JP6874337B2 - Container leak inspection device and leak inspection method - Google Patents

Container leak inspection device and leak inspection method Download PDF

Info

Publication number
JP6874337B2
JP6874337B2 JP2016220559A JP2016220559A JP6874337B2 JP 6874337 B2 JP6874337 B2 JP 6874337B2 JP 2016220559 A JP2016220559 A JP 2016220559A JP 2016220559 A JP2016220559 A JP 2016220559A JP 6874337 B2 JP6874337 B2 JP 6874337B2
Authority
JP
Japan
Prior art keywords
containers
pressure
inspection
leak
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016220559A
Other languages
Japanese (ja)
Other versions
JP2018077187A (en
Inventor
正志 青木
正志 青木
修 幡野
修 幡野
聖仁 権藤
聖仁 権藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Seikan Kaisha Ltd
Original Assignee
Toyo Seikan Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Seikan Kaisha Ltd filed Critical Toyo Seikan Kaisha Ltd
Priority to JP2016220559A priority Critical patent/JP6874337B2/en
Priority to US16/343,315 priority patent/US20200182737A1/en
Priority to CN201780069898.XA priority patent/CN109983317A/en
Priority to PCT/JP2017/038916 priority patent/WO2018088247A1/en
Publication of JP2018077187A publication Critical patent/JP2018077187A/en
Application granted granted Critical
Publication of JP6874337B2 publication Critical patent/JP6874337B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Examining Or Testing Airtightness (AREA)

Description

本発明は、容器製造ラインの下流側で、容器のリークを検査する検査装置及び検査方法に関するものである。 The present invention relates to an inspection device and an inspection method for inspecting a leak in a container on the downstream side of a container production line.

合成樹脂製ボトルや缶などの容器製造ラインの下流側では、製造された容器が所定の気密性能を有しているか否を検査するリーク検査が行われている。このようなリーク検査は、検査ヘッドを容器の口部に装着して、密閉状態の容器内に加圧エアを供給することで、容器内に検査圧を付与し、その後一定時間密閉状態を保持して、その間に検出される容器内圧の圧力低下量からリークの有無を判断している。 On the downstream side of the container manufacturing line for synthetic resin bottles and cans, a leak inspection is performed to inspect whether the manufactured container has a predetermined airtightness. In such a leak inspection, an inspection head is attached to the mouth of the container and pressurized air is supplied into the closed container to apply inspection pressure to the inside of the container and then maintain the closed state for a certain period of time. Then, the presence or absence of leakage is determined from the amount of pressure drop in the container internal pressure detected during that period.

下記特許文献1に記載された従来技術では、合成樹脂製のボトルを対象にして、ボトル口部に検査ヘッドを装着し、供給バルブを所定の間だけ開とし供給バルブを閉じた直後のボトル内圧を基準内圧として、その基準内圧が予め規定した第1閾値を超えているか否かをチェックし、その第1閾値を超えている場合は、ボトルのエア密閉状態を一定時間保持し、ボトル内圧の一定時間経過後の基準内圧からの圧力低下量を差圧センサにより計測し、圧力低下量が予め規定した第2閾値を超えていない場合に、そのボトルを良品(リーク無)と判定している。 In the prior art described in Patent Document 1 below, for a bottle made of synthetic resin, an inspection head is attached to the bottle mouth, the supply valve is opened only for a predetermined period, and the internal pressure of the bottle immediately after the supply valve is closed. Is used as the reference internal pressure, and it is checked whether or not the reference internal pressure exceeds the predetermined first threshold value. If the reference internal pressure exceeds the first threshold value, the air-sealed state of the bottle is maintained for a certain period of time to reduce the internal pressure of the bottle. The amount of pressure drop from the reference internal pressure after a certain period of time is measured by a differential pressure sensor, and if the amount of pressure drop does not exceed the predetermined second threshold value, the bottle is judged to be non-defective (no leak). ..

特開2009−109259号公報JP-A-2009-109259

容器製造ラインの下流側では、容器の温度は高温状態から徐々に常温に低下する温度変化が生じる。例えば、合成樹脂製ボトルであれば、ブロー金型から取り出された直後のボトルは、胴部で40〜50℃程の高温になっており、容器製造ライン下流側のリーク検査装置入口では30℃程度になる。その後搬送される過程でボトルの温度は常温(25℃程度)に低下する。 On the downstream side of the container manufacturing line, the temperature of the container changes from a high temperature state to a room temperature gradually. For example, in the case of a synthetic resin bottle, the temperature of the bottle immediately after being taken out from the blow mold is about 40 to 50 ° C at the body, and 30 ° C at the entrance of the leak inspection device on the downstream side of the container manufacturing line. It will be about. After that, the temperature of the bottle drops to room temperature (about 25 ° C.) in the process of being transported.

容器製造ラインの下流側でリーク検査を行う場合には、前述した容器の温度変化を十分に考慮する必要がある。容器の温度が高いと基準内圧からの圧力低下量が小さくなるので、前述したリーク検査における閾値は、容器の温度を考慮した値に設定することが必要になる。 When performing a leak inspection on the downstream side of the container manufacturing line, it is necessary to fully consider the above-mentioned temperature change of the container. Since the amount of pressure decrease from the reference internal pressure becomes small when the temperature of the container is high, it is necessary to set the threshold value in the above-mentioned leak inspection to a value in consideration of the temperature of the container.

リーク検査装置に流れてくるボトル胴部の温度は、連続生産時では前述の30℃程度になるが、容器製造ラインが一時停止し、再スタートする場合は常温付近のボトルが流れてくる場合もある。このため、全ての温度範囲に対応した広い閾値の設定、または、リーク検査装置入口のボトルの温度に応じて、適宜閾値を変更するといった煩雑な調整が必要になり、生産性の高いリーク検査を行うことができない問題があった。 The temperature of the bottle body that flows into the leak inspection device is about 30 ° C as described above during continuous production, but if the container production line is temporarily stopped and restarted, bottles near room temperature may flow. is there. For this reason, it is necessary to set a wide threshold value corresponding to the entire temperature range, or to make complicated adjustments such as changing the threshold value appropriately according to the temperature of the bottle at the inlet of the leak inspection device, so that highly productive leak inspection can be performed. There was a problem that could not be done.

