−87]

Figure 0006874522
Near-infrared absorbing dye [A-87]
Figure 0006874522

(近赤外線吸収色素[A−88]の製造)
近赤外線吸収色素[A−75]の製造で使用した1,8−ジアミノナフタレン40.0部及びテトラヒドロ−4H−ピラン−4−オン25.6部の代わりに、1,8−ジアミノ−3−p−トリルナフタレン62.8部及びヘキサヒドロインドリジン−7(1H)−オン35.5部を使用した以外は、近赤外線吸収色素[A−75]の製造と同様の操作を行い、近赤外線吸収色素[A−88]91.2部(収率:92%)を得た。TOF−MSによる質量分析の結果、近赤外線吸収色素[A−88]であることを同定した。
(Manufacturing of near-infrared absorbing dye [A-88])
Instead of 40.0 parts of 1,8-diaminonaphthalene and 25.6 parts of tetrahydro-4H-pyran-4-one used in the production of the near-infrared absorbing dye [A-75], 1,8-diamino-3-3 Except for the use of 62.8 parts of p-tolylnaphthalene and 35.5 parts of hexahydroindolizine-7 (1H) -on, the same operation as for the production of the near-infrared absorbing dye [A-75] was performed to carry out near-infrared rays. 91.2 parts (yield: 92%) of the absorbent dye [A-88] was obtained. As a result of mass spectrometry by TOF-MS, it was identified as a near-infrared absorbing dye [A-88].

近赤外線吸収色素[A−88]

Figure 0006874522
Near infrared absorbing dye [A-88]
Figure 0006874522

(近赤外線吸収色素[A−89]の製造)
近赤外線吸収色素[A−75]の製造で使用した1,8−ジアミノナフタレン40.0部及びテトラヒドロ−4H−ピラン−4−オン25.6部の代わりに、1,8−ジアミノ−3−メトキシナフタレン47.6部及び2−(4−クロロフェニル)−6−(トリフルオロメチル)ピペリジン−4−オン70.9部を使用した以外は、近赤外線吸収色素[A−75]の製造と同様の操作を行い、近赤外線吸収色素[A−89]102.4部(収率:94%)を得た。TOF−MSによる質量分析の結果、近赤外線吸収色素[A−89]であることを同定した。
(Manufacturing of near-infrared absorbing dye [A-89])
Instead of 40.0 parts of 1,8-diaminonaphthalene and 25.6 parts of tetrahydro-4H-pyran-4-one used in the production of the near-infrared absorbing dye [A-75], 1,8-diamino-3-3 Similar to the production of near-infrared absorbing dye [A-75], except that 47.6 parts of methoxynaphthalene and 70.9 parts of 2- (4-chlorophenyl) -6- (trifluoromethyl) piperidine-4-one were used. To obtain 102.4 parts (yield: 94%) of the near-infrared absorbing dye [A-89]. As a result of mass spectrometry by TOF-MS, it was identified as a near-infrared absorbing dye [A-89].

近赤外線吸収色素[A−89]

Figure 0006874522
Near-infrared absorbing dye [A-89]
Figure 0006874522

(近赤外線吸収色素[A−90]の製造)
近赤外線吸収色素[A−75]の製造で使用した1,8−ジアミノナフタレン40.0部及びテトラヒドロ−4H−ピラン−4−オン25.6部の代わりに、1,8−ジアミノ−2−トリフルオロメトキシナフタレン61.2部及びチオクロマン−4−オン41.9部を使用した以外は、近赤外線吸収色素[A−75]の製造と同様の操作を行い、近赤外線吸収色素[A−90]94.9部(収率:90%)を得た。TOF−MSによる質量分析の結果、近赤外線吸収色素[A−90]であることを同定した。
(Manufacturing of near-infrared absorbing dye [A-90])
Instead of 40.0 parts of 1,8-diaminonaphthalene and 25.6 parts of tetrahydro-4H-pyran-4-one used in the production of the near-infrared absorbing dye [A-75], 1,8-diamino-2- Except for the use of 61.2 parts of trifluoromethoxynaphthalene and 41.9 parts of thiochroman-4-one, the same operation as in the production of the near-infrared absorbing dye [A-75] was carried out, and the near-infrared absorbing dye [A-90] was used. ] 94.9 parts (yield: 90%) was obtained. As a result of mass spectrometry by TOF-MS, it was identified as a near-infrared absorbing dye [A-90].

近赤外線吸収色素[A−90]

Figure 0006874522
Near-infrared absorbing dye [A-90]
Figure 0006874522

(近赤外線吸収色素[A−91]の製造)
近赤外線吸収色素[A−75]の製造で使用した1,8−ジアミノナフタレン40.0部及びテトラヒドロ−4H−ピラン−4−オン25.6部の代わりに、1,8−ジアミノ−2−フェノキシナフタレン63.3部及び2,6−ジメチル−4H−チオピラン−4−オン35.8部を使用した以外は、近赤外線吸収色素[A−75]の製造と同様の操作を行い、近赤外線吸収色素[A−91]85.6部(収率:92%)を得た。TOF−MSによる質量分析の結果、近赤外線吸収色素[A−91]であることを同定した。
(Manufacturing of near-infrared absorbing dye [A-91])
Instead of 40.0 parts of 1,8-diaminonaphthalene and 25.6 parts of tetrahydro-4H-pyran-4-one used in the production of the near-infrared absorbing dye [A-75], 1,8-diamino-2- Except for the use of 63.3 parts of phenoxynaphthalene and 35.8 parts of 2,6-dimethyl-4H-thiopyran-4-one, the same operation as in the production of the near-infrared absorbing dye [A-75] was performed to carry out near-infrared rays. 85.6 parts (yield: 92%) of the absorbent dye [A-91] was obtained. As a result of mass spectrometry by TOF-MS, it was identified as a near-infrared absorbing dye [A-91].

近赤外線吸収色素[A−91]

Figure 0006874522
Near infrared absorbing dye [A-91]
Figure 0006874522

(近赤外線吸収色素[A−92]の製造)
近赤外線吸収色素[A−75]の製造で使用した1,8−ジアミノナフタレン40.0部及びテトラヒドロ−4H−ピラン−4−オン25.6部の代わりに、1,8−ジアミノ−3−p−トリルオキシナフタレン66.8部及び6−(ヒドロキシメチル)ジヒドロー2H−ピラン−3(4H)−オン33.2部を使用した以外は、近赤外線吸収色素[A−75]の製造と同様の操作を行い、近赤外線吸収色素[A−92]92.8部(収率:92%)を得た。TOF−MSによる質量分析の結果、近赤外線吸収色素[A−92]であることを同定した。
(Manufacturing of near-infrared absorbing dye [A-92])
Instead of 40.0 parts of 1,8-diaminonaphthalene and 25.6 parts of tetrahydro-4H-pyran-4-one used in the production of the near-infrared absorbing dye [A-75], 1,8-diamino-3-3 Similar to the production of near-infrared absorbing dye [A-75], except that 66.8 parts of p-tolyloxynaphthalene and 33.2 parts of 6- (hydroxymethyl) dihydro-2H-pyran-3 (4H) -one were used. 92.8 parts (yield: 92%) of the near-infrared absorbing dye [A-92] was obtained. As a result of mass spectrometry by TOF-MS, it was identified as a near-infrared absorbing dye [A-92].

近赤外線吸収色素[A−92]

Figure 0006874522
Near-infrared absorbing dye [A-92]
Figure 0006874522

(近赤外線吸収色素[A−93]の製造)
近赤外線吸収色素[A−75]の製造で使用した1,8−ジアミノナフタレン40.0部の代わりに、4,5−ジアミノナフタレン−1−スルホン酸60.2部を使用した以外は、近赤外線吸収色素[A−75]の製造と同様の操作を行い、近赤外線吸収色素[A−93]81.1部(収率:93%)を得た。TOF−MSによる質量分析の結果、近赤外線吸収色素[A−93]であることを同定した。
(Manufacturing of near-infrared absorbing dye [A-93])
Near-infrared absorbing dye [A-75], except that 40.0 parts of 4,5-diaminonaphthalene-1-sulfonic acid was used instead of 40.0 parts of 1,8-diaminonaphthalene used in the production. The same operation as in the production of the infrared absorbing dye [A-75] was carried out to obtain 81.1 parts (yield: 93%) of the near infrared absorbing dye [A-93]. As a result of mass spectrometry by TOF-MS, it was identified as a near-infrared absorbing dye [A-93].

近赤外線吸収色素[A−93]

Figure 0006874522
Near-infrared absorbing dye [A-93]
Figure 0006874522

(近赤外線吸収色素[A−94]の製造)
近赤外線吸収色素[A−93]の製造で使用したテトラヒドロ−4H−ピラン−4−オン25.6部の代わりに、2,6−ジメチル−ジヒドロ−4H−ピラン−4−オン32.7部を使用した以外は、近赤外線吸収色素[A−93]の製造と同様の操作を行い、近赤外線吸収色素[A−94]86.5部(収率:92%)を得た。TOF−MSによる質量分析の結果、近赤外線吸収色素[A−94]であることを同定した。
(Manufacturing of near-infrared absorbing dye [A-94])
Instead of 25.6 parts of tetrahydro-4H-pyran-4-one used in the production of the near-infrared absorbing dye [A-93], 32.7 parts of 2,6-dimethyl-dihydro-4H-pyran-4-one The same operation as in the production of the near-infrared absorbing dye [A-93] was carried out except that 86.5 parts (yield: 92%) of the near-infrared absorbing dye [A-94] was obtained. As a result of mass spectrometry by TOF-MS, it was identified as a near-infrared absorbing dye [A-94].

近赤外線吸収色素[A−94]

Figure 0006874522
Near-infrared absorbing dye [A-94]
Figure 0006874522

(近赤外線吸収色素[A−95]の製造)
近赤外線吸収色素[A−93]の製造で使用したテトラヒドロ−4H−ピラン−4−オン25.6部の代わりに、1−エチル−4−ピペリドン32.5部を使用した以外は、近赤外線吸収色素[A−93]の製造と同様の操作を行い、近赤外線吸収色素[A−95]87.2部(収率:93%)を得た。TOF−MSによる質量分析の結果、近赤外線吸収色素[A−95]であることを同定した。
(Manufacturing of near-infrared absorbing dye [A-95])
Near-infrared rays, except that 1-ethyl-4-piperidinone was used in place of 25.6 parts of tetrahydro-4H-pyran-4-one used in the production of the near-infrared absorbing dye [A-93]. The same operation as in the production of the absorbing dye [A-93] was carried out to obtain 87.2 parts (yield: 93%) of the near-infrared absorbing dye [A-95]. As a result of mass spectrometry by TOF-MS, it was identified as a near-infrared absorbing dye [A-95].

近赤外線吸収色素[A−95]

Figure 0006874522
Near infrared absorbing dye [A-95]
Figure 0006874522

(近赤外線吸収色素[A−96]の製造)
近赤外線吸収色素[A−93]の製造で使用したテトラヒドロ−4H−ピラン−4−オン25.6部の代わりに、2,2,6,6−テトラメチル−4−ピペリドン39.6部を使用した以外は、近赤外線吸収色素[A−93]の製造と同様の操作を行い、近赤外線吸収色素[A−96]94.6部(収率:94%)を得た。TOF−MSによる質量分析の結果、近赤外線吸収色素[A−96]であることを同定した。
(Manufacturing of near-infrared absorbing dye [A-96])
Instead of 25.6 parts of tetrahydro-4H-pyran-4-one used in the production of the near-infrared absorbing dye [A-93], 39.6 parts of 2,2,6,6-tetramethyl-4-piperidin was used. Except for the use, the same operation as in the production of the near-infrared absorbing dye [A-93] was carried out to obtain 94.6 parts (yield: 94%) of the near-infrared absorbing dye [A-96]. As a result of mass spectrometry by TOF-MS, it was identified as a near-infrared absorbing dye [A-96].

近赤外線吸収色素[A−96]

Figure 0006874522
Near infrared absorbing dye [A-96]
Figure 0006874522

(近赤外線吸収色素[A−97]の製造)
近赤外線吸収色素[A−93]の製造で使用したテトラヒドロ−4H−ピラン−4−オン25.6部の代わりに、4−オキソチアン29.7部を使用した以外は、近赤外線吸収色素[A−93]の製造と同様の操作を行い、近赤外線吸収色素[A−97]82.9部(収率:91%)を得た。TOF−MSによる質量分析の結果、近赤外線吸収色素[A−97]であることを同定した。
(Manufacturing of near-infrared absorbing dye [A-97])
Near-infrared absorbing dye [A-93] except that 29.7 parts of 4-oxotian was used instead of 25.6 parts of tetrahydro-4H-pyran-4-one used in the production of the near-infrared absorbing dye [A-93]. The same operation as in the production of −93] was carried out to obtain 82.9 parts (yield: 91%) of the near-infrared absorbing dye [A-97]. As a result of mass spectrometry by TOF-MS, it was identified as a near-infrared absorbing dye [A-97].

近赤外線吸収色素[A−97]

Figure 0006874522
Near-infrared absorbing dye [A-97]
Figure 0006874522

(近赤外線吸収色素[A−98]の製造)
近赤外線吸収色素[A−93]の製造で使用したテトラヒドロ−4H−ピラン−4−オン25.6部の代わりに、2−フェニル−1,3−ジチアン−5−オン53.7部を使用した以外は、近赤外線吸収色素[A−93]の製造と同様の操作を行い、近赤外線吸収色素[A−98]103.7部(収率:91%)を得た。TOF−MSによる質量分析の結果、近赤外線吸収色素[A−98]であることを同定した。
(Manufacturing of near-infrared absorbing dye [A-98])
Instead of 25.6 parts of tetrahydro-4H-pyran-4-one used in the production of the near-infrared absorbing dye [A-93], 53.7 parts of 2-phenyl-1,3-dithian-5-on was used. The same operation as in the production of the near-infrared absorbing dye [A-93] was carried out except for the above, and 103.7 parts (yield: 91%) of the near-infrared absorbing dye [A-98] was obtained. As a result of mass spectrometry by TOF-MS, it was identified as a near-infrared absorbing dye [A-98].

近赤外線吸収色素[A−98]

Figure 0006874522
Near-infrared absorbing dye [A-98]
Figure 0006874522

(近赤外線吸収色素[A−99]の製造)
近赤外線吸収色素[A−93]の製造で使用したテトラヒドロ−4H−ピラン−4−オン25.6部の代わりに、アロキサン36.3部を使用した以外は、近赤外線吸収色素[A−93]の製造と同様の操作を行い、近赤外線吸収色素[A−99]90.6部(収率:93%)を得た。TOF−MSによる質量分析の結果、近赤外線吸収色素[A−99]であることを同定した。
(Manufacturing of near-infrared absorbing dye [A-99])
Near-infrared absorbing dye [A-93], except that 36.3 parts of alloxan was used instead of 25.6 parts of tetrahydro-4H-pyran-4-one used in the production of near-infrared absorbing dye [A-93]. ] Was carried out in the same manner as in the production of the near-infrared absorbing dye [A-99] to obtain 90.6 parts (yield: 93%). As a result of mass spectrometry by TOF-MS, it was identified as a near-infrared absorbing dye [A-99].

近赤外線吸収色素[A−99]

Figure 0006874522
Near-infrared absorbing dye [A-99]
Figure 0006874522

(近赤外線吸収色素[A−100]の製造)
近赤外線吸収色素[A−75]の製造で使用した1,8−ジアミノナフタレン40.0部及びテトラヒドロ−4H−ピラン−4−オン25.6部の代わりに、4,5−ジアミノ−N−エチルナフタレン−1−スルホアミド67.1部及びヘキサヒドロピラノ[3,2−b]ピラン−3(2H)−オン39.9部を使用した以外は、近赤外線吸収色素[A−75]の製造と同様の操作を行い、近赤外線吸収色素[A−100]101.1部(収率:94%)を得た。TOF−MSによる質量分析の結果、近赤外線吸収色素[A−100]であることを同定した。
(Manufacturing of near-infrared absorbing dye [A-100])
Instead of 40.0 parts of 1,8-diaminonaphthalene and 25.6 parts of tetrahydro-4H-pyran-4-one used in the production of the near-infrared absorbing dye [A-75], 4,5-diamino-N- Of the near-infrared absorbing dye [A-75], except that 67.1 parts of ethylnaphthalene-1-sulfoamide and 39.9 parts of hexahydropyrano [3,2-b] pyran-3 (2H) -one were used. The same operation as in the production was carried out to obtain 101.1 parts (yield: 94%) of the near-infrared absorbing dye [A-100]. As a result of mass spectrometry by TOF-MS, it was identified as a near-infrared absorbing dye [A-100].

近赤外線吸収色素[A−100]

Figure 0006874522
Near infrared absorbing dye [A-100]
Figure 0006874522

(近赤外線吸収色素[A−101]の製造)
近赤外線吸収色素[A−75]の製造で使用した1,8−ジアミノナフタレン40.0部及びテトラヒドロ−4H−ピラン−4−オン25.6部の代わりに、4,5−ジアミノ−1−ナフトエ酸51.1部及び1−アザビシクロ[2.2.1]ヘプタン−3−オン29.1部を使用した以外は、近赤外線吸収色素[A−75]の製造と同様の操作を行い、近赤外線吸収色素[A−101]73.9部(収率:91%)を得た。TOF−MSによる質量分析の結果、近赤外線吸収色素[A−101]であることを同定した。
(Manufacturing of near-infrared absorbing dye [A-101])
Instead of 40.0 parts of 1,8-diaminonaphthalene and 25.6 parts of tetrahydro-4H-pyran-4-one used in the production of the near-infrared absorbing dye [A-75], 4,5-diamino-1- The same operation as in the production of the near-infrared absorbing dye [A-75] was performed except that 51.1 parts of naphthoic acid and 29.1 parts of 1-azabicyclo [2.2.1] heptane-3-one were used. 73.9 parts (yield: 91%) of the near-infrared absorbing dye [A-101] was obtained. As a result of mass spectrometry by TOF-MS, it was identified as a near-infrared absorbing dye [A-101].

近赤外線吸収色素[A−101]

Figure 0006874522

Near-infrared absorbing dye [A-101]
Figure 0006874522

(近赤外線吸収色素[A−102]の製造)
近赤外線吸収色素[A−75]の製造で使用した1,8−ジアミノナフタレン40.0部及びテトラヒドロ−4H−ピラン−4−オン25.6部の代わりに、4,5−ジアミノ−1−ナフトエ酸メチル54.7部及び1−メチル−4−フェニルピペリジン−3−オン48.3部を使用した以外は、近赤外線吸収色素[A−75]の製造と同様の操作を行い、近赤外線吸収色素[A−102]95.2部(収率:92%)を得た。TOF−MSによる質量分析の結果、近赤外線吸収色素[A−102]であることを同定した。
(Manufacturing of near-infrared absorbing dye [A-102])
Instead of 40.0 parts of 1,8-diaminonaphthalene and 25.6 parts of tetrahydro-4H-pyran-4-one used in the production of the near-infrared absorbing dye [A-75], 4,5-diamino-1- Except for the use of 54.7 parts of methyl naphthoate and 48.3 parts of 1-methyl-4-phenylpiperidine-3-one, the same operation as in the production of the near-infrared absorbing dye [A-75] was performed to carry out near-infrared rays. 95.2 parts (yield: 92%) of the absorbing dye [A-102] was obtained. As a result of mass spectrometry by TOF-MS, it was identified as a near-infrared absorbing dye [A-102].

