JP6872872B2 - Method of machining a conical surface using a rod-shaped tool - Google Patents
Method of machining a conical surface using a rod-shaped tool Download PDFInfo
- Publication number
- JP6872872B2 JP6872872B2 JP2016182165A JP2016182165A JP6872872B2 JP 6872872 B2 JP6872872 B2 JP 6872872B2 JP 2016182165 A JP2016182165 A JP 2016182165A JP 2016182165 A JP2016182165 A JP 2016182165A JP 6872872 B2 JP6872872 B2 JP 6872872B2
- Authority
- JP
- Japan
- Prior art keywords
- rod
- shaped tool
- conical surface
- shaped
- roughing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims description 32
- 238000003754 machining Methods 0.000 title claims description 8
- 238000007730 finishing process Methods 0.000 claims description 24
- 238000005452 bending Methods 0.000 claims description 8
- 238000003672 processing method Methods 0.000 claims description 3
- 238000003825 pressing Methods 0.000 claims 2
- 230000000694 effects Effects 0.000 description 6
- 229910003460 diamond Inorganic materials 0.000 description 3
- 239000010432 diamond Substances 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000004070 electrodeposition Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000007790 scraping Methods 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
Images
Landscapes
- Milling Processes (AREA)
Description
本発明は、棒状工具を用いた円錐面の加工方法に関し、特にその円錐面における削り跡の改善に関する。 The present invention relates to a method for processing a conical surface using a rod-shaped tool, and particularly to an improvement in shaving marks on the conical surface.
従来より、棒状工具として、小径のエンドミルを用いてワークを切削することが知られている。エンドミルの直径が小さくなればなるほど、先端の振動や撓みが生じやすくなる。 Conventionally, it has been known to cut a workpiece using a small-diameter end mill as a rod-shaped tool. The smaller the diameter of the end mill, the more likely it is that the tip will vibrate or bend.
技術の進歩により、エンドミルの直径をますます小さくすることができるようになり(例えば、特許文献1参照)、この極小径エンドミルによって光学部品の成形用の金型等の表面を加工することができるようになっている。例えば、図4に示すような、発光ダイオードの台部分を成形するための金型2の円錐面3を加工することが行われている。
Advances in technology have made it possible to reduce the diameter of end mills (see, for example, Patent Document 1), and this ultra-small diameter end mill can process the surface of dies and the like for molding optical parts. It has become like. For example, as shown in FIG. 4, the
しかしながら、極細のエンドミルを用いた円錐面の加工方法では、従来は、エンドミルを自転させると共に送り方向を金型中心の円周方向とし、上下に徐々に移動させながらテーパ状の円錐面の加工を行っていた(円周加工)。 However, in the method of processing a conical surface using an ultra-fine end mill, conventionally, the end mill is rotated and the feed direction is set to the circumferential direction of the center of the mold, and the tapered conical surface is processed while gradually moving up and down. I was doing (circumferential processing).
すると、エンドミルのワークに対する接触部は点当たりとなるため、こすれたような状態となることから安定した加工を行うことが難しく、テーパ状の円錐面には、金型中心を円の中心とした波紋状の切削跡が発生する。例えば、算術平均粗さRa=0.63μmの切削跡が残り、この金型を使用してリフレクタを成型すると、光学部品としての品質面で問題が生じる可能性がある。 Then, since the contact portion of the end mill with respect to the workpiece becomes a point contact, it becomes difficult to perform stable machining because it becomes a rubbing state, and the center of the mold is set as the center of the circle on the tapered conical surface. Rippled cutting marks are generated. For example, a cutting mark having an arithmetic mean roughness Ra = 0.63 μm remains, and if a reflector is molded using this mold, there is a possibility that a problem may occur in terms of quality as an optical component.
エンドミルは、半径方向への力に対して撓みやすいが、軸方向の力に対しては強いので、テーパ状の円錐面に沿って上下に移動させながら回転するエンドミルによって切削することも考えられる。しかし、この場合でも、極細のエンドミルを用いるので、切削時の反力による撓みが生じる。 Since the end mill tends to bend with respect to a force in the radial direction but is strong against a force in the axial direction, it is conceivable to cut with an end mill that rotates while moving up and down along a tapered conical surface. However, even in this case, since an ultra-fine end mill is used, bending occurs due to a reaction force during cutting.