本発明は、このような問題に対処するために提案されたものである。すなわち、本発明は、容器製造ラインの下流側における容器のリーク検査において、容器温度の変化を考慮することなく、高い生産性で高精度のリーク検査を行うこと、などを課題とする。 The present invention has been proposed to address such problems. That is, an object of the present invention is to perform a leak inspection of a container on the downstream side of a container production line with high productivity and high accuracy without considering a change in the container temperature.

このような課題を解決するために、本発明は、以下の構成を具備するものである。
容器製造ラインから整列搬送された容器のうち、複数の容器の口部にそれぞれ検査ヘッドを装着する検査ヘッド装着部と、前記複数の容器それぞれに装着された前記検査ヘッドに、供給圧を同時に送り、密閉された前記複数の容器内の圧力を検査圧にする圧力供給部と、密閉された前記複数の容器内の経時的な圧力変化を検出して、前記複数の容器のリーク判定を行うリーク判定部とを備え、前記リーク判定部は、前記複数の容器の対になる容器内の差圧を検出する差圧センサを備え、該差圧センサの出力に基づいてリーク判定を行うことを特徴とする容器のリーク検査装置。
In order to solve such a problem, the present invention has the following configurations.
Among the containers aligned and conveyed from the container manufacturing line, the supply pressure is simultaneously sent to the inspection head mounting portion that mounts the inspection heads at the mouths of the plurality of containers and the inspection heads that are mounted on the plurality of containers. , A pressure supply unit that uses the pressure in the plurality of sealed containers as an inspection pressure, and a leak that detects a change in pressure over time in the plurality of sealed containers and determines a leak in the plurality of containers. A determination unit is provided, and the leak determination unit is provided with a differential pressure sensor that detects a differential pressure in a pair of the plurality of containers, and makes a leak determination based on the output of the differential pressure sensor. Leak inspection device for containers.

このような特徴を有する容器のリーク検査装置は、容器製造ラインから整列搬送された容器のうち、複数の容器の対になる容器を対象に、容器内の差圧を検出してリーク判定を行う。整列搬送された容器における複数の容器の対になる容器は、容器温度がほぼ等しいので、それらの容器内の差圧を検出することで、容器温度の変化を考慮することなく、生産性が高く高精度のリーク判定を行うことができる。 The leak inspection device for containers having such characteristics detects the differential pressure in the containers and determines the leak for the containers that are aligned and transported from the container production line and are paired with a plurality of containers. .. Since the container temperatures of a pair of multiple containers in the aligned and transported container are almost the same, the productivity is high by detecting the differential pressure in those containers without considering the change in the container temperature. Highly accurate leak judgment can be performed.

また、対になる容器内の差圧は、容器の大小に拘わらず検出される圧力変化の範囲が小さいので、この小さい圧力変化の範囲を差圧センサのフルレンジに対応させることで、微小な圧力変化を高感度で検出することが可能になる。これによっても精度の高いリーク判定を行うことができる。 In addition, since the range of pressure change detected in the paired container is small regardless of the size of the container, a minute pressure can be obtained by making the range of this small pressure change correspond to the full range of the differential pressure sensor. Changes can be detected with high sensitivity. This also makes it possible to perform highly accurate leak determination.

本発明の実施形態に係る容器のリーク検査装置の構成例を示した説明図である。It is explanatory drawing which showed the structural example of the leak inspection apparatus of the container which concerns on embodiment of this invention. 本発明の実施形態に係る容器のリーク検査装置の設置例を示した説明図である。It is explanatory drawing which showed the installation example of the leak inspection apparatus of the container which concerns on embodiment of this invention. 本発明の実施形態に係る容器のリーク検査装置によるリーク有無の判定例を示した説明図である。It is explanatory drawing which showed the determination example of the presence or absence of a leak by the leak inspection apparatus of the container which concerns on embodiment of this invention.

以下、図面を参照して本発明の実施形態を、一対の容器に対してリーク検査を行う場合に基づいて説明する。以下、異なる図における同一符号は同一機能の部位を示しており、各図における重複説明は適宜省略する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings based on the case where a leak inspection is performed on a pair of containers. Hereinafter, the same reference numerals in different figures indicate parts having the same function, and duplicate description in each figure will be omitted as appropriate.

図1に示すように、本発明の実施形態に係る容器のリーク検査装置(以下、リーク検査装置)1は、検査ヘッド装着部2、圧力供給部3、リーク判定部4を備えている。ここで、検査対象となるのは、容器製造ラインから整列搬送されてきた一対の容器W1,W2である。対象の容器W1,W2は、口部を塞ぐことで密閉性を確保できるものであればよく、合成樹脂製ボトル、金属缶、金属ボトル缶、パウチなど、各種の容器を対象とすることができる。そして、本実施形態においては、このリーク検査装置1によって、同時に検査対象となるのは、容器製造ラインから整列搬送された容器のうち、近隣の一対の容器W1,W2であり、これらの容器温度がほぼ同等であることが前提になっている。 As shown in FIG. 1, the container leak inspection device (hereinafter, leak inspection device) 1 according to the embodiment of the present invention includes an inspection head mounting unit 2, a pressure supply unit 3, and a leak determination unit 4. Here, the inspection target is a pair of containers W1 and W2 that have been aligned and conveyed from the container production line. The target containers W1 and W2 may be any container as long as the airtightness can be ensured by closing the mouth, and various containers such as synthetic resin bottles, metal cans, metal bottle cans, and pouches can be targeted. .. Then, in the present embodiment, the leak inspection device 1 simultaneously inspects a pair of neighboring containers W1 and W2 among the containers aligned and conveyed from the container production line, and these container temperatures. Is assumed to be about the same.

