JP6872598B1 - Plate heat exchanger - Google Patents

Plate heat exchanger Download PDF

Info

Publication number
JP6872598B1
JP6872598B1 JP2019221981A JP2019221981A JP6872598B1 JP 6872598 B1 JP6872598 B1 JP 6872598B1 JP 2019221981 A JP2019221981 A JP 2019221981A JP 2019221981 A JP2019221981 A JP 2019221981A JP 6872598 B1 JP6872598 B1 JP 6872598B1
Authority
JP
Japan
Prior art keywords
region
heat transfer
plate
flow path
gasket
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019221981A
Other languages
Japanese (ja)
Other versions
JP2021092333A (en
Inventor
ゴク タム グェン
ゴク タム グェン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hisaka Works Ltd
Original Assignee
Hisaka Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hisaka Works Ltd filed Critical Hisaka Works Ltd
Priority to JP2019221981A priority Critical patent/JP6872598B1/en
Application granted granted Critical
Publication of JP6872598B1 publication Critical patent/JP6872598B1/en
Publication of JP2021092333A publication Critical patent/JP2021092333A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

【課題】流通抵抗を抑えたプレート式熱交換器を提供する。
【解決手段】本発明では、プレート積層部は、伝熱プレートを介してガスケットの挟持領域と流体の流通可能な流路領域とが交互に形成される交互領域部位と、伝熱プレートを介して挟持領域がそれぞれ形成される同一領域部位と、を有し、伝熱プレートの交互領域構成部は、積層方向と直交する面方向に沿った第一部位と、該第一部位から延び且つ相手方プレートから離れる方向に該第一部位に対して屈曲することで挟持領域を形成する第二部位とを有し、伝熱プレートの同一領域構成部は、積層方向と直交する面方向に沿った第三部位と、該第三部位から延び且つ相手方プレートから離れる方向に該第三部位に対して屈曲することで挟持領域を形成する第四部位を有し、第一部位に対する第二部位の角度は、第三部位に対する第四部位の角度より大きいことを特徴とする。
【選択図】図9
PROBLEM TO BE SOLVED: To provide a plate type heat exchanger with suppressed distribution resistance.
SOLUTION: In the present invention, a plate laminated portion is formed through an alternating region portion in which a holding region of a gasket and a flow path region through which fluid can flow are alternately formed via a heat transfer plate, and via a heat transfer plate. The alternating region components of the heat transfer plate have the same region portion where each sandwiching region is formed, and the first portion along the plane direction orthogonal to the stacking direction and the mating plate extending from the first portion. It has a second portion that forms a sandwiching region by bending with respect to the first portion in a direction away from the heat transfer plate, and the same region component of the heat transfer plate is a third portion along a plane direction orthogonal to the stacking direction. It has a site and a fourth site that forms a sandwiching region by bending with respect to the third site in a direction extending from the third site and away from the mating plate, and the angle of the second site with respect to the first site is It is characterized in that it is larger than the angle of the fourth part with respect to the third part.
[Selection diagram] FIG. 9

Description

本発明は、重ね合わされた複数の伝熱プレートと、伝熱プレート間に挟み込まれることにより該伝熱プレート間に流路を形成するガスケットと、を備えたプレート式熱交換器に関する。 The present invention relates to a plate heat exchanger comprising a plurality of stacked heat transfer plates and a gasket that is sandwiched between the heat transfer plates to form a flow path between the heat transfer plates.

従来から、ガスケットが伝熱プレート間に挟み込まれることで該伝熱プレート間に流路が形成されているプレート式熱交換器が知られている(特許文献1参照)。 Conventionally, there is known a plate-type heat exchanger in which a flow path is formed between the heat transfer plates by sandwiching the gasket between the heat transfer plates (see Patent Document 1).

このプレート式熱交換器は、図20に示すように、所定方向に重ね合わされる複数の伝熱プレート110と、隣り合う伝熱プレート110間に挟み込まれることにより該伝熱プレート110間に流体A、Bの流路(第一流路C1、第二流路C2)を形成する複数のガスケット120a、120bと、を備える。 As shown in FIG. 20, this plate heat exchanger is sandwiched between a plurality of heat transfer plates 110 stacked in a predetermined direction and adjacent heat transfer plates 110, so that the fluid A is sandwiched between the heat transfer plates 110. , B includes a plurality of gaskets 120a and 120b forming the flow path (first flow path C1, second flow path C2).

図21及び図22に示すように、各伝熱プレート110は、矩形状であり、四隅に連通孔111、112、113、114を有する。 As shown in FIGS. 21 and 22, each heat transfer plate 110 has a rectangular shape and has communication holes 111, 112, 113, 114 at four corners.

第二流路C2が形成される伝熱プレート110間に挟み込まれるガスケット120aは、一方の組となる二つの連通孔111、112が内側に位置するように伝熱プレート110の外周部を囲む第一流路形成部121aと、他方の組となる二つの連通孔113、114の全周をそれぞれ囲む二つの第一環状部122aと、第一流路形成部121aと第一環状部122aとを接続する複数の第一接続部123aと、を有する(図21参照)。 The gasket 120a sandwiched between the heat transfer plates 110 on which the second flow path C2 is formed surrounds the outer peripheral portion of the heat transfer plate 110 so that the two communication holes 111 and 112 that form one set are located inside. One flow path forming portion 121a, two first annular portions 122a surrounding the entire circumference of the other pair of communication holes 113 and 114, and the first flow path forming portion 121a and the first annular portion 122a are connected to each other. It has a plurality of first connection portions 123a (see FIG. 21).

また、第一流路C1が形成される伝熱プレート110間に挟み込まれるガスケット120bは、他方の組となる二つの連通孔113、114が内側に位置するように伝熱プレート110の外周部を囲む第二流路形成部121bと、一方の組となる二つの連通孔111、112の全周をそれぞれ囲む二つの第二環状部122bと、第二流路形成部121bと第二環状部122bとを接続する複数の第二接続部123bと、を有する(図22参照)。 Further, the gasket 120b sandwiched between the heat transfer plates 110 on which the first flow path C1 is formed surrounds the outer peripheral portion of the heat transfer plate 110 so that the other pair of communication holes 113 and 114 are located inside. The second flow path forming portion 121b, the two second annular portions 122b that surround the entire circumference of the two communication holes 111 and 112 that form one set, and the second flow path forming portion 121b and the second annular portion 122b. It has a plurality of second connecting portions 123b and a plurality of second connecting portions 123b (see FIG. 22).

これらのガスケット120a、120bは、各位置での横断面(延びている方向と直交する断面)形状が同じであり、図23及び図24に示すように、伝熱プレート110に設けられた凹部(溝)115、116内に配置される。このガスケット120a、120bの配置される凹部115、116の断面形状も、各位置において同じである。 These gaskets 120a and 120b have the same cross-sectional shape (cross-section orthogonal to the extending direction) at each position, and as shown in FIGS. 23 and 24, recesses (recesses) provided in the heat transfer plate 110. Grooves) are arranged in 115 and 116. The cross-sectional shapes of the recesses 115 and 116 in which the gaskets 120a and 120b are arranged are also the same at each position.

例えば、熱交換器100において、伝熱プレート110の重ね合わせ方向に伝熱プレート110を介してガスケット120a、120bが挟み込まれる領域と、流体A、Bが流通可能な領域と、が交互に形成されている部位(例えば、図21におけるXXIII−XXIII位置:断面は図23参照)の凹部115の断面形状と、伝熱プレート110の重ね合わせ方向に伝熱プレート110を介してガスケット120a、120bが挟み込まれる領域がそれぞれ形成されている部位(例えば、図21におけるXXIV−XXIV位置:断面は図24参照)の凹部116の断面形状とは、同じである。 For example, in the heat exchanger 100, a region in which the gaskets 120a and 120b are sandwiched via the heat transfer plate 110 in the overlapping direction of the heat transfer plates 110 and a region in which the fluids A and B can flow are alternately formed. Gaskets 120a and 120b are sandwiched between the cross-sectional shape of the recess 115 of the portion (for example, the position of XXIII-XXIII in FIG. 21: see FIG. 23 for the cross section) and the heat transfer plate 110 via the heat transfer plate 110. The cross-sectional shape of the recess 116 of each of the regions where the regions are formed (for example, the position of XXIV-XXIV in FIG. 21: see FIG. 24 for the cross section) is the same.

図20に戻り、以上の熱交換器100では、第一流体Aが流れる流路(第一流路)C1と第二流体Bが流れる流路(第二流路)C2とが各伝熱プレート110を介して交互に形成され、第一流路C1と第二流路C2とを隔てている伝熱プレート110を通じて第一流路C1を流れる第一流体Aと第二流路C2を流れる第二流体Bとが互いに熱交換する。 Returning to FIG. 20, in the above heat exchanger 100, the flow path (first flow path) C1 through which the first fluid A flows and the flow path (second flow path) C2 through which the second fluid B flows are each heat transfer plate 110. First fluid A flowing through the first flow path C1 and second fluid B flowing through the second flow path C2 through the heat transfer plate 110 which is alternately formed through the first flow path C1 and the second flow path C2. And exchange heat with each other.

特開平9−72686号公報Japanese Unexamined Patent Publication No. 9-72686

近年、上記のような伝熱プレート110間にガスケット120a、120bが挟み込まれているプレート式熱交換器100において、圧損の抑制が求められている。 In recent years, in the plate type heat exchanger 100 in which the gaskets 120a and 120b are sandwiched between the heat transfer plates 110 as described above, it is required to suppress the pressure loss.

そこで、本発明は、圧損を抑えたプレート式熱交換器を提供することを課題とする。 Therefore, an object of the present invention is to provide a plate heat exchanger in which pressure loss is suppressed.

本発明のプレート式熱交換器は、
所定方向に重ね合わされる複数の伝熱プレートと、伝熱プレート間に挟み込まれることで該伝熱プレート間に流体の流通可能な流路を形成する複数のガスケットと、を有するプレート積層部を備え、
前記プレート積層部は、
前記所定方向において前記ガスケットが挟み込まれる挟持領域と前記流体が流通可能な流路領域とが前記伝熱プレートを介して交互に形成されている交互領域部位と、
前記所定方向において前記挟持領域が前記伝熱プレートを介してそれぞれ形成されている同一領域部位と、を有し、
前記伝熱プレートにおける前記交互領域部位を構成する交互領域構成部は、
前記所定方向と直交する仮想面に沿った第一部位と、
前記第一部位から延び且つ前記所定方向に隣り合う伝熱プレートである相手方プレートから離れる方向に該第一部位に対して屈曲することで該相手方プレートとの間に前記挟持領域を形成する第二部位と、を有し、
前記伝熱プレートにおける前記同一領域部位を構成する同一領域構成部は、
前記仮想面に沿った第三部位と、
前記第三部位から延び且つ前記相手方プレートから離れる方向に該第三部位に対して屈曲することで該相手方プレートとの間に前記挟持領域を形成する第四部位と、を有し、
前記第一部位に対する前記第二部位の角度は、前記第三部位に対する前記第四部位の角度より大きい。
The plate heat exchanger of the present invention
A plate laminated portion having a plurality of heat transfer plates stacked in a predetermined direction and a plurality of gaskets sandwiched between the heat transfer plates to form a flow path through which a fluid can flow between the heat transfer plates. ,
The plate laminated portion is
An alternating region portion in which a holding region in which the gasket is sandwiched in the predetermined direction and a flow path region through which the fluid can flow are alternately formed via the heat transfer plate.
The sandwiching region has the same region portion formed via the heat transfer plate in the predetermined direction.
The alternating region constituent portion constituting the alternating region portion in the heat transfer plate is
The first part along the virtual plane orthogonal to the predetermined direction,
A second sandwiching region is formed between the first portion and the other plate by bending the first portion in a direction away from the mating plate, which is a heat transfer plate adjacent to the first portion and adjacent to the first portion. With the part,
The same region constituent portion constituting the same region portion in the heat transfer plate is
The third part along the virtual surface and
It has a fourth portion that extends from the third portion and bends with respect to the third portion in a direction away from the counterpart plate to form the sandwiching region with the counterpart plate.
The angle of the second part with respect to the first part is larger than the angle of the fourth part with respect to the third part.

このように、第一部位に対する第二部位の角度(第一の角度)を第三部位に対する第四部位の角度(第二の角度)より大きくすることで、前記第一の角度を前記第二の角度と同じにした構成に比べ、流体が交互領域部位の流路領域(伝熱プレート間に形成される流路)を第一部位と第二部位とが並ぶ方向に通過する際の圧損が抑えられる。 In this way, by making the angle of the second part (first angle) with respect to the first part larger than the angle of the fourth part (second angle) with respect to the third part, the first angle is made the second. Compared to the configuration with the same angle as the above, the pressure loss when the fluid passes through the flow path region (flow path formed between the heat transfer plates) of the alternating region portion in the direction in which the first portion and the second portion are lined up It can be suppressed.

前記プレート式熱交換器において、
前記伝熱プレートの交互領域構成部は、
前記第一部位から前記第二部位に向かう方向において前記第一部位と間隔をあけて配置され且つ前記仮想面に沿った第五部位と、
前記第五部位から前記第一部位側に延び且つ前記相手方プレートから離れる方向に該第五部位に対して屈曲することで該相手方プレートとの間に前記挟持領域を形成する第六部位と、を有し、
前記第五部位に対する前記第六部位の角度は、前記第三部位に対する前記第四部位の角度より大きくてもよい。
In the plate heat exchanger
The alternating region component of the heat transfer plate
A fifth portion arranged at a distance from the first portion and along the virtual surface in the direction from the first portion to the second portion,
A sixth portion that extends from the fifth portion toward the first portion and bends with respect to the fifth portion in a direction away from the mating plate to form a sandwiching region between the fifth portion and the mating plate. Have and
The angle of the sixth part with respect to the fifth part may be larger than the angle of the fourth part with respect to the third part.

かかる構成によれば、流体が交互領域部位の流路領域を第一部位と第二部位とが並ぶ方向に通過する際の圧損がより効果的に抑えられる。 According to such a configuration, the pressure loss when the fluid passes through the flow path region of the alternating region portion in the direction in which the first portion and the second portion are aligned can be more effectively suppressed.

また、前記プレート式熱交換器では、
前記伝熱プレートの交互領域構成部は、前記第二部位の先端と前記第六部位の先端とを接続し且つ前記仮想面に沿った第七部位を有し、
前記ガスケットにおける前記挟持領域に配置される部位は、
前記第七部位と前記相手方プレートとの間に挟み込まれる中心部位と、
前記中心部位に隣接すると共に、前記第二部位と前記相手方プレートとの間に挟み込まれる第一外側部位と、
前記中心部位に隣接すると共に、前記第六部位と前記相手方プレートとの間に挟み込まれる第二外側部位と、を有し、
前記中心部位における前記所定方向の弾性力は、前記第一外側部位及び前記第二外側部位における前記所定方向の弾性力より大きいことが好ましい。
Further, in the plate heat exchanger,
The alternating region component of the heat transfer plate has a seventh portion that connects the tip of the second portion and the tip of the sixth portion and is along the virtual surface.
The portion of the gasket that is arranged in the sandwiching area is
A central portion sandwiched between the seventh portion and the mating plate,
A first outer portion adjacent to the central portion and sandwiched between the second portion and the mating plate,
It has a second outer portion that is adjacent to the central portion and is sandwiched between the sixth portion and the mating plate.
The elastic force in the predetermined direction at the central portion is preferably larger than the elastic force in the predetermined direction at the first outer portion and the second outer portion.

かかる構成によれば、第二部位及び第六部位が第一外側部位及び第二外側部位によって所定方向に押されることによる交互領域構成部(伝熱プレート)の変形(図17参照)に起因する該交互領域構成部とガスケットとの間の密閉性の低下を防ぎつつ、第二部位及び第六部位に加わる所定方向の力に対する該部位の変形を防ぐことができる。詳しくは、以下の通りである。 According to this configuration, the second portion and the sixth portion are pushed in a predetermined direction by the first outer portion and the second outer portion, resulting in deformation of the alternating region constituent portion (heat transfer plate) (see FIG. 17). While preventing a decrease in the airtightness between the alternating region constituent portion and the gasket, it is possible to prevent deformation of the portion with respect to a force applied to the second portion and the sixth portion in a predetermined direction. The details are as follows.

第一外側部位及び第二外側部位における所定方向(伝熱プレートの重ね合わせ方向)の弾性力が中心部位における所定方向の弾性力より大きいと、第二部位及び第六部位が第一外側部位及び第二外側部位に押されて交互領域構成部が撓むように変形し(図17参照)、これにより、交互領域構成部とガスケットとの間の密閉性が低下し易い。しかし、上記構成のように、中心部位の前記弾性力を第一外側部位及び第二外側部位の前記弾性力より大きくすることで、交互領域構成部の前記変形が抑えられると共に中心部位が第七部位に十分に密着し、これにより、前記密閉性の低下を防ぐができる。しかも、上記構成によれば、第一部位に対する第二部位の角度及び第五部位に対する第六部位の角度がそれぞれ第三部位に対する第四部位の角度より大きいため、流体が伝熱プレート間を流れる際等に第二部位及び第六部位に加わる流路領域側からの力(所定方向の力)に対して該部位が変形し易くなるが、前記流路領域側からの力が加わっても第二部位及び第六部位が第一外側部位及び第二外側部位によって支持されているため、該部位の変形を防ぐことができる。 When the elastic force in the predetermined direction (overlapping direction of the heat transfer plates) in the first outer part and the second outer part is larger than the elastic force in the predetermined direction in the central part, the second part and the sixth part are the first outer part and the sixth part. When pushed by the second outer portion, the alternating region constituents are deformed so as to bend (see FIG. 17), which tends to reduce the airtightness between the alternating region constituents and the gasket. However, as in the above configuration, by making the elastic force of the central portion larger than the elastic force of the first outer portion and the second outer portion, the deformation of the alternating region constituent portion is suppressed and the central portion is the seventh. It is in close contact with the site sufficiently, which can prevent the deterioration of the airtightness. Moreover, according to the above configuration, since the angle of the second part with respect to the first part and the angle of the sixth part with respect to the fifth part are larger than the angle of the fourth part with respect to the third part, the fluid flows between the heat transfer plates. The part is easily deformed by the force from the flow path region side (force in a predetermined direction) applied to the second part and the sixth part, but even if the force from the flow path area side is applied, the first part is Since the second and sixth parts are supported by the first outer part and the second outer part, deformation of the parts can be prevented.