近赤外線吸収色素[A−102]

Figure 0006874522
Near-infrared absorbing dye [A-102]
Figure 0006874522

(近赤外線吸収色素[A−103]の製造)
近赤外線吸収色素[A−75]の製造で使用した1,8−ジアミノナフタレン40.0部及びテトラヒドロ−4H−ピラン−4−オン25.6部の代わりに、4,5−ジアミノ−N−エチルナフトアミド58.0部及び5,5−ジメチルジヒドロ−2H−チオピラン−3(4H)−オン36.8部を使用した以外は、近赤外線吸収色素[A−75]の製造と同様の操作を行い、近赤外線吸収色素[A−103]87.1部(収率:91%)を得た。TOF−MSによる質量分析の結果、近赤外線吸収色素[A−103]であることを同定した。
(Manufacturing of near-infrared absorbing dye [A-103])
Instead of 40.0 parts of 1,8-diaminonaphthalene and 25.6 parts of tetrahydro-4H-pyran-4-one used in the production of the near-infrared absorbing dye [A-75], 4,5-diamino-N- The same operation as the production of the near-infrared absorbing dye [A-75] except that 58.0 parts of ethylnaphthamide and 36.8 parts of 5,5-dimethyldihydro-2H-thiopyran-3 (4H) -one were used. To obtain 87.1 parts (yield: 91%) of the near-infrared absorbing dye [A-103]. As a result of mass spectrometry by TOF-MS, it was identified as a near-infrared absorbing dye [A-103].

近赤外線吸収色素[A−103]

Figure 0006874522
Near-infrared absorbing dye [A-103]
Figure 0006874522

(近赤外線吸収色素[A−104]の製造)
近赤外線吸収色素[A−75]の製造で使用した1,8−ジアミノナフタレン40.0部及びテトラヒドロ−4H−ピラン−4−オン25.6部の代わりに、1,8−ジアミノ−3−ニトロフタレン51.4部及びイソチオクロマン−4−オン41.9部を使用した以外は、近赤外線吸収色素[A−75]の製造と同様の操作を行い、近赤外線吸収色素[A−104]87.7部(収率:93%)を得た。TOF−MSによる質量分析の結果、近赤外線吸収色素[A−104]であることを同定した。
(Manufacturing of near-infrared absorbing dye [A-104])
Instead of 40.0 parts of 1,8-diaminonaphthalene and 25.6 parts of tetrahydro-4H-pyran-4-one used in the production of the near-infrared absorbing dye [A-75], 1,8-diamino-3-3 Except for the use of 51.4 parts of nitrophthalene and 41.9 parts of isothiochroman-4-one, the same operation as in the production of the near-infrared absorbing dye [A-75] was carried out, and the near-infrared absorbing dye [A-104] was performed. 87.7 parts (yield: 93%) was obtained. As a result of mass spectrometry by TOF-MS, it was identified as a near-infrared absorbing dye [A-104].

近赤外線吸収色素[A−104]

Figure 0006874522
Near infrared absorbing dye [A-104]
Figure 0006874522

(近赤外線吸収色素[A−105]の製造)
近赤外線吸収色素[A−75]の製造で使用した1,8−ジアミノナフタレン40.0部の代わりに、1,8−ジアミノ−4−クロロナフタレン48.7部を使用した以外は、近赤外線吸収色素[A−75]の製造と同様の操作を行い、近赤外線吸収色素[A−105]70.1部(収率:92%)を得た。TOF−MSによる質量分析の結果、近赤外線吸収色素[A−105]であることを同定した。
(Manufacturing of near-infrared absorbing dye [A-105])
Near-infrared rays, except that 48.7 parts of 1,8-diamino-4-chloronaphthalene was used instead of 40.0 parts of 1,8-diaminonaphthalene used in the production of the near-infrared absorbing dye [A-75]. The same operation as in the production of the absorbing dye [A-75] was carried out to obtain 70.1 parts (yield: 92%) of the near-infrared absorbing dye [A-105]. As a result of mass spectrometry by TOF-MS, it was identified as a near-infrared absorbing dye [A-105].

近赤外線吸収色素[A−105]

Figure 0006874522
Near-infrared absorbing dye [A-105]
Figure 0006874522

(近赤外線吸収色素[A−106]の製造)
近赤外線吸収色素[A−105]の製造で使用したテトラヒドロ−4H−ピラン−4−オン25.6部の代わりに、2,6−ジメチル−ジヒドロ−4H−ピラン−4−オン32.7部を使用した以外は、近赤外線吸収色素[A−105]の製造と同様の操作を行い、近赤外線吸収色素[A−106]79.6部(収率:96%)を得た。TOF−MSによる質量分析の結果、近赤外線吸収色素[A−106]であることを同定した。
(Manufacturing of near-infrared absorbing dye [A-106])
Instead of 25.6 parts of tetrahydro-4H-pyran-4-one used in the production of the near-infrared absorbing dye [A-105], 32.7 parts of 2,6-dimethyl-dihydro-4H-pyran-4-one The same operation as in the production of the near-infrared absorbing dye [A-105] was carried out except that 79.6 parts (yield: 96%) of the near-infrared absorbing dye [A-106] was obtained. As a result of mass spectrometry by TOF-MS, it was identified as a near-infrared absorbing dye [A-106].

近赤外線吸収色素[A−106]

Figure 0006874522
Near-infrared absorbing dye [A-106]
Figure 0006874522

(近赤外線吸収色素[A−107]の製造)
近赤外線吸収色素[A−105]の製造で使用したテトラヒドロ−4H−ピラン−4−オン25.6部の代わりに、1−エチル−4−ピペリドン32.5部を使用した以外は、近赤外線吸収色素[A−105]の製造と同様の操作を行い、近赤外線吸収色素[A−107]78.6部(収率:95%)を得た。TOF−MSによる質量分析の結果、近赤外線吸収色素[A−107]であることを同定した。
(Manufacturing of near-infrared absorbing dye [A-107])
Near-infrared rays, except that 1-ethyl-4-piperidinone was used in place of 25.6 parts of tetrahydro-4H-pyran-4-one used in the production of the near-infrared absorbing dye [A-105]. The same operation as in the production of the absorbing dye [A-105] was carried out to obtain 78.6 parts (yield: 95%) of the near-infrared absorbing dye [A-107]. As a result of mass spectrometry by TOF-MS, it was identified as a near-infrared absorbing dye [A-107].

近赤外線吸収色素[A−107]

Figure 0006874522
Near-infrared absorbing dye [A-107]
Figure 0006874522

(近赤外線吸収色素[A−108]の製造)
近赤外線吸収色素[A−105]の製造で使用したテトラヒドロ−4H−ピラン−4−オン25.6部の代わりに、2,2,6,6−テトラメチル−4−ピペリドン39.6部を使用した以外は、近赤外線吸収色素[A−105]の製造と同様の操作を行い、近赤外線吸収色素[A−108]81.5部(収率:91%)を得た。TOF−MSによる質量分析の結果、近赤外線吸収色素[A−108]であることを同定した。
(Manufacturing of near-infrared absorbing dye [A-108])
Instead of 25.6 parts of tetrahydro-4H-pyran-4-one used in the production of the near-infrared absorbing dye [A-105], 39.6 parts of 2,2,6,6-tetramethyl-4-piperidin was used. Except for the use, the same operation as in the production of the near-infrared absorbing dye [A-105] was carried out to obtain 81.5 parts (yield: 91%) of the near-infrared absorbing dye [A-108]. As a result of mass spectrometry by TOF-MS, it was identified as a near-infrared absorbing dye [A-108].

近赤外線吸収色素[A−108]

Figure 0006874522
Near-infrared absorbing dye [A-108]
Figure 0006874522

(近赤外線吸収色素[A−109]の製造)
近赤外線吸収色素[A−105]の製造で使用したテトラヒドロ−4H−ピラン−4−オン25.6部の代わりに、4−オキソチアン29.7部を使用した以外は、近赤外線吸収色素[A−105]の製造と同様の操作を行い、近赤外線吸収色素[A−109]74.5部(収率:93%)を得た。TOF−MSによる質量分析の結果、近赤外線吸収色素[A−109]であることを同定した。
(Manufacturing of near-infrared absorbing dye [A-109])
Near-infrared absorbing dye [A-105] except that 29.7 parts of 4-oxotian was used instead of 25.6 parts of tetrahydro-4H-pyran-4-one used in the production of the near-infrared absorbing dye [A-105]. The same operation as in the production of −105] was carried out to obtain 74.5 parts (yield: 93%) of the near-infrared absorbing dye [A-109]. As a result of mass spectrometry by TOF-MS, it was identified as a near-infrared absorbing dye [A-109].

近赤外線吸収色素[A−109]

Figure 0006874522
Near infrared absorbing dye [A-109]
Figure 0006874522

(近赤外線吸収色素[A−110]の製造)
近赤外線吸収色素[A−105]の製造で使用したテトラヒドロ−4H−ピラン−4−オン25.6部の代わりに、2−フェニル−1,3−ジチアン−5−オン53.7部を使用した以外は、近赤外線吸収色素[A−105]の製造と同様の操作を行い、近赤外線吸収色素[A−110]96.7部(収率:94%)を得た。TOF−MSによる質量分析の結果、近赤外線吸収色素[A−110]であることを同定した。
(Manufacturing of near-infrared absorbing dye [A-110])
Instead of 25.6 parts of tetrahydro-4H-pyran-4-one used in the production of the near-infrared absorbing dye [A-105], 53.7 parts of 2-phenyl-1,3-dithian-5-on was used. The same operation as in the production of the near-infrared absorbing dye [A-105] was carried out except that 96.7 parts (yield: 94%) of the near-infrared absorbing dye [A-110] was obtained. As a result of mass spectrometry by TOF-MS, it was identified as a near-infrared absorbing dye [A-110].

近赤外線吸収色素[A−110]

Figure 0006874522
Near infrared absorbing dye [A-110]
Figure 0006874522

(近赤外線吸収色素[A−111]の製造)
近赤外線吸収色素[A−105]の製造で使用したテトラヒドロ−4H−ピラン−4−オン25.6部の代わりに、アロキサン36.3部を使用した以外は、近赤外線吸収色素[A−105]の製造と同様の操作を行い、近赤外線吸収色素[A−111]80.3部(収率:93%)を得た。TOF−MSによる質量分析の結果、近赤外線吸収色素[A−111]であることを同定した。
(Manufacturing of near-infrared absorbing dye [A-111])
Near-infrared absorbing dye [A-105] except that 36.3 parts of alloxan was used instead of 25.6 parts of tetrahydro-4H-pyran-4-one used in the production of near-infrared absorbing dye [A-105]. ] Was carried out in the same manner as in the production of the near-infrared absorbing dye [A-111] to obtain 80.3 parts (yield: 93%). As a result of mass spectrometry by TOF-MS, it was identified as a near-infrared absorbing dye [A-111].

近赤外線吸収色素[A−111]

Figure 0006874522
Near-infrared absorbing dye [A-111]
Figure 0006874522

(近赤外線吸収色素[A−112]の製造)
近赤外線吸収色素[A−105]の製造で使用したテトラヒドロ−4H−ピラン−4−オン25.6部の代わりに、2,2−ジメチル−1,3−ジオキサン−5−オン33.2部を使用した以外は、近赤外線吸収色素[A−105]の製造と同様の操作を行い、近赤外線吸収色素[A−112]79.3部(収率:95%)を得た。TOF−MSによる質量分析の結果、近赤外線吸収色素[A−112]であることを同定した。
(Manufacturing of near-infrared absorbing dye [A-112])
Instead of 25.6 parts of tetrahydro-4H-pyran-4-one used in the production of the near-infrared absorbing dye [A-105], 33.2 parts of 2,2-dimethyl-1,3-dioxane-5-one The same operation as in the production of the near-infrared absorbing dye [A-105] was carried out except that 79.3 parts (yield: 95%) of the near-infrared absorbing dye [A-112] was obtained. As a result of mass spectrometry by TOF-MS, it was identified as a near-infrared absorbing dye [A-112].

近赤外線吸収色素[A−112]

Figure 0006874522
Near-infrared absorbing dye [A-112]
Figure 0006874522

(近赤外線吸収色素[A−113]の製造)
近赤外線吸収色素[A−105]の製造で使用したテトラヒドロ−4H−ピラン−4−オン25.6部の代わりに、1,5−ジチアスピロ[5.5]ウンデカン−3−オン51.7部を使用した以外は、近赤外線吸収色素[A−105]の製造と同様の操作を行い、近赤外線吸収色素[A−113]91.9部(収率:91%)を得た。TOF−MSによる質量分析の結果、近赤外線吸収色素[A−113]であることを同定した。
(Manufacturing of near-infrared absorbing dye [A-113])
Instead of 25.6 parts of tetrahydro-4H-pyran-4-one used in the production of the near-infrared absorbing dye [A-105], 1,5-dithiaspiro [5.5] undecane-3-on 51.7 parts The same operation as in the production of the near-infrared absorbing dye [A-105] was carried out except that 91.9 parts (yield: 91%) of the near-infrared absorbing dye [A-113] was obtained. As a result of mass spectrometry by TOF-MS, it was identified as a near-infrared absorbing dye [A-113].

近赤外線吸収色素[A−113]

Figure 0006874522
Near-infrared absorbing dye [A-113]
Figure 0006874522

(近赤外線吸収色素[A−114]の製造)
近赤外線吸収色素[A−75]の製造で使用した1,8−ジアミノナフタレン40.0部及びテトラヒドロ−4H−ピラン−4−オン25.6部の代わりに、1,8−ジアミノ−4,5−ジクロロナフタレン57.4部及び2−メチル−1,3−オキサチアン−5−オン33.8部を使用した以外は、近赤外線吸収色素[A−75]の製造と同様の操作を行い、近赤外線吸収色素[A−114]87.7部(収率:95%)を得た。TOF−MSによる質量分析の結果、近赤外線吸収色素[A−114]であることを同定した。
(Manufacturing of near-infrared absorbing dye [A-114])
Instead of 4,0.0 parts of 1,8-diaminonaphthalene and 25.6 parts of tetrahydro-4H-pyran-4-one used in the production of the near-infrared absorbing dye [A-75], 1,8-diamino-4, The same operation as in the production of the near-infrared absorbing dye [A-75] was performed except that 57.4 parts of 5-dichloronaphthalene and 33.8 parts of 2-methyl-1,3-oxatian-5-one were used. 87.7 parts (yield: 95%) of the near-infrared absorbing dye [A-114] was obtained. As a result of mass spectrometry by TOF-MS, it was identified as a near-infrared absorbing dye [A-114].

近赤外線吸収色素[A−114]

Figure 0006874522
Near-infrared absorbing dye [A-114]
Figure 0006874522

(近赤外線吸収色素[A−115]の製造)
近赤外線吸収色素[A−75]の製造で使用した1,8−ジアミノナフタレン40.0部及びテトラヒドロ−4H−ピラン−4−オン25.6部の代わりに、1,8−ジアミノ−4,5−ジブロモナフタレン79.9部及び5H−ピラゾロ[5,1−b][1,3]オキサジン−6(7H)−オン35.3部を使用した以外は、近赤外線吸収色素[A−75]の製造と同様の操作を行い、近赤外線吸収色素[A−115]103.8部(収率:90%)を得た。TOF−MSによる質量分析の結果、近赤外線吸収色素[A−115]であることを同定した。
(Manufacturing of near-infrared absorbing dye [A-115])
Instead of 4,0.0 parts of 1,8-diaminonaphthalene and 25.6 parts of tetrahydro-4H-pyran-4-one used in the production of the near-infrared absorbing dye [A-75], 1,8-diamino-4, Near-infrared absorbing dye [A-75] except that 79.9 parts of 5-dibromonaphthalene and 35.3 parts of 5H-pyrazolo [5,1-b] [1,3] oxazine-6 (7H) -on were used. ] Was carried out in the same manner as in the production of the near-infrared absorbing dye [A-115] to obtain 103.8 parts (yield: 90%). As a result of mass spectrometry by TOF-MS, it was identified as a near-infrared absorbing dye [A-115].

近赤外線吸収色素[A−115]

Figure 0006874522
Near-infrared absorbing dye [A-115]
Figure 0006874522

(近赤外線吸収色素[A−116]の製造)
近赤外線吸収色素[A−75]の製造で使用した1,8−ジアミノナフタレン40.0部及びテトラヒドロ−4H−ピラン−4−オン25.6部の代わりに、1,8−ジアミノ−2−ナフトニトリル46.3部及び1,4−ジチエパン−6−オン37.9部を使用した以外は、近赤外線吸収色素[A−75]の製造と同様の操作を行い、近赤外線吸収色素[A−116]78.7部(収率:92%)を得た。TOF−MSによる質量分析の結果、近赤外線吸収色素[A−116]であることを同定した。
(Manufacturing of near-infrared absorbing dye [A-116])
Instead of 40.0 parts of 1,8-diaminonaphthalene and 25.6 parts of tetrahydro-4H-pyran-4-one used in the production of the near-infrared absorbing dye [A-75], 1,8-diamino-2- The same operation as in the production of the near-infrared absorbing dye [A-75] was performed except that 46.3 parts of naphthonitrile and 37.9 parts of 1,4-dithiepan-6-one were used, and the near-infrared absorbing dye [A] was performed. −116] 78.7 parts (yield: 92%) was obtained. As a result of mass spectrometry by TOF-MS, it was identified as a near-infrared absorbing dye [A-116].

近赤外線吸収色素[A−116]

Figure 0006874522
Near-infrared absorbing dye [A-116]
Figure 0006874522

(近赤外線吸収色素[A−117]の製造)
近赤外線吸収色素[A−93]20.0部を、水300部に加えて撹拌し再分散した後、26%アンモニア水を用いてpH9.0に調製して溶解させた。この溶液中に8%テトラブチルアンモニウムブロミド水溶液235.5部を徐々に添加した。滴下した箇所から析出物が次々に現れ、添加と共に徐々にpHが低下した。添加終了後にはブリードは見られなかった。スラリーから析出物を濾別した後、水洗して、80℃で乾燥し、近赤外線吸収色素[A−117]33.1部(収率:99%)を得た。
(Manufacturing of near-infrared absorbing dye [A-117])
20.0 parts of the near-infrared absorbing dye [A-93] was added to 300 parts of water, stirred and redispersed, and then adjusted to pH 9.0 with 26% aqueous ammonia and dissolved. 235.5 parts of an 8% tetrabutylammonium bromide aqueous solution was gradually added to this solution. Precipitates appeared one after another from the dropped portion, and the pH gradually decreased with the addition. No bleeding was observed after the addition was completed. The precipitate was separated from the slurry by filtration, washed with water, and dried at 80 ° C. to obtain 33.1 parts (yield: 99%) of a near-infrared absorbing dye [A-117].

(近赤外線吸収色素[A−118]の製造)
近赤外線吸収色素[A−117]の製造で使用した8%テトラブチルアンモニウムブロミド水溶液235.5部の代わりに、8%1,2−ジメチル−3−プロピルイミダゾリウムヨージド水溶液194.4部を使用した以外は、近赤外線吸収色素[A−117]の製造と同様の操作を行い、近赤外線吸収色素[A−118]27.1部(収率:98%)を得た。
(Manufacturing of near-infrared absorbing dye [A-118])
Instead of 235.5 parts of the 8% tetrabutylammonium bromide aqueous solution used in the production of the near-infrared absorbing dye [A-117], 194.4 parts of the 8% 1,2-dimethyl-3-propylimidazolium iodide aqueous solution was used. Except for the use, the same operation as in the production of the near-infrared absorbing dye [A-117] was carried out to obtain 27.1 parts (yield: 98%) of the near-infrared absorbing dye [A-118].