検査ヘッド装着部2は、検査対象となる一対の容器W1,W2の口部にそれぞれ検査ヘッド20,21を装着する機能を有する。検査ヘッド20,21は、容器W1,W2の口部をそれぞれ密閉すると共に、圧力供給部3に繋がる圧力供給配管30,31とリーク判定部4に繋がる圧力検出配管40,41の端部が接続されている。これにより、検査ヘッド20(21)が容器W1(W2)の口部に装着されると、その口部が密閉されて、圧力供給配管30(31)と圧力検出配管40(41)の端部が容器W1(W2)内に連通することになる。 The inspection head mounting portion 2 has a function of mounting the inspection heads 20 and 21 on the mouths of the pair of containers W1 and W2 to be inspected, respectively. The inspection heads 20 and 21 seal the mouths of the containers W1 and W2, respectively, and connect the ends of the pressure supply pipes 30 and 31 connected to the pressure supply unit 3 and the pressure detection pipes 40 and 41 connected to the leak determination unit 4. Has been done. As a result, when the inspection head 20 (21) is attached to the mouth of the container W1 (W2), the mouth is sealed and the ends of the pressure supply pipe 30 (31) and the pressure detection pipe 40 (41) are closed. Will communicate with the container W1 (W2).

図1に示した検査ヘッド装着部2の具体的な構成例を説明すると、検査ヘッド装着部2は、検査ヘッド20,21を上昇又は下降操作するためのエアシリンダ22,23を備えている。エアシリンダ22には、エアシリンダを動作するための配管24A,24Bが接続され、エアシリンダ23には、配管24A,24Bからそれぞれ分岐した配管24C,24Dが接続されている。圧力供給源に圧力調整弁26を介して接続されている配管24Eと配管24A,24Bとの間には、流路切り替え弁25が接続されており、流路切り替え弁25を切り替え操作することで、エアシリンダ22,23が作動して検査ヘッド20,21が上昇又は下降する。なお、検査ヘッド20,21を上昇又は下降操作するための機構は前述のエアシリンダに限定されるものでは無く、電動シリンダなどの他のアクチュエータを用いても良い。 Explaining a specific configuration example of the inspection head mounting portion 2 shown in FIG. 1, the inspection head mounting portion 2 includes air cylinders 22 and 23 for raising or lowering the inspection heads 20 and 21. Pipes 24A and 24B for operating the air cylinder are connected to the air cylinder 22, and pipes 24C and 24D branched from the pipes 24A and 24B are connected to the air cylinder 23, respectively. A flow path switching valve 25 is connected between the pipe 24E connected to the pressure supply source via the pressure adjusting valve 26 and the pipes 24A and 24B, and the flow path switching valve 25 can be switched and operated. , The air cylinders 22 and 23 operate to raise or lower the inspection heads 20 and 21. The mechanism for raising or lowering the inspection heads 20 and 21 is not limited to the above-mentioned air cylinder, and other actuators such as an electric cylinder may be used.

圧力供給部3は、一対の容器W1,W2それぞれに装着された検査ヘッド20,21に供給圧を同時に送り、密閉された一対の容器W1,W2内の圧力を検査圧に上昇させる。図1に示したより具体的な構成としては、圧力供給部3は、圧力供給配管30,31に接続される流路切り替え弁32,33を備えている。流路切り替え弁32,33には、圧力調整弁34を介して圧力供給源に接続されている配管35と、そこから分岐した配管36がそれぞれ接続されている。流路切り替え弁32,33を同時に検査ヘッド20,21側に切り替え操作することで、検査ヘッド20,21に供給圧が同時に送られる。その後、所定の時間が経過し容器内圧が検査圧に到達した後、流路切り替え弁32,33が閉側に同時に切り替わり、圧力供給が停止し密閉状態となる。 The pressure supply unit 3 simultaneously sends the supply pressure to the inspection heads 20 and 21 mounted on the pair of containers W1 and W2, respectively, and raises the pressure in the pair of sealed containers W1 and W2 to the inspection pressure. As a more specific configuration shown in FIG. 1, the pressure supply unit 3 includes flow path switching valves 32 and 33 connected to the pressure supply pipes 30 and 31. A pipe 35 connected to the pressure supply source via the pressure adjusting valve 34 and a pipe 36 branched from the pipe 35 are connected to the flow path switching valves 32 and 33, respectively. By simultaneously switching the flow path switching valves 32 and 33 to the inspection heads 20 and 21, the supply pressure is simultaneously sent to the inspection heads 20 and 21. Then, after a predetermined time elapses and the internal pressure of the container reaches the inspection pressure, the flow path switching valves 32 and 33 are simultaneously switched to the closed side, the pressure supply is stopped, and the closed state is established.

圧力供給部3における供給圧の設定は、一対の容器W1,W2内に付与される検査圧に対して高めに設定することが好ましく、供給圧を検査圧より高めに設定することで、一対の容器W1,W2内の加圧時間を短縮することが可能になる。 The supply pressure in the pressure supply unit 3 is preferably set higher than the inspection pressure applied to the pair of containers W1 and W2, and by setting the supply pressure higher than the inspection pressure, the pair It becomes possible to shorten the pressurizing time in the containers W1 and W2.

リーク判定部4は、検査ヘッド20,21によって密閉された一対の容器W1,W2内の経時的な圧力変化を検出して、一対の容器W1,W2のリーク判定を行う。ここでは、リーク判定部4は、一対の容器W1,W2内の差圧を検出する差圧センサ42を備えている。差圧センサ42には、一端が検査ヘッド20,21に接続されている圧力検出配管40,41の他端が接続されている。 The leak determination unit 4 detects a change in pressure over time in the pair of containers W1 and W2 sealed by the inspection heads 20 and 21, and determines the leak of the pair of containers W1 and W2. Here, the leak determination unit 4 includes a differential pressure sensor 42 that detects the differential pressure in the pair of containers W1 and W2. The differential pressure sensor 42 is connected to the other ends of the pressure detection pipes 40 and 41, one end of which is connected to the inspection heads 20 and 21.

図1に示したリーク判定部4のより具体的な構成としては、圧力検出配管40,41の他端が更に分岐して直圧センサ43,44に接続されており、差圧センサ42と直圧センサ43,44とで圧力検出部45が構成されている。直圧センサ43,44は、一対の容器W1,W2それぞれの内圧を直接検出するものであり、圧力検出配管40,44の他端を分岐して直圧センサ43,44に接続することで、差圧センサ42によって検出される一対の容器W1,W2内の差圧と、直圧センサ43,44によって検出される一対の容器W1,W2それぞれの内圧とを同時に検出することができる。 As a more specific configuration of the leak determination unit 4 shown in FIG. 1, the other ends of the pressure detection pipes 40 and 41 are further branched and connected to the direct pressure sensors 43 and 44, and are directly connected to the differential pressure sensor 42. The pressure detection unit 45 is composed of the pressure sensors 43 and 44. The direct pressure sensors 43 and 44 directly detect the internal pressure of each of the pair of containers W1 and W2, and the other ends of the pressure detection pipes 40 and 44 are branched and connected to the direct pressure sensors 43 and 44. The differential pressure in the pair of containers W1 and W2 detected by the differential pressure sensor 42 and the internal pressure of each of the pair of containers W1 and W2 detected by the direct pressure sensors 43 and 44 can be detected at the same time.

また、リーク判定部4は、演算処理部46を備えており、差圧センサ42と直圧センサ43,44の出力が演算処理部46に入力される。演算処理部46は、差圧センサ42と直圧センサ43,44の出力に基づいて、容器W1,W2にリークが有るか否かの判定を行う。 Further, the leak determination unit 4 includes an arithmetic processing unit 46, and the outputs of the differential pressure sensor 42 and the direct pressure sensors 43 and 44 are input to the arithmetic processing unit 46. The arithmetic processing unit 46 determines whether or not there is a leak in the containers W1 and W2 based on the outputs of the differential pressure sensor 42 and the direct pressure sensors 43 and 44.

ここで、リーク判定部4に繋がる圧力検出配管40,41は、圧力供給部3に繋がる圧力供給配管30,31とは分離した状態で、検査ヘッド20,21に接続されている。このように圧力供給配管30,31と圧力検出配管40,41とを分離した状態で検査ヘッド20,21に接続することで流路切り替え弁32,33の動作時に生じるハンチング時間を短縮することができる。 Here, the pressure detection pipes 40 and 41 connected to the leak determination unit 4 are connected to the inspection heads 20 and 21 in a state of being separated from the pressure supply pipes 30 and 31 connected to the pressure supply unit 3. By connecting the pressure supply pipes 30 and 31 and the pressure detection pipes 40 and 41 to the inspection heads 20 and 21 in this way, the hunting time generated during the operation of the flow path switching valves 32 and 33 can be shortened. it can.

図2は、リーク検査装置1の設置例を示している。このリーク検査装置1は、コンベヤなどの搬送装置60によって1列に整列搬送されている容器Wのうち、近隣の一対の容器W1,W2を検査対象とし、容器Wの搬送方向に沿って検査ヘッド20,21を移動しながら、順次容器Wのリーク検査を行う。このため、リーク検査装置1は、搬送装置60の搬送方向に沿ってガイドレール50を設けており、ガイドレール50に沿って検査ヘッド20,21を移動させる移動機構51,52を備えている。 FIG. 2 shows an installation example of the leak inspection device 1. The leak inspection device 1 targets a pair of neighboring containers W1 and W2 among the containers W aligned and conveyed in a row by a transfer device 60 such as a conveyor, and an inspection head is provided along the transfer direction of the containers W. While moving 20 and 21, the leak inspection of the container W is sequentially performed. Therefore, the leak inspection device 1 is provided with a guide rail 50 along the transport direction of the transport device 60, and includes moving mechanisms 51 and 52 for moving the inspection heads 20 and 21 along the guide rail 50.

移動機構51,52は、検査ヘッド20,21を一対の容器W1,W2の搬送に同期して移動すると共に、検査ヘッド20,21を搬送方向とは逆向きに移動する。この移動機構51,52は、検査ヘッド20,21を一対の容器W1,W2に装着した後は、搬送装置60の移動速度と同じ速度で検査ヘッド20,21を移動させ、一対の容器W1,W2から検査ヘッド20,21を離脱した後は初期位置復帰動作に入り、移動速度を速めて搬送方向とは逆向きに検査ヘッド20,21を移動させ、待機状態となる。なお、図示しないが搬送装置60上に容器Wを検出するセンサを配置し、容器Wを検出したタイミングに合わせて、検査ヘッド20,21の容器Wへの装着および移動機構51、52による移動を個別に行う構成としても良い。これにより容器Wのピッチにバラツキがあった場合でも確実に検査ヘッド20、21を容器に装着可能となる。 The moving mechanisms 51 and 52 move the inspection heads 20 and 21 in synchronization with the transport of the pair of containers W1 and W2, and move the inspection heads 20 and 21 in the direction opposite to the transport direction. After the inspection heads 20 and 21 are attached to the pair of containers W1 and W2, the moving mechanisms 51 and 52 move the inspection heads 20 and 21 at the same speed as the moving speed of the transport device 60, and the pair of containers W1 and W1 move. After the inspection heads 20 and 21 are separated from W2, the initial position return operation is started, the moving speed is increased and the inspection heads 20 and 21 are moved in the direction opposite to the transport direction, and the state becomes a standby state. Although not shown, a sensor for detecting the container W is arranged on the transport device 60, and the inspection heads 20 and 21 are attached to the container W and moved by the moving mechanisms 51 and 52 at the timing when the container W is detected. It may be configured individually. As a result, the inspection heads 20 and 21 can be reliably attached to the container even if the pitch of the container W varies.

次に、図3を参照しながら、リーク検査装置1によるリーク検査の方法を説明する。検査の開始は、先ず、検査ヘッド装着部2によって、検査ヘッド20,21を一対の容器W1,W2の口部に装着する(検査ヘッド装着工程)。図2に示した例では、搬送装置60の移動に移動機構51,52の移動を同期させて、流路切り替え弁25の切り替え操作によってエアシリンダ22,23を動作させ、検査ヘッド20,21を下降させる。 Next, a leak inspection method by the leak inspection device 1 will be described with reference to FIG. To start the inspection, first, the inspection head mounting portions 2 mount the inspection heads 20 and 21 on the mouths of the pair of containers W1 and W2 (inspection head mounting step). In the example shown in FIG. 2, the movements of the moving mechanisms 51 and 52 are synchronized with the movement of the transport device 60, the air cylinders 22 and 23 are operated by the switching operation of the flow path switching valve 25, and the inspection heads 20 and 21 are operated. Lower.

検査ヘッド20,21の装着が完了すると、圧力供給部3によって、検査ヘッド20,21に供給圧を同時に送って、容器W1,W2内を加圧し、容器W1,W2内の圧力を検査圧に上昇させる(圧力供給工程)。供給圧の印加は、圧力供給部3における流路切り替え弁32,33の同時切り替えによってなされ、流路切り替え弁32,33を開側に切り替えて供給圧をオンにし、その後、所定の時間が経過した後に流路切り替え弁32,33を閉側に切り替えて供給圧をオフにし、容器内圧を検査圧に保持する。 When the installation of the inspection heads 20 and 21 is completed, the pressure supply unit 3 simultaneously sends the supply pressure to the inspection heads 20 and 21 to pressurize the inside of the containers W1 and W2, and the pressure in the containers W1 and W2 becomes the inspection pressure. Raise (pressure supply process). The supply pressure is applied by simultaneously switching the flow path switching valves 32 and 33 in the pressure supply unit 3, switching the flow path switching valves 32 and 33 to the open side to turn on the supply pressure, and then a predetermined time elapses. After that, the flow path switching valves 32 and 33 are switched to the closed side to turn off the supply pressure, and the container internal pressure is maintained at the inspection pressure.

印加される供給圧は、前述したように、検査圧より高く設定することが好ましく、供給圧を高く設定することで、加圧時間を短縮することが可能になる。検査圧の印加後に所定の平衡期間を設けて、容器W1,W2内の圧力状態を安定させてから、後述のリーク判定工程を行うが、圧力供給配管30,31に対して圧力検出配管40,41を容器W1,W2の2次側に分離させることで、平衡期間の短縮化が可能になる。 As described above, the applied supply pressure is preferably set higher than the inspection pressure, and by setting the supply pressure higher, the pressurization time can be shortened. After applying the inspection pressure, a predetermined equilibrium period is provided to stabilize the pressure state in the containers W1 and W2, and then the leak determination step described later is performed. By separating 41 on the secondary side of the containers W1 and W2, the equilibrium period can be shortened.

その後は、密閉された一対の容器W1,W2内の経時的な圧力変化量を検出して、一対の容器W1,W2のリーク判定を行う(リーク判定工程)。ここでは、差圧センサ42と直圧センサ43,44の出力で圧力変化量を検出している。リーク判定部4は、主として、差圧センサ42によって一対の容器W1,W2内の差圧を検出し、この差圧に基づいてリーク判定を行っており、補助的に、直圧センサ43,44の出力によって、容器W1,W2それぞれの内圧を検出している。直圧センサ43,44は、検査状況に応じては適宜省略することができる。 After that, the amount of pressure change with time in the pair of sealed containers W1 and W2 is detected, and the leak determination of the pair of containers W1 and W2 is performed (leak determination step). Here, the amount of pressure change is detected by the outputs of the differential pressure sensor 42 and the direct pressure sensors 43 and 44. The leak determination unit 4 mainly detects the differential pressure in the pair of containers W1 and W2 by the differential pressure sensor 42, and makes a leak determination based on the differential pressure. As an auxiliary, the direct pressure sensors 43 and 44 The internal pressure of each of the containers W1 and W2 is detected by the output of. The direct pressure sensors 43 and 44 can be omitted as appropriate depending on the inspection situation.

リーク判定工程では、まず、加圧時間が終了した時点での容器W1,W2それぞれの内圧を直圧センサ43、44で測定し、検査圧に達していない場合は大きなリークが有りと判定される。検査圧に達している場合は、検査開始から時間t1経過して検出される圧力(図示A点又はA’点の圧力とC点又はC’点の差圧)と、その後Δt時間経過して、検査開始から時間t2経過して検出される圧力(図示B点又はB’点の圧力とD点又はD’点の差圧)とを比較して、圧力変化量を求める。 In the leak determination step, first, the internal pressures of the containers W1 and W2 at the end of the pressurization time are measured by the direct pressure sensors 43 and 44, and if the inspection pressure is not reached, it is determined that there is a large leak. .. When the inspection pressure is reached, the pressure detected after a lapse of time t1 from the start of the inspection (the pressure difference between the pressure at point A or A'and the pressure at point C or C'in the figure) and then Δt time have elapsed. , The amount of pressure change is determined by comparing the pressure detected after a lapse of time t2 from the start of the inspection (the pressure at point B or B'in the figure and the differential pressure at point D or D').

差圧センサ42の出力によるリーク判定は、図3の差圧のグラフに示すD点又はD’点で検出される差圧からC点又はC’点で検出される差圧を差し引いた値(差圧の圧力変化量)を、設定された閾値と比較し、差圧の圧力変化量が閾値を超えた場合には、容器W1,W2の一方にリークが有ると判定し、閾値を超えない場合は、容器W1,W2の両方にリークが無いと判定する。図3の差圧のグラフには、容器W1,W2の両方にリークが無い場合の差圧の検査波形を実線で示し、容器W1,W2の一方にリークが有る場合の差圧の検査波形を破線で示している。両方の容器W1,W2にリークが無い場合には、差圧の圧力変化量はほぼ0Paになるが、容器W1,W2の一方にリークが有る場合には、差圧の圧力変化量は時間経過と共に大きくなる。 The leak determination based on the output of the differential pressure sensor 42 is a value obtained by subtracting the differential pressure detected at the C point or the C'point from the differential pressure detected at the D point or the D'point shown in the differential pressure graph of FIG. The pressure change amount of the differential pressure) is compared with the set threshold value, and when the pressure change amount of the differential pressure exceeds the threshold value, it is determined that there is a leak in one of the containers W1 and W2, and the threshold value is not exceeded. In this case, it is determined that there is no leak in both the containers W1 and W2. In the graph of the differential pressure in FIG. 3, the inspection waveform of the differential pressure when there is no leak in both the containers W1 and W2 is shown by a solid line, and the inspection waveform of the differential pressure when there is a leak in one of the containers W1 and W2 is shown. It is shown by a broken line. If there is no leak in both containers W1 and W2, the pressure change amount of the differential pressure is almost 0 Pa, but if there is a leak in one of the containers W1 and W2, the pressure change amount of the differential pressure elapses over time. It grows with.