この場合、例えば、
前記中心部位と前記第一外側部位と前記第二外側部位とは、一体であり、
前記ガスケットにおける前記挟持領域に配置される部位は、前記所定方向の弾性力が生じていない状態で前記中心部位が前記第七部位に接した状態では、前記第一外側部位と前記第二部位との間、及び前記第二外側部位と前記第六部位との間に隙間が生じる一方、該ガスケットが前記伝熱プレート間に挟み込まれて前記流路に前記流体が流通可能な状態では、前記所定方向の弾性力が生じた状態で前記中心部位と前記第七部位とが接すると共に、前記第一外側部位と前記第二部位とが接し且つ前記第二外側部位と前記第六部位とが接する、形状を有してもよい。
In this case, for example
The central portion, the first outer portion, and the second outer portion are integrated.
The portions arranged in the sandwiching region of the gasket are the first outer portion and the second portion when the central portion is in contact with the seventh portion in a state where the elastic force in the predetermined direction is not generated. In a state where the gasket is sandwiched between the heat transfer plates and the fluid can flow through the flow path, the predetermined state is formed. The central portion and the seventh portion are in contact with each other in a state where elastic force is generated in the direction, the first outer portion and the second portion are in contact with each other, and the second outer portion and the sixth portion are in contact with each other. It may have a shape.

このような形状とすることで、ガスケットが伝熱プレート間に挟み込まれてプレート積層部の流路に流体が流通可能な状態では、ガスケットにおける挟持領域に配置される部位において、中心部位における所定方向の弾性力を、第一外側部位及び第二外側部位における所定方向の弾性力より大きくすることができる。 With such a shape, when the gasket is sandwiched between the heat transfer plates and the fluid can flow through the flow path of the plate laminated portion, in the portion arranged in the sandwiching region of the gasket, the predetermined direction at the central portion. The elastic force of the above can be made larger than the elastic force in the predetermined direction in the first outer portion and the second outer portion.

また、前記プレート式熱交換器では、
前記複数の伝熱プレートのそれぞれは、貫通孔を有し、
前記プレート積層部は、前記貫通孔が前記所定方向に連なることで形成される連通路を有し、
該連通路は、前記伝熱プレート間に形成される前記流路と連通し、
前記交互領域部位は、前記プレート積層部における前記連通路の周縁部において前記貫通孔から離れる方向に前記第一部位と前記第二部位とが並ぶように配置されてもよい。
Further, in the plate heat exchanger,
Each of the plurality of heat transfer plates has a through hole and has a through hole.
The plate laminated portion has a communication passage formed by connecting the through holes in the predetermined direction.
The communication passage communicates with the flow path formed between the heat transfer plates, and communicates with the communication passage.
The alternating region portion may be arranged so that the first portion and the second portion are lined up in a direction away from the through hole at the peripheral edge portion of the communication passage in the plate laminated portion.

かかる構成によれば、圧損が大きくなり易い連通路からプレート間流路(伝熱プレート間に形成される流路)に流入直後の部位(交互領域部位)での圧損を抑えることができる。 According to such a configuration, it is possible to suppress the pressure loss at the portion (alternate region portion) immediately after flowing into the inter-plate flow path (the flow path formed between the heat transfer plates) from the continuous passage where the pressure loss tends to be large.

また、前記プレート式熱交換器では、
前記交互領域部位において、前記挟持領域を形成している伝熱プレート対では、前記第一部位同士が当接状態で対向すると共に、前記流路領域を形成している伝熱プレート対では、前記第一部位同士が前記所定方向に間隔をあけて対向し、
該交互領域部位は、各交互領域構成部の前記第一部位が前記連通路に臨むように配置されると共に、前記連通路の周縁に沿って延びていてもよい。
Further, in the plate heat exchanger,
In the heat transfer plate pair forming the sandwiching region in the alternating region portion, the first portions face each other in an abutting state, and in the heat transfer plate pair forming the flow path region, the heat transfer plate pair is described. The first parts face each other at intervals in the predetermined direction,
The alternating region portion may be arranged so that the first portion of each alternating region constituent portion faces the communication passage, and may extend along the peripheral edge of the communication passage.

かかる構成によれば、流体が連通路からプレート間流路に流入する際の入口(交互領域部位における第一部位同士が間隔をあけた部位:流路領域の入口)が連通路の周縁に沿って延びているため、前記入口の開口面積(流路断面積)が十分に確保され、これにより、前記入口における圧損が抑えられる。 According to such a configuration, the inlet when the fluid flows into the inter-plate flow path from the communication passage (the part where the first parts in the alternating region part are spaced from each other: the entrance of the flow path area) is along the peripheral edge of the communication passage. Therefore, the opening area (flow path cross-sectional area) of the inlet is sufficiently secured, and thus the pressure loss at the inlet is suppressed.

また、前記プレート式熱交換器では、
前記伝熱プレートの前記貫通孔は、円形であり、
前記ガスケットは、前記貫通孔を囲む円環形状の環状部を有し、
該環状部は、前記挟持領域に配置される部位を含み、且つ、前記貫通孔に対して交互領域部位側に偏心した位置に配置されてもよい。
Further, in the plate heat exchanger,
The through hole of the heat transfer plate is circular and has a circular shape.
The gasket has an annular portion that surrounds the through hole and has an annular shape.
The annular portion may include a portion arranged in the sandwiching region and may be arranged at a position eccentric to the alternating region portion side with respect to the through hole.

このように環状部を貫通孔に対して交互領域部位側に偏心した位置に配置することで、貫通孔の交互領域部位側の周縁と環状部(ガスケットの挟持領域に配置される部位)との間隔が広くなるため、交互領域部位の第一部位同士が所定方向に間隔をあけた部位を形成(配置)し易くなる。しかも、交互領域部位の第一部位同士が所定方向に間隔をあけた部位を形成するための領域を確保しつつもガスケットの該当部位(環状部)を円環形状として屈曲した部位を設けないことで、該部位におけるシール性が安定する。 By arranging the annular portion at a position eccentric to the alternating region portion side with respect to the through hole in this way, the peripheral edge of the through hole on the alternating region portion side and the annular portion (the portion arranged in the holding region of the gasket) Since the interval becomes wide, it becomes easy for the first portions of the alternating region portions to form (arrange) the portions spaced in a predetermined direction. Moreover, while securing a region for forming a portion in which the first portions of the alternating region portions are spaced apart from each other in a predetermined direction, the corresponding portion (annular portion) of the gasket should not be provided with a bent portion having an annular shape. Therefore, the sealing property at the site is stable.

以上より、本発明によれば、圧損を抑えたプレート式熱交換器を提供することができる。 From the above, according to the present invention, it is possible to provide a plate type heat exchanger in which pressure loss is suppressed.

図1は、本実施形態に係るプレート式熱交換器の斜視図である。FIG. 1 is a perspective view of a plate heat exchanger according to the present embodiment. 図2は、前記プレート式熱交換器の分解斜視図である。FIG. 2 is an exploded perspective view of the plate heat exchanger. 図3は、前記プレート式熱交換器が備えるプレート積層部の正面図である。FIG. 3 is a front view of a plate laminated portion included in the plate heat exchanger. 図4は、一対のフレームと前記プレート積層部の分解斜視図である。FIG. 4 is an exploded perspective view of the pair of frames and the plate laminated portion. 図5は、前記プレート積層部が有する伝熱プレートを第一面側から見た図である。FIG. 5 is a view of the heat transfer plate included in the plate laminated portion as viewed from the front surface side. 図6は、前記伝熱プレートを第二面側から見た図である。FIG. 6 is a view of the heat transfer plate viewed from the second surface side. 図7は、図5の一方の連通部における第一領域及びその周辺の拡大図である。FIG. 7 is an enlarged view of the first region and its periphery in one communication portion of FIG. 図8は、図5の一方の連通部における第二領域及びその周辺の拡大図である。FIG. 8 is an enlarged view of the second region and its periphery in one communication portion of FIG. 図9は、図3のIX−IX位置における切断部端面の拡大図である。FIG. 9 is an enlarged view of the end face of the cut portion at the IX-IX position of FIG. 図10は、図3のIX−IX位置における拡大断面斜視図である。FIG. 10 is an enlarged cross-sectional perspective view at the IX-IX position of FIG. 図11は、図3のXI−XI位置における切断部端面の拡大図である。FIG. 11 is an enlarged view of the end face of the cut portion at the XI-XI position of FIG. 図12は、前記プレート式熱交換器が備えるガスケットの正面図である。FIG. 12 is a front view of the gasket included in the plate heat exchanger. 図13は、図12のXIII−XIII位置における拡大断面図である。FIG. 13 is an enlarged cross-sectional view at the XIII-XIII position of FIG. 図14は、図12のXIV−XIV位置における拡大断面図である。FIG. 14 is an enlarged cross-sectional view at the XIV-XIV position of FIG. 図15は、X軸定方向の弾性力が生じていない状態でガスケットの第一円弧部が第一配置部の内側部位間に挟み込まれた状態の断面図である。FIG. 15 is a cross-sectional view of a state in which the first arc portion of the gasket is sandwiched between the inner portions of the first arrangement portion in a state where no elastic force in the X-axis constant direction is generated. 図16は、X軸方向の弾性力が生じた状態でガスケットの第一円弧部が第一配置部の内側部位間に挟み込まれた状態の断面図である。FIG. 16 is a cross-sectional view of a state in which the first arc portion of the gasket is sandwiched between the inner portions of the first arrangement portion in a state where an elastic force in the X-axis direction is generated. 図17は、伝熱プレートの交互領域構成部が撓むように変形した状態を示す模式断面図である。FIG. 17 is a schematic cross-sectional view showing a state in which the alternating region constituents of the heat transfer plate are deformed so as to bend. 図18は、前記プレート式熱交換器における流れ解析の結果を示すグラフである。FIG. 18 is a graph showing the results of flow analysis in the plate heat exchanger. 図19は、他実施形態に係る伝熱プレートの第一配置部の内側部位を示す模式断面図である。FIG. 19 is a schematic cross-sectional view showing an inner portion of the first arrangement portion of the heat transfer plate according to another embodiment. 図20は、従来のプレート式熱交換器の構成を説明するための分解斜視図である。FIG. 20 is an exploded perspective view for explaining the configuration of a conventional plate heat exchanger. 図21は、第二流路を形成するガスケットが伝熱プレートに配置された状態の正面図である。FIG. 21 is a front view of a state in which the gasket forming the second flow path is arranged on the heat transfer plate. 図22は、第一流路を形成するガスケットが伝熱プレートに配置された状態の正面図である。FIG. 22 is a front view of a state in which the gasket forming the first flow path is arranged on the heat transfer plate. 図23は、図21のXXIII−XXIII位置における前記プレート式熱交換器の断面図である。FIG. 23 is a cross-sectional view of the plate heat exchanger at the XXIII-XXIII positions of FIG. 図24は、図21のXXIV−XXIV位置における前記プレート式熱交換器の断面図である。FIG. 24 is a cross-sectional view of the plate heat exchanger at the XXIV-XXIV position of FIG.

以下、本発明の一実施形態について、図1〜図17を参照しつつ説明する。 Hereinafter, an embodiment of the present invention will be described with reference to FIGS. 1 to 17.

本実施形態に係るプレート式熱交換器(以下、単に「熱交換器」と称する。)は、図1〜図4に示すように、複数の伝熱プレート3を有するプレート積層部2と、プレート積層部2を挟み込む一対のフレーム5a、5bと、プレート積層部2と一対のフレーム5a、5bとを配置位置にガイドするガイド部6と、一対のフレーム5a、5bを互いの間隔が小さくなる方向に締め付け可能な複数の締付部材7と、を備える。 As shown in FIGS. 1 to 4, the plate-type heat exchanger according to the present embodiment (hereinafter, simply referred to as “heat exchanger”) has a plate laminated portion 2 having a plurality of heat transfer plates 3 and a plate. A direction in which the distance between the pair of frames 5a and 5b that sandwich the laminated portion 2 and the guide portion 6 that guides the plate laminated portion 2 and the pair of frames 5a and 5b to the arrangement position and the pair of frames 5a and 5b become smaller. A plurality of tightening members 7 that can be tightened are provided.

プレート積層部2は、所定方向に重ね合わされる複数の伝熱プレート3と、伝熱プレート3間に挟み込まれることで該伝熱プレート3間に流体(第一流体A、第二流体B)の流通可能な流路(第一流路Ra、第二流路Rb)を形成する複数のガスケット4と、を有する。本実施形態のプレート積層部2では、一種類の矩形状(長方形状)の伝熱プレート3が一つおきに反転した状態で重ね合わされることで、各伝熱プレート3を境に第一流体Aが流通可能な第一流路Raと第二流体Bが流通可能な第二流路Rbとが交互に形成される。 The plate laminated portion 2 is sandwiched between a plurality of heat transfer plates 3 that are superposed in a predetermined direction and the heat transfer plates 3, so that the fluids (first fluid A, second fluid B) are sandwiched between the heat transfer plates 3. It has a plurality of gaskets 4 that form a flowable flow path (first flow path Ra, second flow path Rb). In the plate laminated portion 2 of the present embodiment, one type of rectangular (rectangular) heat transfer plates 3 are superposed in an inverted state, so that the first fluid is bounded by each heat transfer plate 3. The first flow path Ra through which A can flow and the second flow path Rb through which the second fluid B can flow are alternately formed.

以下では、伝熱プレート3が重ね合わされる方向を直交座標系のX軸方向とし、伝熱プレート3の短辺方向を直交座標系のY軸方向とし、伝熱プレート3の長辺方向を直交座標系のZ軸方向とする。 In the following, the direction in which the heat transfer plates 3 are overlapped is defined as the X-axis direction of the Cartesian coordinate system, the short side direction of the heat transfer plate 3 is defined as the Y-axis direction of the Cartesian coordinate system, and the long side direction of the heat transfer plate 3 is orthogonal. The Z-axis direction of the coordinate system.

複数の伝熱プレート3のそれぞれは、X軸方向と直交する仮想面V(図9及び図11参照)に沿って広がる。これら複数の伝熱プレート3のそれぞれは、図5及び図6にも示すように、X軸方向の一方の面である第一面S1と該第一面S1の反対側の面(他方の面)である第二面S2とのそれぞれに複数の凸部9a及び複数の凹部9bを有する。この伝熱プレート3は、金属プレート(薄板)がプレス成型されることによって形成されている。このため、第二面S2において、第一面S1の凸部9aと対応する位置(X軸方向から見て重なる位置)に凹部9bが位置し、第一面S1の凹部9bと対応する位置(X軸方向から見て重なる位置)に凸部9aが位置している。即ち、第一面S1の凸部9aの裏側に第二面S2の凹部9bが位置し、第一面S1の凹部9bの裏側に第二面S2の凸部9aが位置している。 Each of the plurality of heat transfer plates 3 extends along a virtual surface V (see FIGS. 9 and 11) orthogonal to the X-axis direction. As shown in FIGS. 5 and 6, each of the plurality of heat transfer plates 3 has a first surface S1 which is one surface in the X-axis direction and a surface opposite to the first surface S1 (the other surface). ), Each of the second surface S2 has a plurality of convex portions 9a and a plurality of concave portions 9b. The heat transfer plate 3 is formed by press-molding a metal plate (thin plate). Therefore, on the second surface S2, the recess 9b is located at a position corresponding to the convex portion 9a of the first surface S1 (a position overlapping when viewed from the X-axis direction), and a position corresponding to the concave portion 9b of the first surface S1 (a position corresponding to the concave portion 9b of the first surface S1). The convex portion 9a is located at a position where it overlaps when viewed from the X-axis direction). That is, the concave portion 9b of the second surface S2 is located on the back side of the convex portion 9a of the first surface S1, and the convex portion 9a of the second surface S2 is located on the back side of the concave portion 9b of the first surface S1.

具体的に、各伝熱プレート3は、Z軸方向の中央部に配置される主伝熱部30と、Z軸方向の端部に配置される一対の連通部31と、主伝熱部30と連通部31との間に配置される一対の堰部32と、を有する。また、本実施形態の伝熱プレート3は、Z軸方向の両端に一対のガイド用切欠き33を有する。 Specifically, each heat transfer plate 3 has a main heat transfer portion 30 arranged at the center in the Z-axis direction, a pair of communication portions 31 arranged at the end in the Z-axis direction, and a main heat transfer portion 30. It has a pair of weir portions 32 arranged between the communication portion 31 and the communication portion 31. Further, the heat transfer plate 3 of the present embodiment has a pair of guide notches 33 at both ends in the Z-axis direction.

主伝熱部30は、伝熱プレート3において該伝熱プレート3を境に形成される第一流路Raと第二流路Rbとを流れる流体間(第一流体Aと第二流体Bとの間)の熱交換の大部分が行われる部位である。この主伝熱部30においてY軸方向の端部を除いた第一面S1側の面が第一主伝熱領域300aであり、主伝熱部30においてY軸方向の端部を除いた第二面S2側の面が第二主伝熱領域300bである。即ち、伝熱プレート3の第一面S1及び第二面S2のうちの主伝熱部30におけるY軸方向の端部を除いた部位と対応する領域(部位)が、主伝熱領域(第一主伝熱領域300a、第二主伝熱領域300b)である。本実施形態の主伝熱部30は、X軸方向から見て四角状の部位である。 The main heat transfer unit 30 is formed between the fluids (the first fluid A and the second fluid B) flowing between the first flow path Ra and the second flow path Rb formed on the heat transfer plate 3 with the heat transfer plate 3 as a boundary. This is the part where most of the heat exchange takes place. The surface of the main heat transfer portion 30 on the first surface S1 side excluding the end portion in the Y-axis direction is the first main heat transfer region 300a, and the surface of the main heat transfer portion 30 excluding the end portion in the Y-axis direction is the first. The surface on the side of the two surfaces S2 is the second main heat transfer region 300b. That is, the region (part) corresponding to the portion of the main heat transfer portion 30 of the first surface S1 and the second surface S2 of the heat transfer plate 3 excluding the end portion in the Y-axis direction is the main heat transfer region (the first). One main heat transfer region 300a, second main heat transfer region 300b). The main heat transfer portion 30 of the present embodiment is a square portion when viewed from the X-axis direction.

この主伝熱部30は、両面(第一及び第二主伝熱領域)300a、300bに、複数の凸部91a(9a)及び複数の凹部91b(9b)をそれぞれ有する。これら複数の凸部91a及び複数の凹部91bは、伝熱効率や熱交換を行う流体(第一及び第二流体)A、Bの種類等に応じて配置や形態が設定される。本実施形態の第一及び第二主伝熱領域300a、300bの複数の凸部91a及び複数の凹部91bは、いわゆるヘリンボーン形状(配置)であが、この形状(配置)に限定されない。 The main heat transfer portion 30 has a plurality of convex portions 91a (9a) and a plurality of concave portions 91b (9b) on both sides (first and second main heat transfer regions) 300a and 300b, respectively. The arrangement and form of the plurality of convex portions 91a and the plurality of concave portions 91b are set according to the heat transfer efficiency and the types of fluids (first and second fluids) A and B for heat exchange. The plurality of convex portions 91a and the plurality of concave portions 91b of the first and second main heat transfer regions 300a and 300b of the present embodiment have a so-called herringbone shape (arrangement), but are not limited to this shape (arrangement).