(近赤外線吸収色素[A−119]の製造)
近赤外線吸収色素[A−117]の製造で使用した8%テトラブチルアンモニウムブロミド水溶液235.5部の代わりに、8%1−ブチルピリジニウムクロリド水溶液125.4部を使用した以外は、近赤外線吸収色素[A−117]の製造と同様の操作を行い、近赤外線吸収色素[A−119]27.2部(収率:99%)を得た。
(Manufacturing of near-infrared absorbing dye [A-119])
Near-infrared absorption except that 125.4 parts of 8% 1-butylpyridinium chloride aqueous solution was used instead of 235.5 parts of the 8% tetrabutylammonium bromide aqueous solution used in the production of the near-infrared absorbing dye [A-117]. The same operation as in the production of the dye [A-117] was carried out to obtain 27.2 parts (yield: 99%) of the near-infrared absorbing dye [A-119].

(近赤外線吸収色素[A−120]の製造)
近赤外線吸収色素[A−117]の製造で使用した8%テトラブチルアンモニウムブロミド水溶液235.5部の代わりに、8%エチルトリフェニルホスホニウムブロミド水溶液271.2部を使用した以外は、近赤外線吸収色素[A−117]の製造と同様の操作を行い、近赤外線吸収色素[A−120]35.8部(収率:99%)を得た。
(Manufacturing of near-infrared absorbing dye [A-120])
Near-infrared absorption except that 271.2 parts of an 8% ethyltriphenylphosphonium bromide aqueous solution was used instead of 235.5 parts of the 8% tetrabutylammonium bromide aqueous solution used in the production of the near-infrared absorbing dye [A-117]. The same operation as in the production of the dye [A-117] was carried out to obtain 35.8 parts (yield: 99%) of the near-infrared absorbing dye [A-120].

(近赤外線吸収色素[A−121]の製造)
近赤外線吸収色素[A−117]の製造で使用した8%テトラブチルアンモニウムブロミド水溶液235.5部の代わりに、8%トリメチルスルホニウムブロミド水溶液114.7部を使用した以外は、近赤外線吸収色素[A−117]の製造と同様の操作を行い、近赤外線吸収色素[A−121]23.8部(収率:98%)を得た。
(Manufacturing of near-infrared absorbing dye [A-121])
Near-infrared absorbing dye [A-117] except that 114.7 parts of 8% trimethylsulfonium bromide aqueous solution was used instead of 235.5 parts of the 8% tetrabutylammonium bromide aqueous solution used in the production of the near-infrared absorbing dye [A-117]. The same operation as in the production of A-117] was carried out to obtain 23.8 parts (yield: 98%) of the near-infrared absorbing dye [A-121].

(近赤外線吸収色素[A−122]の製造)
近赤外線吸収色素[A−117]の製造で使用した8%テトラブチルアンモニウムブロミド水溶液235.5部の代わりに、8%硫酸アルミニウム水溶液76.7部を使用した以外は、近赤外線吸収色素[A−117]の製造と同様の操作を行い、近赤外線吸収色素[A−122]20.2部(収率:99%)を得た。
(Manufacturing of near-infrared absorbing dye [A-122])
Near-infrared absorbing dye [A-117] except that 76.7 parts of 8% aluminum sulfate aqueous solution was used instead of 235.5 parts of the 8% tetrabutylammonium bromide aqueous solution used in the production of the near-infrared absorbing dye [A-117]. The same operation as in the production of -117] was carried out to obtain 20.2 parts (yield: 99%) of the near-infrared absorbing dye [A-122].

[一般式(3)で表される化合物の製造方法]
(近赤外線吸収色素[A−123]の製造)
トルエン400部に、1,8−ジアミノナフタレン40.0部、9−フルオレノン46.0部、p−トルエンスルホン酸一水和物0.087部を混合し、窒素ガスの雰囲気中で加熱攪拌し、3時間還流させた。反応中に生成した水は共沸蒸留により系中から除去した。反応終了後、トルエンを蒸留して得られた暗茶色固体をアセトンで抽出し、アセトンとエタノールの混合溶媒から再結晶することにより精製した。得られた茶色固体を、トルエン240部とn−ブタノール160部の混合溶媒に溶解させ、3,4−ジヒドロキシ−3−シクロブテン−1,2−ジオン13.8部を加えて、窒素ガスの雰囲気中で加熱撹拌し、8時間還流反応させた。反応中に生成した水は共沸蒸留により系中から除去した。反応終了後、溶媒を蒸留し、得られた反応混合物を攪拌しながら、ヘキサン200部を加えた。得られた黒茶色沈殿物を濾別した後、順次ヘキサン、エタノール及びアセトンで洗浄を行い、減圧下で乾燥させ、近赤外線吸収色素[A−123]84.6部(収率:97%)を得た。TOF−MSによる質量分析の結果、近赤外線吸収色素[A−123]であることを同定した。
[Method for producing compound represented by general formula (3)]
(Manufacturing of near-infrared absorbing dye [A-123])
400 parts of toluene is mixed with 40.0 parts of 1,8-diaminonaphthalene, 46.0 parts of 9-fluorenone, and 0.087 parts of p-toluenesulfonic acid monohydrate, and the mixture is heated and stirred in an atmosphere of nitrogen gas. It was refluxed for 3 hours. The water produced during the reaction was removed from the system by azeotropic distillation. After completion of the reaction, the dark brown solid obtained by distilling toluene was extracted with acetone and purified by recrystallization from a mixed solvent of acetone and ethanol. The obtained brown solid was dissolved in a mixed solvent of 240 parts of toluene and 160 parts of n-butanol, and 13.8 parts of 3,4-dihydroxy-3-cyclobutene-1,2-dione was added to create an atmosphere of nitrogen gas. The mixture was heated and stirred inside, and the mixture was refluxed for 8 hours. The water produced during the reaction was removed from the system by azeotropic distillation. After completion of the reaction, the solvent was distilled and 200 parts of hexane was added while stirring the obtained reaction mixture. The obtained black-brown precipitate was filtered off, washed successively with hexane, ethanol and acetone, dried under reduced pressure, and 84.6 parts of a near-infrared absorbing dye [A-123] (yield: 97%). Got As a result of mass spectrometry by TOF-MS, it was identified as a near-infrared absorbing dye [A-123].

近赤外線吸収色素[A−123]

Figure 0006874522
Near-infrared absorbing dye [A-123]
Figure 0006874522

(近赤外線吸収色素[A−124]の製造)
近赤外線吸収色素[A−123]の製造で使用した9−フルオレノン46.0部の代わりに、2−メチル−9−フルオレノン49.6部を使用した以外は、近赤外線吸収色素[A−123]の製造と同様の操作を行い、近赤外線吸収色素[A−124]86.7部(収率:96%)を得た。TOF−MSによる質量分析の結果、近赤外線吸収色素[A−124]であることを同定した。
(Manufacturing of near-infrared absorbing dye [A-124])
Near-infrared absorbing dye [A-123], except that 49.6 parts of 2-methyl-9-fluorenone was used instead of 46.0 parts of 9-fluorenone used in the production of the near-infrared absorbing dye [A-123]. ] Was carried out in the same manner as in the production of the near-infrared absorbing dye [A-124] to obtain 86.7 parts (yield: 96%). As a result of mass spectrometry by TOF-MS, it was identified as a near-infrared absorbing dye [A-124].

近赤外線吸収色素[A−124]

Figure 0006874522
Near infrared absorbing dye [A-124]
Figure 0006874522

(近赤外線吸収色素[A−125]の製造)
近赤外線吸収色素[A−123]の製造で使用した9−フルオレノン46.0部の代わりに、1,8−ジメチル−9−フルオレノン53.2部を使用した以外は、近赤外線吸収色素[A−123]の製造と同様の操作を行い、近赤外線吸収色素[A−125]88.2部(収率:94%)を得た。TOF−MSによる質量分析の結果、近赤外線吸収色素[A−125]であることを同定した。
(Manufacturing of near-infrared absorbing dye [A-125])
Near-infrared absorbing dye [A], except that 53.2 parts of 1,8-dimethyl-9-fluorenone was used instead of 46.0 parts of 9-fluorenone used in the production of the near-infrared absorbing dye [A-123]. The same operation as in the production of −123] was carried out to obtain 88.2 parts (yield: 94%) of the near-infrared absorbing dye [A-125]. As a result of mass spectrometry by TOF-MS, it was identified as a near-infrared absorbing dye [A-125].

近赤外線吸収色素[A−125]

Figure 0006874522
Near-infrared absorbing dye [A-125]
Figure 0006874522

(近赤外線吸収色素[A−126]の製造)
近赤外線吸収色素[A−123]の製造で使用した9−フルオレノン46.0部の代わりに、3,6−ジエチル−9−フルオレノン60.3部を使用した以外は、近赤外線吸収色素[A−123]の製造と同様の操作を行い、近赤外線吸収色素[A−126]95.0部(収率:94%)を得た。TOF−MSによる質量分析の結果、近赤外線吸収色素[A−126]であることを同定した。
(Manufacturing of near-infrared absorbing dye [A-126])
Near-infrared absorbing dye [A], except that 3,6-diethyl-9-fluorenone 60.3 parts was used instead of 46.0 parts of 9-fluorenone used in the production of the near-infrared absorbing dye [A-123]. The same operation as in the production of −123] was carried out to obtain 95.0 parts (yield: 94%) of the near-infrared absorbing dye [A-126]. As a result of mass spectrometry by TOF-MS, it was identified as a near-infrared absorbing dye [A-126].

近赤外線吸収色素[A−126]

Figure 0006874522
Near infrared absorbing dye [A-126]
Figure 0006874522

(近赤外線吸収色素[A−127]の製造)
近赤外線吸収色素[A−123]の製造で使用した9−フルオレノン46.0部の代わりに、4,5−ジイソプロピル−9−フルオレノン74.7部を使用した以外は、近赤外線吸収色素[A−123]の製造と同様の操作を行い、近赤外線吸収色素[A−127]106.6部(収率:93%)を得た。TOF−MSによる質量分析の結果、近赤外線吸収色素[A−127]であることを同定した。
(Manufacturing of near-infrared absorbing dye [A-127])
Near-infrared absorbing dye [A], except that 44.7 parts of 4,5-diisopropyl-9-fluorenone was used instead of 46.0 parts of 9-fluorenone used in the production of the near-infrared absorbing dye [A-123]. The same operation as in the production of −123] was carried out to obtain 106.6 parts (yield: 93%) of the near-infrared absorbing dye [A-127]. As a result of mass spectrometry by TOF-MS, it was identified as a near-infrared absorbing dye [A-127].

近赤外線吸収色素[A−127]

Figure 0006874522
Near-infrared absorbing dye [A-127]
Figure 0006874522

(近赤外線吸収色素[A−128]の製造)
近赤外線吸収色素[A−123]の製造で使用した9−フルオレノン46.0部の代わりに、2,7−ビス(トリフルオロメチル)−9−フルオレノン80.7部を使用した以外は、近赤外線吸収色素[A−123]の製造と同様の操作を行い、近赤外線吸収色素[A−128]109.8部(収率:91%)を得た。TOF−MSによる質量分析の結果、近赤外線吸収色素[A−128]であることを同定した。
(Manufacturing of near-infrared absorbing dye [A-128])
Near-infrared absorbing dye [A-123], except that 2,7-bis (trifluoromethyl) -9-fluorenone 80.7 parts was used instead of 9-fluorenone 46.0 parts used in the production. The same operation as in the production of the infrared absorbing dye [A-123] was carried out to obtain 109.8 parts (yield: 91%) of the near infrared absorbing dye [A-128]. As a result of mass spectrometry by TOF-MS, it was identified as a near-infrared absorbing dye [A-128].

近赤外線吸収色素[A−128]

Figure 0006874522
Near infrared absorbing dye [A-128]
Figure 0006874522

(近赤外線吸収色素[A−129]の製造)
近赤外線吸収色素[A−123]の製造で使用した9−フルオレノン46.0部の代わりに、2,3−ジビニル−9−フルオレノン59.3部を使用した以外は、近赤外線吸収色素[A−123]の製造と同様の操作を行い、近赤外線吸収色素[A−129]95.0部(収率:95%)を得た。TOF−MSによる質量分析の結果、近赤外線吸収色素[A−129]であることを同定した。
(Manufacture of near-infrared absorbing dye [A-129])
Near-infrared absorbing dye [A], except that 59.3 parts of 2,3-divinyl-9-fluorenone was used instead of 46.0 parts of 9-fluorenone used in the production of the near-infrared absorbing dye [A-123]. The same operation as in the production of −123] was carried out to obtain 95.0 parts (yield: 95%) of the near-infrared absorbing dye [A-129]. As a result of mass spectrometry by TOF-MS, it was identified as a near-infrared absorbing dye [A-129].

近赤外線吸収色素[A−129]

Figure 0006874522
Near-infrared absorbing dye [A-129]
Figure 0006874522

(近赤外線吸収色素[A−130]の製造)
近赤外線吸収色素[A−123]の製造で使用した9−フルオレノン46.0部の代わりに、2−フェニル−9−フルオレノン65.5部を使用した以外は、近赤外線吸収色素[A−123]の製造と同様の操作を行い、近赤外線吸収色素[A−130]96.6部(収率:91%)を得た。TOF−MSによる質量分析の結果、近赤外線吸収色素[A−130]であることを同定した。
(Manufacturing of near-infrared absorbing dye [A-130])
Near-infrared absorbing dye [A-123], except that 65.5 parts of 2-phenyl-9-fluorenone was used instead of 46.0 parts of 9-fluorenone used in the production of the near-infrared absorbing dye [A-123]. ] Was carried out in the same manner as in the production of 96.6 parts (yield: 91%) of the near-infrared absorbing dye [A-130]. As a result of mass spectrometry by TOF-MS, it was identified as a near-infrared absorbing dye [A-130].

近赤外線吸収色素[A−130]

Figure 0006874522
Near infrared absorbing dye [A-130]
Figure 0006874522

(近赤外線吸収色素[A−131]の製造)
近赤外線吸収色素[A−123]の製造で使用した9−フルオレノン46.0部の代わりに、2−p−トリル−9−フルオレノン69.0部を使用した以外は、近赤外線吸収色素[A−123]の製造と同様の操作を行い、近赤外線吸収色素[A−131]100.1部(収率:92%)を得た。TOF−MSによる質量分析の結果、近赤外線吸収色素[A−131]であることを同定した。
(Manufacturing of near-infrared absorbing dye [A-131])
Near-infrared absorbing dye [A], except that 69.0 parts of 2-p-tolyl-9-fluorenone was used instead of 46.0 parts of 9-fluorenone used in the production of the near-infrared absorbing dye [A-123]. The same operation as in the production of −123] was carried out to obtain 100.1 parts (yield: 92%) of the near-infrared absorbing dye [A-131]. As a result of mass spectrometry by TOF-MS, it was identified as a near-infrared absorbing dye [A-131].

近赤外線吸収色素[A−131]

Figure 0006874522
Near-infrared absorbing dye [A-131]
Figure 0006874522

(近赤外線吸収色素[A−132]の製造)
近赤外線吸収色素[A−123]の製造で使用した9−フルオレノン46.0部の代わりに、3−ベンジル−9−フルオレノン69.0部を使用した以外は、近赤外線吸収色素[A−123]の製造と同様の操作を行い、近赤外線吸収色素[A−132]101.4部(収率:93%)を得た。TOF−MSによる質量分析の結果、近赤外線吸収色素[A−132]であることを同定した。
(Manufacturing of near-infrared absorbing dye [A-132])
Near-infrared absorbing dye [A-123], except that 69.0 parts of 3-benzyl-9-fluorenone was used instead of 46.0 parts of 9-fluorenone used in the production of the near-infrared absorbing dye [A-123]. ] Was carried out in the same manner as in the production of [A-132] to obtain 101.4 parts (yield: 93%) of the near-infrared absorbing dye [A-132]. As a result of mass spectrometry by TOF-MS, it was identified as a near-infrared absorbing dye [A-132].

近赤外線吸収色素[A−132]

Figure 0006874522
Near-infrared absorbing dye [A-132]
Figure 0006874522

(近赤外線吸収色素[A−133]の製造)
近赤外線吸収色素[A−123]の製造で使用した9−フルオレノン46.0部の代わりに、2,3−ジメトキシ−9−フルオレノン61.4部を使用した以外は、近赤外線吸収色素[A−123]の製造と同様の操作を行い、近赤外線吸収色素[A−133]93.4部(収率:92%)を得た。TOF−MSによる質量分析の結果、近赤外線吸収色素[A−133]であることを同定した。
(Manufacturing of near-infrared absorbing dye [A-133])
Near-infrared absorbing dye [A], except that 2,3-dimethoxy-9-fluorenone 61.4 parts was used instead of 46.0 parts of 9-fluorenone used in the production of the near-infrared absorbing dye [A-123]. The same operation as in the production of −123] was carried out to obtain 93.4 parts (yield: 92%) of the near-infrared absorbing dye [A-133]. As a result of mass spectrometry by TOF-MS, it was identified as a near-infrared absorbing dye [A-133].

近赤外線吸収色素[A−133]

Figure 0006874522
Near-infrared absorbing dye [A-133]
Figure 0006874522

(近赤外線吸収色素[A−134]の製造)
近赤外線吸収色素[A−123]の製造で使用した9−フルオレノン46.0部の代わりに、3−(トリフルオロメトキシ)−9−フルオレノン67.5部を使用した以外は、近赤外線吸収色素[A−123]の製造と同様の操作を行い、近赤外線吸収色素[A−134]100.4部(収率:93%)を得た。TOF−MSによる質量分析の結果、近赤外線吸収色素[A−134]であることを同定した。
(Manufacturing of near-infrared absorbing dye [A-134])
Near-infrared absorbing dye except that 67.5 parts of 3- (trifluoromethoxy) -9-fluorenone was used instead of 46.0 parts of 9-fluorenone used in the production of the near-infrared absorbing dye [A-123]. The same operation as in the production of [A-123] was carried out to obtain 100.4 parts (yield: 93%) of the near-infrared absorbing dye [A-134]. As a result of mass spectrometry by TOF-MS, it was identified as a near-infrared absorbing dye [A-134].

近赤外線吸収色素[A−134]

Figure 0006874522
Near infrared absorbing dye [A-134]
Figure 0006874522

(近赤外線吸収色素[A−135]の製造)
近赤外線吸収色素[A−123]の製造で使用した9−フルオレノン46.0部の代わりに、2,7−ビス(2−(ジエチルアミノ)エトキシ)−9−フルオレノン104.8部を使用した以外は、近赤外線吸収色素[A−123]の製造と同様の操作を行い、近赤外線吸収色素[A−135]136.9部(収率:96%)を得た。TOF−MSによる質量分析の結果、近赤外線吸収色素[A−135]であることを同定した。
(Manufacturing of near-infrared absorbing dye [A-135])
Other than using 2,7-bis (2- (diethylamino) ethoxy) -9-fluorenone 104.8 parts instead of 9-fluorenone 46.0 parts used in the production of the near-infrared absorbing dye [A-123]. The same operation as in the production of the near-infrared absorbing dye [A-123] was carried out to obtain 136.9 parts (yield: 96%) of the near-infrared absorbing dye [A-135]. As a result of mass spectrometry by TOF-MS, it was identified as a near-infrared absorbing dye [A-135].