リーク有りの判定がなされた場合に、容器W1,W2のどちら側にリークが有るかは、差圧センサ42の出力の正負によって判断することができる。また、極希なケースではあるが、両方の容器W1,W2に同等のリークがあると、差圧の圧力変化量が閾値を超えないことになる。このようなケースでの誤判定を避けるために、補助的に直圧センサ43,44を設けている。直圧センサ43,44の出力によって、個々の容器W1,W2のリークの有無を判定することができる。 When it is determined that there is a leak, which side of the containers W1 and W2 has the leak can be determined by the positive or negative of the output of the differential pressure sensor 42. Further, although it is an extremely rare case, if there is an equivalent leak in both containers W1 and W2, the pressure change amount of the differential pressure does not exceed the threshold value. In order to avoid erroneous determination in such a case, direct pressure sensors 43 and 44 are provided as auxiliary. The presence or absence of leaks in the individual containers W1 and W2 can be determined by the outputs of the direct pressure sensors 43 and 44.

直圧センサ43,44の出力によるリーク判定は、図3の直圧のグラフに示すA点又はA’点で検出される圧力からB点又はB’点で検出される圧力を差し引いた値を設定された閾値と比較し、閾値を超えた場合にはリークが有ると判定し、閾値を超えない場合はリークが無いと判定する。図3に示すように、直圧の検査波形も、リークが無い場合には、圧力変化量は実線で示すようにほぼ0Paになり、リークがある場合には、圧力変化量は破線で示すように大きな値になる。 The leak determination based on the output of the direct pressure sensors 43 and 44 is the value obtained by subtracting the pressure detected at the point B or B'from the pressure detected at the point A or A'shown in the graph of the direct pressure in FIG. Compared with the set threshold value, if the threshold value is exceeded, it is determined that there is a leak, and if the threshold value is not exceeded, it is determined that there is no leak. As shown in FIG. 3, in the direct pressure inspection waveform, when there is no leak, the pressure change amount is almost 0 Pa as shown by the solid line, and when there is a leak, the pressure change amount is shown by the broken line. Will be a large value.

図3に示すように、流路切り替え弁25を切り替え操作して、検査ヘッド20,21を下降させ、圧力供給工程、リーク判定工程を行った後、検査ヘッド20,21を容器W1,W2から離脱させ、次の一対の容器に対しての検査ヘッド20,21の下降準備をするまでが、一対の容器W1,W2に対しての検査時間になる。 As shown in FIG. 3, the flow path switching valve 25 is switched to lower the inspection heads 20 and 21, and after performing the pressure supply step and the leak determination step, the inspection heads 20 and 21 are moved from the containers W1 and W2. The inspection time for the pair of containers W1 and W2 is until the inspection heads 20 and 21 are prepared for lowering with respect to the next pair of containers.

図2に示した例では、一対の容器W1,W2に検査ヘッド20,21を装着した後、検査ヘッド20,21を、容器W1,W2の搬送に合わせて移動しながら、圧力供給工程とリーク判定工程を行う。そして、リーク判定工程後には、検査ヘッド20,21は、一対の容器W1,W2から離脱されて初期位置に戻し、一対の容器W1,W2の搬送方向とは逆向きに移動速度を速めて移動して、初期位置Fに戻され、待機状態となる。 In the example shown in FIG. 2, after the inspection heads 20 and 21 are attached to the pair of containers W1 and W2, the pressure supply process and the leak occur while the inspection heads 20 and 21 are moved according to the transportation of the containers W1 and W2. Perform the determination process. Then, after the leak determination step, the inspection heads 20 and 21 are separated from the pair of containers W1 and W2 and returned to the initial positions, and move at an increased moving speed in the direction opposite to the transport direction of the pair of containers W1 and W2. Then, the position is returned to the initial position F, and the standby state is set.

このようなリーク検査装置1を用いたリーク検査方法によると、容器製造ラインから整列搬送されてきた容器温度がほぼ等しい一対の容器W1,W2を対象として、それら容器内の差圧によってリーク判定を行うので、容器温度の変化を考慮することなくリーク判定を行うことができる。これにより、容器温度の変化を考慮した閾値の調整などが不要になり、生産性の高いリーク判定が可能になる。 According to the leak inspection method using such a leak inspection device 1, a pair of containers W1 and W2 having substantially the same container temperature, which are aligned and conveyed from the container production line, are subject to leak determination based on the differential pressure in the containers. Therefore, the leak determination can be performed without considering the change in the container temperature. This eliminates the need for adjusting the threshold value in consideration of changes in the container temperature, and enables highly productive leak determination.

また、一対の容器W1,W2内の差圧は、経時的な圧力変化量の絶対値が小さいので、この小さい変化を差圧センサ42のフルレンジに対応させて、高いセンサ感度で圧力変化を検出することができる。これによって、精度の高いリーク判定を実現することができ、極小ピンホールによるリークを見逃さずに検知することが可能になる。 Further, since the absolute value of the pressure change amount over time is small for the differential pressure in the pair of containers W1 and W2, this small change is made to correspond to the full range of the differential pressure sensor 42, and the pressure change is detected with high sensor sensitivity. can do. As a result, highly accurate leak determination can be realized, and leaks due to extremely small pinholes can be detected without being overlooked.

また、図2に示した設置例のように、容器の搬送過程にリーク検査装置1を組み込むことができるので、リーク検査スペースの省スペース化が可能になり、更には、容器搬送過程のタクトタイムを利用したリーク検査が可能になるので、これによっても高い生産性を得ることができる。 Further, as in the installation example shown in FIG. 2, since the leak inspection device 1 can be incorporated in the container transport process, the leak inspection space can be saved, and the tact time of the container transport process can be saved. Since leak inspection using the above is possible, high productivity can also be obtained.

そして、リーク検査装置1は、供給圧を検査圧に対して高く設定することで、加圧時間を短縮しており、圧力供給配管30,31と圧力検査配管40,41を分離して検査ヘッド20,21に接続することで、圧力供給後の平衡期間を短く設定できるので、限られた検査時間の範囲内で、圧力変化量を検出するための経過時間Δtを長く設定することができる。これによって、確実性の高いリーク判定を行うことが可能になる。 The leak inspection device 1 shortens the pressurization time by setting the supply pressure higher than the inspection pressure, and separates the pressure supply pipes 30 and 31 and the pressure inspection pipes 40 and 41 for the inspection head. By connecting to 20 and 21, the equilibrium period after pressure supply can be set short, so that the elapsed time Δt for detecting the pressure change amount can be set long within a limited inspection time range. This makes it possible to perform leak determination with high certainty.