また、主伝熱部30は、Y軸方向の両端部に、ガスケット4が配置される配置部301を有する。この配置部301は、仮想面Vに沿ってZ軸方向に延びる帯状の平坦部3011と、平坦部3011の幅方向(Y軸方向)の両側のそれぞれにおいてX軸方向の凹凸(X軸方向の凹部と凸部)がZ軸方向に繰り返される一対の凹凸部3012と、を有する。これら一対の凹凸部3012は、該凹凸部3012の各凸部における平坦部3011側の壁部(第四部位)3012aによってガスケット4の幅方向の位置ずれを抑える(図11参照)。本実施形態の配置部301では、一対の凹凸部3012のうちの一方(伝熱プレート3のY軸方向の中心側:図11における左側)の凹凸部3012は、主伝熱領域300a、300bが有する凸部91a及び凹部91bによって構成されている。 Further, the main heat transfer portion 30 has an arrangement portion 301 in which the gasket 4 is arranged at both ends in the Y-axis direction. The arrangement portion 301 has a band-shaped flat portion 3011 extending in the Z-axis direction along the virtual surface V and unevenness in the X-axis direction (in the X-axis direction) on both sides of the flat portion 3011 in the width direction (Y-axis direction). It has a pair of concave-convex portions 3012 in which concave portions and convex portions) are repeated in the Z-axis direction. The pair of concave-convex portions 3012 suppresses the displacement of the gasket 4 in the width direction by the wall portion (fourth portion) 3012a on the flat portion 3011 side in each convex portion of the concave-convex portion 3012 (see FIG. 11). In the arrangement portion 301 of the present embodiment, the concave-convex portion 3012 of one of the pair of concave-convex portions 3012 (center side of the heat transfer plate 3 in the Y-axis direction: the left side in FIG. 11) has main heat transfer regions 300a and 300b. It is composed of a convex portion 91a and a concave portion 91b.

一対の連通部31のそれぞれは、X軸方向に貫通する連通孔(貫通孔)311を有する。本実施形態の各連通部31は、二つの連通孔311a、311bを有する。これら二つの連通孔311a、311bは、Y軸方向に間隔をあけて配置されている。これにより、伝熱プレート3の四隅には、連通孔311がそれぞれ配置されている。本実施形態の伝熱プレート3では、これら四つの連通孔311がそれぞれ円形の孔であり、各連通孔311の大きさ(直径)が同じである。 Each of the pair of communication portions 31 has a communication hole (through hole) 311 that penetrates in the X-axis direction. Each communication portion 31 of the present embodiment has two communication holes 311a and 311b. These two communication holes 311a and 311b are arranged at intervals in the Y-axis direction. As a result, communication holes 311 are arranged at the four corners of the heat transfer plate 3. In the heat transfer plate 3 of the present embodiment, each of the four communication holes 311 is a circular hole, and the size (diameter) of each communication hole 311 is the same.

一対の連通部31のうちの一方(図5の上側)の連通部31aの各構成と、一対の連通部31のうちの他方(図5の下側)の連通部31bの各構成とは、X軸方向から見て、横中心線CL2を対称軸にして線対称である。この横中心線CL2は、伝熱プレート3のZ軸方向の中心をY軸方向に延びる。 Each configuration of the communication portion 31a of one of the pair of communication portions 31 (upper side of FIG. 5) and each configuration of the communication portion 31b of the other of the pair of communication portions 31 (lower side of FIG. 5) are When viewed from the X-axis direction, it is line symmetric with the horizontal center line CL2 as the axis of symmetry. The horizontal center line CL2 extends in the Y-axis direction from the center of the heat transfer plate 3 in the Z-axis direction.

また、各連通部31a、31bの各構成は、X軸方向から見て、縦中心線CL1を対称軸にした線対称な配置及び形状になっている。ここで、縦中心線CL1は、伝熱プレート3のY軸方向の中心をZ軸方向に延びる。そして、各連通部31a、31bにおける縦中心線CL1の一方側(図5における左側/図6における右側)の第一領域T1における各構成と、各連通部31a、31bにおける縦中心線CL1の他方側(図5における右側/図6における左側)の第二領域T2における各構成とは、X軸方向における変位方向が逆になっている。 Further, each of the configurations of the communication portions 31a and 31b has a line-symmetrical arrangement and shape with the vertical center line CL1 as the axis of symmetry when viewed from the X-axis direction. Here, the vertical center line CL1 extends the center of the heat transfer plate 3 in the Y-axis direction in the Z-axis direction. Then, each configuration in the first region T1 of one side (left side in FIG. 5 / right side in FIG. 6) of the vertical center line CL1 in the communication portions 31a and 31b and the other of the vertical center lines CL1 in the communication portions 31a and 31b. The displacement direction in the X-axis direction is opposite to that of each configuration in the second region T2 on the side (right side in FIG. 5 / left side in FIG. 6).

例えば具体的には、第二領域T2におけるX軸方向の一方側に突出する(変位する)構成(例えば凸部)と対応する第一領域T1の構成は、X軸方向の他方側に凹む(変位する)構成(例えば凹部)であり、第二領域T2におけるX軸方向の他方側に凹む(変位する)構成(例えば凹部)と対応する第一領域T1の構成は、X軸方向の一方側に突出する(変位する)構成(例えば凸部)である。 For example, specifically, the configuration of the first region T1 corresponding to the configuration (for example, a convex portion) protruding (displaced) on one side in the X-axis direction in the second region T2 is recessed on the other side in the X-axis direction (for example). The configuration of the first region T1 corresponding to the configuration (for example, a concave portion) that is recessed (displaced) on the other side in the X-axis direction in the second region T2 is one side in the X-axis direction. It is a configuration (for example, a convex portion) that protrudes (displaces).

各連通部31a、31bの第一領域T1は、図7にも示すように、連通孔311aを囲むガスケット4又はガスケット4の一部(環状部42:図12参照)が配置される第一配置部35と、第一配置部35の内側において連通孔311aの周縁の一部を構成する孔周縁部(第一部位)36と、該連通部31a、31bと堰部32との境界位置に沿って延びるガスケット4又はガスケット4の一部(流路画定部41の一部(拡幅部位)411:図12参照)が配置される第二配置部37と、第一配置部35と第二配置部37とを接続する接続部(第五部位)38と、を有する。 As shown in FIG. 7, the first region T1 of the communication portions 31a and 31b is the first arrangement in which the gasket 4 surrounding the communication hole 311a or a part of the gasket 4 (annular portion 42: see FIG. 12) is arranged. Along the boundary position between the portion 35, the hole peripheral edge portion (first portion) 36 forming a part of the peripheral edge of the communication hole 311a inside the first arrangement portion 35, and the communication portions 31a and 31b and the weir portion 32. A second arrangement portion 37 in which a portion of the gasket 4 or a part of the gasket 4 (a part of the flow path defining portion 41 (widening portion) 411: see FIG. 12) is arranged, and a first arrangement portion 35 and a second arrangement portion. It has a connecting portion (fifth portion) 38 for connecting to the 37.

第一配置部35は、堰部32側の半円状の部位である内側部位351と、伝熱プレート3の隅部側の半円状の部位である外側部位352と、を有する。この第一配置部35では、ガスケット4の円環形状の部位(環状部)42が、連通孔311に対して堰部32側に偏心した位置(位置ずれした位置)に配置される。 The first arrangement portion 35 has an inner portion 351 which is a semicircular portion on the weir portion 32 side and an outer portion 352 which is a semicircular portion on the corner side of the heat transfer plate 3. In the first arrangement portion 35, the annular portion (annular portion) 42 of the gasket 4 is arranged at a position eccentric (displaced position) toward the weir portion 32 with respect to the communication hole 311.

内側部位351は、ガスケット4が配置される溝状の部位である(図9参照)。具体的に、内側部位351は、仮想面Vに沿った帯状の底壁部(第七部位)3511と、底壁部3511の幅方向の両端からX軸方向の一方側に延びる一対の側壁部(第一側壁部(第二部位)3512、第二側壁部(第六部位)3513)と、を有する。この内側部位351において、底壁部3511に対する第一側壁部3512の角度θ1と、底壁部3511に対する第二側壁部3513の角度θ2とは、同じである(図9参照)。 The inner portion 351 is a groove-shaped portion in which the gasket 4 is arranged (see FIG. 9). Specifically, the inner portion 351 includes a band-shaped bottom wall portion (seventh portion) 3511 along the virtual surface V and a pair of side wall portions extending from both ends in the width direction of the bottom wall portion 3511 to one side in the X-axis direction. (First side wall portion (second portion) 3512, second side wall portion (sixth portion) 3513). In this inner portion 351, the angle θ1 of the first side wall portion 3512 with respect to the bottom wall portion 3511 and the angle θ2 of the second side wall portion 3513 with respect to the bottom wall portion 3511 are the same (see FIG. 9).

底壁部3511は、X軸方向から見て半円弧状に延びている。この底壁部3511のX軸方向における位置は、主伝熱部30の配置部301の平坦部3011と同じであり、底壁部3511の幅は、平坦部3011と同じである。 The bottom wall portion 3511 extends in a semicircular shape when viewed from the X-axis direction. The position of the bottom wall portion 3511 in the X-axis direction is the same as that of the flat portion 3011 of the arrangement portion 301 of the main heat transfer portion 30, and the width of the bottom wall portion 3511 is the same as that of the flat portion 3011.

第一側壁部3512及び第二側壁部3513のそれぞれは、X軸方向の他方側(図7における奥側)に凹む円錐台状の支持部3514を複数有する(図10参照)。この支持部3514は、伝熱プレート3が重ね合わされたときに、該支持部3514を有する伝熱プレート3とX軸方向に隣り合う伝熱プレート(相手方プレート)3の対応する支持部3514と先端同士を当接させることにより、該伝熱プレート3と相手方プレート3との間隔を維持する。これら複数の支持部3514は、第一側壁部3512及び第二側壁部3513のそれぞれにおいて、周方向に間隔をあけて配置されている。各支持部3514の底部は、X軸方向において底壁部3511より他方側に位置している。 Each of the first side wall portion 3512 and the second side wall portion 3513 has a plurality of truncated cone-shaped support portions 3514 recessed on the other side (back side in FIG. 7) in the X-axis direction (see FIG. 10). When the heat transfer plates 3 are overlapped with each other, the support portion 3514 has the tip of the heat transfer plate 3 having the support portion 3514 and the corresponding support portion 3514 of the heat transfer plate (counterpart plate) 3 adjacent to each other in the X-axis direction. By bringing them into contact with each other, the distance between the heat transfer plate 3 and the mating plate 3 is maintained. These plurality of support portions 3514 are arranged at intervals in the circumferential direction in each of the first side wall portion 3512 and the second side wall portion 3513. The bottom of each support 3514 is located on the other side of the bottom wall 3511 in the X-axis direction.

外側部位352は、仮想面Vに沿った帯状の第一平坦部3521と、第一平坦部3521の幅方向の両側においてX軸方向の凹凸(凹部と凸部)が第一平坦部3521の延びる方向に沿って繰り返される一対の幅方向規定部3522と、を有する。 In the outer portion 352, the band-shaped first flat portion 3521 along the virtual surface V and the unevenness (concave and convex portions) in the X-axis direction extend on both sides of the first flat portion 3521 in the width direction of the first flat portion 3521. It has a pair of widthwise defining portions 3522 that are repeated along the direction.

第一平坦部3521は、X軸方向から見て半円弧状に延びている。この第一平坦部3521のX軸方向における位置は、内側部位351の底壁部3511の位置、及び主伝熱部30の配置部301における平坦部3011の位置のそれぞれと同じである。また、第一平坦部3521の幅は、内側部位351の底壁部3511の幅、及び主伝熱部30の配置部301における平坦部3011の幅のそれぞれと同じである。 The first flat portion 3521 extends in a semicircular shape when viewed from the X-axis direction. The position of the first flat portion 3521 in the X-axis direction is the same as the position of the bottom wall portion 3511 of the inner portion 351 and the position of the flat portion 3011 in the arrangement portion 301 of the main heat transfer portion 30. Further, the width of the first flat portion 3521 is the same as the width of the bottom wall portion 3511 of the inner portion 351 and the width of the flat portion 3011 in the arrangement portion 301 of the main heat transfer portion 30.

一対の幅方向規定部3522は、主伝熱部30における配置部301の一対の凹凸部3012と同様に、該幅方向規定部3522の各凸部によってガスケット4(環状部42:図12参照)の幅方向(径方向)の位置ずれを抑える。 Similar to the pair of uneven portions 3012 of the arrangement portion 301 in the main heat transfer portion 30, the pair of widthwise defining portions 3522 has a gasket 4 (annular portion 42: see FIG. 12) due to each convex portion of the width direction defining portion 3522. Suppresses misalignment in the width direction (diameter direction) of.

孔周縁部36は、内側部位351の内側(連通孔311の径方向内側)に配置され且つ仮想面Vに沿った部位である(図9参照)。具体的に、孔周縁部36は、内側部位351の連通孔311側の端部(第一側壁部3512の端部)から連通孔311の中心側に延びると共に、連通孔311の周方向(周縁方向)に延びている。本実施形態の孔周縁部36は、連通孔311の周方向において、内側部位351と対応する範囲に設けられている。また、孔周縁部36の幅(連通孔311の径方向の寸法)は、周方向の両端から中央に進むに伴い漸増する。この孔周縁部36と第一配置部35の外側部位352とによって、連通孔311が画定されている。 The hole peripheral edge portion 36 is a portion arranged inside the inner portion 351 (inward in the radial direction of the communication hole 311) and along the virtual surface V (see FIG. 9). Specifically, the hole peripheral edge 36 extends from the end of the inner portion 351 on the communication hole 311 side (the end of the first side wall 3512) toward the center of the communication hole 311 and in the circumferential direction (periphery) of the communication hole 311. Extends in the direction). The hole peripheral edge portion 36 of the present embodiment is provided in a range corresponding to the inner portion 351 in the circumferential direction of the communication hole 311. Further, the width of the hole peripheral portion 36 (the radial dimension of the communication hole 311) gradually increases as it advances from both ends in the circumferential direction toward the center. The communication hole 311 is defined by the hole peripheral edge portion 36 and the outer portion 352 of the first arrangement portion 35.

本実施形態の孔周縁部36は、第一配置部35の内側部位351における底壁部3511と平行である。このため、孔周縁部36に対する内側部位351の第一側壁部3512の角度は、内側部位351における底壁部3511に対する第一側壁部3512の角度θ1と同じである(図9参照)。 The hole peripheral edge portion 36 of the present embodiment is parallel to the bottom wall portion 3511 in the inner portion 351 of the first arrangement portion 35. Therefore, the angle of the first side wall portion 3512 of the inner portion 351 with respect to the hole peripheral edge portion 36 is the same as the angle θ1 of the first side wall portion 3512 with respect to the bottom wall portion 3511 of the inner portion 351 (see FIG. 9).

第二配置部37は、ガスケット4が配置される溝状の部位である(図9参照)。具体的に、第二配置部37は、仮想面Vに沿った帯状の第二平坦部371と、第二平坦部371の幅方向の両端からX軸方向の一方側に延びる一対の側壁部(第三側壁部372、第四側壁部373)と、を有する。この第二配置部37において、第二平坦部371に対する第三側壁部372の角度θ3と、第二平坦部371に対する第四側壁部373の角度θ4とは、異なる(図9参照)。 The second arrangement portion 37 is a groove-shaped portion in which the gasket 4 is arranged (see FIG. 9). Specifically, the second arrangement portion 37 includes a band-shaped second flat portion 371 along the virtual surface V and a pair of side wall portions extending from both ends in the width direction of the second flat portion 371 to one side in the X-axis direction. It has a third side wall portion 372 and a fourth side wall portion 373). In the second arrangement portion 37, the angle θ3 of the third side wall portion 372 with respect to the second flat portion 371 and the angle θ4 of the fourth side wall portion 373 with respect to the second flat portion 371 are different (see FIG. 9).

本実施形態の第二配置部37では、角度θ3>角度θ4である。この角度θ4は、主伝熱部30の配置部301における平坦部(第三部位)3011に対する凹凸部3012の壁部(第四部位)3012aの角度θ5(図11参照)や、第一配置部35の外側部位352における第一平坦部(第三部位)3521に対する幅方向規定部3522の壁部(前記配置部301の壁部3012aに相当する壁部:第四部位)の角度と同じである。また、本実施形態の第一領域T1では、角度θ1=角度θ2=角度θ3である。 In the second arrangement portion 37 of the present embodiment, the angle θ3> the angle θ4. The angle θ4 is the angle θ5 (see FIG. 11) of the wall portion (fourth portion) 3012a of the uneven portion 3012 with respect to the flat portion (third portion) 3011 in the arrangement portion 301 of the main heat transfer portion 30, and the first arrangement portion. It is the same as the angle of the wall portion of the width direction defining portion 3522 (the wall portion corresponding to the wall portion 3012a of the arrangement portion 301: the fourth portion) with respect to the first flat portion (third portion) 3521 in the outer portion 352 of the 35. .. Further, in the first region T1 of the present embodiment, the angle θ1 = the angle θ2 = the angle θ3.

第二平坦部371は、X軸方向から見て、縦中心線CL1及び横中心線CL2のそれぞれに対して傾斜した方向に直線状に延びている。この第二平坦部371のX軸方向における位置は、第一配置部35の内側部位351における底壁部3511の位置、第一配置部35の外側部位352における第一平坦部3521の位置、及び主伝熱部30の配置部301における平坦部3011の位置のそれぞれと同じである。また、第二平坦部371の幅は、第一配置部35の内側部位351における底壁部3511の幅、第一配置部35の外側部位352における第一平坦部3521の幅、及び主伝熱部30の配置部301における平坦部3011の幅のそれぞれと同じである。 The second flat portion 371 extends linearly in a direction inclined with respect to each of the vertical center line CL1 and the horizontal center line CL2 when viewed from the X-axis direction. The positions of the second flat portion 371 in the X-axis direction are the position of the bottom wall portion 3511 in the inner portion 351 of the first arrangement portion 35, the position of the first flat portion 3521 in the outer portion 352 of the first arrangement portion 35, and It is the same as each of the positions of the flat portion 3011 in the arrangement portion 301 of the main heat transfer portion 30. The width of the second flat portion 371 is the width of the bottom wall portion 3511 in the inner portion 351 of the first arrangement portion 35, the width of the first flat portion 3521 in the outer portion 352 of the first arrangement portion 35, and the main heat transfer. It is the same as the width of the flat portion 3011 in the arrangement portion 301 of the portion 30.

