JP2018043336A - Processing method of conical surface of using rod-like tool - Google Patents

Processing method of conical surface of using rod-like tool Download PDF

Info

Publication number
JP2018043336A
JP2018043336A JP2016182165A JP2016182165A JP2018043336A JP 2018043336 A JP2018043336 A JP 2018043336A JP 2016182165 A JP2016182165 A JP 2016182165A JP 2016182165 A JP2016182165 A JP 2016182165A JP 2018043336 A JP2018043336 A JP 2018043336A
Authority
JP
Japan
Prior art keywords
conical surface
rod
cutting
shaped tool
shaped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016182165A
Other languages
Japanese (ja)
Other versions
JP6872872B2 (en
Inventor
達男 木邑
Tatsuo Kimura
達男 木邑
省二 青木
Seiji Aoki
省二 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Advanced Technologies Co Ltd
Original Assignee
Toyo Advanced Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Advanced Technologies Co Ltd filed Critical Toyo Advanced Technologies Co Ltd
Priority to JP2016182165A priority Critical patent/JP6872872B2/en
Publication of JP2018043336A publication Critical patent/JP2018043336A/en
Application granted granted Critical
Publication of JP6872872B2 publication Critical patent/JP6872872B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To prevent a shaving trace from leaving on a surface as much as possible, even when shaving a conical surface by a rod-like tool of an extremely small diameter.SOLUTION: Rough processing is repeated by sending a rotating end mill 1 in the height direction while changing a position by successively opening an interval in the circumferential direction of a conical surface 3 of a work 2, and finish processing for cutting by sending the end mill 1 for rotating in a slightly shifted position to the center in its width direction to the height direction, is successively repeated while changing the position by moving in the circumferential direction to a groove-shaped cutting trace 4 of extending in the height direction of remaining on the conical surface 3 by this rough processing.SELECTED DRAWING: Figure 1

Description

本発明は、棒状工具を用いた円錐面の加工方法に関し、特にその円錐面における削り跡の改善に関する。   The present invention relates to a method for machining a conical surface using a rod-shaped tool, and more particularly to improvement of a scraped mark on the conical surface.

従来より、棒状工具として、小径のエンドミルを用いてワークを切削することが知られている。エンドミルの直径が小さくなればなるほど、先端の振動や撓みが生じやすくなる。   Conventionally, it is known to cut a workpiece using a small-diameter end mill as a rod-shaped tool. The smaller the diameter of the end mill, the easier it is for the tip to vibrate and bend.

技術の進歩により、エンドミルの直径をますます小さくすることができるようになり(例えば、特許文献1参照)、この極小径エンドミルによって光学部品の成形用の金型等の表面を加工することができるようになっている。例えば、図4に示すような、発光ダイオードの台部分を成形するための金型2の円錐面3を加工することが行われている。   Due to technological advances, the diameter of the end mill can be made smaller and smaller (see, for example, Patent Document 1), and the surface of a mold or the like for molding optical components can be processed by this ultra-small diameter end mill. It is like that. For example, as shown in FIG. 4, the conical surface 3 of the mold 2 for forming the base portion of the light emitting diode is processed.

特開2007−185736号公報JP 2007-185736 A

しかしながら、極細のエンドミルを用いた円錐面の加工方法では、従来は、エンドミルを自転させると共に送り方向を金型中心の円周方向とし、上下に徐々に移動させながらテーパ状の円錐面の加工を行っていた(円周加工)。   However, in the conventional conical surface machining method using an ultra-fine end mill, conventionally the end mill rotates and the feed direction is the circumferential direction of the mold center, and the tapered conical surface is machined while gradually moving up and down. I went (circumferential machining).

すると、エンドミルのワークに対する接触部は点当たりとなるため、こすれたような状態となることから安定した加工を行うことが難しく、テーパ状の円錐面には、金型中心を円の中心とした波紋状の切削跡が発生する。例えば、算術平均粗さRa=0.63μmの切削跡が残り、この金型を使用してリフレクタを成型すると、光学部品としての品質面で問題が生じる可能性がある。   Then, since the contact portion of the end mill with respect to the workpiece becomes a point, it is difficult to perform stable machining because it is in a rubbing state, and the center of the die is the center of the circle on the tapered conical surface. Rippled cutting marks are generated. For example, a cutting trace having an arithmetic average roughness Ra = 0.63 μm remains, and when a reflector is molded using this mold, there may be a problem in terms of quality as an optical component.