なお、上述したように本発明の実施形態を、近隣の一対の容器W1,W2に対してリーク検査を行う場合について説明したが、3つ以上の容器Wに対してリーク検査を行うことも可能である。その場合、対になる組合せは自由で、例えば3つの容器W1,W2,W3において、対となる組み合わせはW1−W2、W2−W3、或いはW1−W2、W1−W3のいずれでも良い。このように、容器の処理数が増える場合、リーク検査装置の各部(検査ヘッド装着部2、圧力供給部3、リーク判定部4)は容器の処理数に応じて適宜増設される。 As described above, the embodiment of the present invention has been described in the case of performing leak inspection on a pair of neighboring containers W1 and W2, but it is also possible to perform leak inspection on three or more containers W. Is. In that case, the paired combination is free. For example, in the three containers W1, W2, W3, the paired combination may be W1-W2, W2-W3, or W1-W2, W1-W3. In this way, when the number of processed containers increases, each part of the leak inspection device (inspection head mounting unit 2, pressure supply unit 3, leak determination unit 4) is appropriately added according to the number of processed containers.

以上、本発明の実施の形態について図面を参照して詳述してきたが、具体的な構成はこれらの実施の形態に限られるものではなく、本発明の要旨を逸脱しない範囲の設計の変更等があっても本発明に含まれる。また、上述の各実施の形態は、その目的及び構成等に特に矛盾や問題がない限り、互いの技術を流用して組み合わせることが可能である。 Although the embodiments of the present invention have been described in detail with reference to the drawings, the specific configuration is not limited to these embodiments, and the design changes, etc. within the range not deviating from the gist of the present invention, etc. Even if there is, it is included in the present invention. Further, each of the above-described embodiments can be combined by diverting the technologies of each other as long as there is no particular contradiction or problem in the purpose and configuration thereof.

1:リーク検査装置,
2:検査ヘッド装着部,3:圧力供給部,4:リーク判定部,
20,21:検査ヘッド,22,23:エアシリンダ,
24A〜24E,35,36:配管,
25,32,33:流路切り替え弁,26,34:圧力調整弁,
30,31:圧力供給配管,40,41:圧力検出配管,42:差圧センサ,
43,44:直圧センサ,45:圧力検出部,46:演算処理部,
50:ガイドレール,51,52:移動機構,60:搬送装置(コンベヤ),
W1,W2:容器
1: Leak inspection device,
2: Inspection head mounting part, 3: Pressure supply part, 4: Leak judgment part,
20, 21: Inspection head, 22, 23: Air cylinder,
24A-24E, 35, 36: Piping,
25, 32, 33: Flow path switching valve, 26, 34: Pressure regulating valve,
30, 31: Pressure supply piping, 40, 41: Pressure detection piping, 42: Differential pressure sensor,
43, 44: Direct pressure sensor, 45: Pressure detection unit, 46: Arithmetic processing unit,
50: Guide rail, 51, 52: Moving mechanism, 60: Conveyor (conveyor),
W1, W2: Container

Claims (5)

容器製造ラインから整列搬送された容器のうち、複数の容器の口部にそれぞれ検査ヘッドを装着する検査ヘッド装着部と、
前記複数の容器それぞれに装着された前記検査ヘッドに、供給圧を同時に送り、密閉された前記複数の容器内の圧力を検査圧にする圧力供給部と、
密閉された前記複数の容器内の経時的な圧力変化を検出して、前記複数の容器のリーク判定を行うリーク判定部とを備え、
前記リーク判定部は、前記複数の容器の対になる容器内の差圧を検出する差圧センサを備え、該差圧センサの出力に基づいてリーク判定を行い、かつ、前記複数の容器それぞれの内圧を前記差圧と同時に検出する直圧センサを備えることを特徴とする容器のリーク検査装置。
Among the containers lined up and transported from the container manufacturing line, the inspection head mounting part that mounts the inspection head on the mouth of multiple containers, and the inspection head mounting part.
A pressure supply unit that simultaneously sends a supply pressure to the inspection head mounted on each of the plurality of containers and makes the pressure in the plurality of sealed containers the inspection pressure.
It is provided with a leak determination unit that detects a change in pressure over time in the plurality of sealed containers and determines a leak in the plurality of containers.
The leakage determination unit includes a differential pressure sensor for detecting the differential pressure in the container to be paired of the plurality of containers, have rows leakage determination based on the output of the difference pressure sensor, and said plurality of containers each A container leak inspection device including a direct pressure sensor that detects the internal pressure of the container at the same time as the differential pressure.
前記圧力供給部に繋がる圧力供給配管と前記リーク判定部に繋がる圧力検出配管がそれぞれ分離して前記検査ヘッドに接続されていることを特徴とする請求項1に記載された容器のリーク検査装置。 The leak inspection device for a container according to claim 1, wherein the pressure supply pipe connected to the pressure supply unit and the pressure detection pipe connected to the leak determination unit are separated from each other and connected to the inspection head. 前記検査ヘッド装着部は、前記検査ヘッドを前記複数の容器の搬送方向に沿って移動する移動機構を備え、
前記移動機構は、前記複数の容器に装着された前記検査ヘッドを、前記複数の容器の搬送に同期して移動し、検査後に前記複数の容器から離脱した前記検査ヘッドを、前記搬送方向とは逆向きに移動することを特徴とする請求項1又は2に記載された容器のリーク検査装置。
The inspection head mounting portion includes a moving mechanism for moving the inspection head along the transport direction of the plurality of containers.
The moving mechanism moves the inspection head mounted on the plurality of containers in synchronization with the transportation of the plurality of containers, and the inspection head detached from the plurality of containers after the inspection is referred to as the transport direction. The container leak inspection device according to claim 1 or 2 , wherein the container moves in the opposite direction.
容器製造ラインから整列搬送された容器のうち、複数の容器の口部にそれぞれ検査ヘッドを装着する検査ヘッド装着工程と、
前記複数の容器それぞれに装着された前記検査ヘッドに、供給圧を同時に送り、密閉された前記複数の容器内の圧力を検査圧にする圧力供給工程と、
密閉された前記複数の容器内の経時的な圧力変化を検出して、前記複数の容器のリーク判定を行うリーク判定工程とを有し、
前記リーク判定工程では、前記複数の容器の対になる容器内の差圧を検出して、該差圧に基づいてリーク判定を行い、かつ、前記複数の容器それぞれの内圧を、前記差圧と同時に検出することを特徴とする容器のリーク検査方法。
Among the containers lined up and transported from the container manufacturing line, the inspection head mounting process in which the inspection heads are mounted on the mouths of multiple containers,
A pressure supply step in which a supply pressure is simultaneously sent to the inspection heads mounted on the plurality of containers to make the pressure in the plurality of sealed containers the inspection pressure.
It has a leak determination step of detecting a pressure change over time in the plurality of sealed containers and determining a leak of the plurality of containers.
In the leakage determination process, by detecting the differential pressure in the container to be paired of the plurality of containers, have rows leakage determination based on the difference pressure and a plurality of containers each of internal pressure, the differential pressure A container leak inspection method characterized by simultaneous detection.
前記複数の容器に装着した前記検査ヘッドを、前記複数の容器の搬送に同期して移動しながら、前記圧力供給工程と前記リーク判定工程を行い、
前記リーク判定工程の後、前記検査ヘッドを前記複数の容器から離脱して、前記複数の容器の搬送方向とは逆向きに移動させることを特徴とする請求項4に記載された容器のリーク検査方法。
The pressure supply step and the leak determination step are performed while moving the inspection head mounted on the plurality of containers in synchronization with the transportation of the plurality of containers.
The leak inspection of a container according to claim 4 , wherein after the leak determination step, the inspection head is separated from the plurality of containers and moved in a direction opposite to the transport direction of the plurality of containers. Method.
JP2016220559A 2016-11-11 2016-11-11 Container leak inspection device and leak inspection method Active JP6874337B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2016220559A JP6874337B2 (en) 2016-11-11 2016-11-11 Container leak inspection device and leak inspection method
US16/343,315 US20200182737A1 (en) 2016-11-11 2017-10-27 Leakage inspection device for container, leakage inspection method for container, and conveyed container processing device
CN201780069898.XA CN109983317A (en) 2016-11-11 2017-10-27 The leak inspection device and leak test method of container, transport box processing unit
PCT/JP2017/038916 WO2018088247A1 (en) 2016-11-11 2017-10-27 Device for inspecting leak in container, method for inspecting leak, and device for processing transport container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016220559A JP6874337B2 (en) 2016-11-11 2016-11-11 Container leak inspection device and leak inspection method