近赤外線吸収色素[A−135]

Figure 0006874522
Near infrared absorbing dye [A-135]
Figure 0006874522

(近赤外線吸収色素[A−136]の製造)
近赤外線吸収色素[A−123]の製造で使用した9−フルオレノン46.0部の代わりに、3−フェノキシ−9−フルオレノン69.5部を使用した以外は、近赤外線吸収色素[A−123]の製造と同様の操作を行い、近赤外線吸収色素[A−136]100.3部(収率:92%)を得た。TOF−MSによる質量分析の結果、近赤外線吸収色素[A−136]であることを同定した。
(Manufacturing of near-infrared absorbing dye [A-136])
Near-infrared absorbing dye [A-123], except that 69.5 parts of 3-phenoxy-9-fluorenone was used instead of 46.0 parts of 9-fluorenone used in the production of the near-infrared absorbing dye [A-123]. ], The same operation as in the production of [A-136] was carried out to obtain 100.3 parts (yield: 92%) of the near-infrared absorbing dye [A-136]. As a result of mass spectrometry by TOF-MS, it was identified as a near-infrared absorbing dye [A-136].

近赤外線吸収色素[A−136]

Figure 0006874522
Near infrared absorbing dye [A-136]
Figure 0006874522

(近赤外線吸収色素[A−137]の製造)
近赤外線吸収色素[A−123]の製造で使用した9−フルオレノン46.0部の代わりに、1−ヒドロキシ−9−フルオレノン50.1部を使用した以外は、近赤外線吸収色素[A−123]の製造と同様の操作を行い、近赤外線吸収色素[A−137]83.0部(収率:91%)を得た。TOF−MSによる質量分析の結果、近赤外線吸収色素[A−137]であることを同定した。
(Manufacturing of near-infrared absorbing dye [A-137])
Near-infrared absorbing dye [A-123], except that 50.1 parts of 1-hydroxy-9-fluorenone was used instead of 46.0 parts of 9-fluorenone used in the production of the near-infrared absorbing dye [A-123]. ] Was carried out in the same manner as in the production of the near-infrared absorbing dye [A-137] to obtain 83.0 parts (yield: 91%). As a result of mass spectrometry by TOF-MS, it was identified as a near-infrared absorbing dye [A-137].

近赤外線吸収色素[A−137]

Figure 0006874522
Near-infrared absorbing dye [A-137]
Figure 0006874522

(近赤外線吸収色素[A−138]の製造)
近赤外線吸収色素[A−123]の製造で使用した9−フルオレノン46.0部の代わりに、2−ヒドロキシ−9−フルオレノン50.1部を使用した以外は、近赤外線吸収色素[A−123]の製造と同様の操作を行い、近赤外線吸収色素[A−138]83.9部(収率:92%)を得た。TOF−MSによる質量分析の結果、近赤外線吸収色素[A−138]であることを同定した。
(Manufacturing of near-infrared absorbing dye [A-138])
Near-infrared absorbing dye [A-123], except that 50.1 parts of 2-hydroxy-9-fluorenone was used instead of 46.0 parts of 9-fluorenone used in the production of the near-infrared absorbing dye [A-123]. ] Was carried out in the same manner as in the production of the near-infrared absorbing dye [A-138] to obtain 83.9 parts (yield: 92%). As a result of mass spectrometry by TOF-MS, it was identified as a near-infrared absorbing dye [A-138].

近赤外線吸収色素[A−138]

Figure 0006874522
Near-infrared absorbing dye [A-138]
Figure 0006874522

(近赤外線吸収色素[A−139]の製造)
近赤外線吸収色素[A−123]の製造で使用した9−フルオレノン46.0部の代わりに、2,7−ジヒドロキシ−9−フルオレノン54.2部を使用した以外は、近赤外線吸収色素[A−123]の製造と同様の操作を行い、近赤外線吸収色素[A−139]91.1部(収率:96%)を得た。TOF−MSによる質量分析の結果、近赤外線吸収色素[A−139]であることを同定した。
(Manufacturing of near-infrared absorbing dye [A-139])
Near-infrared absorbing dye [A], except that 54.2 parts of 2,7-dihydroxy-9-fluorenone was used instead of 46.0 parts of 9-fluorenone used in the production of the near-infrared absorbing dye [A-123]. The same operation as in the production of −123] was carried out to obtain 91.1 parts (yield: 96%) of the near-infrared absorbing dye [A-139]. As a result of mass spectrometry by TOF-MS, it was identified as a near-infrared absorbing dye [A-139].

近赤外線吸収色素[A−139]

Figure 0006874522
Near-infrared absorbing dye [A-139]
Figure 0006874522

(近赤外線吸収色素[A−140]の製造)
近赤外線吸収色素[A−123]の製造で使用した9−フルオレノン46.0部の代わりに、2−アミノ−9−フルオレノン49.9部を使用した以外は、近赤外線吸収色素[A−123]の製造と同様の操作を行い、近赤外線吸収色素[A−140]86.8部(収率:96%)を得た。TOF−MSによる質量分析の結果、近赤外線吸収色素[A−140]であることを同定した。
(Manufacturing of near-infrared absorbing dye [A-140])
Near-infrared absorbing dye [A-123], except that 49.9 parts of 2-amino-9-fluorenone was used instead of 46.0 parts of 9-fluorenone used in the production of the near-infrared absorbing dye [A-123]. ] Was carried out in the same manner as in the production of the near-infrared absorbing dye [A-140] to obtain 86.8 parts (yield: 96%). As a result of mass spectrometry by TOF-MS, it was identified as a near-infrared absorbing dye [A-140].

近赤外線吸収色素[A−140]

Figure 0006874522
Near infrared absorbing dye [A-140]
Figure 0006874522

(近赤外線吸収色素[A−141]の製造)
近赤外線吸収色素[A−123]の製造で使用した9−フルオレノン46.0部の代わりに、4,5−ジアミノ−9−フルオレノン53.7部を使用した以外は、近赤外線吸収色素[A−123]の製造と同様の操作を行い、近赤外線吸収色素[A−141]90.1部(収率:95%)を得た。TOF−MSによる質量分析の結果、近赤外線吸収色素[A−141]であることを同定した。
(Manufacturing of near-infrared absorbing dye [A-141])
Near-infrared absorbing dye [A], except that 53.7 parts of 4,5-diamino-9-fluorenone were used instead of 46.0 parts of 9-fluorenone used in the production of the near-infrared absorbing dye [A-123]. The same operation as in the production of −123] was carried out to obtain 90.1 parts (yield: 95%) of the near-infrared absorbing dye [A-141]. As a result of mass spectrometry by TOF-MS, it was identified as a near-infrared absorbing dye [A-141].

近赤外線吸収色素[A−141]

Figure 0006874522
Near-infrared absorbing dye [A-141]
Figure 0006874522

(近赤外線吸収色素[A−142]の製造)
近赤外線吸収色素[A−123]の製造で使用した9−フルオレノン46.0部の代わりに、2−アミノ−3−ブロモ−9−フルオレノン70.0部を使用した以外は、近赤外線吸収色素[A−123]の製造と同様の操作を行い、近赤外線吸収色素[A−142]100.4部(収率:91%)を得た。TOF−MSによる質量分析の結果、近赤外線吸収色素[A−142]であることを同定した。
(Manufacturing of near-infrared absorbing dye [A-142])
Near-infrared absorbing dye except that 70.0 parts of 2-amino-3-bromo-9-fluorenone was used instead of 46.0 parts of 9-fluorenone used in the production of the near-infrared absorbing dye [A-123]. The same operation as in the production of [A-123] was carried out to obtain 100.4 parts (yield: 91%) of the near-infrared absorbing dye [A-142]. As a result of mass spectrometry by TOF-MS, it was identified as a near-infrared absorbing dye [A-142].

近赤外線吸収色素[A−142]

Figure 0006874522
Near-infrared absorbing dye [A-142]
Figure 0006874522

(近赤外線吸収色素[A−143]の製造)
近赤外線吸収色素[A−123]の製造で使用した9−フルオレノン46.0部の代わりに、2−アミノ−7−ブロモ−9−フルオレノン70.0部を使用した以外は、近赤外線吸収色素[A−123]の製造と同様の操作を行い、近赤外線吸収色素[A−143]102.4部(収率:93%)を得た。TOF−MSによる質量分析の結果、近赤外線吸収色素[A−143]であることを同定した。
(Manufacturing of near-infrared absorbing dye [A-143])
Near-infrared absorbing dye except that 70.0 parts of 2-amino-7-bromo-9-fluorenone was used instead of 46.0 parts of 9-fluorenone used in the production of the near-infrared absorbing dye [A-123]. The same operation as in the production of [A-123] was carried out to obtain 102.4 parts (yield: 93%) of the near-infrared absorbing dye [A-143]. As a result of mass spectrometry by TOF-MS, it was identified as a near-infrared absorbing dye [A-143].

近赤外線吸収色素[A−143]

Figure 0006874522
Near-infrared absorbing dye [A-143]
Figure 0006874522

(近赤外線吸収色素[A−144]の製造)
近赤外線吸収色素[A−123]の製造で使用した9−フルオレノン46.0部の代わりに、2−(ジメチルアミノ)−9−フルオレノン57.0部を使用した以外は、近赤外線吸収色素[A−123]の製造と同様の操作を行い、近赤外線吸収色素[A−144]92.1部(収率:94%)を得た。TOF−MSによる質量分析の結果、近赤外線吸収色素[A−144]であることを同定した。
(Manufacturing of near-infrared absorbing dye [A-144])
Near-infrared absorbing dye [A-123], except that 57.0 parts of 2- (dimethylamino) -9-fluorenone was used instead of 46.0 parts of 9-fluorenone used in the production of the near-infrared absorbing dye [A-123]. The same operation as in the production of A-123] was carried out to obtain 92.1 parts (yield: 94%) of the near-infrared absorbing dye [A-144]. As a result of mass spectrometry by TOF-MS, it was identified as a near-infrared absorbing dye [A-144].

近赤外線吸収色素[A−144]

Figure 0006874522
Near-infrared absorbing dye [A-144]
Figure 0006874522

(近赤外線吸収色素[A−145]の製造)
近赤外線吸収色素[A−123]の製造で使用した9−フルオレノン46.0部の代わりに、N−(9−オキソ−9H−フルオレン−4−イル)アセトアミド60.6部を使用した以外は、近赤外線吸収色素[A−123]の製造と同様の操作を行い、近赤外線吸収色素[A−145]96.0部(収率:95%)を得た。TOF−MSによる質量分析の結果、近赤外線吸収色素[A−145]であることを同定した。
(Manufacturing of near-infrared absorbing dye [A-145])
Except for the use of 60.6 parts of N- (9-oxo-9H-fluorene-4-yl) acetamide instead of 46.0 parts of 9-fluorenone used in the production of the near-infrared absorbing dye [A-123]. , The same operation as in the production of the near-infrared absorbing dye [A-123] was carried out to obtain 96.0 parts (yield: 95%) of the near-infrared absorbing dye [A-145]. As a result of mass spectrometry by TOF-MS, it was identified as a near-infrared absorbing dye [A-145].

近赤外線吸収色素[A−145]

Figure 0006874522
Near infrared absorbing dye [A-145]
Figure 0006874522

(近赤外線吸収色素[A−146]の製造)
近赤外線吸収色素[A−123]の製造で使用した9−フルオレノン46.0部の代わりに、N−(9−オキソ−9H−フルオレン−3−イル)アセトアミド60.6部を使用した以外は、近赤外線吸収色素[A−123]の製造と同様の操作を行い、近赤外線吸収色素[A−146]93.7部(収率:93%)を得た。TOF−MSによる質量分析の結果、近赤外線吸収色素[A−146]であることを同定した。
(Manufacturing of near-infrared absorbing dye [A-146])
Except for the use of 60.6 parts of N- (9-oxo-9H-fluorene-3-yl) acetamide instead of 46.0 parts of 9-fluorenone used in the production of the near-infrared absorbing dye [A-123]. , The same operation as in the production of the near-infrared absorbing dye [A-123] was carried out to obtain 93.7 parts (yield: 93%) of the near-infrared absorbing dye [A-146]. As a result of mass spectrometry by TOF-MS, it was identified as a near-infrared absorbing dye [A-146].

近赤外線吸収色素[A−146]

Figure 0006874522
Near-infrared absorbing dye [A-146]
Figure 0006874522

(近赤外線吸収色素[A−147]の製造)
近赤外線吸収色素[A−123]の製造で使用した9−フルオレノン46.0部の代わりに、9−オキソ−9H−フルオレン−2−スルホン酸66.5部を使用した以外は、近赤外線吸収色素[A−123]の製造と同様の操作を行い、近赤外線吸収色素[A−147]97.3部(収率:91%)を得た。TOF−MSによる質量分析の結果、近赤外線吸収色素[A−147]であることを同定した。
(Manufacturing of near-infrared absorbing dye [A-147])
Near-infrared absorption except that 66.5 parts of 9-oxo-9H-fluorene-2-sulfonic acid was used instead of 46.0 parts of 9-fluorenone used in the production of the near-infrared absorbing dye [A-123]. The same operation as in the production of the dye [A-123] was carried out to obtain 97.3 parts (yield: 91%) of the near-infrared absorbing dye [A-147]. As a result of mass spectrometry by TOF-MS, it was identified as a near-infrared absorbing dye [A-147].

近赤外線吸収色素[A−147]

Figure 0006874522
Near-infrared absorbing dye [A-147]
Figure 0006874522

(近赤外線吸収色素[A−148]の製造)
近赤外線吸収色素[A−123]の製造で使用した9−フルオレノン46.0部の代わりに、9−オキソ−9H−フルオレン−2,7−ジスルホン酸86.9部を使用した以外は、近赤外線吸収色素[A−123]の製造と同様の操作を行い、近赤外線吸収色素[A−148]118.1部(収率:94%)を得た。TOF−MSによる質量分析の結果、近赤外線吸収色素[A−148]であることを同定した。
(Manufacturing of near-infrared absorbing dye [A-148])
Near infrared except that 86.9 parts of 9-oxo-9H-fluorene-2,7-disulfonic acid was used instead of 46.0 parts of 9-fluorenone used in the production of the near infrared absorbing dye [A-123]. The same operation as in the production of the infrared absorbing dye [A-123] was carried out to obtain 118.1 parts (yield: 94%) of the near infrared absorbing dye [A-148]. As a result of mass spectrometry by TOF-MS, it was identified as a near-infrared absorbing dye [A-148].

近赤外線吸収色素[A−148]

Figure 0006874522
Near-infrared absorbing dye [A-148]
Figure 0006874522

(近赤外線吸収色素[A−149]の製造)
近赤外線吸収色素[A−123]の製造で使用した9−フルオレノン46.0部の代わりに、N,N−ジ−sec−ブチル−9−オキソ−9H−フルオレン−2,7−ジスルホンアミド115.1部を使用した以外は、近赤外線吸収色素[A−123]の製造と同様の操作を行い、近赤外線吸収色素[A−149]145.4部(収率:95%)を得た。TOF−MSによる質量分析の結果、近赤外線吸収色素[A−149]であることを同定した。
(Manufacturing of near-infrared absorbing dye [A-149])
Instead of 46.0 parts of 9-fluorenone used in the production of the near-infrared absorbing dye [A-123], N 2 , N 7 -di-sec-butyl-9-oxo-9H-fluorene-2,7-disulfone The same operation as in the production of the near-infrared absorbing dye [A-123] was performed except that 115.1 parts of the amide was used, and 145.4 parts (yield: 95%) of the near-infrared absorbing dye [A-149] was obtained. Obtained. As a result of mass spectrometry by TOF-MS, it was identified as a near-infrared absorbing dye [A-149].

近赤外線吸収色素[A−149]

Figure 0006874522
Near-infrared absorbing dye [A-149]
Figure 0006874522

(近赤外線吸収色素[A−150]の製造)
近赤外線吸収色素[A−123]の製造で使用した9−フルオレノン46.0部の代わりに、N,N−ビス(2,4−ジメチルフェニル)−9−オキソ−9H−フルオレン−2,7−ジスルホンアミド139.6部を使用した以外は、近赤外線吸収色素[A−123]の製造と同様の操作を行い、近赤外線吸収色素[A−150]163.6部(収率:93%)を得た。TOF−MSによる質量分析の結果、近赤外線吸収色素[A−150]であることを同定した。
(Manufacturing of near-infrared absorbing dye [A-150])
Instead of 46.0 parts of 9-fluorenone used in the production of the near-infrared absorbing dye [A-123], N 2 , N 7 -bis (2,4-dimethylphenyl) -9-oxo-9H-fluorene-2 , 7-Disulfonamide 139.6 parts were used, but the same operation as in the production of the near-infrared absorbing dye [A-123] was carried out, and 163.6 parts of the near-infrared absorbing dye [A-150] (yield: 93%) was obtained. As a result of mass spectrometry by TOF-MS, it was identified as a near-infrared absorbing dye [A-150].

近赤外線吸収色素[A−150]

Figure 0006874522
Near infrared absorbing dye [A-150]
Figure 0006874522

(近赤外線吸収色素[A−151]の製造)
近赤外線吸収色素[A−123]の製造で使用した9−フルオレノン46.0部の代わりに、N,N−ビス(4−クロロフェニル)−9−オキソ−9H−フルオレン−2,7−ジスルホンアミド142.9部を使用した以外は、近赤外線吸収色素[A−123]の製造と同様の操作を行い、近赤外線吸収色素[A−151]166.0部(収率:93%)を得た。TOF−MSによる質量分析の結果、近赤外線吸収色素[A−151]であることを同定した。
(Manufacturing of near-infrared absorbing dye [A-151])
Instead of 46.0 parts of 9-fluorenone used in the production of the near-infrared absorbing dye [A-123], N 2 , N 7 -bis (4-chlorophenyl) -9-oxo-9H-fluorene-2,7- The same operation as in the production of the near-infrared absorbing dye [A-123] was performed except that 142.9 parts of the disulfonamide was used, and 166.0 parts of the near-infrared absorbing dye [A-151] (yield: 93%). Got As a result of mass spectrometry by TOF-MS, it was identified as a near-infrared absorbing dye [A-151].

近赤外線吸収色素[A−151]

Figure 0006874522
Near-infrared absorbing dye [A-151]
Figure 0006874522

(近赤外線吸収色素[A−152]の製造)
近赤外線吸収色素[A−123]の製造で使用した9−フルオレノン46.0部の代わりに、N,N−ジアセチル−9−オキソ−9H−フルオレン−2,7−ジスルホンアミド107.9部を使用した以外は、近赤外線吸収色素[A−123]の製造と同様の操作を行い、近赤外線吸収色素[A−152]135.2部(収率:93%)を得た。TOF−MSによる質量分析の結果、近赤外線吸収色素[A−152]であることを同定した。
(Manufacturing of near-infrared absorbing dye [A-152])
Instead of 9-fluorenone 46.0 parts used in the manufacture of near infrared absorbing dye [A-123], N 2 , N 7 - diacetyl-9-oxo -9H- 2,7-di sulfonamide 107.9 The same operation as in the production of the near-infrared absorbing dye [A-123] was carried out except that the part was used, and 135.2 parts (yield: 93%) of the near-infrared absorbing dye [A-152] was obtained. As a result of mass spectrometry by TOF-MS, it was identified as a near-infrared absorbing dye [A-152].

近赤外線吸収色素[A−152]

Figure 0006874522
Near-infrared absorbing dye [A-152]
Figure 0006874522

(近赤外線吸収色素[A−153]の製造)
近赤外線吸収色素[A−123]の製造で使用した9−フルオレノン46.0部の代わりに、9−オキソ−N,N−ジ(ピリジン−4−イル)−9H−フルオレン−2,7−ジスルホンアミド125.8部を使用した以外は、近赤外線吸収色素[A−123]の製造と同様の操作を行い、近赤外線吸収色素[A−153]148.6部(収率:91%)を得た。TOF−MSによる質量分析の結果、近赤外線吸収色素[A−153]であることを同定した。
(Manufacturing of near-infrared absorbing dye [A-153])
Instead of 46.0 parts of 9-fluorenone used in the production of the near-infrared absorbing dye [A-123], 9-oxo-N 2 , N 7 -di (pyridin-4-yl) -9H-fluorene-2, The same operation as in the production of the near-infrared absorbing dye [A-123] was performed except that 125.8 parts of the 7-disulfonamide was used, and 148.6 parts of the near-infrared absorbing dye [A-153] (yield: 91). %) Was obtained. As a result of mass spectrometry by TOF-MS, it was identified as a near-infrared absorbing dye [A-153].

近赤外線吸収色素[A−153]

Figure 0006874522
Near-infrared absorbing dye [A-153]
Figure 0006874522

(近赤外線吸収色素[A−154]の製造)
近赤外線吸収色素[A−123]の製造で使用した9−フルオレノン46.0部の代わりに、N,N−ビス(3,5−ジメチルピペリジン−1−イルスルホニル)−9H−フルオレン−9−オン135.5部を使用した以外は、近赤外線吸収色素[A−123]の製造と同様の操作を行い、近赤外線吸収色素[A−154]161.2部(収率:94%)を得た。TOF−MSによる質量分析の結果、近赤外線吸収色素[A−154]であることを同定した。
(Manufacturing of near-infrared absorbing dye [A-154])
Instead of 46.0 parts of 9-fluorenone used in the production of the near-infrared absorbing dye [A-123], N 2 , N 7 -bis (3,5-dimethylpiperidine-1-ylsulfonyl) -9H-fluorene- The same operation as in the production of the near-infrared absorbing dye [A-123] was performed except that 135.5 parts of 9-on was used, and 161.2 parts of the near-infrared absorbing dye [A-154] (yield: 94%). ) Was obtained. As a result of mass spectrometry by TOF-MS, it was identified as a near-infrared absorbing dye [A-154].

近赤外線吸収色素[A−154]

Figure 0006874522
Near-infrared absorbing dye [A-154]
Figure 0006874522

(近赤外線吸収色素[A−155]の製造)
近赤外線吸収色素[A−123]の製造で使用した9−フルオレノン46.0部の代わりに、9−オキソ−9H−フルオレン−1−カルボン酸57.3部を使用した以外は、近赤外線吸収色素[A−123]の製造と同様の操作を行い、近赤外線吸収色素[A−155]93.5部(収率:95%)を得た。TOF−MSによる質量分析の結果、近赤外線吸収色素[A−155]であることを同定した。
(Manufacturing of near-infrared absorbing dye [A-155])
Near-infrared absorption except that 57.3 parts of 9-oxo-9H-fluorene-1-carboxylic acid was used instead of 46.0 parts of 9-fluorenone used in the production of the near-infrared absorbing dye [A-123]. The same operation as in the production of the dye [A-123] was carried out to obtain 93.5 parts (yield: 95%) of the near-infrared absorbing dye [A-155]. As a result of mass spectrometry by TOF-MS, it was identified as a near-infrared absorbing dye [A-155].

近赤外線吸収色素[A−155]

Figure 0006874522
Near infrared absorbing dye [A-155]
Figure 0006874522

(近赤外線吸収色素[A−156]の製造)
近赤外線吸収色素[A−123]の製造で使用した9−フルオレノン46.0部の代わりに、9−オキソ−9H−フルオレン−4−カルボン酸57.3部を使用した以外は、近赤外線吸収色素[A−123]の製造と同様の操作を行い、近赤外線吸収色素[A−156]91.3部(収率:93%)を得た。TOF−MSによる質量分析の結果、近赤外線吸収色素[A−156]であることを同定した。
(Manufacturing of near-infrared absorbing dye [A-156])
Near-infrared absorption except that 57.3 parts of 9-oxo-9H-fluorene-4-carboxylic acid was used instead of 46.0 parts of 9-fluorenone used in the production of the near-infrared absorbing dye [A-123]. The same operation as in the production of the dye [A-123] was carried out to obtain 91.3 parts (yield: 93%) of the near-infrared absorbing dye [A-156]. As a result of mass spectrometry by TOF-MS, it was identified as a near-infrared absorbing dye [A-156].

近赤外線吸収色素[A−156]

Figure 0006874522
Near-infrared absorbing dye [A-156]
Figure 0006874522

(近赤外線吸収色素[A−157]の製造)
近赤外線吸収色素[A−123]の製造で使用した9−フルオレノン46.0部の代わりに、9−オキソ−9H−フルオレン−1−カルボン酸メチル60.8部を使用した以外は、近赤外線吸収色素[A−123]の製造と同様の操作を行い、近赤外線吸収色素[A−157]96.3部(収率:95%)を得た。TOF−MSによる質量分析の結果、近赤外線吸収色素[A−157]であることを同定した。
(Manufacturing of near-infrared absorbing dye [A-157])
Near-infrared rays, except that 60.8 parts of methyl 9-oxo-9H-fluorene-1-carboxylate was used instead of 46.0 parts of 9-fluorenone used in the production of the near-infrared absorbing dye [A-123]. The same operation as in the production of the absorbing dye [A-123] was carried out to obtain 96.3 parts (yield: 95%) of the near infrared absorbing dye [A-157]. As a result of mass spectrometry by TOF-MS, it was identified as a near-infrared absorbing dye [A-157].

近赤外線吸収色素[A−157]

Figure 0006874522
Near-infrared absorbing dye [A-157]
Figure 0006874522

(近赤外線吸収色素[A−158]の製造)
近赤外線吸収色素[A−123]の製造で使用した9−フルオレノン46.0部の代わりに、9−オキソ−9H−フルオレン−4−カルボン酸エチル64.4部を使用した以外は、近赤外線吸収色素[A−123]の製造と同様の操作を行い、近赤外線吸収色素[A−158]98.8部(収率:94%)を得た。TOF−MSによる質量分析の結果、近赤外線吸収色素[A−158]であることを同定した。
(Manufacturing of near-infrared absorbing dye [A-158])
Near-infrared rays, except that 64.4 parts of ethyl 9-oxo-9H-fluorene-4-carboxylate were used instead of 46.0 parts of 9-fluorenone used in the production of the near-infrared absorbing dye [A-123]. The same operation as in the production of the absorbing dye [A-123] was carried out to obtain 98.8 parts (yield: 94%) of the near infrared absorbing dye [A-158]. As a result of mass spectrometry by TOF-MS, it was identified as a near-infrared absorbing dye [A-158].

近赤外線吸収色素[A−158]

Figure 0006874522
Near-infrared absorbing dye [A-158]
Figure 0006874522

(近赤外線吸収色素[A−159]の製造)
近赤外線吸収色素[A−123]の製造で使用した9−フルオレノン46.0部の代わりに、9−オキソ−9H−フルオレン−2−カルボキサミド57.0部を使用した以外は、近赤外線吸収色素[A−123]の製造と同様の操作を行い、近赤外線吸収色素[A−159]92.3部(収率:94%)を得た。TOF−MSによる質量分析の結果、近赤外線吸収色素[A−159]であることを同定した。
(Manufacturing of near-infrared absorbing dye [A-159])
Near-infrared absorbing dye except that 57.0 parts of 9-oxo-9H-fluorene-2-carboxamide was used instead of 46.0 parts of 9-fluorenone used in the production of the near-infrared absorbing dye [A-123]. The same operation as in the production of [A-123] was carried out to obtain 92.3 parts (yield: 94%) of the near-infrared absorbing dye [A-159]. As a result of mass spectrometry by TOF-MS, it was identified as a near-infrared absorbing dye [A-159].

近赤外線吸収色素[A−159]

Figure 0006874522
Near-infrared absorbing dye [A-159]
Figure 0006874522

(近赤外線吸収色素[A−160]の製造)
近赤外線吸収色素[A−123]の製造で使用した9−フルオレノン46.0部の代わりに、2−ニトロ−9−フルオレノン57.5部を使用した以外は、近赤外線吸収色素[A−123]の製造と同様の操作を行い、近赤外線吸収色素[A−160]91.4部(収率:93%)を得た。TOF−MSによる質量分析の結果、近赤外線吸収色素[A−160]であることを同定した。
(Manufacturing of near-infrared absorbing dye [A-160])
Near-infrared absorbing dye [A-123], except that 57.5 parts of 2-nitro-9-fluorenone was used instead of 46.0 parts of 9-fluorenone used in the production of the near-infrared absorbing dye [A-123]. ] Was carried out in the same manner as in the production of [A-160] to obtain 91.4 parts (yield: 93%) of the near-infrared absorbing dye [A-160]. As a result of mass spectrometry by TOF-MS, it was identified as a near-infrared absorbing dye [A-160].

近赤外線吸収色素[A−160]

Figure 0006874522
Near infrared absorbing dye [A-160]
Figure 0006874522

(近赤外線吸収色素[A−161]の製造)
近赤外線吸収色素[A−123]の製造で使用した9−フルオレノン46.0部の代わりに、2,7−ジニトロ−9−フルオレノン69.0部を使用した以外は、近赤外線吸収色素[A−123]の製造と同様の操作を行い、近赤外線吸収色素[A−161]103.6部(収率:95%)を得た。TOF−MSによる質量分析の結果、近赤外線吸収色素[A−161]であることを同定した。
(Manufacturing of near-infrared absorbing dye [A-161])
Near-infrared absorbing dye [A], except that 69.0 parts of 2,7-dinitro-9-fluorenone was used instead of 46.0 parts of 9-fluorenone used in the production of the near-infrared absorbing dye [A-123]. The same operation as in the production of −123] was carried out to obtain 103.6 parts (yield: 95%) of the near-infrared absorbing dye [A-161]. As a result of mass spectrometry by TOF-MS, it was identified as a near-infrared absorbing dye [A-161].

近赤外線吸収色素[A−161]

Figure 0006874522
Near-infrared absorbing dye [A-161]
Figure 0006874522

(近赤外線吸収色素[A−162]の製造)
近赤外線吸収色素[A−123]の製造で使用した9−フルオレノン46.0部の代わりに、9−オキソ−9H−フルオレン−3−カルボニトリル52.4部を使用した以外は、近赤外線吸収色素[A−123]の製造と同様の操作を行い、近赤外線吸収色素[A−162]88.7部(収率:95%)を得た。TOF−MSによる質量分析の結果、近赤外線吸収色素[A−162]であることを同定した。
(Manufacturing of near-infrared absorbing dye [A-162])
Near-infrared absorption except that 52.4 parts of 9-oxo-9H-fluorene-3-carbonitrile were used instead of 46.0 parts of 9-fluorenone used in the production of the near-infrared absorbing dye [A-123]. The same operation as in the production of the dye [A-123] was carried out to obtain 88.7 parts (yield: 95%) of the near-infrared absorbing dye [A-162]. As a result of mass spectrometry by TOF-MS, it was identified as a near-infrared absorbing dye [A-162].

近赤外線吸収色素[A−162]

Figure 0006874522
Near infrared absorbing dye [A-162]
Figure 0006874522

(近赤外線吸収色素[A−163]の製造)
近赤外線吸収色素[A−123]の製造で使用した9−フルオレノン46.0部の代わりに、2−フルオロ−9−フルオレノン50.6部を使用した以外は、近赤外線吸収色素[A−123]の製造と同様の操作を行い、近赤外線吸収色素[A−163]85.9部(収率:94%)を得た。TOF−MSによる質量分析の結果、近赤外線吸収色素[A−163]であることを同定した。
(Manufacturing of near-infrared absorbing dye [A-163])
Near-infrared absorbing dye [A-123], except that 50.6 parts of 2-fluoro-9-fluorenone was used instead of 46.0 parts of 9-fluorenone used in the production of the near-infrared absorbing dye [A-123]. ] Was carried out in the same manner as in the production of the near-infrared absorbing dye [A-163] to obtain 85.9 parts (yield: 94%). As a result of mass spectrometry by TOF-MS, it was identified as a near-infrared absorbing dye [A-163].

近赤外線吸収色素[A−163]

Figure 0006874522
Near-infrared absorbing dye [A-163]
Figure 0006874522

(近赤外線吸収色素[A−164]の製造)
近赤外線吸収色素[A−123]の製造で使用した9−フルオレノン46.0部の代わりに、3−フルオロ−9−フルオレノン50.6部を使用した以外は、近赤外線吸収色素[A−123]の製造と同様の操作を行い、近赤外線吸収色素[A−164]87.7部(収率:96%)を得た。TOF−MSによる質量分析の結果、近赤外線吸収色素[A−164]であることを同定した。
(Manufacturing of near-infrared absorbing dye [A-164])
Near-infrared absorbing dye [A-123], except that 50.6 parts of 3-fluoro-9-fluorenone was used instead of 46.0 parts of 9-fluorenone used in the production of the near-infrared absorbing dye [A-123]. ] Was carried out in the same manner as in the production of the near-infrared absorbing dye [A-164] to obtain 87.7 parts (yield: 96%). As a result of mass spectrometry by TOF-MS, it was identified as a near-infrared absorbing dye [A-164].

近赤外線吸収色素[A−164]

Figure 0006874522
Near-infrared absorbing dye [A-164]
Figure 0006874522

(近赤外線吸収色素[A−165]の製造)
近赤外線吸収色素[A−123]の製造で使用した9−フルオレノン46.0部の代わりに、2,5−ジフルオロ−9−フルオレノン55.2部を使用した以外は、近赤外線吸収色素[A−123]の製造と同様の操作を行い、近赤外線吸収色素[A−165]87.6部(収率:91%)を得た。TOF−MSによる質量分析の結果、近赤外線吸収色素[A−165]であることを同定した。
(Manufacturing of near-infrared absorbing dye [A-165])
Near-infrared absorbing dye [A], except that 55.2 parts of 2,5-difluoro-9-fluorenone was used instead of 46.0 parts of 9-fluorenone used in the production of the near-infrared absorbing dye [A-123]. The same operation as in the production of −123] was carried out to obtain 87.6 parts (yield: 91%) of the near-infrared absorbing dye [A-165]. As a result of mass spectrometry by TOF-MS, it was identified as a near-infrared absorbing dye [A-165].

近赤外線吸収色素[A−165]

Figure 0006874522
Near infrared absorbing dye [A-165]
Figure 0006874522

(近赤外線吸収色素[A−166]の製造)
近赤外線吸収色素[A−123]の製造で使用した9−フルオレノン46.0部の代わりに、2,7−ジクロロ−9−フルオレノン63.6部を使用した以外は、近赤外線吸収色素[A−123]の製造と同様の操作を行い、近赤外線吸収色素[A−166]95.1部(収率:91%)を得た。TOF−MSによる質量分析の結果、近赤外線吸収色素[A−166]であることを同定した。
(Manufacturing of near-infrared absorbing dye [A-166])
Near-infrared absorbing dye [A], except that 63.6 parts of 2,7-dichloro-9-fluorenone was used instead of 46.0 parts of 9-fluorenone used in the production of the near-infrared absorbing dye [A-123]. The same operation as in the production of −123] was carried out to obtain 95.1 parts (yield: 91%) of the near-infrared absorbing dye [A-166]. As a result of mass spectrometry by TOF-MS, it was identified as a near-infrared absorbing dye [A-166].

近赤外線吸収色素[A−166]

Figure 0006874522
Near-infrared absorbing dye [A-166]
Figure 0006874522

(近赤外線吸収色素[A−167]の製造)
近赤外線吸収色素[A−123]の製造で使用した9−フルオレノン46.0部の代わりに、2,4−ジクロロ−9−フルオレノン63.6部を使用した以外は、近赤外線吸収色素[A−123]の製造と同様の操作を行い、近赤外線吸収色素[A−167]96.7部(収率:93%)を得た。TOF−MSによる質量分析の結果、近赤外線吸収色素[A−167]であることを同定した。
(Manufacturing of near-infrared absorbing dye [A-167])
Near-infrared absorbing dye [A], except that 63.6 parts of 2,4-dichloro-9-fluorenone was used instead of 46.0 parts of 9-fluorenone used in the production of the near-infrared absorbing dye [A-123]. The same operation as in the production of −123] was carried out to obtain 96.7 parts (yield: 93%) of the near-infrared absorbing dye [A-167]. As a result of mass spectrometry by TOF-MS, it was identified as a near-infrared absorbing dye [A-167].

近赤外線吸収色素[A−167]

Figure 0006874522
Near-infrared absorbing dye [A-167]
Figure 0006874522

(近赤外線吸収色素[A−168]の製造)
近赤外線吸収色素[A−123]の製造で使用した9−フルオレノン46.0部の代わりに、2−ブロモ−9−フルオレノン66.2部を使用した以外は、近赤外線吸収色素[A−123]の製造と同様の操作を行い、近赤外線吸収色素[A−168]100.8部(収率:95%)を得た。TOF−MSによる質量分析の結果、近赤外線吸収色素[A−168]であることを同定した。
(Manufacturing of near-infrared absorbing dye [A-168])
Near-infrared absorbing dye [A-123], except that 66.2 parts of 2-bromo-9-fluorenone was used instead of 46.0 parts of 9-fluorenone used in the production of the near-infrared absorbing dye [A-123]. ] Was carried out in the same manner as in the production of the near-infrared absorbing dye [A-168] to obtain 100.8 parts (yield: 95%). As a result of mass spectrometry by TOF-MS, it was identified as a near-infrared absorbing dye [A-168].

近赤外線吸収色素[A−168]

Figure 0006874522
Near infrared absorbing dye [A-168]
Figure 0006874522

(近赤外線吸収色素[A−169]の製造)
近赤外線吸収色素[A−123]の製造で使用した9−フルオレノン46.0部の代わりに、4−ブロモ−9−フルオレノン66.2部を使用した以外は、近赤外線吸収色素[A−123]の製造と同様の操作を行い、近赤外線吸収色素[A−169]98.9部(収率:93%)を得た。TOF−MSによる質量分析の結果、近赤外線吸収色素[A−169]であることを同定した。
(Manufacturing of near-infrared absorbing dye [A-169])
Near-infrared absorbing dye [A-123], except that 66.2 parts of 4-bromo-9-fluorenone was used instead of 46.0 parts of 9-fluorenone used in the production of the near-infrared absorbing dye [A-123]. ] Was carried out in the same manner as in the production of the near-infrared absorbing dye [A-169] to obtain 98.9 parts (yield: 93%). As a result of mass spectrometry by TOF-MS, it was identified as a near-infrared absorbing dye [A-169].

近赤外線吸収色素[A−169]

Figure 0006874522
Near-infrared absorbing dye [A-169]
Figure 0006874522

(近赤外線吸収色素[A−170]の製造)
近赤外線吸収色素[A−123]の製造で使用した9−フルオレノン46.0部の代わりに、2,7−ジブロモ−9−フルオレノン86.3部を使用した以外は、近赤外線吸収色素[A−123]の製造と同様の操作を行い、近赤外線吸収色素[A−170]117.8部(収率:94%)を得た。TOF−MSによる質量分析の結果、近赤外線吸収色素[A−170]であることを同定した。
(Manufacturing of near-infrared absorbing dye [A-170])
Near-infrared absorbing dye [A], except that 2,7-dibromo-9-fluorenone 86.3 parts was used instead of 46.0 parts of 9-fluorenone used in the production of the near-infrared absorbing dye [A-123]. The same operation as in the production of −123] was carried out to obtain 117.8 parts (yield: 94%) of the near-infrared absorbing dye [A-170]. As a result of mass spectrometry by TOF-MS, it was identified as a near-infrared absorbing dye [A-170].

近赤外線吸収色素[A−170]

Figure 0006874522
Near infrared absorbing dye [A-170]
Figure 0006874522

(近赤外線吸収色素[A−171]の製造)
近赤外線吸収色素[A−123]の製造で使用した9−フルオレノン46.0部の代わりに、2−シクロヘキシル−1,2−ジヒドロ−12H−ベンゾ[3,4]フルオレノ[1,2−d]イソキサゾール−12−オン90.8部を使用した以外は、近赤外線吸収色素[A−123]の製造と同様の操作を行い、近赤外線吸収色素[A−171]124.1部(収率:96%)を得た。TOF−MSによる質量分析の結果、近赤外線吸収色素[A−171]であることを同定した。
(Manufacturing of near-infrared absorbing dye [A-171])
Instead of 46.0 parts of 9-fluorenone used in the production of the near-infrared absorbing dye [A-123], 2-cyclohexyl-1,2-dihydro-12H-benzo [3,4] fluorenone [1,2-d] ] Except for using 90.8 parts of isoxazole-12-one, the same operation as in the production of the near-infrared absorbing dye [A-123] was carried out, and 124.1 parts of the near-infrared absorbing dye [A-171] (yield). : 96%) was obtained. As a result of mass spectrometry by TOF-MS, it was identified as a near-infrared absorbing dye [A-171].

近赤外線吸収色素[A−171]

Figure 0006874522
Near-infrared absorbing dye [A-171]
Figure 0006874522

(近赤外線吸収色素[A−172]の製造)
近赤外線吸収色素[A−123]の製造で使用した9−フルオレノン46.0部の代わりに、11H−ベンゾ[b]フルオレン−11−オン58.8部を使用した以外は、近赤外線吸収色素[A−123]の製造と同様の操作を行い、近赤外線吸収色素[A−172]94.6部(収率:95%)を得た。TOF−MSによる質量分析の結果、近赤外線吸収色素[A−172]であることを同定した。
(Manufacturing of near-infrared absorbing dye [A-172])
Near-infrared absorbing dye except that 11H-benzo [b] fluorene-11-one 58.8 parts was used instead of 46.0 parts of 9-fluorenone used in the production of the near-infrared absorbing dye [A-123]. The same operation as in the production of [A-123] was carried out to obtain 94.6 parts (yield: 95%) of the near-infrared absorbing dye [A-172]. As a result of mass spectrometry by TOF-MS, it was identified as a near-infrared absorbing dye [A-172].

近赤外線吸収色素[A−172]

Figure 0006874522
Near infrared absorbing dye [A-172]
Figure 0006874522

(近赤外線吸収色素[A−173]の製造)
近赤外線吸収色素[A−123]の製造で使用した9−フルオレノン46.0部の代わりに、11H−ベンゾ[a]フルオレン−11−オン58.8部を使用した以外は、近赤外線吸収色素[A−123]の製造と同様の操作を行い、近赤外線吸収色素[A−173]94.9部(収率:95%)を得た。TOF−MSによる質量分析の結果、近赤外線吸収色素[A−173]であることを同定した。
(Manufacturing of near-infrared absorbing dye [A-173])
Near-infrared absorbing dye except that 11H-benzo [a] fluoren-11-one 58.8 parts was used in place of 46.0 parts of 9-fluorenone used in the production of the near-infrared absorbing dye [A-123]. The same operation as in the production of [A-123] was carried out to obtain 94.9 parts (yield: 95%) of the near-infrared absorbing dye [A-173]. As a result of mass spectrometry by TOF-MS, it was identified as a near-infrared absorbing dye [A-173].

近赤外線吸収色素[A−173]

Figure 0006874522
Near-infrared absorbing dye [A-173]
Figure 0006874522

(近赤外線吸収色素[A−174]の製造)
近赤外線吸収色素[A−123]の製造で使用した9−フルオレノン46.0部の代わりに、4−アザ−9−フルオレノン46.3部を使用した以外は、近赤外線吸収色素[A−123]の製造と同様の操作を行い、近赤外線吸収色素[A−174]82.1部(収率:94%)を得た。TOF−MSによる質量分析の結果、近赤外線吸収色素[A−174]であることを同定した。
(Manufacturing of near-infrared absorbing dye [A-174])
Near-infrared absorbing dye [A-123], except that 46.3 parts of 4-aza-9-fluorenone was used instead of 46.0 parts of 9-fluorenone used in the production of the near-infrared absorbing dye [A-123]. ] Was carried out in the same manner as in the production of the near-infrared absorbing dye [A-174] to obtain 82.1 parts (yield: 94%). As a result of mass spectrometry by TOF-MS, it was identified as a near-infrared absorbing dye [A-174].

近赤外線吸収色素[A−174]

Figure 0006874522
Near-infrared absorbing dye [A-174]
Figure 0006874522

(近赤外線吸収色素[A−175]の製造)
近赤外線吸収色素[A−123]の製造で使用した9−フルオレノン46.0部の代わりに、4,5−ジアザフルオレン−9−オン46.5部を使用した以外は、近赤外線吸収色素[A−123]の製造と同様の操作を行い、近赤外線吸収色素[A−175]80.2部(収率:91%)を得た。TOF−MSによる質量分析の結果、近赤外線吸収色素[A−175]であることを同定した。
(Manufacturing of near-infrared absorbing dye [A-175])
Near-infrared absorbing dye except that 4,5-diazafluoren-9-one 46.5 parts was used instead of 46.0 parts of 9-fluorenone used in the production of the near-infrared absorbing dye [A-123]. The same operation as in the production of [A-123] was carried out to obtain 80.2 parts (yield: 91%) of the near-infrared absorbing dye [A-175]. As a result of mass spectrometry by TOF-MS, it was identified as a near-infrared absorbing dye [A-175].

近赤外線吸収色素[A−175]

Figure 0006874522
Near-infrared absorbing dye [A-175]
Figure 0006874522

(近赤外線吸収色素[A−176]の製造)
近赤外線吸収色素[A−123]の製造で使用した9−フルオレノン46.0部の代わりに、13H−ベンゾ[g]インデノ[2,1−b]キノキサリン−13−オン72.1部を使用した以外は、近赤外線吸収色素[A−123]の製造と同様の操作を行い、近赤外線吸収色素[A−176]107.1部(収率:96%)を得た。TOF−MSによる質量分析の結果、近赤外線吸収色素[A−176]であることを同定した。
(Manufacturing of near-infrared absorbing dye [A-176])
Instead of 46.0 parts of 9-fluorenone used in the production of the near-infrared absorbing dye [A-123], 13H-benzo [g] indeno [2,1-b] quinoxaline-13-on 72.1 parts was used. The same operation as in the production of the near-infrared absorbing dye [A-123] was carried out except that 107.1 parts (yield: 96%) of the near-infrared absorbing dye [A-176] was obtained. As a result of mass spectrometry by TOF-MS, it was identified as a near-infrared absorbing dye [A-176].

近赤外線吸収色素[A−176]

Figure 0006874522
Near-infrared absorbing dye [A-176]
Figure 0006874522

(近赤外線吸収色素[A−177]の製造)
近赤外線吸収色素[A−123]の製造で使用した1,8−ジアミノナフタレン40.0部の代わりに、4,5−ジアミノナフタレン−1−スルホン酸60.2部を使用した以外は、近赤外線吸収色素[A−123]の製造と同様の操作を行い、近赤外線吸収色素[A−177]99.8部(収率:94%)を得た。TOF−MSによる質量分析の結果、近赤外線吸収色素[A−177]であることを同定した。
(Manufacturing of near-infrared absorbing dye [A-177])
Near-infrared absorbing dye [A-123], except that 40.0 parts of 4,5-diaminonaphthalene-1-sulfonic acid was used instead of 40.0 parts of 1,8-diaminonaphthalene used in the production. The same operation as in the production of the infrared absorbing dye [A-123] was carried out to obtain 99.8 parts (yield: 94%) of the near infrared absorbing dye [A-177]. As a result of mass spectrometry by TOF-MS, it was identified as a near-infrared absorbing dye [A-177].

近赤外線吸収色素[A−177]

Figure 0006874522
Near infrared absorbing dye [A-177]
Figure 0006874522

(近赤外線吸収色素[A−178]の製造)
近赤外線吸収色素[A−123]の製造で使用した1,8−ジアミノナフタレン40.0部の代わりに、4,5−ジアミノナフタレン−1,8−ジスルホン酸80.5部を使用した以外は、近赤外線吸収色素[A−123]の製造と同様の操作を行い、近赤外線吸収色素[A−178]116.4部(収率:92%)を得た。TOF−MSによる質量分析の結果、近赤外線吸収色素[A−178]であることを同定した。
(Manufacturing of near-infrared absorbing dye [A-178])
Except for using 80.5 parts of 4,5-diaminonaphthalene-1,8-disulfonic acid instead of 40.0 parts of 1,8-diaminonaphthalene used in the production of the near-infrared absorbing dye [A-123]. , The same operation as in the production of the near-infrared absorbing dye [A-123] was carried out to obtain 116.4 parts (yield: 92%) of the near-infrared absorbing dye [A-178]. As a result of mass spectrometry by TOF-MS, it was identified as a near-infrared absorbing dye [A-178].

近赤外線吸収色素[A−178]

Figure 0006874522
Near-infrared absorbing dye [A-178]
Figure 0006874522

(近赤外線吸収色素[A−179]の製造)
近赤外線吸収色素[A−123]の製造で使用した1,8−ジアミノナフタレン40.0部の代わりに、1,8−ジアミノ−2,4−ジフルオロナフタレン49.1部を使用した以外は、近赤外線吸収色素[A−123]の製造と同様の操作を行い、近赤外線吸収色素[A−179]89.4部(収率:93%)を得た。TOF−MSによる質量分析の結果、近赤外線吸収色素[A−179]であることを同定した。
(Manufacturing of near-infrared absorbing dye [A-179])
Except for the use of 49.1 parts of 1,8-diamino-2,4-difluoronaphthalene instead of 40.0 parts of 1,8-diaminonaphthalene used in the production of the near-infrared absorbing dye [A-123]. The same operation as in the production of the near-infrared absorbing dye [A-123] was carried out to obtain 89.4 parts (yield: 93%) of the near-infrared absorbing dye [A-179]. As a result of mass spectrometry by TOF-MS, it was identified as a near-infrared absorbing dye [A-179].

近赤外線吸収色素[A−179]

Figure 0006874522
Near infrared absorbing dye [A-179]
Figure 0006874522

(近赤外線吸収色素[A−180]の製造)
近赤外線吸収色素[A−123]の製造で使用した1,8−ジアミノナフタレン40.0部の代わりに、1,8−ジアミノ−3,6−ジクロロナフタレン57.4部を使用した以外は、近赤外線吸収色素[A−123]の製造と同様の操作を行い、近赤外線吸収色素[A−180]97.4部(収率:94%)を得た。TOF−MSによる質量分析の結果、近赤外線吸収色素[A−180]であることを同定した。
(Manufacturing of near-infrared absorbing dye [A-180])
Except for using 57.4 parts of 1,8-diamino-3,6-dichloronaphthalene instead of 40.0 parts of 1,8-diaminonaphthalene used in the production of the near-infrared absorbing dye [A-123]. The same operation as in the production of the near-infrared absorbing dye [A-123] was carried out to obtain 97.4 parts (yield: 94%) of the near-infrared absorbing dye [A-180]. As a result of mass spectrometry by TOF-MS, it was identified as a near-infrared absorbing dye [A-180].

近赤外線吸収色素[A−180]

Figure 0006874522
Near infrared absorbing dye [A-180]
Figure 0006874522

(近赤外線吸収色素[A−181]の製造)
近赤外線吸収色素[A−123]の製造で使用した1,8−ジアミノナフタレン40.0部の代わりに、1,8−ジアミノ−4−ブロモナフタレン59.9部を使用した以外は、近赤外線吸収色素[A−123]の製造と同様の操作を行い、近赤外線吸収色素[A−181]101.7部(収率:96%)を得た。TOF−MSによる質量分析の結果、近赤外線吸収色素[A−181]であることを同定した。
(Manufacturing of near-infrared absorbing dye [A-181])
Near-infrared rays, except that 59.9 parts of 1,8-diamino-4-bromonaphthalene was used instead of 40.0 parts of 1,8-diaminonaphthalene used in the production of the near-infrared absorbing dye [A-123]. The same operation as in the production of the absorbing dye [A-123] was carried out to obtain 101.7 parts (yield: 96%) of the near infrared absorbing dye [A-181]. As a result of mass spectrometry by TOF-MS, it was identified as a near-infrared absorbing dye [A-181].

近赤外線吸収色素[A−181]

Figure 0006874522

Near-infrared absorbing dye [A-181]
Figure 0006874522

(近赤外線吸収色素[A−182]の製造)
近赤外線吸収色素[A−177]20.0部を、水300部に加えて撹拌し再分散した後、26%アンモニア水を用いてpH7.0に調整して溶解させた。この溶液中に8%テトラブチルアンモニウムブロミド水溶液192.6部を徐々に添加した。滴下した箇所から析出物が次々に現れ、添加と共に徐々にpHが低下した。添加終了後にはブリードは見られなかった。スラリーから析出物を濾別した後、水洗して、80℃で乾燥し、近赤外線吸収色素[A−182]30.7部(収率:99%)を得た。
(Manufacturing of near-infrared absorbing dye [A-182])
20.0 parts of the near-infrared absorbing dye [A-177] was added to 300 parts of water, stirred and redispersed, and then the pH was adjusted to 7.0 with 26% aqueous ammonia and dissolved. 192.6 parts of an 8% tetrabutylammonium bromide aqueous solution was gradually added to this solution. Precipitates appeared one after another from the dropped portion, and the pH gradually decreased with the addition. No bleeding was observed after the addition was completed. The precipitate was separated from the slurry by filtration, washed with water, and dried at 80 ° C. to obtain 30.7 parts (yield: 99%) of the near-infrared absorbing dye [A-182].

(近赤外線吸収色素[A−183]の製造)
近赤外線吸収色素[A−182]の製造で使用した8%テトラブチルアンモニウムブロミド水溶液192.6部の代わりに、8%1,2−ジメチル−3−プロピルイミダゾリウムヨージド水溶液159.0部を使用した以外は、近赤外線吸収色素[A−182]の製造と同様の操作を行い、近赤外線吸収色素[A−183]25.8部(収率:98%)を得た。
(Manufacturing of near-infrared absorbing dye [A-183])
Instead of 192.6 parts of the 8% tetrabutylammonium bromide aqueous solution used in the production of the near-infrared absorbing dye [A-182], 159.0 parts of the 8% 1,2-dimethyl-3-propylimidazolium iodide aqueous solution was used. Except for the use, the same operation as in the production of the near-infrared absorbing dye [A-182] was carried out to obtain 25.8 parts (yield: 98%) of the near-infrared absorbing dye [A-183].

(近赤外線吸収色素[A−184]の製造)
近赤外線吸収色素[A−182]の製造で使用した8%テトラブチルアンモニウムブロミド水溶液192.6部の代わりに、8%1−ブチルピリジニウムクロリド水溶液102.5部を使用した以外は、近赤外線吸収色素[A−182]の製造と同様の操作を行い、近赤外線吸収色素[A−184]25.9部(収率:99%)を得た。
(Manufacturing of near-infrared absorbing dye [A-184])
Near-infrared absorption except that 102.5 parts of 8% 1-butylpyridinium chloride aqueous solution was used instead of 192.6 parts of the 8% tetrabutylammonium bromide aqueous solution used in the production of the near-infrared absorbing dye [A-182]. The same operation as in the production of the dye [A-182] was carried out to obtain 25.9 parts (yield: 99%) of the near-infrared absorbing dye [A-184].

(近赤外線吸収色素[A−185]の製造)
近赤外線吸収色素[A−182]の製造で使用した8%テトラブチルアンモニウムブロミド水溶液192.6部の代わりに、8%エチルトリフェニルホスホニウムブロミド水溶液221.8部を使用した以外は、近赤外線吸収色素[A−182]の製造と同様の操作を行い、近赤外線吸収色素[A−185]32.9部(収率:99%)を得た。
(Manufacturing of near-infrared absorbing dye [A-185])
Near-infrared absorption except that 221.8 parts of an 8% ethyltriphenylphosphonium bromide aqueous solution was used instead of 192.6 parts of the 8% tetrabutylammonium bromide aqueous solution used in the production of the near-infrared absorbing dye [A-182]. The same operation as in the production of the dye [A-182] was carried out to obtain 32.9 parts (yield: 99%) of the near-infrared absorbing dye [A-185].

(近赤外線吸収色素[A−186]の製造)
近赤外線吸収色素[A−182]の製造で使用した8%テトラブチルアンモニウムブロミド水溶液192.6部の代わりに、8%トリメチルスルホニウムブロミド水溶液93.8部を使用した以外は、近赤外線吸収色素[A−182]の製造と同様の操作を行い、近赤外線吸収色素[A−186]23.0部(収率:98%)を得た。
(Manufacturing of near-infrared absorbing dye [A-186])
Near-infrared absorbing dye [A-182] except that 93.8 parts of 8% trimethylsulfonium bromide aqueous solution was used instead of 192.6 parts of the 8% tetrabutylammonium bromide aqueous solution used in the production of the near-infrared absorbing dye [A-182]. The same operation as in the production of A-182] was carried out to obtain 23.0 parts (yield: 98%) of the near-infrared absorbing dye [A-186].

(近赤外線吸収色素[A−187]の製造)
近赤外線吸収色素[A−182]の製造で使用した8%テトラブチルアンモニウムブロミド水溶液192.6部の代わりに、8%硫酸アルミニウム水溶液62.8部を使用した以外は、近赤外線吸収色素[A−182]の製造と同様の操作を行い、近赤外線吸収色素[A−187]20.2部(収率:99%)を得た。
(Manufacturing of near-infrared absorbing dye [A-187])
Near-infrared absorbing dye [A-182] except that 62.8 parts of 8% aluminum sulfate aqueous solution was used instead of 192.6 parts of the 8% tetrabutylammonium bromide aqueous solution used in the production of the near-infrared absorbing dye [A-182]. The same operation as in the production of -182] was carried out to obtain 20.2 parts (yield: 99%) of the near-infrared absorbing dye [A-187].

(近赤外線吸収色素[A−188]の製造)
温度計、攪拌機、蒸留管、冷却器を具備した4つ口セパラブルフラスコに、メチルエチルケトン67.3 部を仕込み窒素気流下で75 ℃ に昇温した。別途、メチルメタクリレート33.2部、n−ブチルメタクリレート27.3部、2−エチルヘキシルメタクリレート27.3部、メタクリル酸ジメチルアミノエチルメチルクロライド塩12.2部、2,2'−アゾビス(2,4−ジメチルバレロニトリル)を6.5部、及びメチルエチルケトン25.1部を均一にした後、滴下ロートに仕込み、4つ口セパラブルフラスコに取り付け、2時間かけて滴下した。滴下終了2時間後、固形分から重合収率が98%以上であり、重量平均分子量(Mw)が、7500である事を確認し、50℃へ冷却した。その後、イソプロピルアルコールを72部加え、樹脂成分が40重量%の側鎖に4級アンモニウム塩基を有する樹脂を得た。得られた樹脂のアンモニウム塩価は33mgKOH/gであった。
(Manufacturing of near-infrared absorbing dye [A-188])
67.3 parts of methyl ethyl ketone was placed in a four-neck separable flask equipped with a thermometer, a stirrer, a distillation tube, and a cooler, and the temperature was raised to 75 ° C. under a nitrogen stream. Separately, 33.2 parts of methyl methacrylate, 27.3 parts of n-butyl methacrylate, 27.3 parts of 2-ethylhexyl methacrylate, 12.2 parts of dimethylaminoethylmethyl chloride salt methacrylate, 2,2'-azobis (2,4). -Dimethylvaleronitrile) was made uniform in 6.5 parts and 25.1 parts of methyl ethyl ketone, charged in a dropping funnel, attached to a four-neck separable flask, and added dropwise over 2 hours. Two hours after the completion of the dropping, it was confirmed from the solid content that the polymerization yield was 98% or more and the weight average molecular weight (Mw) was 7500, and the mixture was cooled to 50 ° C. Then, 72 parts of isopropyl alcohol was added to obtain a resin having a quaternary ammonium base in the side chain having a resin component of 40% by weight. The ammonium salt value of the obtained resin was 33 mgKOH / g.

水2000部に51部の上記の側鎖に4級アンモニウム塩基を有する樹脂を添加し、十分に攪拌混合を行った後、60℃に加熱する。一方、90部の水に4.17部の近赤外線吸収色素[A−177]、0.85部の水酸化ナトリウムを溶解させた水溶液を調製し、先ほどの樹脂溶液に少しずつ滴下していく。滴下後、60℃で120分攪拌し、十分に反応を行う。反応の終点確認としては濾紙に反応液を滴下して、にじみがなくなったところを終点として、造塩化合物が得られたものと判断した。攪拌しながら室温まで放冷した後、吸引濾過を行い、水洗後、濾紙上に残った造塩化合物を乾燥機にて水分を除去して乾燥し、22部の近赤外線吸収色素[A−188]を得た。 To 2000 parts of water, 51 parts of a resin having a quaternary ammonium base is added to the side chain, and the mixture is sufficiently stirred and mixed, and then heated to 60 ° C. On the other hand, an aqueous solution prepared by dissolving 4.17 parts of the near-infrared absorbing dye [A-177] and 0.85 parts of sodium hydroxide in 90 parts of water is gradually added dropwise to the resin solution. .. After the dropping, the mixture is stirred at 60 ° C. for 120 minutes to sufficiently react. To confirm the end point of the reaction, it was judged that the salt-forming compound was obtained by dropping the reaction solution onto the filter paper and using the point where the bleeding disappeared as the end point. After allowing to cool to room temperature with stirring, suction filtration is performed, and after washing with water, the salt-forming compound remaining on the filter paper is dried by removing water with a dryer, and 22 parts of the near-infrared absorbing dye [A-188]. ] Was obtained.

<その他色素の製造方法>
(近赤外線吸収色素[F−1]の製造)
特開2005−119262号公報に準拠して下記の近赤外線吸収色素[F−1]を合成した。
<Manufacturing method of other pigments>
(Manufacturing of near-infrared absorbing dye [F-1])
The following near-infrared absorbing dye [F-1] was synthesized in accordance with JP-A-2005-119262.

近赤外線吸収色素[F−1]

Figure 0006874522
Near infrared absorbing dye [F-1]
Figure 0006874522

(近赤外線吸収色素[F−2]の製造)
特開平11−254830公報に準拠して下記の近赤外線吸収色素[F−2]を合成した。
(Manufacturing of near-infrared absorbing dye [F-2])
The following near-infrared absorbing dye [F-2] was synthesized in accordance with JP-A-11-254830.

近赤外線吸収色素[F−2]

Figure 0006874522
Near infrared absorbing dye [F-2]
Figure 0006874522

(近赤外線吸収色素[F−3]の製造)
特開平7−25153号公報に準拠して下記のスクアリリウム[F−3]を合成した。
(Manufacturing of near-infrared absorbing dye [F-3])
The following squarylium [F-3] was synthesized in accordance with JP-A-7-25153.

近赤外線吸収色素[F−3]

Figure 0006874522
Near-infrared absorbing dye [F-3]
Figure 0006874522

<レーザーマーキング用組成物の製造方法>
[実施例1](レーザーマーキング用組成物LM−1)
(10%ポリビニルアルコール水溶液の調製)
1Lビーカー中に、和光純薬工業(株)製のポリビニルアルコール 50部と水 450部を添加し、50℃で30分間加熱攪拌することで、樹脂(D)である10%ポリビニルアルコール水溶液を調製した。
<Manufacturing method of laser marking composition>
[Example 1] (Laser marking composition LM-1)
(Preparation of 10% polyvinyl alcohol aqueous solution)
A 10% polyvinyl alcohol aqueous solution, which is a resin (D), is prepared by adding 50 parts of polyvinyl alcohol and 450 parts of water manufactured by Wako Pure Chemical Industries, Ltd. to a 1 L beaker and heating and stirring at 50 ° C. for 30 minutes. did.

(近赤外線吸収色素[A]分散体の調製)
下記の組成の混合物を均一に撹拌混合した後、直径0.5mmのジルコニアビーズを用いて、アイガーミルで3時間分散した後、0.5μmのフィルタで濾過し、近赤外線吸収色素[A]分散体を作製した。
近赤外線吸収色素[A−1] 4部
(D)10%ポリビニルアルコール溶液 122部
水 74部
(Preparation of near-infrared absorbing dye [A] dispersion)
The mixture having the following composition is uniformly stirred and mixed, dispersed with an Eiger mill for 3 hours using zirconia beads having a diameter of 0.5 mm, and then filtered through a filter of 0.5 μm to obtain a near-infrared absorbing dye [A] dispersion. Was produced.
Near-infrared absorbing dye [A-1] 4 parts (D) 10% polyvinyl alcohol solution 122 parts Water 74 parts

(発色剤[B]分散体の調製)
下記の組成の混合物を均一に撹拌混合した後、直径0.5mmのジルコニアビーズを用いて、アイガーミルで3時間分散した後、0.5μmのフィルタで濾過し、発色剤[B]分散体を作製した。
(B)3,3’−ビス(4−ジメチルアミノフェニル)−6−ジメチルアミノフタリド
60部
(D)10%ポリビニルアルコール溶液 100部
水 40部
(Preparation of color former [B] dispersion)
The mixture having the following composition is uniformly stirred and mixed, dispersed with an Eiger mill for 3 hours using zirconia beads having a diameter of 0.5 mm, and then filtered through a filter of 0.5 μm to prepare a color former [B] dispersion. did.
(B) 3,3'-Bis (4-dimethylaminophenyl) -6-dimethylaminophthalide
60 parts (D) 10% polyvinyl alcohol solution 100 parts Water 40 parts

(顕色剤[C]分散体の調整)
下記の組成の混合物を均一に撹拌混合した後、直径0.5mmのジルコニアビーズを用いて、アイガーミルで3時間分散した後、0.5μmのフィルタで濾過し、顕色剤[C]分散体を作製した。
(C)4−ヒドロキシ−4’−イソプロポキシジフェニルスルホン
40部
(D)10%ポリビニルアルコール溶液 100部
水 60部
(Adjustment of color developer [C] dispersion)
The mixture having the following composition is uniformly stirred and mixed, dispersed with an Eiger mill for 3 hours using zirconia beads having a diameter of 0.5 mm, and then filtered through a filter of 0.5 μm to obtain a developer [C] dispersion. Made.
(C) 4-Hydroxy-4'-isopropoxydiphenyl sulfone
40 parts (D) 10% polyvinyl alcohol solution 100 parts Water 60 parts

(レーザーマーキング用組成物LM−1の調製)
上記方法で製造した分散体を下記の比率で混合し、レーザーマーキング用組成物(LM−1)とした。
近赤外線吸収色素[A]分散体 10部
発色剤[B]分散体 40部
顕色剤[C]分散体 10部
(Preparation of composition LM-1 for laser marking)
The dispersion produced by the above method was mixed at the following ratio to obtain a laser marking composition (LM-1).
Near-infrared absorbing dye [A] dispersion 10 parts Color former [B] dispersion 40 parts Color developer [C] dispersion 10 parts

[実施例2〜228、比較例1〜3]
(レーザーマーキング用組成物 LM−2〜231)
近赤外線吸収色素[A]、発色剤[B]、及び顕色剤[C]の種類と配合量を表1〜表5に示す化合物、質量部に変更した以外は、LM−1と同様にして、レーザーマーキング用組成物 LM−2〜231を得た。
[Examples 2-228, Comparative Examples 1-3]
(Composition for laser marking LM-2 to 231)
Same as LM-1 except that the types and amounts of the near-infrared absorbing dye [A], the coloring agent [B], and the coloring agent [C] were changed to the compounds and parts by mass shown in Tables 1 to 5. The laser marking compositions LM-2 to 231 were obtained.

Figure 0006874522
Figure 0006874522

Figure 0006874522
Figure 0006874522

Figure 0006874522
Figure 0006874522

Figure 0006874522
Figure 0006874522

Figure 0006874522
Figure 0006874522

<レーザーマーキング用組成物の評価>
得られたレーザーマーキング用組成物LM−1〜231について、以下の評価を実施した。結果を表6〜表9に示す。
<Evaluation of composition for laser marking>
The following evaluations were carried out on the obtained laser marking compositions LM-1 to 231. The results are shown in Tables 6-9.

(粘度評価)
得られたレーザーマーキング用組成物について、E型粘度計(東機産業社製「ELD型粘度計」)を用いて、25℃・回転数50rpmにおける粘度を測定した。以下の基準で評価した。
◎:5mPa・s未満
○:5mPa・s以上、10mPa・s未満
△:10mPa・s以上、30mPa・s未満
×:30mPa・s以上
(Viscosity evaluation)
The obtained composition for laser marking was measured for viscosity at 25 ° C. and a rotation speed of 50 rpm using an E-type viscometer (“ELD-type viscometer” manufactured by Toki Sangyo Co., Ltd.). Evaluation was made based on the following criteria.
⊚: Less than 5 mPa · s ○: 5 mPa · s or more and less than 10 mPa · s Δ: 10 mPa · s or more, less than 30 mPa · s ×: 30 mPa · s or more

(保存安定性)
得られたレーザーマーキング用組成物を60℃の恒温機に1週間保存、経時促進させた後、粘度評価と同様にして粘度を測定し、経時前後でのインキの粘度変化率を求めた。以下の基準で評価した。
◎:変化率が±3%未満
○:変化率が±3%以上、±5%未満
△:変化率が±5%以上、±15%未満
×:変化率が±15%以上
(Storage stability)
The obtained laser marking composition was stored in a thermostat at 60 ° C. for 1 week, accelerated over time, and then the viscosity was measured in the same manner as the viscosity evaluation to determine the rate of change in ink viscosity before and after time. Evaluation was made based on the following criteria.
⊚: Change rate is less than ± 3% ○: Change rate is ± 3% or more and less than ± 5% △: Change rate is ± 5% or more and less than ± 15% ×: Change rate is ± 15% or more

(近赤外線吸収能)
得られたレーザーマーキング用組成物を、水で1000倍希釈した後、分光光度計(U−4100 日立ハイテクノロジーズ社製)を用いて300〜1000nmの波長範囲の吸収スペクトルを測定した。その際、UVセルとして、10mm角の石英セルを使用した。本発明の近赤外線吸収色素[A]の極大吸収は、750〜950nmの領域にあり、極大吸収波長における、吸光度により、近赤外線吸収能を下記基準で評価した。同濃度において、極大吸収波長における吸光度が高ければ高いほど、近赤外線吸収能に優れると言える。近赤外線吸収能が高ければ高いほど、効率的にレーザー光を熱へと変換することができるため、レーザーマーキングにおける発色性が向上する。つまりは、近赤外線吸収色素の添加量の削減にも繋がる。
◎:極大吸収波長における吸光度が1.0以上
○:極大吸収波長における吸光度が0.6以上、1.0未満
△:極大吸収波長における吸光度が0.3以上、0.6未満
×:極大吸収波長における吸光度が0.3未満
(Near infrared absorption capacity)
The obtained composition for laser marking was diluted 1000 times with water, and then the absorption spectrum in the wavelength range of 300 to 1000 nm was measured using a spectrophotometer (U-4100, manufactured by Hitachi High-Technologies Corporation). At that time, a 10 mm square quartz cell was used as the UV cell. The maximum absorption of the near-infrared absorbing dye [A] of the present invention is in the region of 750 to 950 nm, and the near-infrared absorbing ability was evaluated based on the absorbance at the maximum absorption wavelength according to the following criteria. At the same concentration, the higher the absorbance at the maximum absorption wavelength, the better the near-infrared absorption capacity. The higher the near-infrared absorbing capacity, the more efficiently the laser light can be converted into heat, so that the color development property in laser marking is improved. In other words, it also leads to a reduction in the amount of the near-infrared absorbing dye added.
⊚: Absorbance at maximum absorption wavelength is 1.0 or more ○: Absorbance at maximum absorption wavelength is 0.6 or more and less than 1.0 Δ: Absorbance at maximum absorption wavelength is 0.3 or more and less than 0.6 ×: Maximum absorption Absorbance at wavelength is less than 0.3

(不可視性)
前記方法にて得られた300〜1000nmの波長範囲の吸収スペクトルを使用して、極大吸収波長の吸光度を1に規格化した際の、「400〜700nmの平均吸光度」により、不可視性を下記基準で評価した。
◎:0.05以下
○:0.05以上、0.075未満
△:0.075以上、0.1未満
×:0.1以上
(Invisibility)
Using the absorption spectrum in the wavelength range of 300 to 1000 nm obtained by the above method, the invisibility is determined by the following criteria based on the "average absorbance at 400 to 700 nm" when the absorbance at the maximum absorption wavelength is standardized to 1. Evaluated in.
⊚: 0.05 or less ○: 0.05 or more and less than 0.075 Δ: 0.075 or more and less than 0.1 ×: 0.1 or more

Figure 0006874522
Figure 0006874522

Figure 0006874522
Figure 0006874522

Figure 0006874522
Figure 0006874522

Figure 0006874522
Figure 0006874522

本発明の近赤外線吸収色素[A]を含むレーザーマーキング用組成物は、非常に優れた粘度、保存安定性、近赤外線吸収能、及び不可視性を示した。一般式(1)で表される近赤外線吸収色素[A]の中では、R〜Rが全て水素原子である近赤外線吸収色素[A−1]〜[A−31]よりも、R〜Rが少なくとも一つ以上環置換されている近赤外線吸収色素[A−32]〜[A−74]の方が、不可視性の観点で特に良好な結果を示した。中でも、一般式(1)中、X及びXがメチル基であり、R〜Rのうち一つが、スルホ基又はSO で置換されており、且つMがアンモニウム塩又は金属塩である[A−42]、[A−68]、[A−69]、[A−74]が極めて良好な結果を示した。また、一般式(2)で表される近赤外線吸収色素[A]の中では、複素環Yが無置換のテトラヒドロピラン環又は無置換のテトラヒドロチオピラン環である[A−75]、[A−79]が極めて良好な結果を示した。また、R16〜R20のうち一つが、スルホ基又はSO で置換されており、且つMがアンモニウム塩又は金属塩である[A−93]、[A−97]、[A−117]、[A−122]も良好な結果を示した。また、一般式(3)で表される近赤外線吸収色素[A]の中では、Q、Q、Q、Qが炭素原子であり、かつX11〜X18、及びR26〜R30が水素原子である[A−123]が極めて良好な結果を示した。また、R26〜R30のうち一つが、スルホ基又はSO で置換されており、且つMがアンモニウム塩、金属塩、又は4級アンモニウム塩基を有する樹脂である[A−177]、[A−182]、[A−187]、[A−188]も良好な結果を示した。 The composition for laser marking containing the near-infrared absorbing dye [A] of the present invention showed excellent viscosity, storage stability, near-infrared absorbing ability, and invisibility. Among the near-infrared absorbing dyes [A] represented by the general formula (1), R is higher than the near-infrared absorbing dyes [A-1] to [A-31] in which R 1 to R 5 are all hydrogen atoms. 1 to R 5 are found the following at least one ring-substituted by which the near infrared absorbing dye [a-32] ~ [a -74], showed particularly good results in terms of invisibility. Among them, in the general formula (1), X 3 and X 7 is a methyl group, one of R 1 to R 5 is a sulfo group or a SO 3 - is substituted with M a +, and M a is ammonium The salts or metal salts [A-42], [A-68], [A-69] and [A-74] showed extremely good results. Further, in the near-infrared absorbing dye [A] represented by the general formula (2), the heterocyclic ring Y is an unsubstituted tetrahydropyran ring or an unsubstituted tetrahydropyran ring [A-75], [A]. -79] showed extremely good results. Further, one of R 16 to R 20 is substituted with a sulfo group or SO 3 - M b + , and M b is an ammonium salt or a metal salt [A-93], [A-97], [A-117] and [A-122] also showed good results. Further, in the near-infrared absorbing dye [A] represented by the general formula (3), Q 1 , Q 4 , Q 5 , and Q 8 are carbon atoms, and X 11 to X 18 and R 26 to R 26. [A-123], in which R 30 is a hydrogen atom, showed extremely good results. In addition, one of R 26 to R 30 is a resin in which a sulfo group or SO 3 - M c + is substituted, and M c has an ammonium salt, a metal salt, or a quaternary ammonium base [A-]. 177], [A-182], [A-187], and [A-188] also showed good results.