エンドミルは、半径方向への力に対して撓みやすいが、軸方向の力に対しては強いので、テーパ状の円錐面に沿って上下に移動させながら回転するエンドミルによって切削することも考えられる。しかし、この場合でも、極細のエンドミルを用いるので、切削時の反力による撓みが生じる。   The end mill is easy to bend with respect to the force in the radial direction, but is strong against the force in the axial direction. Therefore, it can be considered that the end mill is cut by an end mill that rotates while moving up and down along the tapered conical surface. However, even in this case, since an extremely fine end mill is used, bending due to a reaction force during cutting occurs.

具体的には、図5に示すように、エンドミル1の回転力F1と、工具の送り力F2との合力F3を加えながら、荒加工などの前工程による上下に延びる突条5を含む削り跡を削ってその削り跡をなくす仕上げ加工が行われる。この削り跡を削るときの反力F4(図5に破線で示す)によってエンドミル1が回転方向と反対側に大きく撓み、削り跡を綺麗に削り取れないという問題がある。この問題は、先端に電着ダイヤなどの砥石が設けられた小径の棒状工具でも同じである。   Specifically, as shown in FIG. 5, a cutting trace including a protrusion 5 extending vertically by a previous process such as roughing while applying a resultant force F3 of the rotational force F1 of the end mill 1 and the feed force F2 of the tool. Finishing is performed to remove the traces. There is a problem that the end mill 1 is greatly bent in the direction opposite to the rotation direction due to the reaction force F4 (shown by a broken line in FIG. 5) when cutting the cutting trace, and the cutting trace cannot be cut cleanly. This problem is the same for a small-diameter bar-shaped tool having a grindstone such as an electrodeposition diamond at its tip.

本発明は、かかる点に鑑みてなされたものであり、その目的とするところは、極小径の棒状工具によって円錐面を削る場合であっても、表面に削り跡をできるだけ残さないようにすることにある。   The present invention has been made in view of such a point, and the object of the present invention is to keep as little as possible a trace on the surface even when a conical surface is shaved with a rod tool having a very small diameter. It is in.

上記の目的を達成するために、この発明では、円錐面を上下に送りながら削る場合に、本来の送り方向よりも若干シフトした位置で棒状工具を上下に送るようにした。   In order to achieve the above object, in the present invention, when cutting while conical surfaces are fed up and down, the bar-shaped tool is fed up and down at a position slightly shifted from the original feed direction.

具体的には、第1の発明では、棒状工具を用いた円錐面の加工方法を前提とし、
上記加工方法は、
回転する上記棒状工具をワークの円錐面の円周方向に順次所定の間隔を空けて移動しながら高さ方向に送って荒加工を繰り返す荒加工工程と、
上記荒加工工程によって上記円錐面に残る高さ方向に延びる溝状の切削跡に対して該溝状の切削跡の幅方向中心に対して回転する上記棒状工具を円周方向に若干シフトした送り方向に沿って送りながら切削を行う仕上げ加工を、円周方向に移動して位置を変更しながら順次繰り返す仕上げ加工工程とを含む。
Specifically, in the first invention, on the premise of a conical surface machining method using a rod-shaped tool,
The above processing method is
A roughing step of repeating the roughing by sending the rotating rod-shaped tool in the height direction while sequentially moving the rod-shaped tool in the circumferential direction of the conical surface of the workpiece;
Feeding with a slight shift in the circumferential direction of the rod-shaped tool rotating with respect to the center in the width direction of the groove-shaped cutting trace with respect to the groove-shaped cutting trace extending in the height direction remaining on the conical surface by the roughing step A finishing process in which cutting is performed while feeding along a direction, and a finishing process is sequentially repeated while moving in the circumferential direction and changing the position.