接続部38は、仮想面Vに沿った部位であり、第一配置部35(内側部位351)の第二側壁部3513の端部と、第二配置部37の第三側壁部372の端部と、を接続する。この接続部38は、該接続部38を含む伝熱プレート3の孔周縁部36と共通の仮想面Vに沿って配置されている(図9参照)。 The connecting portion 38 is a portion along the virtual surface V, and is an end portion of the second side wall portion 3513 of the first arrangement portion 35 (inner portion 351) and an end portion of the third side wall portion 372 of the second arrangement portion 37. And connect. The connecting portion 38 is arranged along a virtual surface V common to the hole peripheral portion 36 of the heat transfer plate 3 including the connecting portion 38 (see FIG. 9).

本実施形態の接続部38は、第一配置部35の内側部位351における底壁部3511と平行である。このため、接続部38に対する内側部位351の第二側壁部3513の角度は、内側部位351における底壁部3511に対する第二側壁部3513の角度θ2と同じである(図9参照)。また、この接続部38は、第二配置部37の第二平坦部371と平行である。このため、接続部38に対する第二配置部37の第三側壁部372の角度は、第二配置部37における第二平坦部371に対する第三側壁部372の角度θ3と同じである(図9参照)。 The connecting portion 38 of the present embodiment is parallel to the bottom wall portion 3511 in the inner portion 351 of the first arrangement portion 35. Therefore, the angle of the second side wall portion 3513 of the inner portion 351 with respect to the connecting portion 38 is the same as the angle θ2 of the second side wall portion 3513 with respect to the bottom wall portion 3511 of the inner portion 351 (see FIG. 9). Further, the connecting portion 38 is parallel to the second flat portion 371 of the second arrangement portion 37. Therefore, the angle of the third side wall portion 372 of the second arrangement portion 37 with respect to the connection portion 38 is the same as the angle θ3 of the third side wall portion 372 with respect to the second flat portion 371 of the second arrangement portion 37 (see FIG. 9). ).

各連通部31a、31bにおける第二領域T2の各構成(第一配置部35r、孔周縁部36r、第二配置部37r、接続部38r)は、上述のように、共通の連通部31a、31bにおける第一領域T1の各構成35〜38と縦中心線CL1を対称軸にした線対称な配置及び形状で(図8参照)、且つ、X軸方向における変位方向が逆となるように形成されている。 As described above, each configuration of the second region T2 in each of the communication portions 31a and 31b (first arrangement portion 35r, hole peripheral portion 36r, second arrangement portion 37r, connection portion 38r) has common communication portions 31a and 31b. In a line-symmetrical arrangement and shape with each configuration 35 to 38 of the first region T1 and the vertical center line CL1 as the axes of symmetry (see FIG. 8), and the displacement directions in the X-axis direction are opposite to each other. ing.

尚、X軸方向の第一面S1側から見た第一面S1の第一領域T1の各構成と、X軸方向の第二面S2側から見た第二面S2の第二領域T2の各構成とは、同じ配置、同じ形状、同じ変位方向(X軸方向の変位)である。また、X軸方向の第一面S1側から見た第一面S1の第二領域T2の各構成と、X軸方向の第二面S2側から見た第二面S2の第一領域T1の各構成とは同じ配置、同じ形状、同じ変位方向である。図5〜図9においては、第一面S1の第一領域T1における各構成とX軸方向から見て同じ構成には、同じ符号を付し、第一面S1の第一領域T1における各構成とX軸方向の変位方向のみが異なる構成には、第一面S1の第一領域T1の対応する構成の符号の最後にrを付した符号を用いる。 It should be noted that each configuration of the first region T1 of the first surface S1 viewed from the first surface S1 side in the X-axis direction and the second region T2 of the second surface S2 viewed from the second surface S2 side in the X-axis direction. Each configuration has the same arrangement, the same shape, and the same displacement direction (displacement in the X-axis direction). Further, each configuration of the second region T2 of the first surface S1 viewed from the first surface S1 side in the X-axis direction and the first region T1 of the second surface S2 viewed from the second surface S2 side in the X-axis direction. Each configuration has the same arrangement, the same shape, and the same displacement direction. In FIGS. 5 to 9, each configuration in the first region T1 of the first surface S1 and the same configuration when viewed from the X-axis direction are designated by the same reference numerals, and each configuration in the first region T1 of the first surface S1 is assigned. For configurations in which only the displacement directions in the X-axis direction and the X-axis direction are different, a code in which r is added to the end of the code of the corresponding configuration in the first region T1 of the first surface S1 is used.

図5〜図8に示すように、一対の堰部32のそれぞれは、第一面S1又は第二面S2に沿って連通孔311から主伝熱領域300a、300bに向かう流体A、Bの流れをY軸方向に拡散させ、又は、第一面S1又は第二面S2に沿って主伝熱領域300a、300bから連通孔311に向かう流体A、Bの流れをY軸方向に集束させる部位である。これら各堰部32における第一面S1側の面は、第一堰部伝熱領域320aであり、各堰部32における第二面S2側の面は、第二堰部伝熱領域320bである。即ち、伝熱プレート3の第一面S1及び第二面S2のうちの各堰部32と対応する領域(部位)が、堰部伝熱領域(第一堰部伝熱領域320a、第二堰部伝熱領域320b)である。 As shown in FIGS. 5 to 8, each of the pair of dam portions 32 has a flow of fluids A and B from the communication hole 311 toward the main heat transfer regions 300a and 300b along the first surface S1 or the second surface S2. At the site where the flow of fluids A and B from the main heat transfer regions 300a and 300b toward the communication hole 311 is focused in the Y-axis direction along the first surface S1 or the second surface S2. is there. The surface on the first surface S1 side of each weir portion 32 is the first weir portion heat transfer region 320a, and the surface on the second surface S2 side of each weir portion 32 is the second weir portion heat transfer region 320b. .. That is, the region (part) corresponding to each weir portion 32 of the first surface S1 and the second surface S2 of the heat transfer plate 3 is the weir portion heat transfer region (first weir portion heat transfer region 320a, second weir). Partial heat transfer region 320b).

具体的に、各堰部32は、主伝熱部30との境界を底辺とし、連通部31の二つの連通孔311a、311bの中間位置を頂点とする三角状の部位である。この堰部32は、両面(堰部伝熱領域)320a、320bに、複数の凸部92a(9a)及び複数の凹部92b(9b)をそれぞれ有する。これら複数の凸部92a及び複数の凹部92bは、主伝熱領域300a、300bのY軸方向の寸法や、連通孔311から主伝熱領域300a、300bまでの距離、熱交換を行う流体A、Bの種類等に応じて配置や形態が設定されるものであり、図5〜図8に示す形状や配置に限定されない。尚、堰部32においても、伝熱プレート3を境に形成される第一流路Raと第二流路Rbとを流れる流体間(第一流体Aと第二流体Bとの間)の熱交換が行われる。 Specifically, each weir portion 32 is a triangular portion having a boundary with the main heat transfer portion 30 as the base and an intermediate position between the two communication holes 311a and 311b of the communication portion 31 as the apex. The weir portion 32 has a plurality of convex portions 92a (9a) and a plurality of concave portions 92b (9b) on both sides (weir portion heat transfer region) 320a and 320b, respectively. The plurality of convex portions 92a and the plurality of concave portions 92b have dimensions in the Y-axis direction of the main heat transfer regions 300a and 300b, the distance from the communication hole 311 to the main heat transfer regions 300a and 300b, and the fluid A for heat exchange. The arrangement and the form are set according to the type of B and the like, and the shape and the arrangement are not limited to those shown in FIGS. 5 to 8. Also in the weir portion 32, heat exchange between the fluids flowing between the first flow path Ra and the second flow path Rb (between the first fluid A and the second fluid B) formed on the boundary of the heat transfer plate 3 Is done.

一対のガイド用切欠き33は、伝熱プレート3のZ軸方向の各端部におけるY軸方向の中央部に配置されている。本実施形態の一対のガイド用切欠き33は、横中心線CL2を対称軸にした線対称な形状である。 The pair of guide notches 33 are arranged at the center of the heat transfer plate 3 in the Y-axis direction at each end in the Z-axis direction. The pair of guide notches 33 of the present embodiment have a line-symmetrical shape with the horizontal center line CL2 as the axis of symmetry.

複数のガスケット4のそれぞれは、図12に示すように、伝熱プレート3間において流路Ra、Rbを画定する流路画定部41と、隣り合う伝熱プレート3の連通孔311同士を連通させる環状部42と、流路画定部41と環状部42とを接続する接続部43と、を有する。本実施形態のガスケット4は、一つの流路画定部41と、二つの環状部42と、四つの接続部43と、を有する。 As shown in FIG. 12, each of the plurality of gaskets 4 communicates between the flow path defining portion 41 that defines the flow paths Ra and Rb between the heat transfer plates 3 and the communication holes 311 of the adjacent heat transfer plates 3. It has an annular portion 42 and a connecting portion 43 that connects the flow path defining portion 41 and the annular portion 42. The gasket 4 of the present embodiment has one flow path defining portion 41, two annular portions 42, and four connecting portions 43.

流路画定部41は、X軸方向から見て、主伝熱部30の主伝熱領域300a、300bと、一対の堰部32と、各連通部31a、31bの対応する(本実施形態の例では、縦中心線CL1に対して同じ側に位置する)二つの連通孔311と、を囲む部位である。 The flow path defining portion 41 corresponds to the main heat transfer regions 300a and 300b of the main heat transfer portion 30, the pair of weir portions 32, and the communication portions 31a and 31b when viewed from the X-axis direction (in the present embodiment). In the example, it is a portion surrounding the two communication holes 311 (located on the same side with respect to the vertical center line CL1).

二つの環状部42のそれぞれは、X軸方向から見て、流路画定部41の外側に位置する連通孔311を囲む部位である。この環状部42は、第一配置部35の内側部位351に配置される半円弧状の第一円弧部位421と、第一配置部35の外側部位352に配置される半円弧状の第二円弧部位422と、を有する。本実施形態の環状部42は、第一円弧部位421と第二円弧部位422とによって構成され、X軸方向から見て円形状である。 Each of the two annular portions 42 is a portion surrounding the communication hole 311 located outside the flow path defining portion 41 when viewed from the X-axis direction. The annular portion 42 has a semicircular first arc portion 421 arranged in the inner portion 351 of the first arrangement portion 35 and a semicircular second arc portion 352 arranged in the outer portion 352 of the first arrangement portion 35. It has a site 422 and. The annular portion 42 of the present embodiment is composed of a first arc portion 421 and a second arc portion 422, and has a circular shape when viewed from the X-axis direction.

第一円弧部位421は、円弧状に延びる中心部位4211と、中心部位4211から環状部42の径方向内側(中心側)に向けて延びる第一外側部位4212aと、中心部位4211から環状部42の径方向外側に向けて延びる第二外側部位4212bと、を有する。これら中心部位4211と第一外側部位4212aと第二外側部位4212bとは一体である。各外側部位4212a、4212bの厚さ寸法(X軸方向の寸法)は、中心部位4211から離れるに伴って漸減している(図14参照)。 The first arc portion 421 includes a central portion 4211 extending in an arc shape, a first outer portion 4212a extending from the central portion 4211 toward the radial inner side (center side) of the annular portion 42, and an annular portion 42 from the central portion 4211. It has a second outer portion 4212b that extends radially outward. The central portion 4211, the first outer portion 4212a, and the second outer portion 4212b are integrated. The thickness dimension (dimension in the X-axis direction) of each of the outer portions 4212a and 4212b gradually decreases as the distance from the central portion 4211 increases (see FIG. 14).

四つの接続部43のそれぞれは、環状部42における第一円弧部位421と第二円弧部位422との境界部と、流路画定部41と、を接続する。本実施形態の各接続部43は、直線状である。 Each of the four connecting portions 43 connects the boundary portion between the first arc portion 421 and the second arc portion 422 in the annular portion 42 and the flow path demarcating portion 41. Each connecting portion 43 of the present embodiment is linear.

以上のように構成されるガスケット4において、環状部42の第一円弧部位421の断面(横断面)形状と、流路画定部41における伝熱プレート3の第二配置部37に配置される部位(拡幅部位)411の断面(横断面)形状とは、他の部位(流路画定部41(拡幅部位411を除いた残りの部位)、環状部42の第二円弧部位422、各接続部43)の断面(横断面)形状と異なる。詳しくは、以下の通りである。 In the gasket 4 configured as described above, the cross-sectional (cross-sectional) shape of the first arc portion 421 of the annular portion 42 and the portion arranged in the second arrangement portion 37 of the heat transfer plate 3 in the flow path defining portion 41. The cross-sectional (cross-sectional) shape of the (widening portion) 411 includes other portions (flow path defining portion 41 (remaining portion excluding the widening portion 411), the second arc portion 422 of the annular portion 42, and each connecting portion 43. ) Is different from the cross-sectional (cross-sectional) shape. The details are as follows.

前記他の部位(流路画定部41(拡幅部位411を除く)、環状部42の第二円弧部位422、各接続部43)の断面形状は、扁平な八角形である(図13参照)。 The cross-sectional shape of the other portions (flow path defining portion 41 (excluding widening portion 411), second arc portion 422 of the annular portion 42, and each connecting portion 43) is a flat octagon (see FIG. 13).

第一円弧部位421の断面形状において、中心部位4211は、図14に示すように、前記他の部位に相当する形状(扁平な八角形状)である。また、第一外側部位4212aと第二外側部位4212bとは、中心部位4211の両端(環状部42の径方向の両端)において、X軸方向の端部より中央側の位置から前記径方向にそれぞれ延びている。そして、これら第一外側部位4212aと第二外側部位4212bとは、中心部位4211から離れるのに伴ってX軸方向の寸法(厚さ寸法)が漸減する、いわゆるテーパー形状である。 In the cross-sectional shape of the first arc portion 421, the central portion 4211 has a shape (flat octagonal shape) corresponding to the other portion, as shown in FIG. Further, the first outer portion 4212a and the second outer portion 4212b are located at both ends of the central portion 4211 (both ends in the radial direction of the annular portion 42) from positions central to the end in the X-axis direction in the radial direction, respectively. It is extending. The first outer portion 4212a and the second outer portion 4212b have a so-called tapered shape in which the dimension (thickness dimension) in the X-axis direction gradually decreases as the distance from the central portion 4211 increases.

より詳しくは、第一円弧部位421は、図15に示すように、X軸方向の弾性力が生じていない状態で中心部位4211が第一配置部35の内側部位351の底壁部3511に接した状態では、第一外側部位4212aと各第一側壁部3512との間、及び第二外側部位4212bと各第二側壁部3513との間のそれぞれに隙間αが生じる。本実施形態のプレート積層部2では、隙間αが生じる状態において、第一外側部位4212aにおける第一側壁部3512との対向面と、第一側壁部3512とがそれぞれ略平行であり、第二外側部位4212bにおける第二側壁部3513との対向面と、第二側壁部3513とがそれぞれ略平行である。 More specifically, as shown in FIG. 15, in the first arc portion 421, the central portion 4211 is in contact with the bottom wall portion 3511 of the inner portion 351 of the first arrangement portion 35 in a state where no elastic force in the X-axis direction is generated. In this state, a gap α is formed between the first outer side portion 4212a and each first side wall portion 3512, and between the second outer portion 4212b and each second side wall portion 3513. In the plate laminated portion 2 of the present embodiment, the facing surface of the first outer side portion 4212a with the first side wall portion 3512 and the first side wall portion 3512 are substantially parallel to each other in a state where the gap α is generated, and the second outer side portion 2 The surface of the portion 4212b facing the second side wall portion 3513 and the second side wall portion 3513 are substantially parallel to each other.

そして、ガスケット4が伝熱プレート3間に十分な力で挟み込まれて各流路Ra、Rbに流体A、Bが流通可能な状態では、図16に示すように、第一円弧部位421の断面形状は、X軸方向の弾性力Ef1が生じた状態で中心部位4211と各底壁部3511とがそれぞれ接すると共に、第一外側部位4212aと各第一側壁部3512とがそれぞれ接し且つ第二外側部位4212bと各第二側壁部3513とがそれぞれ接する。 Then, in a state where the gasket 4 is sandwiched between the heat transfer plates 3 with sufficient force and the fluids A and B can flow through the flow paths Ra and Rb, as shown in FIG. 16, the cross section of the first arc portion 421 is cross-sectional. The shape is such that the central portion 4211 and each bottom wall portion 3511 are in contact with each other in a state where the elastic force Ef1 in the X-axis direction is generated, and the first outer portion 4212a and each first side wall portion 3512 are in contact with each other and the second outer side. The portion 4212b and each second side wall portion 3513 are in contact with each other.

本実施形態の第一外側部位4212aと第二外側部位4212bとにおいては、X軸方向の弾性力Ef2がそれぞれ生じている。このとき、中心部位4211において生じているX軸方向の弾性力(底壁部3511間の間隔を広げる方向の力)Ef1は、第一外側部位4212a及び第二外側部位4212bのそれぞれにおいて生じているX軸方向の弾性力(第一側壁部3512間及び第二側壁部3513間の間隔を広げる方向の力)Ef2より大きい。 In the first outer portion 4212a and the second outer portion 4212b of the present embodiment, an elastic force Ef2 in the X-axis direction is generated, respectively. At this time, the elastic force Ef1 in the X-axis direction (force in the direction of widening the distance between the bottom wall portions 3511) generated in the central portion 4211 is generated in each of the first outer portion 4212a and the second outer portion 4212b. The elastic force in the X-axis direction (force in the direction of widening the distance between the first side wall portion 3512 and the second side wall portion 3513) is larger than Ef2.

また、流路画定部41における拡幅部位411の断面形状は、図9及び図12に示すように、第一円弧部421の中心部位4211の断面に相当する形状の本体部位412と、第一外側部位4212a又は第二外側部位4212bの断面に相当する形状の延設部位413と、を含む。この拡幅部位411においても、該拡幅部位411が伝熱プレート3(詳しくは、第二配置部37)間に十分な力で挟み込まれて各流路Ra、Rbに流体A、Bが流通可能な状態では、本体部位421において生じているX軸方向の弾性力(第二平坦部371間の間隔を広げる方向の力)は、延設部位413において生じているX軸方向の弾性力(第三側壁部372間の間隔を広げる方向の力)より大きい。 Further, as shown in FIGS. 9 and 12, the cross-sectional shape of the widening portion 411 in the flow path defining portion 41 is the main body portion 412 having a shape corresponding to the cross section of the central portion 4211 of the first arc portion 421 and the first outer side. Includes an extension portion 413 having a shape corresponding to the cross section of the portion 4212a or the second outer portion 4212b. Also in this widening portion 411, the widening portion 411 is sandwiched between the heat transfer plates 3 (specifically, the second arrangement portion 37) with sufficient force, and the fluids A and B can flow through the flow paths Ra and Rb. In the state, the elastic force in the X-axis direction generated in the main body portion 421 (the force in the direction of widening the interval between the second flat portions 371) is the elastic force in the X-axis direction generated in the extension portion 413 (third). It is larger than the force in the direction of widening the distance between the side wall portions 372).

以上のように構成される伝熱プレート3及びガスケット4を有するプレート積層部2では、図4に示すように、複数の伝熱プレート3が一つ置きに反転した状態でX軸方向に重ね合わされている。このとき、複数のガスケット4は、各伝熱プレート3間に配置されている(挟み込まれている)が、これら複数のガスケット4も一つ置きに反転した状態で各伝熱プレート3間に配置されている。本実施形態のプレート積層部2では、伝熱プレート3の反転は、横中心線CL2を回転軸にして行われており、ガスケット4の反転は、Y軸法方向の中心においてZ軸方向に延びる中心線CL3(図12参照)を回転軸にして行われている。 In the plate laminated portion 2 having the heat transfer plate 3 and the gasket 4 configured as described above, as shown in FIG. 4, a plurality of heat transfer plates 3 are stacked in the X-axis direction in a state of being inverted every other heat transfer plate 3. ing. At this time, the plurality of gaskets 4 are arranged (sandwiched) between the heat transfer plates 3, but the plurality of gaskets 4 are also arranged between the heat transfer plates 3 in a state of being inverted every other one. Has been done. In the plate laminated portion 2 of the present embodiment, the reversal of the heat transfer plate 3 is performed with the horizontal center line CL2 as the rotation axis, and the reversal of the gasket 4 extends in the Z-axis direction at the center in the Y-axis direction. This is done with the center line CL3 (see FIG. 12) as the axis of rotation.

このように各伝熱プレート3間にガスケット4が挟み込まれた状態で複数の伝熱プレート3がX軸方向に重ね合わされることで、プレート積層部2(熱交換器1)において、各伝熱プレート3を境にして、第一流体AをZ軸方向に流通させる第一流路Raと、第二流体BをZ軸方向に流通させる第二流路Rbとが、交互に形成される。即ち、X軸方向に重ね合わされる複数の伝熱プレート3において、隣り合う伝熱プレート3の第一面S1間に第一流路Raが形成されると共に、隣り合う伝熱プレート3の第二面S2間に第二流路Rbが形成される。 By superimposing a plurality of heat transfer plates 3 in the X-axis direction with the gasket 4 sandwiched between the heat transfer plates 3 in this way, each heat transfer plate 3 in the plate laminated portion 2 (heat exchanger 1). A first flow path Ra that allows the first fluid A to flow in the Z-axis direction and a second flow path Rb that allows the second fluid B to flow in the Z-axis direction are alternately formed with the plate 3 as a boundary. That is, in the plurality of heat transfer plates 3 stacked in the X-axis direction, the first flow path Ra is formed between the first surfaces S1 of the adjacent heat transfer plates 3, and the second surface of the adjacent heat transfer plates 3 is formed. A second flow path Rb is formed between S2.

また、プレート積層部2において、複数の伝熱プレート3の対応する連通孔311b同士がX軸方向に連なることにより、第一流路Raのみに連通した一対の第一連通路Ra1、Ra2が形成されると共に、複数の伝熱プレート3の対応する連通孔311a同士がX軸方向に連なることにより、第二流路Rbのみに連通した一対の第二連通路Rb1、Rb2が形成される。これら一対の第一連通路Ra1、Ra2のうちの一方の第一連通路Ra1は、第一流体Aを各第一流路Raに流入させ、他方の第一連通路Ra2は、第一流体Aを各第一流路Raから流出させる。また、一対の第二連通路Rb1、Rb2のうちの一方の第二連通路Rb1は、第二流体Bを各第二流路Rbに流入させ、他方の第二連通路Rb2は、第二流体Bを各第二流路Rbから流出させる。 Further, in the plate laminated portion 2, the corresponding communication holes 311b of the plurality of heat transfer plates 3 are connected to each other in the X-axis direction, so that a pair of first series passages Ra1 and Ra2 communicating only with the first flow path Ra are formed. At the same time, the corresponding communication holes 311a of the plurality of heat transfer plates 3 are connected to each other in the X-axis direction, so that a pair of second communication passages Rb1 and Rb2 communicating only with the second flow path Rb are formed. One of the pair of first series passages Ra1 and Ra2 causes the first fluid A to flow into each first passage Ra, and the other first series passage Ra2 allows the first fluid A to flow. It flows out from each first flow path Ra. Further, one of the pair of second passages Rb1 and Rb2, the second passage Rb1, causes the second fluid B to flow into each second passage Rb, and the other second passage Rb2 is the second fluid. B is allowed to flow out from each second flow path Rb.

本実施形態のプレート積層部2において、各連通路Ra1、Rb1から各流路Ra、Rbへ流体A、Bが流入する部位(交互領域部位)20と、各流路Ra、Rbから各連通路Ra2、Rb2へ流体A、Bが流出する部位(交互領域部位)20とは、同じ構成である。 In the plate laminated portion 2 of the present embodiment, a portion (alternate region portion) 20 in which the fluids A and B flow from the respective flow paths Ra1 and Rb1 to the respective flow paths Ra and Rb, and each communication passage from the respective flow paths Ra and Rb. The portion (alternate region portion) 20 where the fluids A and B flow out to Ra2 and Rb2 has the same configuration.

交互領域部位20は、図9及び図10に示すように、X軸方向においてガスケット4が挟み込まれる挟持領域21と流体A、Bが流通可能な流路領域22とが伝熱プレート3を介して交互に形成されている。 In the alternating region portion 20, as shown in FIGS. 9 and 10, a sandwiching region 21 in which the gasket 4 is sandwiched in the X-axis direction and a flow path region 22 through which fluids A and B can flow are interposed via a heat transfer plate 3. It is formed alternately.

各挟持領域21は、連通部31の第一面S1側の第一領域T1同士又は第二面S2側の第二領域T2同士が対向して第一配置部35の内側部位351同士が対向することによって該内側部位351間に形成されている。この内側部位351間(挟持領域21)には、ガスケット4(環状部42の第一円弧部位421)が挟み込まれている。 In each sandwiching region 21, the first regions T1 on the first surface S1 side of the communication portion 31 or the second regions T2 on the second surface S2 side face each other, and the inner portions 351 of the first arrangement portion 35 face each other. As a result, it is formed between the inner parts 351. A gasket 4 (first arc portion 421 of the annular portion 42) is sandwiched between the inner portions 351 (holding region 21).

また、各流路領域22は、連通部31の第一面S1側の第二領域T2同士又は第二面S2側の第一領域T1同士が対向して第一配置部35rの内側部位351r同士が対向することによって該内側部位351r間に形成されている。この内側部位351r間に形成される流路領域22は、伝熱プレート3間に形成される流路Ra、Rbの一部を構成する。即ち、流路領域22は、流路Ra、Rbに含まれる。 Further, in each flow path region 22, the second regions T2 on the first surface S1 side of the communication portion 31 or the first regions T1 on the second surface S2 side face each other, and the inner portions 351r of the first arrangement portion 35r face each other. Are formed between the inner portions 351r by facing each other. The flow path region 22 formed between the inner portions 351r constitutes a part of the flow paths Ra and Rb formed between the heat transfer plates 3. That is, the flow path region 22 is included in the flow paths Ra and Rb.

プレート積層部2における各連通路Ra1、Rb1から各流路Ra、Rbへ流体A、Bが流入する側の交互領域部位20では、上記のように構成されることで、第一連通路Ra1から第一流体Aが各第一流路Raに含まれる流路領域22を通って該第一流路Raにそれぞれ流れ込む(即ち、第二流路Rbへの流入が、内側部位351間(挟持領域21)に挟み込まれたガスケット4によって阻止される)。また、第二連通路Rb1から第二流体Bが各第二流路Rbに含まれる流路領域22を通って該第二流路Rbにそれぞれ流れ込む(即ち、第一流路Raへの流入が、内側部位351間(挟持領域21)に挟み込まれたガスケット4によって阻止される)。 The alternating region portion 20 on the side where the fluids A and B flow into the flow paths Ra and Rb from the communication passages Ra1 and Rb1 in the plate laminated portion 2 is configured as described above, so that the first series passage Ra1 can be used. The first fluid A flows into the first flow path Ra through the flow path region 22 included in each first flow path Ra (that is, the inflow into the second flow path Rb is between the inner portions 351 (sandwich area 21). It is blocked by the gasket 4 sandwiched between them). Further, the second fluid B flows from the second passage Rb1 through the flow path region 22 included in each second flow path Rb into the second flow path Rb (that is, the inflow into the first flow path Ra). It is blocked by the gasket 4 sandwiched between the inner portions 351 (holding area 21).

一方、プレート積層部2における各流路Ra、Rbから各連通路Ra2、Rb2へ流体A、Bが流出する側の交互領域部位20では、上記のように構成されることで、流体A、Bが、各第一流路Raから該第一流路Raに含まれる流路領域22を通って第一連通路Ra2にそれぞれ流出する。また、各第二流路Rbから該第二流路Rbに含まれる流路領域22を通って第二連通路Rb2にそれぞれ流出する。 On the other hand, in the alternating region portion 20 on the side where the fluids A and B flow out from the flow paths Ra and Rb in the plate laminated portion 2 to the communication passages Ra2 and Rb2, the fluids A and B are configured as described above. Flow out from each first flow path Ra through the flow path region 22 included in the first flow path Ra to the first series passage Ra 2. Further, each second flow path Rb flows out to the second continuous passage Rb2 through the flow path region 22 included in the second flow path Rb.

尚、プレート積層部2の外周部等において、各伝熱プレート3間に形成される流路Ra、Rbがガスケット4によって密閉されている部位(同一領域部位)25では、例えば図11に示すように、X軸方向において挟持領域26が伝熱プレート3を介してそれぞれ形成されている。ここで、主伝熱部30の配置部301における凹凸部3012の頂部3012bに対する壁部3012aの角度θ5は、約135°≦θ5≦約145°である。 In the outer peripheral portion of the plate laminated portion 2, the portion (same region portion) 25 in which the flow paths Ra and Rb formed between the heat transfer plates 3 are sealed by the gasket 4 is, for example, as shown in FIG. In addition, sandwiching regions 26 are formed via the heat transfer plate 3 in the X-axis direction. Here, the angle θ5 of the wall portion 3012a with respect to the top portion 3012b of the uneven portion 3012 in the arrangement portion 301 of the main heat transfer portion 30 is about 135 ° ≦ θ5 ≦ about 145 °.

この同一領域部位25の各挟持領域26は、主伝熱部30の配置部301や第一配置部35の外側部位352同士が重ね合わされることによって配置部301間や外側部位352間に形成されている。この配置部301間や外側部位352間には、ガスケット4(流路画定部41や環状部42)が挟み込まれている。 Each sandwiching region 26 of the same region portion 25 is formed between the arrangement portions 301 and the outer portion 352 by overlapping the arrangement portions 301 of the main heat transfer portion 30 and the outer portions 352 of the first arrangement portion 35. ing. A gasket 4 (flow path defining portion 41 or annular portion 42) is sandwiched between the arrangement portions 301 and the outer portion 352.

図1、図2、及び図4に戻り、一対のフレーム5a、5bのそれぞれは、X軸方向から見て伝熱プレート3と対応した形状の厚板状の部材である。 Returning to FIGS. 1, 2, and 4, each of the pair of frames 5a and 5b is a thick plate-shaped member having a shape corresponding to the heat transfer plate 3 when viewed from the X-axis direction.

一対のフレーム5a、5bのうちの一方のフレーム5aは、Z軸方向に長尺な矩形厚板状であり、伝熱プレート3の各連通孔311(各連通路Ra1、Ra2、Rb1、Rb2)と対応する位置においてX軸方向に貫通する複数(本実施形態の例では、四つ)の貫通孔51を有する。また、一方のフレーム5aは、Y軸方向の両端に、Z軸方向に間隔をあけて並ぶ複数の切欠部52を有する。 One of the frames 5a of the pair of frames 5a and 5b has a rectangular thick plate shape that is long in the Z-axis direction, and each communication hole 311 of the heat transfer plate 3 (each communication passage Ra1, Ra2, Rb1, Rb2). Has a plurality of (four in the example of the present embodiment) through holes 51 penetrating in the X-axis direction at positions corresponding to the above. Further, one frame 5a has a plurality of notches 52 arranged at both ends in the Y-axis direction at intervals in the Z-axis direction.

また、一対のフレーム5a、5bのうちの他方のフレーム5bは、Z軸方向に長尺な矩形厚板状であり、Y軸方向の両端に、Z軸方向に間隔をあけて並ぶ複数の切欠部53を有する。これら複数の切欠部53のそれぞれは、一方のフレーム5aの各切欠部52と対応する位置(X軸方向から見て重なる位置)に配置されている。 Further, the other frame 5b of the pair of frames 5a and 5b has a rectangular thick plate shape that is long in the Z-axis direction, and a plurality of notches arranged at both ends in the Y-axis direction at intervals in the Z-axis direction. It has a part 53. Each of the plurality of notch portions 53 is arranged at a position (position overlapping when viewed from the X-axis direction) corresponding to each notch portion 52 of one frame 5a.

ガイド部6は、それぞれがX軸方向に延びる一対のガイドバー61を有する。また、本実施形態のガイド部6は、一対のガイドバー61の端部同士の間隔を維持するサポート部材62も有する。 Each of the guide portions 6 has a pair of guide bars 61 extending in the X-axis direction. The guide portion 6 of the present embodiment also has a support member 62 that maintains a distance between the ends of the pair of guide bars 61.

一対のガイドバー61は、一方のフレーム5aのZ軸方向の両端部から互いに平行に延びている。これら一対のガイドバー61は、他方のフレーム5bを一方のフレーム5aに対して平行な状態(姿勢)でX軸方向に接離可能にガイドする。また、一対のガイドバー61のそれぞれは、伝熱プレート3のZ軸方向の両端のガイド用切欠き33にそれぞれ嵌まり込むことで、各伝熱プレート3を配置位置にガイドする。 The pair of guide bars 61 extend parallel to each other from both ends of one frame 5a in the Z-axis direction. These pair of guide bars 61 guide the other frame 5b in a state (posture) parallel to the one frame 5a so that they can be brought into contact with each other in the X-axis direction. Further, each of the pair of guide bars 61 is fitted into the guide notches 33 at both ends in the Z-axis direction of the heat transfer plate 3 to guide each heat transfer plate 3 to the arrangement position.

サポート部材62は、Z軸方向に延び、一対のガイドバー61の端部(一方のフレーム5aに接続されている端部と反対側の端部)同士を接続することによって、該端部同士の間隔を維持する。 The support member 62 extends in the Z-axis direction, and by connecting the ends of the pair of guide bars 61 (the ends on the opposite side to the end connected to one frame 5a), the ends are connected to each other. Maintain the interval.

複数の締付部材7のそれぞれは、X軸方向に延びるボルト71と、該ボルト71と螺合するナット72と、を有する。各締付部材7は、一対のフレーム5a、5bの対応する(X軸方向から見て重なる)切欠部52、53に嵌まり込んだ状態でX軸方向の間隔が小さくなる方向に一対のフレーム5a、5bを締め付ける。この複数の締付部材7による一対のフレーム5a、5bの締め付けによって、各伝熱プレート3間に配置されたガスケット4が十分な力で挟み込まれ、これにより、各伝熱プレート3間に形成された各流路Ra、Rbが液密な状態となる。 Each of the plurality of tightening members 7 has a bolt 71 extending in the X-axis direction and a nut 72 screwing with the bolt 71. Each tightening member 7 is fitted into the corresponding notches 52 and 53 of the pair of frames 5a and 5b (overlapping when viewed from the X-axis direction), and the pair of frames is in a direction in which the distance in the X-axis direction becomes smaller. Tighten 5a and 5b. By tightening the pair of frames 5a and 5b by the plurality of tightening members 7, the gaskets 4 arranged between the heat transfer plates 3 are sandwiched with sufficient force, whereby the gaskets 4 are formed between the heat transfer plates 3. Each of the flow paths Ra and Rb becomes liquid-tight.

以上のように構成される熱交換器1では、一方の第一連通路Ra1に第一流体Aが供給されると共に、一方の第二連通路Rb1に第二流体Bが供給されると、第一流体Aが一方の第一連通路Ra1から各第一流路Raに流入すると共に、第二流体Bが一方の第二連通路Rb1から各第二流路Rbに流入する。 In the heat exchanger 1 configured as described above, when the first fluid A is supplied to one first series passage Ra1 and the second fluid B is supplied to one second series passage Rb1, the second fluid B is supplied. One fluid A flows into each first flow path Ra from one first series passage Ra1, and second fluid B flows into each second flow path Rb from one second continuous passage Rb1.

これにより、熱交換器1において、第一流体Aが第一流路Ra内をZ軸方向に流れ、第二流体Bが第二流路Rb内をZ軸方向に流れる。詳しくは、第一流体Aが、第一流路Ra内において、第一面S1間をZ軸方向の一端から他端側に向けて通過(流通)し、第二流体Bが、第二流路Rb内において、第二面S2間をZ軸方向の他端から一端側に向けて通過(流通)する。このとき、第一流路Raと第二流路Rbとの間にある伝熱プレート3(主に主伝熱部30)を介して第一流体Aと第二流体Bとが熱交換する。 As a result, in the heat exchanger 1, the first fluid A flows in the first flow path Ra in the Z-axis direction, and the second fluid B flows in the second flow path Rb in the Z-axis direction. Specifically, the first fluid A passes (circulates) between the first surfaces S1 from one end to the other end in the Z-axis direction in the first flow path Ra, and the second fluid B passes through the second flow path. In Rb, it passes (circulates) between the second surfaces S2 from the other end in the Z-axis direction toward one end side. At this time, the first fluid A and the second fluid B exchange heat via the heat transfer plate 3 (mainly the main heat transfer portion 30) between the first flow path Ra and the second flow path Rb.

そして、図4に示すように、熱交換を終えた第一流体Aは、各第一流路Raから他方の第一連通路Ra2に流出し、該第一連通路Ra2を通じて外部に排出される。また、熱交換を終えた第二流体Bは、各第二流路Rbから他方の第二連通路Rb2に流出し、該第二連通路Rb2を通じて外部に排出される。 Then, as shown in FIG. 4, the first fluid A that has completed heat exchange flows out from each first passage Ra to the other first series passage Ra2, and is discharged to the outside through the first series passage Ra2. Further, the second fluid B that has completed heat exchange flows out from each second passage Rb to the other second passage Rb2, and is discharged to the outside through the second passage Rb2.

以上の熱交換器1では、プレート積層部2において、流入側の交互領域部位(連通路Ra1、Rb1から各流路Ra、Rbへ流体A、Bが流入する部位)20を構成する各伝熱プレート3の部位(交互領域構成部:本実施形態の例では、孔周縁部36、第一配置部35の内側部位351、及び、接続部38)は、図9及び図10に示すように、X軸方向と直交する仮想面Vに沿った孔周縁部(第一部位)36と、孔周縁部36から延び且つX軸方向に隣り合う伝熱プレート(相手方プレート)3から離れる方向に該孔周縁部36に対して屈曲することで該相手方プレート3との間に挟持領域21を形成する第一側壁部(第二部位)3512と、をそれぞれ有している。そして、孔周縁部36に対する第一側壁部3512の角度θ1は、プレート積層部2の外周部等において同一領域部位25を構成する各伝熱プレート3の部位(同一領域構成部)、例えば、図11に示すように、主伝熱部30の配置部301の凹凸部3012の頂部(配置部301を構成する部位において仮想面Vに沿った部位:第三部位)3012bに対する凹凸部3012の壁部3012a(頂部3012bから延び且つ相手方プレート3から離れる方向に該頂部3012bに対して屈曲することで該相手方プレート3との間に挟持領域26を形成する部位:第四部位)の角度θ5より大きい。 In the above heat exchanger 1, in the plate laminated portion 2, each heat transfer constituting the alternating region portion (the portion where the fluids A and B flow from the communication passages Ra1 and Rb1 to the respective flow paths Ra and Rb) 20 on the inflow side. The parts of the plate 3 (alternate region constituent parts: in the example of the present embodiment, the hole peripheral portion 36, the inner portion 351 of the first arrangement portion 35, and the connecting portion 38) are as shown in FIGS. 9 and 10. The hole peripheral portion (first portion) 36 along the virtual surface V orthogonal to the X-axis direction and the hole extending from the hole peripheral portion 36 and away from the heat transfer plate (counterpart plate) 3 adjacent to each other in the X-axis direction. Each has a first side wall portion (second portion) 3512 that forms a sandwiching region 21 with the mating plate 3 by bending with respect to the peripheral edge portion 36. The angle θ1 of the first side wall portion 3512 with respect to the hole peripheral edge portion 36 is a portion (same region constituent portion) of each heat transfer plate 3 constituting the same region portion 25 in the outer peripheral portion of the plate laminated portion 2, for example, FIG. As shown in 11, the wall portion of the uneven portion 3012 with respect to the top portion of the concave-convex portion 3012 of the arrangement portion 301 of the main heat transfer portion 30 (the portion along the virtual surface V in the portion constituting the arrangement portion 301: the third portion) 3012b. It is larger than the angle θ5 of 3012a (a portion extending from the top 3012b and bending with respect to the top 3012b in a direction away from the mating plate 3 to form a sandwiching region 26 with the mating plate 3: a fourth portion).

このように、孔周縁部36に対する第一側壁部3512の角度(第一の角度)θ1が、例えば主伝熱部30の配置部301における凹凸部3012の頂部3012bに対する壁部3012aの角度(第二の角度)θ5より大きいことで、第一の角度θ1が第二の角度θ5と同じである構成に比べ、流体A、Bが交互領域部位20の流路領域22(伝熱プレート3間に形成される流路Ra、Rb)を孔周縁部36と第一側壁部3512とが並ぶ方向に通過する際の圧損(流通抵抗)が抑えられる。 As described above, the angle (first angle) θ1 of the first side wall portion 3512 with respect to the hole peripheral edge portion 36 is, for example, the angle (first angle) of the wall portion 3012a with respect to the top portion 3012b of the uneven portion 3012 in the arrangement portion 301 of the main heat transfer portion 30. By being larger than the second angle) θ5, the fluids A and B are in the flow path region 22 (between the heat transfer plates 3) of the alternating region portion 20 as compared with the configuration in which the first angle θ1 is the same as the second angle θ5. Pressure loss (flow resistance) when passing through the formed flow paths Ra and Rb) in the direction in which the hole peripheral edge portion 36 and the first side wall portion 3512 are aligned is suppressed.

また、各流路Ra、Rbから連通路Ra2、Rb2へ流体A、Bが流出する交互領域部位(流出側の交互領域部位)20においても、各伝熱プレート3の交互領域構成部における孔周縁部36に対する第一側壁部3512の角度(第一の角度)θ1が、同一領域部位25(例えば主伝熱部30の配置部301の凹凸部3012)における頂部3012bに対する壁部3012aの角度(第二の角度)θ5より大きいことで、第一の角度θ1が第二の角度θ5と同じである構成に比べ、流体A、Bが交互領域部位20の流路領域22(伝熱プレート3間に形成される流路Ra、Rb)を孔周縁部36と第一側壁部3512とが並ぶ方向に通過する際の圧損(流通抵抗)が抑えられる。尚、本実施形態の第一の角度θ1は、後述の流れ解析に基づき、145°≦θ1≦170°が好ましく、150°≦θ1≦160°がより好ましい。 Further, also in the alternating region portion (alternate region portion on the outflow side) 20 where the fluids A and B flow out from the flow paths Ra and Rb to the communication passages Ra2 and Rb2, the perimeter of the hole in the alternating region component of each heat transfer plate 3 The angle (first angle) θ1 of the first side wall portion 3512 with respect to the portion 36 is the angle of the wall portion 3012a with respect to the top portion 3012b in the same region portion 25 (for example, the uneven portion 3012 of the arrangement portion 301 of the main heat transfer portion 30). By being larger than the second angle) θ5, the fluids A and B are in the flow path region 22 (between the heat transfer plates 3) of the alternating region portion 20 as compared with the configuration in which the first angle θ1 is the same as the second angle θ5. Pressure loss (flow resistance) when passing through the formed flow paths Ra and Rb) in the direction in which the hole peripheral edge portion 36 and the first side wall portion 3512 are aligned is suppressed. The first angle θ1 of the present embodiment is preferably 145 ° ≦ θ1 ≦ 170 °, more preferably 150 ° ≦ θ1 ≦ 160 °, based on the flow analysis described later.

さらに、本実施形態の熱交換器1では、交互領域部位20を構成する各伝熱プレート3の交互領域構成部が、孔周縁部36から第一側壁部3512に向かう方向において孔周縁部36と間隔をあけて配置され且つ仮想面Vに沿った接続部(第五部位)38と、接続部38から孔周縁部36側に延び且つ相手方プレート3から離れる方向に該接続部38に対して屈曲することで該相手方プレート3との間に挟持領域21を形成する第二側壁部(第六部位)3513と、を有している。そして、接続部38に対する第二側壁部3513の角度θ2は、例えば、図11に示す、主伝熱部30の配置部301を構成する部位における凹凸部3012の頂部3012bに対する該凹凸部3012の壁部3012aの角度θ5より大きい。このため、流入側及び流出側の各交互領域部位20において、流体A、Bが流路領域22を孔周縁部36と第一側壁部3512とが並ぶ方向に通過する際の圧損がより効果的に抑えられる。尚、本実施形態の第二の角度θ2も、後述の流れ解析に基づき、145°≦θ2≦170°が好ましく、150°≦θ2≦160°がより好ましい。 Further, in the heat exchanger 1 of the present embodiment, the alternating region constituents of the heat transfer plates 3 constituting the alternating region portion 20 are aligned with the hole peripheral portion 36 in the direction from the hole peripheral portion 36 toward the first side wall portion 3512. The connecting portion (fifth portion) 38 arranged at intervals and along the virtual surface V and the connecting portion 38 extending from the connecting portion 38 toward the hole peripheral portion 36 and bending away from the mating plate 3 with respect to the connecting portion 38. It has a second side wall portion (sixth portion) 3513 that forms a sandwiching region 21 with the mating plate 3. The angle θ2 of the second side wall portion 3513 with respect to the connecting portion 38 is, for example, the wall of the uneven portion 3012 with respect to the top portion 3012b of the concave-convex portion 3012 at the portion constituting the arrangement portion 301 of the main heat transfer portion 30 shown in FIG. The angle θ5 of the portion 3012a is larger. Therefore, in each of the alternating region portions 20 on the inflow side and the outflow side, the pressure loss when the fluids A and B pass through the flow path region 22 in the direction in which the hole peripheral portion 36 and the first side wall portion 3512 are aligned is more effective. It is suppressed to. The second angle θ2 of the present embodiment is also preferably 145 ° ≦ θ2 ≦ 170 °, more preferably 150 ° ≦ θ2 ≦ 160 °, based on the flow analysis described later.

また、本実施形態の熱交換器1では、ガスケット4における挟持領域21に配置される部位(第一円弧部位)421は、図12、図14〜図16に示すように、伝熱プレート3の第一配置部35の底壁部(第七部位)3511と相手方プレート3(本実施形態の例では、相手方プレート3の底壁部3511)との間に挟み込まれる中心部位4211と、中心部位4211に隣接すると共に、該伝熱プレート3の第一側壁部3512と相手方プレート(本実施形態の例では、相手方プレート3の第一側壁部3512)との間に挟み込まれる第一外側部位4212aと、中心部位4211に隣接すると共に、該伝熱プレート3の第二側壁部3513と相手側プレート(本実施形態の例では、相手方プレート3の第二側壁部3513)との間に挟み込まれる第二外側部位4212bと、を有する。そして、この伝熱プレート3と相手方プレート3との間に挟み込まれた状態では、中心部位4211におけるX軸方向の弾性力Ef1は、第一外側部位4212a及び第二外側部位4212bにおけるX軸方向の弾性力Ef2より大きい。 Further, in the heat exchanger 1 of the present embodiment, the portion (first arc portion) 421 arranged in the sandwiching region 21 in the gasket 4 is the heat transfer plate 3 as shown in FIGS. 12 and 14 to 16. The central portion 4211 and the central portion 4211 sandwiched between the bottom wall portion (seventh portion) 3511 of the first arrangement portion 35 and the mating plate 3 (in the example of the present embodiment, the bottom wall portion 3511 of the mating plate 3). The first outer portion 4212a, which is adjacent to the heat transfer plate 3 and is sandwiched between the first side wall portion 3512 of the heat transfer plate 3 and the mating plate (in the example of the present embodiment, the first side wall portion 3512 of the mating plate 3). A second outer side adjacent to the central portion 4211 and sandwiched between the second side wall portion 3513 of the heat transfer plate 3 and the mating side plate (in the example of the present embodiment, the second side wall portion 3513 of the mating plate 3). It has a site 4212b and. Then, in a state of being sandwiched between the heat transfer plate 3 and the mating plate 3, the elastic force Ef1 in the X-axis direction at the central portion 4211 is in the X-axis direction at the first outer portion 4212a and the second outer portion 4212b. It is larger than the elastic force Ef2.

かかる構成によれば、第一側壁部3512及び第二側壁部3513が第一外側部位4212a及び第二外側部位4212bによってX軸方向の流路領域22側に押されることによる交互領域構成部(特に、第一配置部35の内側部位351)の変形(図17参照)に起因する該交互領域構成部とガスケット4(第一円弧部位421)との間の密閉性の低下を防ぎつつ、第一側壁部3512及び第二側壁部3513に加わるX軸方向の流路領域22側からの力に対する該部位3512、3513の変形を防ぐことができる。詳しくは、以下の通りである。尚、図17では、伝熱プレート3の交互領域構成部の変形を分かり易くするために、前記変形を誇張して表し、且つ、ガスケット4の記載を省略している。 According to such a configuration, the first side wall portion 3512 and the second side wall portion 3513 are pushed toward the flow path region 22 side in the X-axis direction by the first outer side portion 4212a and the second outer side portion 4212b (particularly, the alternating region constituent portion (particularly). , While preventing a decrease in the airtightness between the alternating region constituent portion and the gasket 4 (first arc portion 421) due to deformation (see FIG. 17) of the inner portion 351) of the first arrangement portion 35, the first It is possible to prevent the portions 3512 and 3513 from being deformed by the force applied to the side wall portion 3512 and the second side wall portion 3513 from the flow path region 22 side in the X-axis direction. The details are as follows. In FIG. 17, in order to make it easier to understand the deformation of the alternating region constituent portion of the heat transfer plate 3, the deformation is exaggerated and the description of the gasket 4 is omitted.

第一外側部位4212a及び第二外側部位4212bにおけるX軸方向の弾性力Ef2が中心部位4211におけるX軸方向の弾性力Ef1より大きいと、第一側壁部3512及び第二側壁部3513が第一外側部位4212a及び第二外側部位4212bに押されて伝熱プレート3の交互領域構成部(特に、第一配置部35の内側部位351)が撓むように変形する(図17参照)。このような変形が生じると、交互領域構成部(内側部位351)とガスケット4(第一円弧部位421)との間の密閉性が低下し易い。 When the elastic force Ef2 in the X-axis direction at the first outer portion 4212a and the second outer portion 4212b is larger than the elastic force Ef1 in the X-axis direction at the central portion 4211, the first side wall portion 3512 and the second side wall portion 3513 are on the first outer side. Pushed by the portion 4212a and the second outer portion 4212b, the alternating region constituent portion of the heat transfer plate 3 (particularly, the inner portion 351 of the first arrangement portion 35) is deformed so as to bend (see FIG. 17). When such deformation occurs, the airtightness between the alternating region constituent portion (inner portion 351) and the gasket 4 (first arc portion 421) tends to decrease.

しかし、本実施形態の熱交換器1のように、中心部位4211におけるX軸方向の弾性力Ef1を第一外側部位4212a及び第二外側部位4212bにおけるX軸方向の各弾性力Ef2より大きくすることで、伝熱プレート3の交互領域構成部(内側部位351)の変形が抑えられると共に中心部位4211が底壁部3511に十分に密着し、これにより、前記密閉性の低下を防ぐができる。 However, like the heat exchanger 1 of the present embodiment, the elastic force Ef1 in the X-axis direction at the central portion 4211 is made larger than the elastic force Ef2 in the X-axis direction at the first outer portion 4212a and the second outer portion 4212b. Therefore, the deformation of the alternating region constituent portion (inner portion 351) of the heat transfer plate 3 is suppressed, and the central portion 4211 is sufficiently adhered to the bottom wall portion 3511, whereby the deterioration of the airtightness can be prevented.

しかも、本実施形態の熱交換器1によれば、孔周縁部36に対する第一側壁部3512の角度θ1及び接続部38に対する第二側壁部3513の角度θ2がそれぞれ主伝熱部30の配置部301における凹凸部3012の頂部3012bに対する壁部3012aの角度θ5(図11参照)より大きいため、流体A、Bが伝熱プレート3間を流れる際等に第一側壁部3512及び第二側壁部3513に加わる流路領域22側からの力(X軸方向の力)に対して該部位3512、3513が変形し易くなるが、前記流路領域22側からの力が加わっても第一側壁部3512及び第二側壁部3513が第一外側部位4212a及び第二外側部位4212bによって支持されているため、該部位3512、3513の変形を防ぐことができる。 Moreover, according to the heat exchanger 1 of the present embodiment, the angle θ1 of the first side wall portion 3512 with respect to the hole peripheral edge portion 36 and the angle θ2 of the second side wall portion 3513 with respect to the connection portion 38 are the arrangement portions of the main heat transfer portion 30, respectively. Since the angle θ5 (see FIG. 11) of the wall portion 3012a with respect to the top portion 3012b of the uneven portion 3012 in 301 is larger, the first side wall portion 3512 and the second side wall portion 3513 when the fluids A and B flow between the heat transfer plates 3 and the like. The portions 3512 and 3513 are easily deformed with respect to the force from the flow path region 22 side (force in the X-axis direction) applied to the flow path region 22, but even if the force from the flow path region 22 side is applied, the first side wall portion 3512 Since the second side wall portion 3513 is supported by the first outer portion 4212a and the second outer portion 4212b, deformation of the portions 3512 and 3513 can be prevented.

また、本実施形態の熱交換器1では、交互領域部位20は、プレート積層部2における一方の第一及び第二連通路Ra1、Rb1の周縁部において連通孔311から離れる方向に孔周縁部36と第一側壁部3512とが順に並ぶように配置されている。かかる構成によれば、圧損が大きくなり易い各連通路Ra1、Ra2から第一流路Ra又は第二流路Rbに流入直後の部位(流入側の交互領域部位20)での圧損を抑えることができる。 Further, in the heat exchanger 1 of the present embodiment, the alternating region portion 20 is the hole peripheral portion 36 in the peripheral portion of one of the first and second continuous passages Ra1 and Rb1 in the plate laminated portion 2 in the direction away from the communication hole 311. And the first side wall portion 3512 are arranged so as to be arranged in order. According to such a configuration, it is possible to suppress the pressure loss at the portion immediately after the inflow from the respective communication passages Ra1 and Ra2 to the first flow path Ra or the second flow path Rb (alternate region portion 20 on the inflow side). ..

また、本実施形態の熱交換器1の交互領域部位20において、挟持領域21を形成している伝熱プレート対(X軸方向に隣り合う二つの伝熱プレート3)では、孔周縁部36同士が当接状態で対向すると共に、流路領域22を形成している伝熱プレート対では、孔周縁部36同士がX軸方向に間隔をあけて対向している。そして、交互領域部位20は、各伝熱プレート3における交互領域構成部の孔周縁部36が連通路Ra1、Ra2、Rb1、Rb2に臨むように配置されると共に、連通路Ra1、Ra2、Rb1、Rb2の周縁に沿って(周方向)延びている(図10参照)。このように、熱交換器1において、流体A、Bが第一又は第二連通路Ra1、Rb1から各流路Ra、Rb(プレート間流路)に流入する際の入口(交互領域部位20において孔周縁部36同士がX軸方向に間隔をあけている部位:流路領域22の入口)が第一又は第二連通路Ra1、Rb1の周縁に沿って延びているため、前記入口の開口面積(流路断面積)が十分に確保される。これにより、前記入口における圧損が抑えられる。 Further, in the alternating region portion 20 of the heat exchanger 1 of the present embodiment, in the heat transfer plate pair (two heat transfer plates 3 adjacent to each other in the X-axis direction) forming the sandwiching region 21, the hole peripheral portions 36 are connected to each other. In the heat transfer plate pair forming the flow path region 22, the hole peripheral portions 36 face each other at intervals in the X-axis direction. The alternating region portion 20 is arranged so that the hole peripheral portion 36 of the alternating region constituent portion in each heat transfer plate 3 faces the communication passages Ra1, Ra2, Rb1, and Rb2, and the communication passages Ra1, Ra2, and Rb1. It extends (circumferentially) along the periphery of Rb2 (see FIG. 10). In this way, in the heat exchanger 1, the inlet (at the alternating area portion 20) when the fluids A and B flow into the respective flow paths Ra and Rb (inter-plate flow paths) from the first or second communication passages Ra1 and Rb1. Since the portion where the hole peripheral portions 36 are spaced apart from each other in the X-axis direction: the entrance of the flow path region 22) extends along the peripheral edges of the first or second continuous passages Ra1 and Rb1, the opening area of the entrance. (Cross-sectional area of the flow path) is sufficiently secured. As a result, pressure loss at the inlet is suppressed.