本発明のレーザーマーキング用組成物は、粘度・保存安定性が非常に良好であり、これは本発明の近赤外線吸収色素[A]が易分散・易溶解であることに由来している。この一番の要因として、本発明の近赤外線吸収色素[A]は、適切な骨格・置換基を選択することで、適度な(強すぎない)結晶性を付与しているという事が挙げられる。そのため、シアニンやスクアリリウムなどの一般的なπ共役系の色素に見られる、π−πスタッキング、すなわち強い凝集性が緩和されており、易分散性・易溶解性が発現していると考えられる。これらの要因により、本発明の近赤外線吸収色素[A]を使用したレーザーマーキング用組成物は、組成・プロセスに依存せず、インキとしての安定性に優れており、中でも保存安定性が著しく良好であるため、インキの長期保管が可能になる。更に、本発明の近赤外線吸収色素[A]は不可視性・近赤外線吸収能が高く、最適な骨格・置換基を選択することで、より性能が向上することが分かった。本発明の近赤外線吸収色素[A]は、近赤外線吸収能が高いため、効率的な熱変換が可能であり、レーザーマーキング用組成物中の近赤外線吸収色素の添加量削減に繋がる。また、不可視性が高いため、塗工箇所を目視で確認しにくく、レーザー照射前後の色差が大きくなる。つまりは、発色性が向上する事が考えられる。 The composition for laser marking of the present invention has very good viscosity and storage stability, which is derived from the fact that the near-infrared absorbing dye [A] of the present invention is easily dispersed and easily dissolved. The main reason for this is that the near-infrared absorbing dye [A] of the present invention imparts appropriate (not too strong) crystallinity by selecting an appropriate skeleton / substituent. .. Therefore, it is considered that π-π stacking, that is, strong cohesiveness, which is seen in general π-conjugated dyes such as cyanine and squarylium, is relaxed, and easy dispersibility and easy solubility are exhibited. Due to these factors, the composition for laser marking using the near-infrared absorbing dye [A] of the present invention is excellent in stability as an ink regardless of the composition and process, and in particular, the storage stability is remarkably good. Therefore, the ink can be stored for a long period of time. Furthermore, it was found that the near-infrared absorbing dye [A] of the present invention has high invisibility and near-infrared absorbing ability, and the performance is further improved by selecting the optimum skeleton and substituent. Since the near-infrared absorbing dye [A] of the present invention has a high near-infrared absorbing ability, efficient heat conversion is possible, which leads to a reduction in the amount of the near-infrared absorbing dye added to the laser marking composition. In addition, since the invisibility is high, it is difficult to visually confirm the coated portion, and the color difference before and after laser irradiation becomes large. In other words, it is conceivable that the color development property will be improved.

<レーザーマーキング塗工物の製造方法>
[実施例229〜456、比較例4〜6]
(レーザーマーキング塗工物P−1〜231の製造)
得られたレーザーマーキング用組成物LM−1〜221を、普通紙に乾燥塗布量5.0g/mとなるようにバーコーターにてベタ塗工し、60℃で1分間 オーブン乾燥して、塗工物P−1〜231を得た。
<Manufacturing method of laser marking coating>
[Examples 229 to 456, Comparative Examples 4 to 6]
(Manufacturing of laser marking coated products P-1 to 231)
The obtained laser marking composition LM-1 to 221 was solidly coated on plain paper with a bar coater so as to have a dry coating amount of 5.0 g / m 2, and dried in an oven at 60 ° C. for 1 minute. Coated products P-1 to 231 were obtained.

<レーザーマーキング塗工物の評価>
得られたレーザーマーキング塗工物P−1〜231について、以下の評価を実施した。結果を表10〜表13に示す。
<Evaluation of laser marking coating>
The following evaluations were carried out on the obtained laser marking coated products P-1 to 231. The results are shown in Tables 10 to 13.

(発色性)
得られたレーザーマーキング塗工物に、レーザー波長808nm、レーザー走査速度10mm/sec、レーザー出力50mWの条件で、レーザー光を照射し、発色剤由来の、鮮明な線を描画させた。得られた線の発色性を目視で比較し、下記のような基準で評価した。〇以上が実用化に対して十分なレベルで、◎は極めて高濃度の線が描画できており、近赤外線吸収色素の削減が可能である。
◎:濃度が非常に高く、極めて鮮明な線が描画できている。
○:濃度が高く、鮮明な線が描画できている。
△:線が目視で確認できる。
×:濃度が低く、識別が困難である。
(Color development)
The obtained laser marking coating was irradiated with laser light under the conditions of a laser wavelength of 808 nm, a laser scanning speed of 10 mm / sec, and a laser output of 50 mW to draw clear lines derived from a color former. The color development of the obtained lines was visually compared and evaluated according to the following criteria. 〇 and above are sufficient levels for practical use, and ◎ is able to draw extremely high-concentration lines, and it is possible to reduce near-infrared absorbing dyes.
⊚: The density is very high, and extremely clear lines can be drawn.
◯: The density is high and clear lines can be drawn.
Δ: The line can be visually confirmed.
X: The concentration is low and it is difficult to identify.

Figure 0006874522
Figure 0006874522

Figure 0006874522
Figure 0006874522

Figure 0006874522
Figure 0006874522

Figure 0006874522
Figure 0006874522

本発明の近赤外線吸収色素[A]を含むレーザーマーキング用組成物は、非常に優れた発色性を示した。特に、近赤外線吸収色素[A−32]〜[A−188]を含むレーザーマーキング用組成物を使用した塗工物が極めて良好な結果であり、非常に高濃度の線が描画されており、レーザーマーキング用組成物中の近赤外線吸収色素の添加量の削減が容易に可能であると考えられる。 一方で、本発明ではない近赤外線吸収色素の場合、近赤外線吸収色素[F−2]を使用している比較例5以外は、実用化レベルの発色性は得られていない。また、この近赤外線吸収色素[F−2]に関しては、前述の通り、インキとしての粘度や保存安定性に課題があるため、実用化レベルには達していない。本発明のレーザーマーキング用組成物は、「インキとしての安定性」と「光学特性」を両立しており、レーザーマーキングした際の発色性も非常に優れている。特に不可視性にも優れているため、セキュリティ用途への展開も可能である。 The composition for laser marking containing the near-infrared absorbing dye [A] of the present invention showed excellent color development. In particular, the coated product using the laser marking composition containing the near-infrared absorbing dyes [A-32] to [A-188] gave extremely good results, and very high-concentration lines were drawn. It is considered that the amount of the near-infrared absorbing dye added to the laser marking composition can be easily reduced. On the other hand, in the case of the near-infrared absorbing dye which is not the present invention, the color-developing property at a practical level has not been obtained except for Comparative Example 5 in which the near-infrared absorbing dye [F-2] is used. Further, as described above, the near-infrared absorbing dye [F-2] has not reached the practical level because of problems in viscosity and storage stability as ink. The composition for laser marking of the present invention has both "stability as an ink" and "optical characteristics", and is also extremely excellent in color development when laser marking is performed. In particular, it has excellent invisibility, so it can be applied to security applications.

Claims (12)

近赤外線吸収色素[A]、発色剤[B]、顕色剤[C]及び樹脂[D]を含有するレーザーマーキング用組成物であって、
近赤外線吸収色素[A]が、下記一般式(1)で表される化合物(ただし、式中、X およびX からt−C 基を除く)下記一般式(2)で表される化合物及び下記一般式(3)で表される化合物からなる群から選ばれる少なくとも一種の化合物を含有するレーザーマーキング用組成物。
一般式(1)
Figure 0006874522


[一般式(1)中、
〜Rは、それぞれ独立に、水素原子、置換基を有してもよいアルキル基、置換基を有してもよいアリール基、置換基を有してもよいアルコキシ基、置換基を有してもよいアリールオキシ基、スルホ基、SO 、−SONR、−COOR、−CONR10、ニトロ基、シアノ基又はハロゲン原子を表す。
〜X10は、それぞれ独立に、水素原子、置換基を有してもよいアルキル基、置換基を有してもよいアルケニル基、置換基を有してもよいアリール基、置換基を有してもよいアラルキル基、置換基を有してもよいアルコキシ基、置換基を有してもよいアリールオキシ基、アミノ基、置換アミノ基、スルホ基、−SONR1112、−COOR13、−CONR1415、ニトロ基、シアノ基又はハロゲン原子を表す。X〜X10は、置換基同士が結合して環を形成してもよい。
は、無機又は有機のカチオンを表し、R〜R15は、それぞれ独立に、水素原子又は置換基を有してもよいアルキル基を表す。]

一般式(2)
Figure 0006874522


[一般式(2)中、
Yは、置換基を有してもよい複素環を表す。
16〜R20は、それぞれ独立に、水素原子、置換基を有してもよいアルキル基、置換基を有してもよいアリール基、置換基を有してもよいアルコキシ基、置換基を有してもよいアリールオキシ基、スルホ基、SO 、−SONR2122、−COOR23、−CONR2425、ニトロ基、シアノ基又はハロゲン原子を表す。
は、無機又は有機のカチオンを表し、R21〜R25は、それぞれ独立に、水素原子又は置換基を有してもよいアルキル基を表す。]

一般式(3)
Figure 0006874522


[一般式(3)中、
、Q、Q及びQは、それぞれ独立に、炭素原子又は窒素原子を表す。Q、Q、Q又はQが窒素原子の場合、それぞれに結合するX11、X14、X15又はX18はないものとする。
26〜R30は、それぞれ独立に、水素原子、スルホ基、−SO 又はハロゲン原子を表す。M は、無機又は有機のカチオンを表す。
11〜X18は、それぞれ独立に、水素原子、置換基を有してもよいアルキル基、置換基を有してもよいアルケニル基、置換基を有してもよいアリール基、置換基を有してもよいアラルキル基、置換基を有してもよいアルコキシ基、置換基を有してもよいアリールオキシ基、ヒドロキシル基、アミノ基、−NR3132、スルホ基、−SONR3334、−COOR35、−CONR3637、ニトロ基、シアノ基又はハロゲン原子を表す。X11〜X18は、置換基同士が結合して環を形成してもよい。
31〜R37は、それぞれ独立に、水素原子、置換基を有してもよいアルキル基、置換基を有してもよいアリール基、置換基を有してもよいアシル基又は置換基を有してもよいピリジニル基を表す。R31とR32、R33とR34、36とR37は、置換基同士が結合して環を形成してもよい。]
A composition for laser marking containing a near-infrared absorbing dye [A], a coloring agent [B], a developing agent [C], and a resin [D].
The near-infrared absorbing dye [A] is a compound represented by the following general formula (1) (however, excluding X 5 and X 6 to t-C 4 H 9 groups in the formula) represented by the following general formula (2). A composition for laser marking containing at least one compound selected from the group consisting of the above-mentioned compounds and the compounds represented by the following general formula (3).
General formula (1)
Figure 0006874522


[In general formula (1),
R 1 to R 5 independently have a hydrogen atom, an alkyl group which may have a substituent, an aryl group which may have a substituent, an alkoxy group which may have a substituent, and a substituent. an aryloxy group which may have a sulfo group, SO 3 - M a +, -SO 2 NR 6 R 7, -COOR 8, -CONR 9 R 10, a nitro group, a cyano group or a halogen atom.
X 1 to X 10 independently have a hydrogen atom, an alkyl group which may have a substituent, an alkenyl group which may have a substituent, an aryl group which may have a substituent, and a substituent. Aralkyl group which may have, alkoxy group which may have substituent, aryloxy group which may have substituent, amino group, substituted amino group, sulfo group, -SO 2 NR 11 R 12 ,- Represents COOR 13 , -CONR 14 R 15 , nitro group, cyano group or halogen atom. In X 1 to X 10 , the substituents may be bonded to each other to form a ring.
M a + denotes an inorganic or organic cation, R 6 to R 15 each independently represent an alkyl group which may have a hydrogen atom or a substituent. ]

General formula (2)
Figure 0006874522


[In general formula (2),
Y represents a heterocycle which may have a substituent.
R 16 to R 20 independently have a hydrogen atom, an alkyl group which may have a substituent, an aryl group which may have a substituent, an alkoxy group which may have a substituent, and a substituent. an aryloxy group which may have a sulfo group, SO 3 - M b +, -SO 2 NR 21 R 22, -COOR 23, -CONR 24 R 25, a nitro group, a cyano group or a halogen atom.
M b + represents an inorganic or organic cation, and R 21 to R 25 each independently represent an alkyl group which may have a hydrogen atom or a substituent. ]

General formula (3)
Figure 0006874522


[In general formula (3),
Q 1 , Q 4 , Q 5 and Q 8 each independently represent a carbon atom or a nitrogen atom. If Q 1 , Q 4 , Q 5 or Q 8 are nitrogen atoms, it is assumed that there are no X 11 , X 14 , X 15 or X 18 bonded to each.
R 26 to R 30 independently represent a hydrogen atom, a sulfo group, -SO 3 - M c + or a halogen atom. Mc + represents an inorganic or organic cation.
X 11 to X 18 independently have a hydrogen atom, an alkyl group which may have a substituent, an alkenyl group which may have a substituent, an aryl group which may have a substituent, and a substituent. Aralkyl group which may have, alkoxy group which may have substituent, aryloxy group which may have substituent, hydroxyl group, amino group, -NR 31 R 32 , sulfo group, -SO 2 NR Represents 33 R 34 , -COOR 35 , -CONR 36 R 37 , nitro group, cyano group or halogen atom. In X 11 to X 18 , substituents may be bonded to each other to form a ring.
R 31 to R 37 each independently have a hydrogen atom, an alkyl group which may have a substituent, an aryl group which may have a substituent, and an acyl group or a substituent which may have a substituent. Represents a pyridinyl group that may have. In R 31 and R 32 , R 33 and R 34, and R 36 and R 37 , the substituents may be bonded to each other to form a ring. ]
近赤外線吸収色素[A]が、一般式(1)で表される化合物を含有する請求項1に記載のレーザーマーキング用組成物。 The composition for laser marking according to claim 1, wherein the near-infrared absorbing dye [A] contains a compound represented by the general formula (1). 一般式(1)におけるR〜Rの少なくとも1つ以上が、置換基を有してもよいアルキル基、置換基を有してもよいアリール基、置換基を有してもよいアルコキシ基、置換基を有してもよいアリールオキシ基、スルホ基、SO 、−SONR、−COOR、−CONR10、ニトロ基、シアノ基又はハロゲン原子である請求項1又は2に記載のレーザーマーキング用組成物。 At least one or more of R 1 to R 5 in the general formula (1) are an alkyl group which may have a substituent, an aryl group which may have a substituent, and an alkoxy group which may have a substituent. , an optionally substituted aryloxy group, a sulfo group, SO 3 - M a +, -SO 2 NR 6 R 7, -COOR 8, -CONR 9 R 10, a nitro group, a cyano group or a halogen atom The composition for laser marking according to claim 1 or 2. 一般式(1)におけるR〜Rの少なくとも1つ以上が、スルホ基又はSO である請求項1〜3いずれか一項に記載のレーザーマーキング用組成物。 The laser marking composition according to any one of claims 1 to 3 , wherein at least one or more of R 1 to R 5 in the general formula (1) is a sulfo group or SO 3- M a +. 近赤外線吸収色素[A]が、一般式(2)で表される化合物を含有する請求項1に記載のレーザーマーキング用組成物。 The composition for laser marking according to claim 1, wherein the near-infrared absorbing dye [A] contains a compound represented by the general formula (2). 一般式(2)におけるYが、置換基を有してもよい、4員環〜7員環の飽和又は不飽和の複素環である請求項1又は5に記載のレーザーマーキング用組成物。 The laser marking composition according to claim 1 or 5, wherein Y in the general formula (2) is a saturated or unsaturated heterocycle having a 4-membered ring to a 7-membered ring which may have a substituent. 近赤外線吸収色素[A]が、一般式(3)で表される化合物を含有する請求項1に記載のレーザーマーキング用組成物。 The composition for laser marking according to claim 1, wherein the near-infrared absorbing dye [A] contains a compound represented by the general formula (3). 一般式(3)におけるQ、Q、Q及びQが、炭素原子である請求項1又は7に記載のレーザーマーキング用組成物。 The laser marking composition according to claim 1 or 7, wherein Q 1 , Q 4 , Q 5 and Q 8 in the general formula (3) are carbon atoms. レーザーマーキング用組成物の全固形分中、近赤外線吸収色素[A]の含有率が、0.05〜5質量%である請求項1〜8いずれか一項に記載のレーザーマーキング用組成物。 The composition for laser marking according to any one of claims 1 to 8, wherein the content of the near-infrared absorbing dye [A] in the total solid content of the composition for laser marking is 0.05 to 5% by mass. 請求項1〜9いずれか一項に記載のレーザーマーキング用組成物を塗工してなる塗工物。 A coated product obtained by coating the composition for laser marking according to any one of claims 1 to 9. 請求項10記載の塗工物に、レーザー光を照射して記録してなる記録材。 A recording material obtained by irradiating the coated object according to claim 10 with a laser beam and recording the material. 請求項10記載の塗工物に、レーザー光を照射して記録する記録方法。 A recording method for recording by irradiating a coated object according to claim 10 with a laser beam.
JP2017100828A 2017-05-22 2017-05-22 Composition for laser marking and its use Active JP6874522B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017100828A JP6874522B2 (en) 2017-05-22 2017-05-22 Composition for laser marking and its use

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017100828A JP6874522B2 (en) 2017-05-22 2017-05-22 Composition for laser marking and its use

Publications (2)

Publication Number Publication Date
JP2018193516A JP2018193516A (en) 2018-12-06
JP6874522B2 true JP6874522B2 (en) 2021-05-19

Family

ID=64571559

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017100828A Active JP6874522B2 (en) 2017-05-22 2017-05-22 Composition for laser marking and its use

Country Status (1)

Country Link
JP (1) JP6874522B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7195407B2 (en) * 2019-03-20 2022-12-23 富士フイルム株式会社 COMPOSITION, MEMBRANE, OPTICAL FILTER AND MANUFACTURING METHOD THEREOF, SOLID-STATE IMAGE SENSOR, INFRARED SENSOR, AND CAMERA MODULE
JPWO2020196391A1 (en) * 2019-03-28 2020-10-01
JP7315442B2 (en) * 2019-11-29 2023-07-26 山本化成株式会社 Squarylium compound and near-infrared absorbing material containing said compound

Also Published As

Publication number Publication date
JP2018193516A (en) 2018-12-06

Similar Documents

Publication Publication Date Title
DE3045022C2 (en)
JP6874522B2 (en) Composition for laser marking and its use
EP3173249A1 (en) Laser markable compositions and methods to manufacture a packaging therewith
JP6243020B2 (en) Yellow thermochromic dye, ink composition and level indicator
CN107592840A (en) Laser-markable composition, product and file
KR20070090040A (en) Coating compositions for marking substrates
EP3095825B1 (en) Aqueous inkjet inks
EP3063234B1 (en) Red thermochromic dyes and their ink compositions
US10144239B2 (en) Laser markable compositions, articles and documents
JP3271226B2 (en) Phthalide compound, near-infrared absorber using the same, and recording material
TW200916942A (en) Color forming composites capable of multi-colored imaging and associated systems and methods
JP6787249B2 (en) Composition for laser marking and its use
EP3327088A1 (en) A multicolour laser marking method
US5707778A (en) Optical recording medium
JPS62257970A (en) Divinyl compound and color-developing recording material using same
FI102598B (en) recording Material
WO1997016431A1 (en) Triazine derivatives and recording materials prepared therefrom
JP3700183B2 (en) Optical recording medium
JPS6236468A (en) Phthalide derivative and recording medium obtained by using the same
JPS63246279A (en) Thermal recording material
JPH01171980A (en) Heat-sensitive recording material
JPH01157974A (en) Dibinylphthalide compound and coloring recording material using said compound
JPS61165380A (en) Phthalide derivative, prepapation thereof, and recording material using said derivative
JPH0543523A (en) New pentadiene derivative
JPH0257380A (en) Recording material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200204

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20200214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20200214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201006

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210323

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210405

R151 Written notification of patent or utility model registration

Ref document number: 6874522

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151