上記の構成によると、エンドミルや先端に電着ダイヤが設けられた棒状工具を用いて円錐面を切削又は研削する場合に高さ方向に送りながら荒加工すると高さ方向に溝状の切削跡が残るが、仕上げ工程でその切削跡が低減される。その際に、棒状工具を切削跡の幅方向中心から敢えてシフトさせることで、棒状工具に加わる力を調整し、通常よりも棒状工具が撓まないようにすることができる。なお、棒状工具は、エンドミルなどの切削工具だけでなく、先端に砥石が設けられた研削工具を含む。   According to the above configuration, when a conical surface is cut or ground using an end mill or a rod-shaped tool provided with an electrodeposited diamond at the tip, rough cutting while feeding in the height direction results in a groove-shaped cutting trace in the height direction. Although it remains, the cutting trace is reduced in the finishing process. At that time, the bar-shaped tool is deliberately shifted from the center in the width direction of the cutting trace, thereby adjusting the force applied to the bar-shaped tool and preventing the bar-shaped tool from being bent more than usual. The rod-shaped tool includes not only a cutting tool such as an end mill but also a grinding tool having a grindstone provided at the tip.

第2の発明では、第1の発明において、
上記仕上げ加工工程において、上記溝状の切削跡における上記棒状工具の回転方向側の取り代が減るように回転方向と反対側に上記棒状工具をシフトする。
In the second invention, in the first invention,
In the finishing process, the bar-shaped tool is shifted to the opposite side to the rotational direction so that the allowance on the rotational direction side of the bar-shaped tool in the groove-shaped cutting trace is reduced.

上記の構成によると、回転方向側の取り代が減っているので、切削跡の幅方向中心で切削する場合に比べ、棒状工具に加わる回転力と送り力との合力に対して生じる反力も小さくなる。その結果として棒状工具のたわみ量が低減される。   According to the above configuration, since the machining allowance on the rotational direction side is reduced, the reaction force generated against the resultant force of the rotational force applied to the rod-shaped tool and the feed force is also smaller than when cutting at the center in the width direction of the cutting trace. Become. As a result, the amount of deflection of the bar tool is reduced.

第3の発明では、第1又は第2の発明において、
上記荒加工工程において、次の荒加工位置に移動する前に、上記仕上げ加工工程においてシフトした位置で削り始めとなる上記円錐面の上端のみ削っておく。
In the third invention, in the first or second invention,
In the roughing process, before moving to the next roughing position, only the upper end of the conical surface that starts cutting at the position shifted in the finishing process is cut.

上記の構成によると、仕上げ加工における削り始めは、切削位置のシフトによる撓み防止効果が得られないので、荒加工において予め削り始めを削っておくことで、棒状工具の削り始めにおける、棒状工具の形状ガイド機能を持たせておくことができ、削り始めの棒状工具の撓みも防止することができる。   According to the above configuration, since the effect of preventing the bending due to the shift of the cutting position cannot be obtained at the start of cutting in the finishing process, the cutting of the bar-shaped tool at the beginning of the cutting of the bar-shaped tool is performed by cutting the cutting start in advance in the roughing process. The shape guide function can be provided, and the bending of the rod-shaped tool at the beginning of cutting can be prevented.

第4の発明では、第1から第3のいずれか1つの発明において、
上記仕上げ加工工程におけるシフト量を被切削抵抗と切込量と送り量との積から算出する。
In a fourth invention, in any one of the first to third inventions,
The shift amount in the finishing process is calculated from the product of the resistance to be cut, the cut amount and the feed amount.

上記の構成によると、棒状工具の剛性から棒状工具の撓みを推定してシフト量が設定される。   According to the above configuration, the shift amount is set by estimating the deflection of the bar-shaped tool from the rigidity of the bar-shaped tool.

以上説明したように、本発明によれば、荒加工による切削跡の幅方向中心に対して若干シフトした位置で回転する棒状工具を高さ方向に送って切削を行うことにより、極小径の棒状工具によって円錐面を削る場合であっても、表面に削り跡をできるだけ残さないようにすることができる。   As described above, according to the present invention, a rod-shaped tool that rotates at a position slightly shifted with respect to the center in the width direction of a cutting mark by rough machining is sent to the height direction to perform cutting, so that a rod shape with an extremely small diameter is obtained. Even when the conical surface is cut with a tool, it is possible to leave as little as possible a trace on the surface.

エンドミルを用いた円錐面の加工方法における仕上げ加工を示す斜視図である。It is a perspective view which shows the finishing process in the processing method of the conical surface using an end mill. エンドミルを用いた円錐面の加工方法における仕上げ加工を示す平面図である。It is a top view which shows the finishing process in the processing method of the conical surface using an end mill. エンドミルを用いた円錐面の加工方法における仕上げ加工を示す正面図である。It is a front view which shows the finishing process in the processing method of the conical surface using an end mill. 金型を示す斜視図である。It is a perspective view which shows a metal mold | die. エンドミルに加わる負荷を示す概略図である。It is the schematic which shows the load added to an end mill.