具体的には、図5に示すように、エンドミル1の回転力F1と、工具の送り力F2との合力F3を加えながら、荒加工などの前工程による上下に延びる突条5を含む削り跡を削ってその削り跡をなくす仕上げ加工が行われる。この削り跡を削るときの反力F4(図5に破線で示す)によってエンドミル1が回転方向と反対側に大きく撓み、削り跡を綺麗に削り取れないという問題がある。この問題は、先端に電着ダイヤなどの砥石が設けられた小径の棒状工具でも同じである。
Specifically, as shown in FIG. 5, while applying the resultant force F3 between the rotational force F1 of the
本発明は、かかる点に鑑みてなされたものであり、その目的とするところは、極小径の棒状工具によって円錐面を削る場合であっても、表面に削り跡をできるだけ残さないようにすることにある。 The present invention has been made in view of this point, and an object of the present invention is to make as little shaving marks as possible on the surface even when shaving a conical surface with a rod-shaped tool having an extremely small diameter. It is in.
上記の目的を達成するために、この発明では、円錐面を上下に送りながら削る場合に、本来の送り方向よりも若干シフトした位置で棒状工具を上下に送るようにした。 In order to achieve the above object, in the present invention, when shaving the conical surface while feeding it up and down, the rod-shaped tool is fed up and down at a position slightly shifted from the original feeding direction.
具体的には、第1の発明では、棒状工具を用いた円錐面の加工方法を前提とし、
上記加工方法は、
回転する上記棒状工具をワークの円錐面の円周方向に順次所定の間隔を空けて移動しながら高さ方向に送って荒加工を繰り返す荒加工工程と、
上記荒加工工程によって上記円錐面に残る高さ方向に延びる溝状の切削跡に対して該溝状の切削跡の幅方向中心に対して回転する上記棒状工具を円周方向に若干シフトした送り方向に沿って送りながら切削を行う仕上げ加工を、円周方向に移動して位置を変更しながら順次繰り返す仕上げ加工工程とを含む。
Specifically, in the first invention, a method of machining a conical surface using a rod-shaped tool is premised.
The above processing method is
A roughing process in which the rotating rod-shaped tool is sequentially moved in the circumferential direction of the conical surface of the work at predetermined intervals and sent in the height direction to repeat roughing.
The rod-shaped tool that rotates with respect to the groove-shaped cutting mark extending in the height direction remaining on the conical surface by the roughing step with respect to the width direction center of the groove-shaped cutting mark is slightly shifted in the circumferential direction. It includes a finishing process in which cutting is performed while feeding along a direction, and a finishing process in which the cutting is sequentially repeated while moving in the circumferential direction and changing the position.
上記の構成によると、エンドミルや先端に電着ダイヤが設けられた棒状工具を用いて円錐面を切削又は研削する場合に高さ方向に送りながら荒加工すると高さ方向に溝状の切削跡が残るが、仕上げ工程でその切削跡が低減される。その際に、棒状工具を切削跡の幅方向中心から敢えてシフトさせることで、棒状工具に加わる力を調整し、通常よりも棒状工具が撓まないようにすることができる。なお、棒状工具は、エンドミルなどの切削工具だけでなく、先端に砥石が設けられた研削工具を含む。 According to the above configuration, when cutting or grinding a conical surface using an end mill or a rod-shaped tool provided with an electrodeposited diamond at the tip, rough cutting while feeding in the height direction produces groove-shaped cutting marks in the height direction. Although it remains, the cutting marks are reduced in the finishing process. At that time, by intentionally shifting the rod-shaped tool from the center of the cutting mark in the width direction, the force applied to the rod-shaped tool can be adjusted so that the rod-shaped tool does not bend more than usual. The rod-shaped tool includes not only a cutting tool such as an end mill but also a grinding tool provided with a grindstone at the tip.
第2の発明では、第1の発明において、
上記仕上げ加工工程において、上記溝状の切削跡における上記棒状工具の回転方向側の取り代が減るように回転方向と反対側に上記棒状工具をシフトする。
In the second invention, in the first invention,
In the finishing process, the rod-shaped tool is shifted to the side opposite to the rotation direction so that the allowance on the rotation direction side of the rod-shaped tool in the groove-shaped cutting mark is reduced.
上記の構成によると、回転方向側の取り代が減っているので、切削跡の幅方向中心で切削する場合に比べ、棒状工具に加わる回転力と送り力との合力に対して生じる反力も小さくなる。その結果として棒状工具のたわみ量が低減される。 According to the above configuration, the allowance on the rotation direction side is reduced, so the reaction force generated with respect to the resultant force of the rotational force and the feed force applied to the rod-shaped tool is smaller than when cutting at the center of the cutting mark in the width direction. Become. As a result, the amount of deflection of the rod-shaped tool is reduced.