また、本実施形態の熱交換器1において、ガスケット4の円環状の環状部42は、第一円弧部位(挟持領域21に配置される部位)421を含み、且つ、円形の連通孔311に対して交互領域部位20側に偏心した位置に配置されている。このように環状部42を連通孔311に対して交互領域部位20側に偏心した位置に配置することで、連通孔311の交互領域部位20側の周縁と環状部42(詳しくは、第一円弧部位421)との間隔が広くなる。このため、交互領域部位20の孔周縁部36同士が間隔をあけた部位を形成(配置)し易くなる。しかも、交互領域部位20の孔周縁部36同士が間隔をあけた部位を形成するための領域を確保しつつもガスケット4の該当部位(環状部)42を円環形状として屈曲した部位を設けないことで、該部位におけるシール性が安定する。 Further, in the heat exchanger 1 of the present embodiment, the annular portion 42 of the gasket 4 includes the first arc portion (the portion arranged in the sandwiching region 21) 421 and with respect to the circular communication hole 311. It is arranged at a position eccentric to the alternating region portion 20 side. By arranging the annular portion 42 at a position eccentric to the alternating region portion 20 side with respect to the communication hole 311 in this way, the peripheral edge of the communication hole 311 on the alternating region portion 20 side and the annular portion 42 (specifically, the first arc). The distance from the part 421) becomes wider. Therefore, it becomes easy to form (arrange) a portion where the hole peripheral portions 36 of the alternating region portion 20 are spaced apart from each other. Moreover, while securing a region for forming a portion in which the hole peripheral portions 36 of the alternating region portion 20 are spaced apart from each other, a portion in which the corresponding portion (annular portion) 42 of the gasket 4 is formed into an annular shape is not provided. As a result, the sealing property at the site is stabilized.

ここで、効果を確認するために上記実施形態の熱交換器1における流れ解析を行った。この流れ解析では、流体として45℃の水の物性値を用い、孔周縁部に対する第一側壁部の角度θ1と、接続部に対する第二側壁部の角度θ2とを同じ角度とし、これらの角度θ1及び角度θ2をそれぞれ135°から172°まで約5°ずつ変更した条件で解析をそれぞれ行った。その結果を図18に示す。尚、図18における圧損減少率は、角度θ1及び角度θ2が135°のときを基準にして求められている。 Here, in order to confirm the effect, a flow analysis in the heat exchanger 1 of the above embodiment was performed. In this flow analysis, the physical property value of water at 45 ° C. is used as the fluid, the angle θ1 of the first side wall portion with respect to the hole peripheral portion and the angle θ2 of the second side wall portion with respect to the connection portion are set to be the same angle, and these angles θ1. The analysis was performed under the conditions that the angle θ2 was changed from 135 ° to 172 ° by about 5 °. The result is shown in FIG. The pressure drop reduction rate in FIG. 18 is obtained based on the case where the angle θ1 and the angle θ2 are 135 °.

この流れ解析の結果から、伝熱プレート3の交互領域構成部(交互領域部位20を構成する伝熱プレート3の部位)において角度θ1及び角度θ2が、伝熱プレート3の同一領域構成部(同一領域部位25を構成する伝熱プレート3の部位)の角度θ5(上記実施形態の例では、主伝熱部30の配置部301における凹凸部3012の頂部3012bに対する壁部3012aの角度θ5:図11参照)より大きい場合に、圧損が効果的に減少していることが確認できた。尚、上記実施形態のプレート積層部2の同一領域部位25を構成する各伝熱プレート3の部位(同一領域構成部)において、主伝熱部30の配置部301における凹凸部3012の頂部(仮想面Vに沿った部位)3012bに対する壁部3012a(頂部3012bから延び且つ相手方プレート3から離れる方向に該頂部3012bに対して屈曲することで該相手方プレート3との間に挟持領域26を形成する部位)の角度θ5は、約135°≦θ5≦約145°である。 From the result of this flow analysis, the angle θ1 and the angle θ2 in the alternating region constituent portion of the heat transfer plate 3 (the portion of the heat transfer plate 3 constituting the alternating region portion 20) are the same region constituent portion of the heat transfer plate 3 (same). Angle θ5 of the heat transfer plate 3 constituting the region portion 25 (in the example of the above embodiment, the angle θ5 of the wall portion 3012a with respect to the top portion 3012b of the uneven portion 3012 in the arrangement portion 301 of the main heat transfer portion 30: FIG. 11 It was confirmed that the pressure loss was effectively reduced when it was larger than (see). In addition, in the part (same area constituent part) of each heat transfer plate 3 constituting the same area part 25 of the plate laminated part 2 of the said embodiment, the top (virtual) of the concavo-convex part 3012 in the arrangement part 301 of the main heat transfer part 30. A portion along the surface V) 3012a with respect to the wall portion 3012a (a portion extending from the top 3012b and bending with respect to the top 3012b in a direction away from the mating plate 3 to form a sandwiching region 26 with the mating plate 3). ) Is about 135 ° ≦ θ5 ≦ about 145 °.

また、図18に示される流れ解析の結果から、伝熱プレート3の同一領域構成部の角度θ5が135°≦θ5≦145°のときに、伝熱プレート3の交互領域構成部の角度θ1及び角度θ2は、145°≦θ1≦170°(図18において破線で囲む範囲)のときに良好な結果(圧損減少率)が得られ、150°≦θ1≦160°のときにより良好な結果(圧損減少率)が得られることが確認できた。 Further, from the results of the flow analysis shown in FIG. 18, when the angle θ5 of the same region component of the heat transfer plate 3 is 135 ° ≦ θ5 ≦ 145 °, the angle θ1 of the alternating region component of the heat transfer plate 3 and When the angle θ2 is 145 ° ≤ θ1 ≤ 170 ° (the range surrounded by the broken line in FIG. 18), a good result (pressure loss reduction rate) is obtained, and when 150 ° ≤ θ1 ≤ 160 °, a better result (pressure loss) is obtained. It was confirmed that the rate of decrease) was obtained.

尚、本発明のプレート式熱交換器は、上記実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。例えば、ある実施形態の構成に他の実施形態の構成を追加することができ、また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることができる。さらに、ある実施形態の構成の一部を削除することができる。 The plate heat exchanger of the present invention is not limited to the above embodiment, and it goes without saying that various modifications can be made without departing from the gist of the present invention. For example, the configuration of one embodiment can be added to the configuration of another embodiment, and a part of the configuration of one embodiment can be replaced with the configuration of another embodiment. In addition, some of the configurations of certain embodiments can be deleted.

上記実施形態の熱交換器1のプレート積層部2では、交互領域部位20が連通路Ra1、Ra2、Rb1、Rb2の周囲に配置(連通路Ra1、Ra2、Rb1、Rb2に臨むように配置)されているが、この構成に限定されない。例えば、交互領域部位20は、各流路Ra、Rbの途中位置(プレート積層部2における一方の連通路Ra1、Rb1と他方の連通路Ra2、Rb2との間、即ち、各連通路Ra1、Ra2、Rb1、Rb2から離れた位置)に配置されていてもよい。 In the plate laminated portion 2 of the heat exchanger 1 of the above embodiment, the alternating region portion 20 is arranged around the communication passages Ra1, Ra2, Rb1 and Rb2 (arranged so as to face the communication passages Ra1, Ra2, Rb1 and Rb2). However, it is not limited to this configuration. For example, the alternating region portion 20 is located at an intermediate position between the passages Ra and Rb (between one passage Ra1 and Rb1 in the plate laminated portion 2 and the other passages Ra2 and Rb2, that is, the respective passages Ra1 and Ra2. , Rb1 and Rb2).

また、上記実施形態のプレート積層部2の交互領域部位20では、孔周縁部36に対する第一側壁部3512の角度θ1と、接続部38に対する第二側壁部3513の角度θ2とが、同じ角度で、且つ、同一領域部位25(例えば主伝熱部30の配置部301の凹凸部3012)における頂部3012bに対する壁部3012aの角度θ5よりそれぞれ大きいが、この構成に限定されない。 Further, in the alternating region portion 20 of the plate laminated portion 2 of the above embodiment, the angle θ1 of the first side wall portion 3512 with respect to the hole peripheral edge portion 36 and the angle θ2 of the second side wall portion 3513 with respect to the connecting portion 38 are the same. Moreover, the angle θ5 of the wall portion 3012a with respect to the top portion 3012b in the same region portion 25 (for example, the uneven portion 3012 of the arrangement portion 301 of the main heat transfer portion 30) is larger than, but is not limited to this configuration.

例えば、孔周縁部36に対する第一側壁部3512の角度θ1と、接続部38に対する第二側壁部3513の角度θ2とは、同一領域部位25における仮想面Vに沿った部位と、該部位から延び且つ相手方プレート3から離れる方向に該部位に対して屈曲することで該相手方プレート3との間に挟持領域26を形成する部位と、のなす角(上記実施形態の例では、主伝熱部30の配置部301の凹凸部3012における頂部3012bに対する壁部3012aの角度)θ5よりそれぞれ大きいが、同じ角度でなくてもよい。 For example, the angle θ1 of the first side wall portion 3512 with respect to the hole peripheral edge portion 36 and the angle θ2 of the second side wall portion 3513 with respect to the connecting portion 38 are a portion along the virtual surface V in the same region portion 25 and an extension from the portion. And the angle formed by the portion forming the sandwiching region 26 with the counterpart plate 3 by bending with respect to the portion in the direction away from the counterpart plate 3 (in the example of the above embodiment, the main heat transfer portion 30). The angle of the wall portion 3012a with respect to the top portion 3012b of the uneven portion 3012 of the arrangement portion 301) is larger than θ5, but the angles do not have to be the same.

また、孔周縁部36に対する第一側壁部3512の角度θ1と、接続部38に対する第二側壁部3513の角度θ2とのいずれか一方の角度のみが、同一領域部位25における仮想面Vに沿った部位と、該部位から延び且つ相手方プレート3から離れる方向に該部位に対して屈曲することで該相手方プレート3との間に挟持領域26を形成する部位と、のなす角(上記実施形態の例では、主伝熱部30の配置部301の凹凸部3012における頂部3012bに対する壁部3012aの角度)θ5より大きくてもよい。かかる構成によっても、流体A、Bが交互領域部位20の流路領域22(伝熱プレート3間に形成される流路Ra、Rb)を孔周縁部36と第一側壁部3512とが並ぶ方向に通過する際の圧損が抑えられる。 Further, only one of the angle θ1 of the first side wall portion 3512 with respect to the hole peripheral edge portion 36 and the angle θ2 of the second side wall portion 3513 with respect to the connecting portion 38 is along the virtual surface V in the same region portion 25. An angle formed by a portion and a portion forming a sandwiching region 26 between the portion and the counterpart plate 3 by bending with respect to the portion in a direction extending from the portion and away from the counterpart plate 3 (example of the above embodiment). Then, the angle of the wall portion 3012a with respect to the top portion 3012b of the uneven portion 3012 of the arrangement portion 301 of the main heat transfer portion 30) may be larger than θ5. Even with this configuration, the fluids A and B are in the direction in which the hole peripheral portion 36 and the first side wall portion 3512 are aligned with each other in the flow path region 22 (flow paths Ra and Rb formed between the heat transfer plates 3) of the alternating region portion 20. Pressure loss when passing through is suppressed.

また、上記実施形態の伝熱プレート3の第一配置部35では、内側部位351と外側部位352とで構成が異なっているが、これに限定されない。外側部位352が内側部位351と同じ構成、即ち、底壁部3511と第一及び第二側壁部3512、3513とを有する構成でもよい。この場合、ガスケット4の環状部42において、第二円弧部位422が第一円弧部位421と同じ構成、即ち、中心部位4211と第一及び第二外側部位4212a、4212bとを有する構成が好ましい。 Further, in the first arrangement portion 35 of the heat transfer plate 3 of the above embodiment, the configuration is different between the inner portion 351 and the outer portion 352, but the configuration is not limited to this. The outer portion 352 may have the same configuration as the inner portion 351, that is, the bottom wall portion 3511 and the first and second side wall portions 3512 and 3513 may be provided. In this case, in the annular portion 42 of the gasket 4, it is preferable that the second arc portion 422 has the same configuration as the first arc portion 421, that is, the central portion 4211 and the first and second outer portions 4212a and 4212b.

また、上記実施形態のガスケット4では、中心部位4211と第一及び第二外側部位4212a、4212bとが一体であるが、この構成に限定されない。ガスケット4において、中心部位4211と第一外側部位4212aと第二外側部位4212bとが別体であってもよい。この場合、中心部位4211と、第一及び第二外側部位4212a、4212bとは、接着、溶着、添着等によって接続されていてもよい。 Further, in the gasket 4 of the above embodiment, the central portion 4211 and the first and second outer portions 4212a and 4212b are integrated, but the present invention is not limited to this configuration. In the gasket 4, the central portion 4211, the first outer portion 4212a, and the second outer portion 4212b may be separate bodies. In this case, the central portion 4211 and the first and second outer portions 4212a and 4212b may be connected by adhesion, welding, adhesion or the like.

また、流路画定部41の拡幅部位411においても、本体部位412と延設部位413とは、別体であってもよい。この場合も、本体部412と延設部位413とは、接着、溶着、添着等によって接続されていてもよい。 Further, in the widening portion 411 of the flow path defining portion 41, the main body portion 412 and the extension portion 413 may be separate bodies. In this case as well, the main body portion 412 and the extension portion 413 may be connected by adhesion, welding, attachment, or the like.

また、上記実施形態のガスケット4の第一円弧部位421は、中心部位4211と第一及び第二外側部位4212a、4212bとを有しているが、この構成に限定されない。第一円弧部位421は、中心部位4211のみを有していてもよく、中心部位4211と、第一外側部位4212a及び第二外側部位4212bの一方と、を有していてもよい。 Further, the first arc portion 421 of the gasket 4 of the above embodiment has a central portion 4211 and first and second outer portions 4212a and 4212b, but is not limited to this configuration. The first arc portion 421 may have only the central portion 4211, or may have the central portion 4211 and one of the first outer portion 4212a and the second outer portion 4212b.

また、上記実施形態のプレート積層部2の交互領域部位20では、ガスケット4の断面形状(図14参照)によって、該ガスケット4が伝熱プレート3間に挟み込まれて流路Ra、Rbに流体A、Bが流通可能な状態のときに、中心部位4211におけるX軸方向の弾性力Ef1が、第一外側部位4212a及び第二外側部位4212bにおけるX軸方向の弾性力Ef2より大きくなるようにしている、即ち、ガスケット4が伝熱プレート3間に挟み込まれて流路Ra、Rbに流体A、Bが流通可能な状態のときの各部位4211、4212a、4212bのX軸方向の圧縮量の違いによって、中心部位4211におけるX軸方向の弾性力Ef1が、第一外側部位4212a及び第二外側部位4212bにおけるX軸方向の弾性力Ef2より大きくなるようにしているが、この構成に限定されない。例えば、中心部位4211と第一及び第二外側部位4212a、4212bとにおいて異なる素材(材質)を用いることで、中心部位4211におけるX軸方向の弾性力Ef1を、第一外側部位4212a及び第二外側部位4212bにおけるX軸方向の弾性力Ef2より大きくする構成でもよい。 Further, in the alternating region portion 20 of the plate laminated portion 2 of the above embodiment, the gasket 4 is sandwiched between the heat transfer plates 3 due to the cross-sectional shape of the gasket 4 (see FIG. 14), and the fluid A is inserted into the flow paths Ra and Rb. , B is in a state where it can be distributed, so that the elastic force Ef1 in the X-axis direction at the central portion 4211 is larger than the elastic force Ef2 in the X-axis direction at the first outer portion 4212a and the second outer portion 4212b. That is, due to the difference in the amount of compression in the X-axis direction of each part 4211, 4212a, 4212b when the gasket 4 is sandwiched between the heat transfer plates 3 and the fluids A and B can flow through the flow paths Ra and Rb. The elastic force Ef1 in the X-axis direction at the central portion 4211 is made larger than the elastic force Ef2 in the X-axis direction at the first outer portion 4212a and the second outer portion 4212b, but the present invention is not limited to this configuration. For example, by using different materials in the central portion 4211 and the first and second outer portions 4212a and 4212b, the elastic force Ef1 in the X-axis direction in the central portion 4211 can be reduced to the first outer portion 4212a and the second outer portion 4212a. The elastic force Ef2 in the X-axis direction at the portion 4212b may be larger than the elastic force Ef2.

また、流路画定部41の拡幅部位411においても、断面形状による圧縮量の違いだけでなく、断面形状による圧縮量の違い及び素材の違いの少なくとも一方によって、伝熱プレート3間(第二配置部37間)に十分な力で挟み込まれたときに、本体部位412に生じるX軸方向(第二配置部37の間隔を広げる方向)の弾性力が延設部位413に生じるX軸方向(第二配置部37の間隔を広げる方向)の弾性力より大きくなるように構成されてもよい。 Further, also in the widening portion 411 of the flow path defining portion 41, not only the difference in the amount of compression depending on the cross-sectional shape but also the difference in the amount of compression depending on the cross-sectional shape and the difference in the material cause at least one of the differences between the heat transfer plates 3 (second arrangement). When sandwiched between the portions 37) with sufficient force, the elastic force in the X-axis direction (direction to widen the distance between the second arrangement portions 37) generated in the main body portion 412 is generated in the extension portion 413 in the X-axis direction (third portion 37). It may be configured to be larger than the elastic force (in the direction of widening the distance between the two arrangement portions 37).

また、上記実施形態のプレート積層部2の交互領域部位20では、孔周縁部36、接続部38、第一側壁部3512、及び第二側壁部3513の各断面形状が、真っ直ぐに延びる形状(図9参照)であるが、この構成に限定されない。例えば、第一側壁部3512や第二側壁部3513等の断面形状が、図19に示すように、湾曲して延びる形状等でもよい。この場合、例えば、孔周縁部36に対する第一側壁部3512の角度θ1として、孔周縁部36と、第一側壁部3512における孔周縁部36との境界部における接線L1と、のなす角を用い、接続部38に対する第二側壁部3513の角度θ2として、接続部38と、第二側壁部3513における接続部38との境界部における接線L2と、のなす角を用いてもよい。 Further, in the alternating region portion 20 of the plate laminated portion 2 of the above embodiment, each cross-sectional shape of the hole peripheral portion 36, the connecting portion 38, the first side wall portion 3512, and the second side wall portion 3513 extends straight (FIG. 9), but the configuration is not limited to this. For example, the cross-sectional shape of the first side wall portion 3512, the second side wall portion 3513, or the like may be curved and extended as shown in FIG. In this case, for example, as the angle θ1 of the first side wall portion 3512 with respect to the hole peripheral edge portion 36, the angle formed by the hole peripheral portion 36 and the tangent line L1 at the boundary portion between the hole peripheral edge portion 36 and the hole peripheral edge portion 36 of the first side wall portion 3512 is used. As the angle θ2 of the second side wall portion 3513 with respect to the connection portion 38, the angle formed by the connection portion 38 and the tangent line L2 at the boundary portion between the connection portion 38 and the connection portion 38 of the second side wall portion 3513 may be used.

伝熱プレート3の連通孔311及びガスケット4の環状部42の具体的な形状は、限定されない。連通孔311及び環状部42は、楕円や多角形等の円形以外の形状であってもよい。 The specific shapes of the communication hole 311 of the heat transfer plate 3 and the annular portion 42 of the gasket 4 are not limited. The communication hole 311 and the annular portion 42 may have a shape other than a circle such as an ellipse or a polygon.

また、上記実施形態のプレート積層部2では、ガスケット4の環状部42が連通孔311に対して交互領域部位20側に偏心した位置に配置されているが、この構成に限定されない。例えば、円環形状の環状部42が円形の連通孔311と中心を一致させた状態で配置されていてもよい。 Further, in the plate laminated portion 2 of the above embodiment, the annular portion 42 of the gasket 4 is arranged at a position eccentric to the communication hole 311 on the alternating region portion 20 side, but the configuration is not limited to this. For example, the annular portion 42 may be arranged in a state where the circular communication hole 311 and the center of the annular portion 42 are aligned with each other.

1…プレート式熱交換器、2…プレート積層部、20…交互領域部位、21、26…挟持領域、22…流路領域、25…同一領域部位、3…伝熱プレート(相手方プレート)、30…主伝熱部、300a…第一主伝熱領域(主伝熱領域)、300b…第二主伝熱領域(主伝熱領域)、301…配置部、3011…平坦部、3012…凹凸部、3012a…壁部(第四部位)、3012b…頂部(第三部位)、31、31a、31b…連通部、311、311a、311b…連通孔、32…堰部、320a…第一堰部伝熱領域(堰部伝熱領域)、320b…第二堰部伝熱領域(堰部伝熱領域)、35、35r…第一配置部、351、351r…内側部位、3511…底壁部(第七部位)、3512、3512r…第一側壁部(第二部位)、3513、3513r…第二側壁部(第六部位)、3514、3514r…支持部、352、352r…外側部位、3521…第一平坦部、3522、3522r…幅方向規定部、36、36r…孔周縁部(第一部位)、37、37r…第二配置部、371…第二平坦部、372、372r…第三側壁部、373、373r…第四側壁部、38、38r…接続部(第五部位)、4…ガスケット、41…流路画定部、拡幅部位…411、本体部位…412、延設部位…413、42…環状部、421…第一円弧部位、4211…中心部位、4212a…第一外側部位、4212b…第二外側部位、422…第二円弧部位、43…接続部、5a、5b…フレーム、51…貫通孔、52、53…切欠部、6…ガイド部、61…ガイドバー、62…サポート部材、7…締付部材、71…ボルト、72…ナット、9a、91a、92a…凸部、9b、91b、92b…凹部、100…プレート式熱交換器、110…伝熱プレート、111、112、113、114…連通孔、115、116…凹部、120a、120b…ガスケット、121a…第一流路形成部、121b…第二流路形成部、122a…第一環状部、122b…第二環状部、123a…第一接続部、123b…第二接続部、A…第一流体(流体)、B…第二流体(流体)、C1…第一流路(流路)、C2…第二流路(流路)、CL1…伝熱プレートの縦中心線、CL2…伝熱プレートの横中心線、CL3…ガスケットの中心線、Ef1、Ef2…弾性力、L1、L2…接線、Ra…第一流路(流路)、Ra1、Ra2…第一連通路(連通路)、Rb…第二流路(流路)、Rb1、Rb2…第二連通路(連通路)、S1…第一面、S2…第二面、T1…第一領域、T2…第二領域、V…仮想面、α…隙間 1 ... Plate type heat exchanger, 2 ... Plate laminated part, 20 ... Alternating region part, 21, 26 ... Holding area, 22 ... Channel area, 25 ... Same area part, 3 ... Heat transfer plate (counterpart plate), 30 ... Main heat transfer part, 300a ... First main heat transfer region (main heat transfer region), 300b ... Second main heat transfer region (main heat transfer region), 301 ... Arrangement part, 3011 ... Flat part, 3012 ... Concavo-convex part , 3012a ... wall part (fourth part), 3012b ... top (third part), 31, 31a, 31b ... communication part, 311, 311a, 311b ... communication hole, 32 ... weir part, 320a ... first weir part transmission Heat region (heat transfer region of the weir), 320b ... Second heat transfer region of the weir (heat transfer region of the weir), 35, 35r ... First arrangement, 351, 351r ... Inner part, 3511 ... Bottom wall (first) Seven parts), 3512, 3512r ... First side wall part (second part), 3513, 3513r ... Second side wall part (sixth part), 3514, 3514r ... Support part, 352, 352r ... Outer part, 3521 ... First Flat portion, 3522, 3522r ... Width direction defining portion, 36, 36r ... Hole peripheral portion (first portion), 37, 37r ... Second arrangement portion, 371 ... Second flat portion, 372, 372r ... Third side wall portion, 373, 373r ... 4th side wall, 38, 38r ... Connection (fifth part), 4 ... Gasket, 41 ... Flow path demarcation part, widening part ... 411, Main body part ... 412, Extension part ... 413, 42 ... Circular portion, 421 ... First arc portion, 4211 ... Central portion, 4212a ... First outer portion, 4212b ... Second outer portion, 422 ... Second arc portion, 43 ... Connection portion, 5a, 5b ... Frame, 51 ... Penetration Holes, 52, 53 ... Notches, 6 ... Guides, 61 ... Guide bars, 62 ... Support members, 7 ... Tightening members, 71 ... Bolts, 72 ... Nuts, 9a, 91a, 92a ... Convex parts, 9b, 91b , 92b ... concave, 100 ... plate type heat exchanger, 110 ... heat transfer plate, 111, 112, 113, 114 ... communication holes, 115, 116 ... concave, 120a, 120b ... gasket, 121a ... first flow path forming portion, 121b ... Second flow path forming portion, 122a ... First annular portion, 122b ... Second annular portion, 123a ... First connecting portion, 123b ... Second connecting portion, A ... First fluid (fluid), B ... Second Fluid (fluid), C1 ... 1st flow path (flow path), C2 ... 2nd flow path (flow path), CL1 ... vertical center line of heat transfer plate, CL2 ... horizontal center line of heat transfer plate, CL3 ... gasket Center line, Ef1, Ef2 ... elastic force, L1, L2 ... tangent line, Ra ... first flow path (flow path), Ra1, Ra2 ... first series passage ( (Communication passage), Rb ... Second flow path (flow path), Rb1, Rb2 ... Second communication passage (communication passage), S1 ... First surface, S2 ... Second surface, T1 ... First region, T2 ... Second Area, V ... virtual surface, α ... gap

Claims (7)

所定方向に重ね合わされる複数の伝熱プレートと、伝熱プレート間に挟み込まれることで該伝熱プレート間に流体の流通可能な流路を形成する複数のガスケットと、を有するプレート積層部を備え、
前記プレート積層部は、
前記所定方向において前記ガスケットが挟み込まれる挟持領域と前記流体が流通可能な流路領域とが前記伝熱プレートを介して交互に形成されている交互領域部位と、
前記所定方向において前記挟持領域が前記伝熱プレートを介してそれぞれ形成されている同一領域部位と、を有し、
前記伝熱プレートにおける前記交互領域部位を構成する交互領域構成部は、
前記所定方向と直交する仮想面に沿った第一部位と、
前記第一部位から延び且つ前記所定方向に隣り合う伝熱プレートである相手方プレートから離れる方向に該第一部位に対して屈曲することで該相手方プレートとの間に前記挟持領域を形成する第二部位と、を有し、
前記伝熱プレートにおける前記同一領域部位を構成する同一領域構成部は、
前記仮想面に沿った第三部位と、
前記第三部位から延び且つ前記相手方プレートから離れる方向に該第三部位に対して屈曲することで該相手方プレートとの間に前記挟持領域を形成する第四部位と、を有し、
前記交互領域構成部の挟持領域において挟み込まれるガスケットの横断面を含む面に沿った断面における前記第一部位に対する前記第二部位の角度は、前記同一領域構成部の挟持領域において挟み込まれるガスケットの横断面を含む面に沿った断面における前記第三部位に対する前記第四部位の角度より大きい、プレート式熱交換器。
A plate laminated portion having a plurality of heat transfer plates stacked in a predetermined direction and a plurality of gaskets sandwiched between the heat transfer plates to form a flow path through which a fluid can flow between the heat transfer plates. ,
The plate laminated portion is
An alternating region portion in which a holding region in which the gasket is sandwiched in the predetermined direction and a flow path region through which the fluid can flow are alternately formed via the heat transfer plate.
The sandwiching region has the same region portion formed via the heat transfer plate in the predetermined direction.
The alternating region constituent portion constituting the alternating region portion in the heat transfer plate is
The first part along the virtual plane orthogonal to the predetermined direction,
A second sandwiching region is formed between the first portion and the other plate by bending the first portion in a direction away from the mating plate, which is a heat transfer plate adjacent to the first portion and adjacent to the first portion. With the part,
The same region constituent portion constituting the same region portion in the heat transfer plate is
The third part along the virtual surface and
It has a fourth portion that extends from the third portion and bends with respect to the third portion in a direction away from the counterpart plate to form the sandwiching region with the counterpart plate.
The angle of the second portion with respect to the first portion in the cross section along the surface including the cross section of the gasket sandwiched in the sandwiching region of the alternating region constituent portion is the cross section of the gasket sandwiched in the sandwiching region of the same region constituent portion. A plate heat exchanger that is greater than the angle of the fourth portion with respect to the third portion in a cross section along a surface including the surface.
前記伝熱プレートの交互領域構成部は、
前記第一部位から前記第二部位に向かう方向において前記第一部位と間隔をあけて配置され且つ前記仮想面に沿った第五部位と、
前記第五部位から前記第一部位側に延び且つ前記相手方プレートから離れる方向に該第五部位に対して屈曲することで該相手方プレートとの間に前記挟持領域を形成する第六部位と、を有し、
前記交互領域構成部の挟持領域において挟み込まれるガスケットの横断面を含む面に沿った断面における前記第五部位に対する前記第六部位の角度は、前記同一領域構成部の挟持領域において挟み込まれるガスケットの横断面を含む面に沿った断面における前記第三部位に対する前記第四部位の角度より大きい、請求項1に記載のプレート式熱交換器。
The alternating region component of the heat transfer plate
A fifth portion arranged at a distance from the first portion and along the virtual surface in the direction from the first portion to the second portion,
A sixth portion that extends from the fifth portion toward the first portion and bends with respect to the fifth portion in a direction away from the mating plate to form a sandwiching region between the fifth portion and the mating plate. Have and
The angle of the sixth portion with respect to the fifth portion in the cross section along the surface including the cross section of the gasket sandwiched in the sandwiching region of the alternating region constituent portion is the cross section of the gasket sandwiched in the sandwiching region of the same region constituent portion. The plate heat exchanger according to claim 1, which is larger than the angle of the fourth portion with respect to the third portion in the cross section along the surface including the surface.
前記伝熱プレートの交互領域構成部は、前記第二部位の先端と前記第六部位の先端とを接続し且つ前記仮想面に沿った第七部位を有し、
前記ガスケットにおける前記挟持領域に配置される部位は、
前記第七部位と前記相手方プレートとの間に挟み込まれる中心部位と、
前記中心部位に隣接すると共に、前記第二部位と前記相手方プレートとの間に挟み込まれる第一外側部位と、
前記中心部位に隣接すると共に、前記第六部位と前記相手方プレートとの間に挟み込まれる第二外側部位と、を有し、
前記中心部位における前記所定方向の弾性力は、前記第一外側部位及び前記第二外側部位における前記所定方向の弾性力より大きい、請求項2に記載のプレート式熱交換器。
The alternating region component of the heat transfer plate has a seventh portion that connects the tip of the second portion and the tip of the sixth portion and is along the virtual surface.
The portion of the gasket that is arranged in the sandwiching area is
A central portion sandwiched between the seventh portion and the mating plate,
A first outer portion adjacent to the central portion and sandwiched between the second portion and the mating plate,
It has a second outer portion that is adjacent to the central portion and is sandwiched between the sixth portion and the mating plate.
The plate heat exchanger according to claim 2, wherein the elastic force in the predetermined direction at the central portion is larger than the elastic force in the predetermined direction at the first outer portion and the second outer portion.
前記中心部位と前記第一外側部位と前記第二外側部位とは、一体であり、
前記ガスケットにおける前記挟持領域に配置される部位は、前記所定方向の弾性力が生じていない状態で前記中心部位が前記第七部位に接した状態では、前記第一外側部位と前記第二部位との間、及び前記第二外側部位と前記第六部位との間に隙間が生じる一方、該ガスケットが前記伝熱プレート間に挟み込まれて前記流路に前記流体が流通可能な状態では、前記所定方向の弾性力が生じた状態で前記中心部位と前記第七部位とが接すると共に、前記第一外側部位と前記第二部位とが接し且つ前記第二外側部位と前記第六部位とが接する、形状を有する、請求項3に記載のプレート式熱交換器。
The central portion, the first outer portion, and the second outer portion are integrated.
The portions arranged in the sandwiching region of the gasket are the first outer portion and the second portion when the central portion is in contact with the seventh portion in a state where the elastic force in the predetermined direction is not generated. In a state where the gasket is sandwiched between the heat transfer plates and the fluid can flow through the flow path, the predetermined state is formed. The central portion and the seventh portion are in contact with each other in a state where elastic force is generated in the direction, the first outer portion and the second portion are in contact with each other, and the second outer portion and the sixth portion are in contact with each other. The plate heat exchanger according to claim 3, which has a shape.
前記複数の伝熱プレートのそれぞれは、貫通孔を有し、
前記プレート積層部は、前記貫通孔が前記所定方向に連なることで形成される連通路を有し、
該連通路は、前記伝熱プレート間に形成される前記流路と連通し、
前記交互領域部位は、前記プレート積層部における前記連通路の周縁部において前記貫通孔から離れる方向に前記第一部位と前記第二部位とが並ぶように配置される、請求項1〜4のいずれか1項に記載のプレート式熱交換器。
Each of the plurality of heat transfer plates has a through hole and has a through hole.
The plate laminated portion has a communication passage formed by connecting the through holes in the predetermined direction.
The communication passage communicates with the flow path formed between the heat transfer plates, and communicates with the communication passage.
Any of claims 1 to 4, wherein the alternating region portion is arranged so that the first portion and the second portion are arranged in a direction away from the through hole at the peripheral edge portion of the communication passage in the plate laminated portion. The plate heat exchanger according to item 1.
前記交互領域部位において、前記挟持領域を形成している伝熱プレート対では、前記第一部位同士が当接状態で対向すると共に、前記流路領域を形成している伝熱プレート対では、前記第一部位同士が前記所定方向に間隔をあけて対向し、
該交互領域部位は、各交互領域構成部の前記第一部位が前記連通路に臨むように配置されると共に、前記連通路の周縁に沿って延びている、請求項5に記載のプレート式熱交換器。
In the heat transfer plate pair forming the sandwiching region in the alternating region portion, the first portions face each other in an abutting state, and in the heat transfer plate pair forming the flow path region, the heat transfer plate pair is described. The first parts face each other at intervals in the predetermined direction,
The plate-type heat according to claim 5, wherein the alternating region portion is arranged so that the first portion of each alternating region component faces the communication passage and extends along the peripheral edge of the communication passage. Exchanger.
前記伝熱プレートの前記貫通孔は、円形であり、
前記ガスケットは、前記貫通孔を囲む円環形状の環状部を有し、
該環状部は、前記挟持領域に配置される部位を含み、且つ、前記貫通孔に対して交互領域部位側に偏心した位置に配置されている、請求項6に記載のプレート式熱交換器。
The through hole of the heat transfer plate is circular and has a circular shape.
The gasket has an annular portion that surrounds the through hole and has an annular shape.
The plate heat exchanger according to claim 6, wherein the annular portion includes a portion arranged in the sandwiching region and is arranged at a position eccentric to the alternating region portion side with respect to the through hole.
JP2019221981A 2019-12-09 2019-12-09 Plate heat exchanger Active JP6872598B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019221981A JP6872598B1 (en) 2019-12-09 2019-12-09 Plate heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019221981A JP6872598B1 (en) 2019-12-09 2019-12-09 Plate heat exchanger

Publications (2)

Publication Number Publication Date
JP6872598B1 true JP6872598B1 (en) 2021-05-19
JP2021092333A JP2021092333A (en) 2021-06-17

Family

ID=75896315

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019221981A Active JP6872598B1 (en) 2019-12-09 2019-12-09 Plate heat exchanger

Country Status (1)

Country Link
JP (1) JP6872598B1 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3665391B2 (en) * 1995-09-05 2005-06-29 株式会社日阪製作所 Plate type heat exchanger gasket mounting structure
JP6492148B1 (en) * 2017-10-24 2019-03-27 株式会社日阪製作所 Plate heat exchanger

Also Published As

Publication number Publication date
JP2021092333A (en) 2021-06-17

Similar Documents

Publication Publication Date Title
US8646517B2 (en) Plate and gasket for plate heat exchanger
KR101210673B1 (en) A plate heat exchanger
CN101317069B (en) Reinforcement for dish plate heat exchangers
KR101180554B1 (en) A plate heat exchanger
AU2008354066B2 (en) A plate heat exchanger
JPH02169993A (en) Plate type heat-exchanger
JP7108056B2 (en) heat transfer plates and gaskets
JP6912662B2 (en) Heat transfer plates, and plate packs for heat exchangers with multiple such heat transfer plates
US20100025025A1 (en) Heat exchanger and manufacturing method of the same
JP2006214646A (en) Heat exchanging plate
JP2008116138A (en) Heat exchange plate
WO2014132959A1 (en) Plate-type heat exchanger
JP5947959B1 (en) Heat transfer plate for plate heat exchanger and plate heat exchanger equipped with the same
US20060162915A1 (en) Heat exchange plate
JP6872598B1 (en) Plate heat exchanger
JP2011196663A (en) Plate type heat exchanger
US8887796B2 (en) Plate heat exchanger
KR20060116732A (en) Heat exchange unit
KR20010015811A (en) Heat exchanger
JP2012122688A (en) Heat transfer plate for plate type heat exchanger, and plate type heat exchanger
JP6857261B1 (en) Plate heat exchanger
JP2893629B2 (en) Plate heat exchanger
US20210270537A1 (en) Heat transfer plate and cassette for plate heat exchanger
KR20190121887A (en) A heat exchanger plate and a plate heat exchanger
JP7100074B2 (en) Plate heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201211

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210419

R150 Certificate of patent or registration of utility model

Ref document number: 6872598

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250