以下、本発明の実施形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1〜図4は、本発明の実施形態の棒状工具としてのエンドミル1を用いた円錐面2の加工の様子を示す。エンドミル1としては、特許文献1のような直径2mm程度の極小径のものについて説明するが、それよりも外径の小さいものや大きいものであってもよい。ワークとして例えば、発光ダイオードの台を成形するための金型2(例えば図4に示す)を例に説明する。   1 to 4 show how a conical surface 2 is processed using an end mill 1 as a rod-shaped tool according to an embodiment of the present invention. As the end mill 1, a very small diameter of about 2 mm in diameter as described in Patent Document 1 will be described, but it may be smaller or larger in outer diameter than that. For example, a mold 2 (for example, shown in FIG. 4) for forming a light-emitting diode base will be described as an example of the work.

具体的には、本実施形態のエンドミル1を用いた円錐面2の加工方法では、まず、荒加工工程において、回転するエンドミル1を金型2の円錐面3の円周方向に順次所定の間隔を空けて移動して位置を変更しながら高さ方向(送り方向を矢印Gで示す)に送って荒加工を繰り返す。この円周方向の間隔は、例えば、円錐面3の全周360°を等分に割り切るように設定する。例えば、1周目に40°ずつに9分割して切削し、次は、そのちょうど半分の20°の位置で等分割し、徐々に間隔を狭めた位置にずらしながら高さ方向に送って切削を行う。図2に示すように、エンドミル1で円錐面3を切削すると、切削後の円錐面3には、溝状の切削跡4が形成され、溝状の切削跡4の両側に突条5が形成される。円周方向にずらしながら高さ方向にエンドミル1を送っていくことで、分割数に応じた縦線の突条5が生じる。   Specifically, in the processing method of the conical surface 2 using the end mill 1 of the present embodiment, first, in the roughing process, the rotating end mill 1 is sequentially placed at a predetermined interval in the circumferential direction of the conical surface 3 of the mold 2. While moving, the position is changed, and the roughing is repeated by feeding in the height direction (the feed direction is indicated by arrow G). The interval in the circumferential direction is set so that the entire circumference 360 ° of the conical surface 3 is equally divided. For example, on the first round, cut in 9 increments of 40 °, and then divide equally at 20 °, which is exactly half of that, and send by cutting in the height direction while gradually shifting the position to a narrower position. I do. As shown in FIG. 2, when the conical surface 3 is cut by the end mill 1, groove-shaped cutting traces 4 are formed on the conical surface 3 after cutting, and protrusions 5 are formed on both sides of the groove-shaped cutting trace 4. Is done. By feeding the end mill 1 in the height direction while shifting in the circumferential direction, vertical line ridges 5 corresponding to the number of divisions are generated.

この荒加工工程において、図2に破線で示すように、次の荒加工位置に移動する前に、後述する仕上げ加工工程においてシフトした位置で削り始めとなる円錐面3の上端のみを削っておいてもよい。すなわち、仕上げ加工における削り始めは、シフトによる撓み防止効果が得られないので、荒加工において予め削り始めを削っておくことで、棒状工具の削り始めにおける、棒状工具の形状ガイド機能を持たせておくことができ、削り始めのエンドミル1の撓みも防止することができる。   In this roughing process, as shown by a broken line in FIG. 2, before moving to the next roughing position, only the upper end of the conical surface 3 that starts cutting at the position shifted in the finishing process described later is shaved. May be. In other words, since the effect of preventing deflection due to shifting cannot be obtained at the beginning of cutting in finishing, the shape guide function of the rod-shaped tool at the beginning of cutting of the rod-shaped tool is given by cutting the beginning of cutting in rough machining in advance. The bending of the end mill 1 at the start of cutting can be prevented.