Publications (2)

Publication Number Publication Date
JP2018077187A JP2018077187A (en) 2018-05-17
JP6874337B2 true JP6874337B2 (en) 2021-05-19

Family

ID=62149166

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016220559A Active JP6874337B2 (en) 2016-11-11 2016-11-11 Container leak inspection device and leak inspection method

Country Status (1)

Country Link
JP (1) JP6874337B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020208681A1 (en) * 2019-04-08 2020-10-15 三菱電機株式会社 Airtightness evaluation device, airtightness assessment method, and refrigeration cycle system
JP2021021566A (en) * 2019-07-24 2021-02-18 株式会社デンソー Differential pressure leak test device
CN114526866A (en) * 2022-02-11 2022-05-24 刘巧平 Gas cylinder air tightness test tool

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5621087B2 (en) * 1973-12-22 1981-05-18
JPS6042411B2 (en) * 1979-09-20 1985-09-21 日本オ−トメ−シヨン機器株式会社 Differential pressure leak detection method and device
JP3422348B2 (en) * 1996-01-16 2003-06-30 株式会社コスモ計器 Leak inspection method and device
JP2004117135A (en) * 2002-09-26 2004-04-15 Gunze Ltd Device and method for detecting leakage
CN101842682B (en) * 2007-10-29 2012-12-26 东洋制罐株式会社 Method and apparatus for inspecting pinhole in synthetic resin bottle
JP4900849B2 (en) * 2009-02-21 2012-03-21 株式会社アスタック Sealability inspection device for seals
JP5358812B2 (en) * 2009-09-09 2013-12-04 キリンテクノシステム株式会社 PET bottle leak inspection device

Also Published As

Publication number Publication date
JP2018077187A (en) 2018-05-17

Similar Documents

Publication Publication Date Title
JP6874337B2 (en) Container leak inspection device and leak inspection method
US8713993B2 (en) Method and apparatus for inspecting pinhole in synthetic resin bottle
JP6967663B2 (en) Methods and equipment for manufacturing containers from thermoplastic materials
US9010175B2 (en) Die coolant system with an integral and automatic leak test
CN109712114A (en) A kind of system and its detection method applied to zipper defects detection
KR20140046418A (en) A detection apparatus for detecting leaks in an air-tight component and a relevant detection process
WO2018088247A1 (en) Device for inspecting leak in container, method for inspecting leak, and device for processing transport container
US9598300B2 (en) Glass product forming machine
JP2009281934A (en) External pressure detection type leak inspection device and leak inspection method using the same
CN102147318A (en) Automatic tightness test device for high-precision seal pipefitting and use method thereof
CN111051041B (en) Method for leak detection in a device for shaping container preforms
JP6354876B1 (en) Transport container processing equipment
CN106908196B (en) A kind of aircraft engine test stand pressure instrumentataion calibrating installation and calibration method
US11679942B2 (en) Method and apparatus for transferring items from and to a transport line
KR102110914B1 (en) Defects detecting method in pipe transferring line
JP5024545B2 (en) Blow molding machine with pinhole inspection function
CN206074186U (en) A kind of gas for carrying out steady testing under open condition to workpiece examines leakage tester
JP4173255B2 (en) Air leak test device
JP5067552B2 (en) Pinhole inspection machine with self-diagnosis function
KR102134440B1 (en) Apparatus and System for treating substrate
KR20220091183A (en) Airtight test apparatus of fuel cell separate plate and airtight test method
JP5067550B2 (en) Pinhole inspection method for plastic bottles
KR102088782B1 (en) Gas supply device
RU2225048C2 (en) Method and automated unit for monitoring fuel element tightness
IT201800006917A1 (en) Procedure for carrying out compression tests on products moving along a conveyor line

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201104

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20201223

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210323

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210405

R150 Certificate of patent or registration of utility model

Ref document number: 6874337

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150