第3の発明では、第1又は第2の発明において、
上記荒加工工程において、次の荒加工位置に移動する前に、上記仕上げ加工工程においてシフトした位置で削り始めとなる上記円錐面の上端のみ削っておく。
In the third invention, in the first or second invention,
In the roughing process, only the upper end of the conical surface, which starts to be cut at the shifted position in the finishing process, is cut before moving to the next roughing position.
上記の構成によると、仕上げ加工における削り始めは、切削位置のシフトによる撓み防止効果が得られないので、荒加工において予め削り始めを削っておくことで、棒状工具の削り始めにおける、棒状工具の形状ガイド機能を持たせておくことができ、削り始めの棒状工具の撓みも防止することができる。 According to the above configuration, the effect of preventing bending due to the shift of the cutting position cannot be obtained at the start of cutting in the finishing process. Therefore, by cutting the start of cutting in advance in roughing, the rod-shaped tool can be used at the beginning of cutting. The shape guide function can be provided, and the bending of the rod-shaped tool at the start of cutting can be prevented.
第4の発明では、第1から第3のいずれか1つの発明において、
上記仕上げ加工工程におけるシフト量を被切削抵抗と切込量と送り量との積から算出する。
In the fourth invention, in any one of the first to third inventions,
The shift amount in the finishing process is calculated from the product of the resistance to be cut, the depth of cut, and the feed amount.
上記の構成によると、棒状工具の剛性から棒状工具の撓みを推定してシフト量が設定される。 According to the above configuration, the shift amount is set by estimating the deflection of the rod-shaped tool from the rigidity of the rod-shaped tool.
以上説明したように、本発明によれば、荒加工による切削跡の幅方向中心に対して若干シフトした位置で回転する棒状工具を高さ方向に送って切削を行うことにより、極小径の棒状工具によって円錐面を削る場合であっても、表面に削り跡をできるだけ残さないようにすることができる。 As described above, according to the present invention, a rod-shaped tool that rotates at a position slightly shifted with respect to the center of the width direction of the cutting mark due to rough machining is sent in the height direction to perform cutting, thereby forming a rod shape having an extremely small diameter. Even when cutting a conical surface with a tool, it is possible to leave as few shaving marks on the surface as possible.
以下、本発明の実施形態を図面に基づいて説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
図1〜図4は、本発明の実施形態の棒状工具としてのエンドミル1を用いた円錐面2の加工の様子を示す。エンドミル1としては、特許文献1のような直径2mm程度の極小径のものについて説明するが、それよりも外径の小さいものや大きいものであってもよい。ワークとして例えば、発光ダイオードの台を成形するための金型2(例えば図4に示す)を例に説明する。
1 to 4 show a state of processing the
具体的には、本実施形態のエンドミル1を用いた円錐面2の加工方法では、まず、荒加工工程において、回転するエンドミル1を金型2の円錐面3の円周方向に順次所定の間隔を空けて移動して位置を変更しながら高さ方向(送り方向を矢印Gで示す)に送って荒加工を繰り返す。この円周方向の間隔は、例えば、円錐面3の全周360°を等分に割り切るように設定する。例えば、1周目に40°ずつに9分割して切削し、次は、そのちょうど半分の20°の位置で等分割し、徐々に間隔を狭めた位置にずらしながら高さ方向に送って切削を行う。図2に示すように、エンドミル1で円錐面3を切削すると、切削後の円錐面3には、溝状の切削跡4が形成され、溝状の切削跡4の両側に突条5が形成される。円周方向にずらしながら高さ方向にエンドミル1を送っていくことで、分割数に応じた縦線の突条5が生じる。
Specifically, in the method of processing the
この荒加工工程において、図2に破線で示すように、次の荒加工位置に移動する前に、後述する仕上げ加工工程においてシフトした位置で削り始めとなる円錐面3の上端のみを削っておいてもよい。すなわち、仕上げ加工における削り始めは、シフトによる撓み防止効果が得られないので、荒加工において予め削り始めを削っておくことで、棒状工具の削り始めにおける、棒状工具の形状ガイド機能を持たせておくことができ、削り始めのエンドミル1の撓みも防止することができる。