次いで、仕上げ加工工程において、荒加工工程によって円錐面3に残る高さ方向に延びる溝状の切削跡4に対し、溝状の切削跡4の幅方向中心に対して回転するエンドミル1を円周方向に若干シフトした送り方向に沿って送りながら切削を行う。この仕上げ加工を、荒工程と同様に円周方向に移動して位置を変更しながら順次繰り返す。この仕上げ加工工程において、エンドミル1の回転方向側の取り代が減るように回転方向と反対側にエンドミル1をシフトする。図面では、切削跡4を誇張して書いているが、実際には、取り代は2μm程度であり、突条5もそれほど大きく突出していない。このシフト量Sは、例えば、被切削抵抗と切込量と送り量との積から算出する。すなわち、エンドミル1の剛性からエンドミル1の撓みを推定し、シフト量S(実際には角度の値)として設定される。これは実際に想定したシフト量Sで効果を確認して経験的に求めてもよい。   Next, in the finishing process, the end mill 1 that rotates with respect to the center in the width direction of the groove-shaped cutting trace 4 is circumferentially arranged with respect to the groove-shaped cutting trace 4 extending in the height direction remaining on the conical surface 3 by the roughing process. Cutting is performed while feeding along the feeding direction slightly shifted in the direction. Similar to the roughing process, this finishing process is sequentially repeated while moving in the circumferential direction and changing the position. In this finishing process, the end mill 1 is shifted to the opposite side to the rotational direction so that the machining allowance on the rotational direction side of the end mill 1 is reduced. In the drawing, the cutting mark 4 is exaggeratedly written, but actually, the machining allowance is about 2 μm, and the protrusion 5 does not protrude so much. The shift amount S is calculated from, for example, the product of the resistance to be cut, the cut amount, and the feed amount. That is, the deflection of the end mill 1 is estimated from the rigidity of the end mill 1, and is set as the shift amount S (actually the value of the angle). This may be obtained empirically by confirming the effect with the actually assumed shift amount S.

このように、円錐面3を研削する場合に高さ方向に送りながら荒加工すると高さ方向に溝状の切削跡4が残るが、仕上げ工程でその切削跡4が低減される。その際に、エンドミル1を切削跡4の幅方向中心から敢えてシフト量Sだけ位置変更しているので、通常よりもエンドミル1が撓まないようにすることができる。すなわち、回転方向側の取り代が減っており、逆に回転方向と反対側の取り代が増えているので、エンドミル1に加わる回転力F1と送り力F2との合力F3に対して生じる反力F4を受けるが、その力は、回転方向と反対側の取り代を削るときの反力によって打ち消されて小さくなる。言い換えれば、回転方向側の取り代を減らすことで、その負荷を減少させ、回転方向反対側の取り代を増やすことで、その負荷によるバックアップ効果が得られる。このため、エンドミル1のたわみ量が格段に低減される。   As described above, when grinding is performed while feeding the conical surface 3 in the height direction, groove-like cutting traces 4 remain in the height direction, but the cutting traces 4 are reduced in the finishing process. At that time, since the position of the end mill 1 is intentionally changed by the shift amount S from the center in the width direction of the cutting trace 4, the end mill 1 can be prevented from being bent more than usual. That is, the machining allowance on the rotational direction side is reduced, and conversely, the machining allowance on the side opposite to the rotational direction is increased, so that the reaction force generated against the resultant force F3 of the rotational force F1 and the feed force F2 applied to the end mill 1 Although F4 is received, the force is canceled and reduced by the reaction force when cutting the machining allowance on the side opposite to the rotation direction. In other words, by reducing the machining allowance on the rotation direction side, the load is reduced, and by increasing the machining allowance on the opposite side in the rotation direction, a backup effect due to the load can be obtained. For this reason, the amount of deflection of the end mill 1 is significantly reduced.

実際にこのシフト方式で切削を行った場合の円錐面3の表面荒さを計測したところ、従来の円周方向に公転させながら徐々に高さ方向に研削していく方法(円周加工方法)でRa=0.63μmであったのが、Ra=0.01μmとなり、極めて大きな効果が得られることを確認できた。   When the surface roughness of the conical surface 3 was actually measured by cutting using this shift method, the conventional method of grinding in the height direction while revolving in the circumferential direction (circumferential machining method) Ra = 0.63 μm is Ra = 0.01 μm, and it was confirmed that an extremely large effect was obtained.

したがって、本実施形態に係るエンドミル1を用いた円錐面3の加工方法によると、極小径のエンドミル1によって円錐面3を削る場合であっても、表面に削り跡をできるだけ残さないようにすることができる。   Therefore, according to the processing method of the conical surface 3 using the end mill 1 according to the present embodiment, even when the conical surface 3 is scraped by the end mill 1 having a very small diameter, as much as possible no trace is left on the surface. Can do.