In this roughing process, as shown by the broken line in FIG. 2, before moving to the next roughing position, only the upper end of the
次いで、仕上げ加工工程において、荒加工工程によって円錐面3に残る高さ方向に延びる溝状の切削跡4に対し、溝状の切削跡4の幅方向中心に対して回転するエンドミル1を円周方向に若干シフトした送り方向に沿って送りながら切削を行う。この仕上げ加工を、荒工程と同様に円周方向に移動して位置を変更しながら順次繰り返す。この仕上げ加工工程において、エンドミル1の回転方向側の取り代が減るように回転方向と反対側にエンドミル1をシフトする。図面では、切削跡4を誇張して書いているが、実際には、取り代は2μm程度であり、突条5もそれほど大きく突出していない。このシフト量Sは、例えば、被切削抵抗と切込量と送り量との積から算出する。すなわち、エンドミル1の剛性からエンドミル1の撓みを推定し、シフト量S(実際には角度の値)として設定される。これは実際に想定したシフト量Sで効果を確認して経験的に求めてもよい。
Next, in the finishing process, the
このように、円錐面3を研削する場合に高さ方向に送りながら荒加工すると高さ方向に溝状の切削跡4が残るが、仕上げ工程でその切削跡4が低減される。その際に、エンドミル1を切削跡4の幅方向中心から敢えてシフト量Sだけ位置変更しているので、通常よりもエンドミル1が撓まないようにすることができる。すなわち、回転方向側の取り代が減っており、逆に回転方向と反対側の取り代が増えているので、エンドミル1に加わる回転力F1と送り力F2との合力F3に対して生じる反力F4を受けるが、その力は、回転方向と反対側の取り代を削るときの反力によって打ち消されて小さくなる。言い換えれば、回転方向側の取り代を減らすことで、その負荷を減少させ、回転方向反対側の取り代を増やすことで、その負荷によるバックアップ効果が得られる。このため、エンドミル1のたわみ量が格段に低減される。
As described above, when the
実際にこのシフト方式で切削を行った場合の円錐面3の表面荒さを計測したところ、従来の円周方向に公転させながら徐々に高さ方向に研削していく方法(円周加工方法)でRa=0.63μmであったのが、Ra=0.01μmとなり、極めて大きな効果が得られることを確認できた。
When the surface roughness of the
したがって、本実施形態に係るエンドミル1を用いた円錐面3の加工方法によると、極小径のエンドミル1によって円錐面3を削る場合であっても、表面に削り跡をできるだけ残さないようにすることができる。
Therefore, according to the method for processing the
(その他の実施形態)
本発明は、上記実施形態について、以下のような構成としてもよい。
(Other embodiments)
The present invention may have the following configuration with respect to the above embodiment.
すなわち、上記実施形態では、ワークとして、発光ダイオードの台を成形するための金型2を例に説明したが、このような金型2でなくても、少なくとも円錐面3の加工面を有するものであれば特に限定されない。
That is, in the above embodiment, as the work, the
なお、以上の実施形態は、本質的に好ましい例示であって、本発明、その適用物や用途の範囲を制限することを意図するものではない。 It should be noted that the above embodiments are essentially preferable examples, and are not intended to limit the scope of the present invention, its applications and applications.
すなわち、上記実施形態では、棒状工具は、エンドミルとしているが、例えば、電着ダイヤが先端に設けられた直径0.05mmほどの研削工具でもよい。この研削工具を用いて研削する場合でも同様の作用効果が得られる。 That is, in the above embodiment, the rod-shaped tool is an end mill, but for example, a grinding tool having an electrodeposition diamond at the tip and having a diameter of about 0.05 mm may be used. The same effect can be obtained even when grinding using this grinding tool.
1 エンドミル(棒状工具)
2 LED用金型(ワーク)
3 円錐面
4 溝状の切削跡
5 突条
1 End mill (rod-shaped tool)
2 LED mold (work)
3 Conical surface
4 Groove-shaped cutting marks
5 ridges
Claims (4)
回転する上記棒状工具をワークの円錐面の円周方向に順次間隔を空けて位置を変更しながら高さ方向に送って荒加工を繰り返す荒加工工程と、
上記荒加工工程によって上記円錐面に残る高さ方向に延びる溝状の切削跡に対して該溝状の切削跡の幅方向中心に対し、上記棒状工具の軸方向中心を円周方向に対して位置変更し、回転方向側の取り代を減らし、回転方向と反対側の取り代を増やし、該棒状工具に加わる回転力と送り力の合力に対して生じる反力を打ち消して該棒状工具の撓みを抑制しながら回転する上記棒状工具を高さ方向に送って切削を行う仕上げ加工を、円周方向に移動して位置を変更しながら順次繰り返す仕上げ加工工程とを含む
ことを特徴とする棒状工具を用いた円錐面の加工方法。 In the method of machining a conical surface using a rod-shaped tool, which processes the tapered conical surface of the work while pressing the rod-shaped tool in the axial direction.