(その他の実施形態)
本発明は、上記実施形態について、以下のような構成としてもよい。
(Other embodiments)
The present invention may be configured as follows with respect to the above embodiment.

すなわち、上記実施形態では、ワークとして、発光ダイオードの台を成形するための金型2を例に説明したが、このような金型2でなくても、少なくとも円錐面3の加工面を有するものであれば特に限定されない。   That is, in the said embodiment, although demonstrated about the metal mold | die 2 for shape | molding the stand of a light emitting diode as a workpiece | work, even if it is not such a metal mold | die 2, it has a processing surface of the conical surface 3 at least. If it is, it will not specifically limit.

なお、以上の実施形態は、本質的に好ましい例示であって、本発明、その適用物や用途の範囲を制限することを意図するものではない。   In addition, the above embodiment is an essentially preferable illustration, Comprising: It does not intend restrict | limiting the range of this invention, its application thing, or a use.

すなわち、上記実施形態では、棒状工具は、エンドミルとしているが、例えば、電着ダイヤが先端に設けられた直径0.05mmほどの研削工具でもよい。この研削工具を用いて研削する場合でも同様の作用効果が得られる。   That is, in the said embodiment, although the rod-shaped tool is made into the end mill, for example, the grinding tool about 0.05 mm in diameter in which the electrodeposition diamond was provided in the front-end | tip may be sufficient. Similar effects can be obtained even when grinding is performed using this grinding tool.

1 エンドミル(棒状工具)
2 LED用金型(ワーク)
3 円錐面
4 溝状の切削跡
5 突条
1 End mill (bar-shaped tool)
2 LED mold (work)
3 Conical surface
4 Groove-shaped cutting trace
5 ridges

Claims (4)

棒状工具を用いた円錐面の加工方法において、
回転する上記棒状工具をワークの円錐面の円周方向に順次間隔を空けて位置を変更しながら高さ方向に送って荒加工を繰り返す荒加工工程と、
上記荒加工工程によって上記円錐面に残る高さ方向に延びる溝状の切削跡に対して該溝状の切削跡の幅方向中心に対して若干シフトした位置で回転する上記棒状工具を高さ方向に送って切削を行う仕上げ加工を、円周方向に移動して位置を変更しながら順次繰り返す仕上げ加工工程とを含む
ことを特徴とする棒状工具を用いた円錐面の加工方法。
In the conical surface machining method using a rod-shaped tool,
A roughing step of repeating the roughing by sending the rotating rod-shaped tool in the height direction while sequentially changing the position in the circumferential direction of the conical surface of the workpiece while changing the position;
The rod-shaped tool that rotates at a position slightly shifted with respect to the center of the groove-shaped cutting trace in the width direction with respect to the groove-shaped cutting trace extending in the height direction remaining on the conical surface by the roughing step in the height direction A finishing method for cutting a conical surface using a rod-shaped tool, comprising: a finishing process in which a finishing process for cutting by cutting is repeatedly performed while moving in a circumferential direction and changing a position.
請求項1に記載の棒状工具を用いた円錐面の加工方法において、
上記仕上げ加工工程において、上記溝状の切削跡における上記棒状工具の回転方向側の取り代が減るように回転方向と反対側に上記棒状工具をシフトする
ことを特徴とする棒状工具を用いた円錐面の加工方法。
In the processing method of the conical surface using the rod-shaped tool according to claim 1,
A cone using a rod-shaped tool characterized in that, in the finishing process, the rod-shaped tool is shifted to the opposite side of the rotational direction so that a machining allowance on the rotational direction side of the rod-shaped tool in the groove-shaped cutting trace is reduced. Surface processing method.
請求項1又は2に記載の棒状工具を用いた円錐面の加工方法において、
上記荒加工工程において、次の荒加工位置に移動する前に、上記仕上げ加工工程においてシフトした位置で削り始めとなる上記円錐面の上端のみ削っておく
ことを特徴とする棒状工具を用いた円錐面の加工方法。
In the processing method of the conical surface using the rod-shaped tool according to claim 1 or 2,
In the roughing process, before moving to the next roughing position, only the upper end of the conical surface that starts cutting at the shifted position in the finishing process is shaved. Surface processing method.
請求項1から3のいずれか1つに記載の棒状工具を用いた円錐面の加工方法において、
上記仕上げ加工工程におけるシフト量を被切削抵抗と切込量と送り量との積から算出する
ことを特徴とする棒状工具を用いた円錐面の加工方法。
In the processing method of the conical surface using the rod-shaped tool as described in any one of Claim 1 to 3,
A method for machining a conical surface using a bar-shaped tool, wherein a shift amount in the finishing process is calculated from a product of a resistance to be cut, a cut amount, and a feed amount.
JP2016182165A 2016-09-16 2016-09-16 Method of machining a conical surface using a rod-shaped tool Active JP6872872B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016182165A JP6872872B2 (en) 2016-09-16 2016-09-16 Method of machining a conical surface using a rod-shaped tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016182165A JP6872872B2 (en) 2016-09-16 2016-09-16 Method of machining a conical surface using a rod-shaped tool

Publications (2)

Publication Number Publication Date
JP2018043336A true JP2018043336A (en) 2018-03-22
JP6872872B2 JP6872872B2 (en) 2021-05-19

Family

ID=61692284

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016182165A Active JP6872872B2 (en) 2016-09-16 2016-09-16 Method of machining a conical surface using a rod-shaped tool

Country Status (1)

Country Link
JP (1) JP6872872B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113953774A (en) * 2021-11-16 2022-01-21 贵州航天电子科技有限公司 Deformation control machining method for thin plate disc-shaped hard aluminum bottom plate part

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5442092A (en) * 1977-09-08 1979-04-03 Inoue Japax Res Inc Method of working curved surface by multispindle control nc milling machine
JPH0691420A (en) * 1992-09-14 1994-04-05 Tochigi Pref Gov Pick feed automatic efficient machining method in ball end mill
JPH1190775A (en) * 1997-09-12 1999-04-06 Makino Milling Mach Co Ltd Cutting work method and device
JP2003094223A (en) * 2001-09-21 2003-04-03 Kawasaki Heavy Ind Ltd Cutting device, cutting method and program for the same and recording medium

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5442092A (en) * 1977-09-08 1979-04-03 Inoue Japax Res Inc Method of working curved surface by multispindle control nc milling machine
JPH0691420A (en) * 1992-09-14 1994-04-05 Tochigi Pref Gov Pick feed automatic efficient machining method in ball end mill
JPH1190775A (en) * 1997-09-12 1999-04-06 Makino Milling Mach Co Ltd Cutting work method and device
JP2003094223A (en) * 2001-09-21 2003-04-03 Kawasaki Heavy Ind Ltd Cutting device, cutting method and program for the same and recording medium

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113953774A (en) * 2021-11-16 2022-01-21 贵州航天电子科技有限公司 Deformation control machining method for thin plate disc-shaped hard aluminum bottom plate part

Also Published As

Publication number Publication date
JP6872872B2 (en) 2021-05-19

Similar Documents

Publication Publication Date Title
CA2879928C (en) Cutting tool and corresponding assembly
JP2009056533A (en) Long neck radius endmill
CN108698142B (en) Method for reusing end mill
JP2018043336A (en) Processing method of conical surface of using rod-like tool
CN107598480B (en) Machining tool, in particular rolling tool, and method for machining a cylinder running surface
WO2013114527A1 (en) Honing tool
JP2017121688A (en) Manufacturing method of spiral bevel gear or hypoid gear
JP2017517405A (en) How to grind gears
JP2008296331A (en) Machining device
JP6549851B2 (en) Texturing method for sliding member
JP2014151431A (en) Helical broach
JP5375987B2 (en) Sheet surface processing method
CN115446334B (en) Method for turning groove on hard alloy
JP2006088242A (en) Drilling tool
JP5328011B2 (en) Gear material support device, gear machining device, and gear manufacturing method
JP2020040179A (en) Method of machining wall surface of rib groove and tapered end mill
JP2005279839A (en) Method for machining deep groove
CN113319344B (en) Method for eliminating vibration cutter lines by processing orifice chamfer
CN113165127B (en) Machining method and machining device
CN110091009B (en) Processing method of British round threads
RU2399463C2 (en) Engraving cutter
JP6387857B2 (en) Grinding stone forming jig and grindstone forming apparatus using the same
JP2009083071A (en) Sheet surface machining tool and method, and manufacturing method of injector using the same sheet surface machining tool
JP4336274B2 (en) Screw rolling method
JP2016117120A (en) Broach processing tool and broach processing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190712

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200825

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201009

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210406

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210420

R150 Certificate of patent or registration of utility model

Ref document number: 6872872

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250