A roughing process in which the above-mentioned rotating rod-shaped tool is sequentially sent in the height direction while changing the position at intervals in the circumferential direction of the conical surface of the work to repeat roughing.
With respect to the groove-shaped cutting mark extending in the height direction remaining on the conical surface by the roughing step, the axial center of the rod-shaped tool is relative to the circumferential direction with respect to the width direction center of the groove-shaped cutting mark. The position is changed, the allowance on the rotation direction side is reduced, the allowance on the side opposite to the rotation direction is increased, and the reaction force generated with respect to the resultant force of the rotational force and the feed force applied to the rod-shaped tool is canceled and the rod-shaped tool is bent. A rod-shaped tool characterized in that the finishing process of sending the above-mentioned rod-shaped tool that rotates while suppressing the above-mentioned is sent in the height direction to perform cutting is sequentially repeated while moving in the circumferential direction and changing the position. Method of processing a conical surface using.
回転する上記棒状工具をワークの円錐面の円周方向に順次間隔を空けて位置を変更しながら高さ方向に送って荒加工を繰り返す荒加工工程と、
上記荒加工工程によって上記円錐面に残る高さ方向に延びる溝状の切削跡に対して該溝状の切削跡の幅方向中心に対して若干シフトした位置で回転する上記棒状工具を高さ方向に送って切削を行う仕上げ加工を、円周方向に移動して位置を変更しながら順次繰り返す仕上げ加工工程とを含み、
上記仕上げ加工工程において、上記溝状の切削跡における上記棒状工具の回転方向側の取り代が減るように、かつ上記棒状工具の撓み具合から該棒状工具が撓む方向とは逆に力がかかるように、該溝状の切削跡の幅方向中心から回転方向と反対側に上記棒状工具をシフトするように構成されており、
上記棒状工具のシフト量は、該棒状工具の剛性から該棒状工具の撓みを推定することにより決定される
ことを特徴とする棒状工具を用いた円錐面の加工方法。 In the method of machining a conical surface using a rod-shaped tool, which processes the tapered conical surface of the work while pressing the rod-shaped tool in the axial direction.
A roughing process in which the above-mentioned rotating rod-shaped tool is sequentially sent in the height direction while changing the position at intervals in the circumferential direction of the conical surface of the work to repeat roughing.
The rod-shaped tool that rotates at a position slightly shifted with respect to the center of the groove-shaped cutting mark in the width direction with respect to the groove-shaped cutting mark extending in the height direction remaining on the conical surface by the roughing step in the height direction. Including a finishing process in which the finishing process of sending to and cutting is repeated in sequence while moving in the circumferential direction and changing the position.
In the finishing process, a force is applied so as to reduce the allowance on the rotation direction side of the rod-shaped tool in the groove-shaped cutting mark, and the force is applied in the direction opposite to the bending direction of the rod-shaped tool due to the degree of bending of the rod-shaped tool. As described above, the rod-shaped tool is configured to shift from the center of the groove-shaped cutting mark in the width direction to the side opposite to the rotation direction.
A method for machining a conical surface using a rod-shaped tool, wherein the shift amount of the rod-shaped tool is determined by estimating the deflection of the rod-shaped tool from the rigidity of the rod-shaped tool.
回転する上記棒状工具をワークの円錐面の円周方向に順次間隔を空けて位置を変更しながら高さ方向に送って荒加工を繰り返す荒加工工程と、
上記荒加工工程によって上記円錐面に残る高さ方向に延びる溝状の切削跡に対して該溝状の切削跡の幅方向中心に対して若干シフトした位置で回転する上記棒状工具を高さ方向に送って切削を行う仕上げ加工を、円周方向に移動して位置を変更しながら順次繰り返す仕上げ加工工程とを含み、
上記荒加工工程において、次の荒加工位置に移動する前に、上記仕上げ加工工程においてシフトした位置で削り始めとなる上記円錐面の上端のみ削っておく
ことを特徴とする棒状工具を用いた円錐面の加工方法。 In the method of machining a conical surface using a rod-shaped tool,
A roughing process in which the above-mentioned rotating rod-shaped tool is sequentially sent in the height direction while changing the position at intervals in the circumferential direction of the conical surface of the work to repeat roughing.
The rod-shaped tool that rotates at a position slightly shifted with respect to the center of the groove-shaped cutting mark in the width direction with respect to the groove-shaped cutting mark extending in the height direction remaining on the conical surface by the roughing step in the height direction. Including a finishing process in which the finishing process of sending to and cutting is repeated in sequence while moving in the circumferential direction and changing the position.
In the roughing process, a cone using a rod-shaped tool is characterized in that only the upper end of the conical surface, which starts to be cut at the shifted position in the finishing process, is cut before moving to the next roughing position. Surface processing method.
上記仕上げ加工工程におけるシフト量を被切削抵抗と切込量と送り量との積から算出する
ことを特徴とする棒状工具を用いた円錐面の加工方法。 In the method for processing a conical surface using the rod-shaped tool according to any one of claims 1 to 3.
Method for processing a conical surface with a rod-shaped tool, characterized in that the output product or we calculated the amount of feed and the cutting resistance and the depth of cut a shift amount in the finishing process.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016182165A JP6872872B2 (en) | 2016-09-16 | 2016-09-16 | Method of machining a conical surface using a rod-shaped tool |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016182165A JP6872872B2 (en) | 2016-09-16 | 2016-09-16 | Method of machining a conical surface using a rod-shaped tool |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2018043336A JP2018043336A (en) | 2018-03-22 |
JP6872872B2 true JP6872872B2 (en) | 2021-05-19 |
Family
ID=61692284
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016182165A Active JP6872872B2 (en) | 2016-09-16 | 2016-09-16 | Method of machining a conical surface using a rod-shaped tool |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6872872B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113953774A (en) * | 2021-11-16 | 2022-01-21 | 贵州航天电子科技有限公司 | Deformation control machining method for thin plate disc-shaped hard aluminum bottom plate part |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5442092A (en) * | 1977-09-08 | 1979-04-03 | Inoue Japax Res Inc | Method of working curved surface by multispindle control nc milling machine |
JPH07115253B2 (en) * | 1992-09-14 | 1995-12-13 | 栃木県 | Automatic Pick-Feed Machining Method for Ball End Mill |
JPH1190775A (en) * | 1997-09-12 | 1999-04-06 | Makino Milling Mach Co Ltd | Cutting work method and device |
JP3753640B2 (en) * | 2001-09-21 | 2006-03-08 | 川崎重工業株式会社 | Cutting apparatus, processing method, program and recording medium |
-
2016
- 2016-09-16 JP JP2016182165A patent/JP6872872B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2018043336A (en) | 2018-03-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5088678B2 (en) | Long neck radius end mill | |
WO2016002402A1 (en) | Cutting tool production method and cutting tool | |
CA2879928C (en) | Cutting tool and corresponding assembly | |
US10507533B2 (en) | Drill | |
JP2010149271A (en) | Corner portion working tool | |
JP6027700B1 (en) | How to reuse end mills | |
CN111615436B (en) | Scraping tool | |
JP6872872B2 (en) | Method of machining a conical surface using a rod-shaped tool | |
JP6643087B2 (en) | Method of manufacturing spiral bevel gear or hypoid gear | |
US20160193670A1 (en) | Face milling tool | |
JP2020040179A (en) | Method of machining wall surface of rib groove and tapered end mill | |
CN103111820A (en) | Machining technology of tooth profile of milling cutter with wave-shaped cutter edge | |
JP4221117B2 (en) | Molding sheet mold production equipment | |
RU2482939C1 (en) | Cutting indexable insert | |
JP2017517405A (en) | How to grind gears | |
KR102470286B1 (en) | Mirror finishing method and mirror finishing tool | |
JP2008296331A (en) | Machining device | |
JP2007313590A (en) | Thread cutting tip, and its manufacturing method | |
JP5945952B2 (en) | Shaving cutter | |
JP2020082208A (en) | Cutting insert, cutting edge replaceable rotary cutting tool and usage of cutting edge replaceable cutting tool | |
JP2005279839A (en) | Method for machining deep groove | |
JP3935914B2 (en) | Gear forming cutter | |
JP6848737B2 (en) | Manufacturing method of tooth mold roll and processing method of steel plate | |
JP7152673B2 (en) | Rib groove wall processing method and taper end mill | |
CN113319344B (en) | Method for eliminating vibration cutter lines by processing orifice chamfer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190712 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20200608 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200825 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20201009 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20210105 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210226 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20210406 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20210420 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6872872 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |