JP6871487B1 - Manufacturing method of photocurable resin film - Google Patents

Manufacturing method of photocurable resin film Download PDF

Info

Publication number
JP6871487B1
JP6871487B1 JP2021510481A JP2021510481A JP6871487B1 JP 6871487 B1 JP6871487 B1 JP 6871487B1 JP 2021510481 A JP2021510481 A JP 2021510481A JP 2021510481 A JP2021510481 A JP 2021510481A JP 6871487 B1 JP6871487 B1 JP 6871487B1
Authority
JP
Japan
Prior art keywords
photocurable resin
film
resin composition
wavelength
ultraviolet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021510481A
Other languages
Japanese (ja)
Other versions
JPWO2021070715A1 (en
Inventor
圭亮 後藤
圭亮 後藤
西 秀樹
秀樹 西
隆久 矢野
隆久 矢野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okura Kogyo KK
Original Assignee
Okura Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okura Kogyo KK filed Critical Okura Kogyo KK
Application granted granted Critical
Publication of JP6871487B1 publication Critical patent/JP6871487B1/en
Publication of JPWO2021070715A1 publication Critical patent/JPWO2021070715A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/10Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation for articles of indefinite length
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C39/00Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor
    • B29C39/14Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor for making articles of indefinite length
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C41/00Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor
    • B29C41/24Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor for making articles of indefinite length

Landscapes

  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Physics & Mathematics (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Thermal Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Laminated Bodies (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Abstract

【課題】 本発明は、紫外線吸収剤を含有する光硬化型樹脂フィルムの製造方法における光硬化後の光硬化型樹脂フィルムとベースフィルム及び/またはカバーフィルムとの剥離不良を抑制することを目的とする。【解決手段】 ベースフィルムの一方の表面に、紫外線吸収剤及び光重合開始剤を含む液状の光硬化型樹脂組成物からなる少なくとも一層の光硬化型樹脂組成物層を形成し、積層体とした後、積層体の、ベースフィルム側及び光硬化型樹脂組成物層側の少なくとも一方の面から、光硬化型樹脂組成物層に紫外線を照射することで、光硬化型樹脂組成物層を硬化させる、光硬化型樹脂フィルムの製造方法であって、紫外線の少なくとも一つが、光重合開始剤の紫外線吸収波長帯のみに発光ピークを有する光源により紫外線を照射し、ベースフィルムの透過中間波長をλBF(nm)、紫外線吸収剤のうち透過中間波長の値が最も大きい紫外線吸収剤の透過中間波長をλA(nm)、ベースフィルム側の光源の発光ピークの波長をλBL(nm)、光硬化型樹脂組成物層側の光源の発光ピークの波長をλRL(nm)としたとき、λBF<λA<λBL及び/又はλA<λRLであることを特徴とする光硬化型樹脂フィルムの製造方法。【選択図】図1PROBLEM TO BE SOLVED: To suppress poor peeling between a photocurable resin film and a base film and / or a cover film after photocuring in a method for producing a photocurable resin film containing an ultraviolet absorber. To do. SOLUTION: At least one layer of a photocurable resin composition composed of a liquid photocurable resin composition containing an ultraviolet absorber and a photopolymerization initiator is formed on one surface of a base film to form a laminate. After that, the photocurable resin composition layer is cured by irradiating the photocurable resin composition layer with ultraviolet rays from at least one surface of the laminate on the base film side and the photocurable resin composition layer side. , A method for producing a photocurable resin film, in which at least one of ultraviolet rays is irradiated with ultraviolet rays by a light source having an emission peak only in the ultraviolet absorption wavelength band of the photopolymerization initiator, and the transmission intermediate wavelength of the base film is set to λBF (. nm), the transmission intermediate wavelength of the ultraviolet absorber having the largest transmission intermediate wavelength value among the ultraviolet absorbers is λA (nm), the emission peak wavelength of the light source on the base film side is λBL (nm), and the photocurable resin composition. A method for producing a photocurable resin film, characterized in that λBF <λA <λBL and / or λA <λRL when the wavelength of the emission peak of the light source on the material layer side is λRL (nm). [Selection diagram] Fig. 1

Description

本発明は、液状の光硬化型樹脂組成物を主に紫外線領域の光の照射により硬化させ硬質フィルムを形成する光硬化型樹脂フィルムの製造方法に関するものである。 The present invention relates to a method for producing a photocurable resin film, which forms a hard film by curing a liquid photocurable resin composition mainly by irradiating light in an ultraviolet region.

アクリル系などの光硬化型樹脂フィルムは、ガラスに比べ割れにくいという特性を有している。このため、近年、従来ガラスが使用されていた分野にも広く使用されるようになってきている。また、光硬化型樹脂フィルムは熱可塑性樹脂フィルムに比べると耐熱性と硬度が高く、耐熱性と硬度が必要とされる新たな利用分野での使用が期待されている。例えば、加飾成型用として、フィルム表面に絵柄を印刷後、加熱により軟化させた状態で3次元成形を行うインサートフィルムが挙げられる。加飾成型用途で使用される光硬化型樹脂フィルムには紫外線遮断性が求められ、多くの場合に紫外線吸収剤が添加されている。 Photocurable resin films such as acrylics have the property of being less likely to break than glass. For this reason, in recent years, it has come to be widely used in fields where glass has been conventionally used. Further, the photocurable resin film has higher heat resistance and hardness than the thermoplastic resin film, and is expected to be used in new fields of application where heat resistance and hardness are required. For example, for decorative molding, there is an insert film in which a pattern is printed on the surface of the film and then three-dimensionally molded in a state of being softened by heating. Photocurable resin films used for decorative molding are required to have ultraviolet blocking properties, and in many cases, an ultraviolet absorber is added.

これまで、光硬化型樹脂からなるフィルムの製造について、いくつかの方法が提案されている。例えば、特開2006−306081(文献1)には、液状の光硬化型樹脂を平滑なベースフィルム上にフィルム状に流延して光硬化性樹脂層を形成し、光硬化性樹脂層の上に平滑な紫外線透過カバーフィルムを積層して積層体としたのち、積層体に紫外線を照射することで光硬化型樹脂フィルムを製造する方法が開示されている。 So far, several methods have been proposed for producing a film made of a photocurable resin. For example, in Japanese Patent Application Laid-Open No. 2006-306081 (Reference 1), a liquid photocurable resin is cast on a smooth base film in the form of a film to form a photocurable resin layer, and the photocurable resin layer is overlaid. Disclosed is a method of producing a photocurable resin film by laminating a smooth ultraviolet-transmitting cover film on the surface to form a laminate and then irradiating the laminate with ultraviolet rays.

しかしながら、紫外線吸収剤を含有する光硬化型樹脂フィルムを、上述の製造方法により製造する場合、紫外線吸収剤を含有していることに起因する特有の課題が発生する。すなわち、紫外線吸収剤を含有する光硬化型樹脂組成物を、紫外線を照射することにより硬化させる場合、通常の光硬化反応熱に、紫外線吸収剤が紫外線を吸収する際に発する熱が加算されるため、紫外線吸収剤を含有しない光硬化型樹脂組成物を紫外線の照射により硬化させる場合に比べ、積層体の温度が高くなる。さらに、硬化反応に寄与する紫外線の一部が紫外線吸収剤に吸収されるため、紫外線が重合開始剤に到達しにくくなる。硬化反応を進め反応率を高めるためには、光硬化型樹脂組成物に照射する光の総量(積算光量)を多くする必要があるが、光硬化型樹脂組成物に照射する光の総量を多くすると積層体の温度上昇を引き起こす。積層体の温度上昇は、光硬化後の光硬化型樹脂フィルムとベースフィルム及び/またはカバーフィルムとの剥離不良をもたらし、光硬化型樹脂フィルムの安定した巻取りを阻害する。 However, when a photocurable resin film containing an ultraviolet absorber is produced by the above-mentioned production method, a peculiar problem arises due to the inclusion of the ultraviolet absorber. That is, when a photocurable resin composition containing an ultraviolet absorber is cured by irradiating it with ultraviolet rays, the heat generated when the ultraviolet absorber absorbs the ultraviolet rays is added to the normal heat of the photocuring reaction. Therefore, the temperature of the laminate is higher than that in the case where the photocurable resin composition containing no ultraviolet absorber is cured by irradiation with ultraviolet rays. Further, since a part of the ultraviolet rays contributing to the curing reaction is absorbed by the ultraviolet absorber, it becomes difficult for the ultraviolet rays to reach the polymerization initiator. In order to proceed with the curing reaction and increase the reaction rate, it is necessary to increase the total amount of light (integrated light amount) irradiating the photocurable resin composition, but the total amount of light irradiating the photocurable resin composition is large. Then, the temperature of the laminated body rises. An increase in the temperature of the laminate causes poor peeling between the photocurable resin film after photocuring and the base film and / or cover film, and hinders stable winding of the photocurable resin film.

積層体の温度上昇による剥離不良を解決するために、文献1には、積層体を冷却し、ベースフィルム及びカバーフィルムのガラス転移温度より低い温度で硬化させることが開示され、紫外線照射の際の積層体の冷却は、ピンチロール間でピンチされた平滑な状態で、ベースフィルム側から冷風を吹き付ける空冷により行われている。しかしながら、空冷は冷却効率が悪く、十分な冷却効果を得るために冷風の風量を上げると、積層体がバタつき、得られる光硬化型樹脂フィルムに皺や変形といった外観不良を生じさせる。 In order to solve the peeling failure due to the temperature rise of the laminated body, Document 1 discloses that the laminated body is cooled and cured at a temperature lower than the glass transition temperature of the base film and the cover film, and is subjected to ultraviolet irradiation. The laminated body is cooled by air cooling in which cold air is blown from the base film side in a smooth state pinched between pinch rolls. However, air cooling has poor cooling efficiency, and if the air volume of cold air is increased in order to obtain a sufficient cooling effect, the laminated body flutters, causing the obtained photocurable resin film to have poor appearance such as wrinkles and deformation.

一方、紫外線照射装置が冷却ロールの外周に沿って配置された冷却ロールによる冷却方法は、冷却効率が良いため、光学フィルム表面へのハードコート層形成等の比較的薄い厚さの樹脂層の硬化の際に使用されている。しかしながら、冷却ロールによる冷却方法は、積層体が曲率を持った状態で光硬化反応が進むため、フィルムのような比較的厚さのあるものの光硬化に適用する場合には、硬化過程で光硬化型樹脂フィルムのロール接触面と非接触面との間に歪や応力差が発生し、平滑なフィルムが得られにくいという問題があり適用できない。 On the other hand, the cooling method using a cooling roll in which the ultraviolet irradiation device is arranged along the outer periphery of the cooling roll has good cooling efficiency, and therefore cures a resin layer having a relatively thin thickness such as forming a hard coat layer on the surface of an optical film. It is used in the case of. However, in the cooling method using a cooling roll, the photocuring reaction proceeds in a state where the laminated body has a curvature. Therefore, when it is applied to photocuring of a relatively thick material such as a film, it is photocured in the curing process. It cannot be applied because distortion and stress difference occur between the roll contact surface and the non-contact surface of the mold resin film, and it is difficult to obtain a smooth film.

以上の如く、紫外線吸収剤を含有する光硬化型樹脂フィルムにおける光硬化後の光硬化型樹脂フィルムとベースフィルム及び/またはカバーフィルムとの剥離不良を抑制する新たな光硬化型樹脂フィルムの製造方法が求められている。 As described above, a method for producing a new photocurable resin film that suppresses poor peeling between the photocurable resin film after photocuring and the base film and / or the cover film in the photocurable resin film containing an ultraviolet absorber. Is required.

なお、本発明における紫外線という文言には、波長が410nm以下の可視光を含む。 The term ultraviolet light in the present invention includes visible light having a wavelength of 410 nm or less.

特開2006−306081公報Japanese Unexamined Patent Publication No. 2006-306081

本発明は、紫外線吸収剤を含有する光硬化型樹脂フィルムの製造方法において発生する光硬化後の光硬化型樹脂フィルムとベースフィルム及び/またはカバーフィルムとの剥離不良を抑制することを目的とする。 An object of the present invention is to suppress poor peeling between a photocurable resin film after photocuring and a base film and / or a cover film, which occurs in a method for producing a photocurable resin film containing an ultraviolet absorber. ..

すなわち、本発明によると、上記課題を解決するために、ベースフィルムの一方の表面に、紫外線吸収剤及び光重合開始剤を含む液状の光硬化型樹脂組成物からなる少なくとも一層の光硬化型樹脂組成物層を形成し、積層体とした後、前記積層体の、前記ベースフィルム側及び前記光硬化型樹脂組成物層側の少なくとも一方の面から、前記光硬化型樹脂組成物層に紫外線を照射することで、前記光硬化型樹脂組成物層を硬化させる、光硬化型樹脂フィルムの製造方法であって、前記紫外線の少なくとも一つが、前記光重合開始剤の紫外線吸収波長帯のみに発光ピークを有する光源により照射され、前記ベースフィルムの透過中間波長をλBF(nm)、前記紫外線吸収剤のうち透過中間波長の値が最も大きい紫外線吸収剤の透過中間波長をλ(nm)、前記ベースフィルム側の光源の発光ピークの波長をλBL(nm)、前記光硬化型樹脂組成物層側の光源の発光ピークの波長をλRL(nm)としたとき、λBF<λ<λBL及び/又はλ<λRLであることを特徴とする光硬化型樹脂フィルムの製造方法が提供される。That is, according to the present invention, in order to solve the above problems, at least one layer of a photocurable resin composed of a liquid photocurable resin composition containing an ultraviolet absorber and a photopolymerization initiator on one surface of the base film. After the composition layer is formed to form a laminated body, ultraviolet rays are applied to the photocurable resin composition layer from at least one surface of the laminated body on the base film side and the photocurable resin composition layer side. A method for producing a photocurable resin film in which the photocurable resin composition layer is cured by irradiation. At least one of the ultraviolet rays has an emission peak only in the ultraviolet absorption wavelength band of the photopolymerization initiator. The transmission intermediate wavelength of the base film is λ BF (nm), and the transmission intermediate wavelength of the ultraviolet absorber having the largest transmission intermediate wavelength value among the ultraviolet absorbers is λ A (nm). When the wavelength of the emission peak of the light source on the base film side is λ BL (nm) and the wavelength of the emission peak of the light source on the photocurable resin composition layer side is λ RL (nm), λ BFA <λ Provided is a method for producing a photocurable resin film, characterized in that BL and / or λ ARL.

また、ベースフィルム及びカバーフィルムの間に、紫外線吸収剤及び光重合開始剤を含む液状の光硬化型樹脂組成物からなる少なくとも一層の光硬化型樹脂組成物層を形成し、積層体とした後、前記積層体の、前記ベースフィルム側及び前記カバーフィルム側の少なくとも一方の面から、前記光硬化型樹脂組成物層に紫外線を照射することで、前記光硬化型樹脂組成物層を硬化させる、光硬化型樹脂フィルムの製造方法であって、前記紫外線の少なくとも一つが、前記光重合開始剤の紫外線吸収波長帯のみに発光ピークを有する光源により照射され、前記ベースフィルムの透過中間波長をλBF(nm)、前記カバーフィルムの透過中間波長をλCF(nm)、前記紫外線吸収剤のうち透過中間波長の値が最も大きい紫外線吸収剤の透過中間波長をλ(nm)、前記ベースフィルム側の光源の発光ピークの波長をλBL(nm)、前記カバーフィルム側の光源の発光ピークの波長をλCL(nm)としたとき、λBF<λ<λBL及び/又はλCF<λ<λCLであることを特徴とする光硬化型樹脂フィルムの製造方法が提供される。Further, after forming at least one layer of a photocurable resin composition layer composed of a liquid photocurable resin composition containing an ultraviolet absorber and a photopolymerization initiator between the base film and the cover film to form a laminate. The photocurable resin composition layer is cured by irradiating the photocurable resin composition layer with ultraviolet rays from at least one surface of the laminate on the base film side and the cover film side. A method for producing a photocurable resin film, at least one of the ultraviolet rays is irradiated by a light source having an emission peak only in the ultraviolet absorption wavelength band of the photopolymerization initiator, and the transmission intermediate wavelength of the base film is set to λ BF. (Nm), the transmission intermediate wavelength of the cover film is λ CF (nm), the transmission intermediate wavelength of the ultraviolet absorber having the largest transmission intermediate wavelength value among the ultraviolet absorbers is λ A (nm), and the base film side. When the wavelength of the emission peak of the light source is λ BL (nm) and the wavelength of the emission peak of the light source on the cover film side is λ CL (nm), λ BFABL and / or λ CFA method for producing a photocurable resin film, characterized in that A <λ CL, is provided.

また、前記積層体が、前記ベースフィルム上に、紫外線吸収剤及び光重合開始剤を含む液状の光硬化型樹脂組成物を、フィルム状に流延することで、少なくとも一層の光硬化型樹脂組成物層を形成し、前記光硬化型樹脂組成物層の上に前記カバーフィルムを積層して形成されることを特徴とする前記光硬化型樹脂フィルムの製造方法が提供される。 Further, the laminate is formed by casting a liquid photocurable resin composition containing an ultraviolet absorber and a photopolymerization initiator on the base film in the form of a film, whereby at least one layer of the photocurable resin composition is formed. Provided is a method for producing the photocurable resin film, which comprises forming a material layer and laminating the cover film on the photocurable resin composition layer.

また、前記カバーフィルムを前記光硬化型樹脂組成物層の上に積層する前に、あらかじめ、前記カバーフィルムの前記光硬化型樹脂組成物層側の表面に、少なくとも一層の、紫外線吸収剤及び光重合開始剤を含む液状の光硬化型樹脂組成物からなる層を形成することを特徴とする前記光硬化型樹脂フィルム製造方法が提供される。 Further, before laminating the cover film on the photocurable resin composition layer, at least one layer of an ultraviolet absorber and light is previously applied to the surface of the cover film on the photocurable resin composition layer side. Provided is the method for producing a photocurable resin film, which comprises forming a layer made of a liquid photocurable resin composition containing a polymerization initiator.

また、前記ベースフィルム及び/又は前記カバーフィルムがポリエステルフィルムであることを特徴とする前記光硬化型樹脂フィルムの製造方法が提供される。 Further provided, a method for producing the photocurable resin film, wherein the base film and / or the cover film is a polyester film.

さらに、前記紫外線吸収剤の透過中間波長Aλが350nm以上であることを特徴とする前記光硬化型樹脂フィルムの製造方法が提供される。Further, there is provided a method for producing the photocurable resin film, wherein the transmission intermediate wavelength A λ of the ultraviolet absorber is 350 nm or more.

本発明の光硬化型樹脂フィルムの製造方法によれば、紫外線照射による硬化の際の発熱を抑え、積層体の温度上昇を抑制することができるため、光硬化後の光硬化型樹脂フィルムとベースフィルム及び/またはカバーフィルムとの剥離不良を無くし、安定的にロールフィルムを連続して製造することができる。したがって、このような光硬化型樹脂フィルムを安定的に製造できる本発明は、その産業上の利用価値が極めて高いものである。 According to the method for producing a photocurable resin film of the present invention, it is possible to suppress heat generation during curing by ultraviolet irradiation and suppress a temperature rise of the laminate. Therefore, the photocurable resin film and the base after photocuring can be suppressed. It is possible to stably and continuously produce a roll film by eliminating poor peeling from the film and / or the cover film. Therefore, the present invention capable of stably producing such a photocurable resin film has extremely high industrial utility value.

本発明の一実施形態に係る光硬化型樹脂フィルムの製造方法の概略図である。It is the schematic of the manufacturing method of the photocurable resin film which concerns on one Embodiment of this invention. 本発明の一実施形態に係る光硬化型樹脂フィルムの製造方法の概略図である。It is the schematic of the manufacturing method of the photocurable resin film which concerns on one Embodiment of this invention. 本発明の一実施形態に係る光硬化型樹脂フィルムの製造方法の概略図である。It is the schematic of the manufacturing method of the photocurable resin film which concerns on one Embodiment of this invention. 本発明の一実施形態に係る光硬化型樹脂フィルムの製造方法の概略図である。It is the schematic of the manufacturing method of the photocurable resin film which concerns on one Embodiment of this invention. 本発明における透過中間波長の定義の説明図である。It is explanatory drawing of the definition of transmission intermediate wavelength in this invention. 実施例1の製造方法における、光重合開始剤の紫外線吸収スペクトル、紫外線吸収剤の紫外線透過スペクトル及び405nmを発光ピークとする発光ダイオード(以下、LEDと記す)の発光スペクトルの関係を示した図である。It is a figure which showed the relationship between the ultraviolet absorption spectrum of a photopolymerization initiator, the ultraviolet transmission spectrum of an ultraviolet absorber, and the emission spectrum of a light emitting diode (hereinafter referred to as LED) having an emission peak of 405 nm in the production method of Example 1. is there. 比較例1の製造方法における、光重合開始剤の紫外線吸収スペクトル、紫外線吸収剤の紫外線透過スペクトル及び無電極紫外線ランプ(ヘレウス株式会社製、Hバルブ)の発光スペクトルの関係を示した図である。It is a figure which showed the relationship between the ultraviolet absorption spectrum of a photopolymerization initiator, the ultraviolet transmission spectrum of an ultraviolet absorber, and the emission spectrum of an electrodeless ultraviolet lamp (manufactured by Heleus Co., Ltd., H valve) in the production method of Comparative Example 1.

以下、必要に応じて図面を参照しながら本発明の光硬化型樹脂フィルムの製造方法の好適な実施形態について詳細に説明する。 Hereinafter, preferred embodiments of the method for producing a photocurable resin film of the present invention will be described in detail with reference to the drawings as necessary.

図1は、本発明の光硬化型樹脂フィルムの製造方法の一実施形態に係る概略図である。図1に示すように、本発明は、光硬化型樹脂フィルムの原料となる液状の光硬化型樹脂組成物がベースフィルム11上にフィルム状に流延され、ベースフィルム11上に光硬化型樹脂組成物層が積層される。光硬化型樹脂組成物は、塗工ヘッド12よりベースフィルム11上に一定量ずつ供給される。ベースフィルム11は、ポリエステルフィルム等で、ロール状に巻き取られたものから、光硬化型樹脂組成物の供給量に合わせた一定速度で連続的に引き出される。光硬化型樹脂組成物は、例えば、厚みが20〜300μmとなるようにベースフィルム11上に供給される。 FIG. 1 is a schematic view according to an embodiment of the method for producing a photocurable resin film of the present invention. As shown in FIG. 1, in the present invention, a liquid photocurable resin composition which is a raw material of a photocurable resin film is cast on the base film 11 in the form of a film, and the photocurable resin is spread on the base film 11. The composition layers are laminated. The photocurable resin composition is supplied from the coating head 12 onto the base film 11 in fixed amounts. The base film 11 is continuously drawn from a roll of a polyester film or the like at a constant speed according to the supply amount of the photocurable resin composition. The photocurable resin composition is supplied on the base film 11 so as to have a thickness of, for example, 20 to 300 μm.

本発明においては、ベースフィルム11上に複数の光硬化型樹脂組成物をフィルム状に積層して流延し、複数の光硬化型樹脂組成物層を有する光硬化型樹脂フィルムを形成してもよい。この場合、塗工ヘッドを複数設置するか、多層塗工ヘッドを使用すればよい。複数の光硬化型樹脂組成物層を有する光硬化型樹脂フィルムを製造する場合には、それぞれの層の厚みを20μm以上とすることが好ましい。 In the present invention, even if a plurality of photocurable resin compositions are laminated in a film form on the base film 11 and cast to form a photocurable resin film having a plurality of photocurable resin composition layers. Good. In this case, a plurality of coating heads may be installed or a multi-layer coating head may be used. When a photocurable resin film having a plurality of photocurable resin composition layers is produced, the thickness of each layer is preferably 20 μm or more.

また、本発明においては、図2に示すように、カバーフィルム13を積層して積層体14とする前に、予め、カバーフィルム13の光硬化型樹脂組成物層側の表面に、塗工ヘッド122を用いて光硬化型樹脂組成物からなる層を少なくとも一層形成してもよい。カバーフィルム13上に光硬化型樹脂組成物からなる層を複数形成する場合には、塗工ヘッド122を複数設置するか、多層塗工ヘッドを使用すればよい。 Further, in the present invention, as shown in FIG. 2, a coating head is previously applied to the surface of the cover film 13 on the photocurable resin composition layer side before laminating the cover film 13 to form the laminated body 14. 122 may be used to form at least one layer of the photocurable resin composition. When a plurality of layers made of the photocurable resin composition are formed on the cover film 13, a plurality of coating heads 122 may be installed or a multilayer coating head may be used.

本発明に用いられる光硬化型樹脂組成物は、光硬化型樹脂と光重合開始剤と紫外線吸収剤とを含む。本発明に用いられる光硬化型樹脂は、その反応機構から、例えばラジカル重合型の光硬化型樹脂とカチオン重合型の光硬化型樹脂に分類され、どちらも使用することができる。ラジカル重合型の光硬化型樹脂としては、例えばアクリレートモノマー等の重合性モノマーや、例えばウレタンアクリレート、ポリエステルアクリレート、エポキシアクリレート、アクリルアクリレート等の重合性オリゴマーを原料として含むものである。ラジカル重合型の光重合開始剤としては、例えばベンゾフェノン系、アセトフェノン系、チオキサントン系の化合物が挙げられる。カチオン重合型の光硬化型樹脂としては、例えばビニルエーテルモノマー等の重合性モノマーや、ビニルエーテルオリゴマー、脂環式エポキシ樹脂、グリシジルエーテルエポキシ等の重合性オリゴマーを原料として含むものである。カチオン重合型の光重合開始剤として例えばスルホニウム系、ヨードニウム系の化合物が挙げられる。光硬化型樹脂組成物は、粘度が例えば1000〜20000Pa・sに調整されてベースフィルム11上に供給される。 The photocurable resin composition used in the present invention contains a photocurable resin, a photopolymerization initiator, and an ultraviolet absorber. The photocurable resin used in the present invention is classified into, for example, a radical polymerization type photocurable resin and a cationic polymerization type photocurable resin according to its reaction mechanism, and both can be used. The radical polymerization type photocurable resin contains, for example, a polymerizable monomer such as an acrylate monomer or a polymerizable oligomer such as a urethane acrylate, a polyester acrylate, an epoxy acrylate or an acrylic acrylate as a raw material. Examples of the radical polymerization type photopolymerization initiator include benzophenone-based, acetophenone-based, and thioxanthone-based compounds. The cationically polymerizable photocurable resin contains, for example, a polymerizable monomer such as a vinyl ether monomer or a polymerizable oligomer such as a vinyl ether oligomer, an alicyclic epoxy resin, or a glycidyl ether epoxy as a raw material. Examples of the cationic polymerization type photopolymerization initiator include sulfonium-based and iodonium-based compounds. The photocurable resin composition has a viscosity adjusted to, for example, 1000 to 20000 Pa · s and is supplied onto the base film 11.

本発明に用いられる紫外線吸収剤は、光硬化型樹脂組成物が硬化してフィルムとなったのちも変化せず、フィルム中にそのまま存在する。そして、紫外線吸収剤は、本発明により製造される光硬化型樹脂フィルムの原料組成物の成分のうち、最も長波長の領域まで紫外線を遮断する。すなわち、本発明により製造される光硬化型樹脂フィルムの紫外線透過スペクトルは紫外線吸収剤の紫外線透過スペクトルと同じとなる。このため、本発明では、紫外線吸収剤の透過中間波長λAを硬化後の光硬化型樹脂フィルムの紫外線透過スペクトルから後述の方法に従い決定する。The ultraviolet absorber used in the present invention does not change even after the photocurable resin composition is cured to form a film, and remains as it is in the film. Then, the ultraviolet absorber blocks ultraviolet rays up to the longest wavelength region among the components of the raw material composition of the photocurable resin film produced by the present invention. That is, the ultraviolet transmission spectrum of the photocurable resin film produced by the present invention is the same as the ultraviolet transmission spectrum of the ultraviolet absorber. Therefore, in the present invention, the transmission intermediate wavelength λ A of the ultraviolet absorber is determined from the ultraviolet transmission spectrum of the cured photocurable resin film according to the method described later.

図5は、本発明における紫外線吸収剤の透過中間波長λA(nm)を決定する方法を説明するための一例として、後述の実施例1で得られた紫外線吸収剤を含有した光硬化型樹脂フィルムの200nm〜500nmの範囲で測定された透過スペクトル(横軸:波長、縦軸:透過率)である。図5に示すように、本発明における透過中間波長とは、透過率が上昇する部分に直線(上昇部分補助線21)をフィッテイングし、それが短波長側のベースラインの延長線22及び長波長側のベースラインの延長線23と交わるところを、それぞれ透過開始点24及びの透過終了点25としたときに、それらの波長の中間の波長をいう。FIG. 5 shows a photocurable resin containing an ultraviolet absorber obtained in Example 1 described later as an example for explaining a method for determining a transmission intermediate wavelength λ A (nm) of an ultraviolet absorber in the present invention. It is a transmission spectrum (horizontal axis: wavelength, vertical axis: transmittance) measured in the range of 200 nm to 500 nm of the film. As shown in FIG. 5, the transmission intermediate wavelength in the present invention is a straight line (increasing portion auxiliary line 21) fitted to a portion where the transmittance increases, which is an extension line 22 and a length of the baseline on the short wavelength side. When the intersection with the extension line 23 of the baseline on the wavelength side is defined as the transmission start point 24 and the transmission end point 25, respectively, it means a wavelength intermediate between those wavelengths.

本発明に用いられる紫外線吸収剤は、透過中間波長がベースフィルム11及び/またはカバーフィルム13の透過中間波長より長波長側にあるものであればよい。紫外線吸収剤の透過中間波長は、より広範囲の紫外光波長領域をカットするため、350nm以上であることが好ましく、370nm以上であることがより好ましい。 The ultraviolet absorber used in the present invention may have a transmission intermediate wavelength on the longer wavelength side than the transmission intermediate wavelength of the base film 11 and / or the cover film 13. The transmission intermediate wavelength of the ultraviolet absorber is preferably 350 nm or more, and more preferably 370 nm or more, in order to cut a wider range of ultraviolet light wavelength regions.

本発明に用いられる紫外線吸収剤としては、透過中間波長がベースフィルム11及び/またはカバーフィルム13の透過中間波長より長波長側にあるものであれば特に制限するものではないが、例えば、トリアジン系化合物、ベンゾトリアゾール系化合物、ベンゾフェノン系化合物、シアノアクリレート系化合物、ベンゾオキサジン系化合物、及びオキサジアゾール系化合等の有機化合物系紫外線吸収剤、あるいは或いは酸化亜鉛、酸化チタン、及び酸化セリウムの微粒子からなる無機系紫外線吸収剤が挙げられる。これらは、単独または2種以上を併用して用いることができる。 The ultraviolet absorber used in the present invention is not particularly limited as long as the transmitted intermediate wavelength is on the longer wavelength side than the transmitted intermediate wavelength of the base film 11 and / or the cover film 13, but is not particularly limited, and is, for example, a triazine type. From compounds, benzotriazole-based compounds, benzophenone-based compounds, cyanoacrylate-based compounds, benzoxazine-based compounds, and organic compound-based UV absorbers such as oxaziazole-based compounds, or fine particles of zinc oxide, titanium oxide, and cerium oxide. Inorganic UV absorbers can be mentioned. These can be used alone or in combination of two or more.

本発明に用いられる紫外線吸収剤の種類や含有量は、フィルムの用途、光硬化型樹脂組成物の種類、あるいはフィルムの厚みなどにより適宜選択されるが、透明性やコストの点から、有機化合物系紫外線吸収剤が好ましい。具体的には、トリアジン系化合物、ベンゾトリゾール系化合物、ベンゾフェノン系化合物等を単独または2種以上を併用して用いることができる。有機化合物系紫外線吸収剤の含有量はラジカル重合型の光硬化型樹脂に対して、0.1〜2.0重量部含有することが好ましい。市販品としてはアデカスタブLA−24、アデカスタブLA−46、アデカスタブ1413(ADEKA社製)などが挙げられる。 The type and content of the ultraviolet absorber used in the present invention are appropriately selected depending on the use of the film, the type of the photocurable resin composition, the thickness of the film, etc., but from the viewpoint of transparency and cost, the organic compound A UV absorber is preferable. Specifically, a triazine-based compound, a benzotrisol-based compound, a benzophenone-based compound and the like can be used alone or in combination of two or more. The content of the organic compound-based ultraviolet absorber is preferably 0.1 to 2.0 parts by weight with respect to the radical polymerization type photocurable resin. Examples of commercially available products include ADEKA STAB LA-24, ADEKA STAB LA-46, and ADEKA STAB 1413 (manufactured by ADEKA).

また、本発明に用いられる光硬化型樹脂組成物には、特定の波長の紫外線の照射により重合を開始する光重合開始剤が配合される。本発明に用いられる光重合開始剤は、紫外線の照射でラジカルを生じ、そのラジカルが重合反応のきっかけとなるものである。本発明に用いられる光重合開始剤としては、汎用の光重合開始剤から、使用される紫外線吸収剤の透過中間波長より長波長側に重合を開始する紫外線吸収波長帯の一部を有するものが適宜選択される。 Further, the photocurable resin composition used in the present invention contains a photopolymerization initiator that initiates polymerization by irradiation with ultraviolet rays having a specific wavelength. The photopolymerization initiator used in the present invention generates radicals when irradiated with ultraviolet rays, and the radicals trigger a polymerization reaction. The photopolymerization initiator used in the present invention is a general-purpose photopolymerization initiator having a part of the ultraviolet absorption wavelength band that initiates polymerization on the longer wavelength side than the transmission intermediate wavelength of the ultraviolet absorber used. It is selected as appropriate.

具体的には2−ヒロドキシ−1−{4−[4−(2−ヒドロキシ−2−メチル−プロピオニル)−ベンジル]フェニル}−2−メチル−プロパン−1−オン、1−ヒドロキシ−シクロヘキシル−フェニル−ケトン、ビス(2,4,6‐トリメチルベンゾイル)‐フェニルフォスフィンオキサイド、2,4,6-トリメチルベンゾイル-ジフェニル-フォスフィンオキサイド、2-ヒドロキシ-2-メチル-1-フェニル-プロパン-1-オン、1-[4-(2-ヒドロキシエトキシ)-フェニル]-2-ヒドロキシ-2-メチル-1-プロパン-1-オン等を単独または2種以上を併用したものから選択できる。光重合開始剤の含有量はラジカル重合型の光硬化型樹脂に対して、0.5〜15重量部含有することが好ましい。市販品としてはIrgacure127、184、369、651、500、819、907、2959、1173、TPO、MBF、(以上、IGM Resins社製)あるいは、OXE01、OXE02、OXE04(以上、IBASF社製)などが挙げられる。 Specifically, 2-hirodoxy-1- {4- [4- (2-hydroxy-2-methyl-propionyl) -benzyl] phenyl} -2-methyl-propan-1-one, 1-hydroxy-cyclohexyl-phenyl -Ketone, bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide, 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide, 2-hydroxy-2-methyl-1-phenyl-propane-1 -On, 1- [4- (2-hydroxyethoxy) -phenyl] -2-hydroxy-2-methyl-1-propane-1-one and the like can be selected from one alone or a combination of two or more. The content of the photopolymerization initiator is preferably 0.5 to 15 parts by weight with respect to the radical polymerization type photocurable resin. Commercially available products include Irgacure 127, 184, 369, 651, 500, 819, 907, 2959, 1173, TPO, MBF (above, manufactured by IGM Resins), OXE01, OXE02, OXE04 (above, manufactured by IBASF), etc. Can be mentioned.

また、本発明に用いられる光硬化型樹脂組成物には、光重合開始剤に加えて増感剤を添加することができる。具体的には、アントラセン、チオキサントン、ベンゾフェノン等を単独または2種以上を併用したものから選択できる。増感剤の含有量はラジカル重合型の光硬化型樹脂に対して、0.5〜15重量部含有することが好ましい。市販品としてはアントラキュアーUVS−581、UVS−1331(川崎化成工業社製)などが挙げられる。 Further, a sensitizer can be added to the photocurable resin composition used in the present invention in addition to the photopolymerization initiator. Specifically, anthracene, thioxanthone, benzophenone and the like can be selected alone or in combination of two or more. The content of the sensitizer is preferably 0.5 to 15 parts by weight with respect to the radical polymerization type photocurable resin. Examples of commercially available products include Anthracure UVS-581 and UVS-1331 (manufactured by Kawasaki Kasei Chemicals Co., Ltd.).

なお、本発明においては、適当な溶媒を希釈剤として用い、光硬化型樹脂組成物の粘度調整等を行ってもよい。ただし、その場合、溶媒の揮発除去工程を考慮すると時間を要し生産効率が低下すること、光硬化型樹脂フィルム内部に残留溶媒等が存在してフィルムの特性低下につながること等から、光硬化型樹脂組成物に含まれる溶媒の含有量は5%以下にとどめておくことがよく、実質的には溶媒が含有されていないものを使用することが好ましい。 In the present invention, an appropriate solvent may be used as a diluent to adjust the viscosity of the photocurable resin composition. However, in that case, considering the process of removing the volatilization of the solvent, it takes time and the production efficiency is lowered, and the residual solvent and the like are present inside the photocurable resin film, which leads to the deterioration of the characteristics of the film. The content of the solvent contained in the mold resin composition is preferably kept at 5% or less, and it is preferable to use a solvent that does not substantially contain the solvent.

ベースフィルム11としては、ポリエステル、ポリプロピレン、ポリエチレン、ポリフッ化ビニル、ポリカーボネート、ポリアミド、ノルボルネン樹脂系等のフィルムを使用できる。ベースフィルム11は、剥離性などの観点から表面に離型などの処理やコーティング層が設けられてもよい。ベースフィルム11としては、耐熱性と透明性に優れ他の諸特性のバランスのとれた二軸延伸ポリエステルフィルムが好ましい。 As the base film 11, a film such as polyester, polypropylene, polyethylene, polyvinyl fluoride, polycarbonate, polyamide, norbornene resin can be used. From the viewpoint of peelability and the like, the base film 11 may be provided with a treatment such as mold release or a coating layer on the surface. As the base film 11, a biaxially stretched polyester film having excellent heat resistance and transparency and having various other characteristics balanced is preferable.

ベースフィルム側の光源の発光ピークの波長λBLにおけるベースフィルム11の紫外線の透過率は、80%以上が好ましく、85%以上がより好ましい。ベースフィルム11の厚さは特に限定されないが、10〜400μmのものが好ましく、50〜300μmのものがより好ましい。表面形状についても平坦性を有するものであっても、表面に凹凸加工が施されているものでもよい。ただし、透明性を阻害しない表面形状が好ましい。ベースフィルム11の厚みが10μmに満たないと、本発明の製造方法において、張力に耐えられず破損する恐れがあり、また、製造工程で生ずる積層体のたわみやゆがみが大きくなってしまう可能性が高い。また、ベースフィルム11の厚みが400μmを超えると、透過率が低下するため光硬化型樹脂組成物に与える紫外線の積算光量が不足し、光硬化型樹脂組成物の硬化が不十分となる恐れがある。なお、ベースフィルム11の透過中間波長λBFは、上述の紫外線吸収剤の透過中間波長λAを決定する方法と同様の方法により決定する。 The transmittance of ultraviolet rays of the base film 11 at the wavelength λ BL of the emission peak of the light source on the base film side is preferably 80% or more, more preferably 85% or more. The thickness of the base film 11 is not particularly limited, but is preferably 10 to 400 μm, more preferably 50 to 300 μm. The surface shape may be flat, or the surface may be uneven. However, a surface shape that does not impair transparency is preferable. If the thickness of the base film 11 is less than 10 μm, the manufacturing method of the present invention may not be able to withstand the tension and may be damaged, and the deflection and distortion of the laminate generated in the manufacturing process may increase. high. Further, if the thickness of the base film 11 exceeds 400 μm, the transmittance is lowered, so that the integrated light amount of ultraviolet rays given to the photocurable resin composition is insufficient, and the curing of the photocurable resin composition may be insufficient. is there. The transmission intermediate wavelength λ BF of the base film 11 is determined by the same method as the method for determining the transmission intermediate wavelength λ A of the ultraviolet absorber described above.

ベースフィルム11上の光硬化型樹脂組成物層の厚みは、特に限定されないが、0.01mmに満たないとベースフィルム11及び/またはカバーフィルム13の剥離やその後のハンドリングにおいて破損等が生じやすくなる恐れがある。また、光硬化型樹脂組成物層の厚みが厚すぎると、硬化に必要とされる紫外線照射量が多くなり紫外線照射設備の対応が難しくなると共に、得られた光硬化型樹脂フィルムのロール巻き取り時にフィルムの破損等が発生する恐れがあるため、0.3mm以下が好ましい。 The thickness of the photocurable resin composition layer on the base film 11 is not particularly limited, but if it is less than 0.01 mm, the base film 11 and / or the cover film 13 is likely to be peeled off or damaged in subsequent handling. There is a fear. Further, if the thickness of the photocurable resin composition layer is too thick, the amount of ultraviolet irradiation required for curing increases, making it difficult to handle the ultraviolet irradiation equipment, and the obtained photocurable resin film is rolled up. Since there is a possibility that the film may be damaged at times, 0.3 mm or less is preferable.

光硬化型樹脂組成物の塗工装置12としては、例えばダイコーター、グラビアコーター、ロールコーター、リバースコーター、ナイフコーター、リップコーター、ドクターコーター、ワイヤーバーコーター、カーテンコーター等が挙げられ、光硬化型樹脂組成物を均一の厚みで供給する観点から、ダイコーターが好ましい。 Examples of the photocurable resin composition coating device 12 include a die coater, a gravure coater, a roll coater, a reverse coater, a knife coater, a lip coater, a doctor coater, a wire bar coater, a curtain coater, and the like. A die coater is preferable from the viewpoint of supplying the resin composition with a uniform thickness.

本発明においては、ベースフィルム11上に光硬化型樹脂組成物を所定の厚みに流延した後、紫外線照射前に、光硬化型樹脂組成物層上にカバーフィルム13を積層し積層体14とすることができる。使用できるカバーフィルム13としては、カバーフィルム側の光源の発光ピーク波長λCLにおける紫外光の透過率が80%以上のものが好ましく、85%以上にすることがより好ましく、ベースフィルム11と同じものを使用することができる。なお、カバーフィルム13の透過中間波長λCFは、上述の紫外線吸収剤の透過中間波長λAを決定する方法と同様の方法により決定する。In the present invention, the photocurable resin composition is cast on the base film 11 to a predetermined thickness, and then the cover film 13 is laminated on the photocurable resin composition layer before the irradiation with ultraviolet rays to form the laminate 14. can do. As the cover film 13 that can be used , it is preferable that the transmittance of ultraviolet light at the emission peak wavelength λ CL of the light source on the cover film side is 80% or more, more preferably 85% or more, and the same as the base film 11. Can be used. The transmission intermediate wavelength λ CF of the cover film 13 is determined by the same method as the method for determining the transmission intermediate wavelength λ A of the ultraviolet absorber described above.

本発明においては、図3に示すように、ベースフィルム11上に光硬化型樹脂組成物を所定の厚みに流延した後、紫外線照射前に、光硬化型樹脂組成物層上にカバーフィルム13を積層せずに積層体14とすることもできる。 In the present invention, as shown in FIG. 3, after the photocurable resin composition is cast on the base film 11 to a predetermined thickness and then irradiated with ultraviolet rays, the cover film 13 is placed on the photocurable resin composition layer. It is also possible to form the laminated body 14 without laminating.

また、本発明においては、図4に示すように、一対の積層ロール18でベースフィルム11及びカバーフィルム13を積層する際に、ベースフィルム11及びカバーフィルム13の間に定量供給ヘッド123より光硬化型樹脂組成物を定量供給して積層体14を形成することもできる。このとき、一対の積層ロール18の隙間を調整することにより光硬化型樹脂組成物層の厚みを調整することができる。 Further, in the present invention, as shown in FIG. 4, when the base film 11 and the cover film 13 are laminated with the pair of laminated rolls 18, the base film 11 and the cover film 13 are photocured from the fixed quantity supply head 123 between the base film 11 and the cover film 13. It is also possible to form the laminated body 14 by supplying a fixed amount of the mold resin composition. At this time, the thickness of the photocurable resin composition layer can be adjusted by adjusting the gap between the pair of laminated rolls 18.

以上の工程により、ベースフィルム11、光硬化型樹脂組成物層及び、必要に応じてカバーフィルム13が順次積層された積層体14が形成される。そして、本発明においては、引き続き、光硬化型樹脂組成物層に、積層体14の少なくとも一方の面から紫外線が照射される。積層体に照射される紫外線の少なくとも一つは、光重合開始剤の紫外線吸収波長帯のみに発光ピークを有する紫外線光源15から照射される紫外線であり、且つ光硬化型樹脂組成物層が含有する紫外線吸収剤のうち透過中間波長の値が最も大きい紫外線吸収剤の透過中間波長をλ(nm)としたとき、ベースフィルム側の紫外線光源の発光ピークの波長λBL(nm)、カバーフィルム側の紫外線光源の発光ピークの波長λCL(nm)、光硬化型樹脂組成物層側の紫外線光源の発光ピークの波長λRL(nm)のいずれかの発光ピーク波長が紫外線吸収剤の透過中間波長より長波長側の紫外線である。さらに、ベースフィルム側の紫外線光源の発光ピークの波長λBL(nm)、カバーフィルム側の紫外線光源の発光ピークの波長λCL(nm)、光硬化型樹脂組成物層側の紫外線光源の発光ピークの波長λRL(nm)のいずれかの発光ピークの半値幅の短波長側の波長も、紫外線吸収剤の透過中間波長より長波長側であることが好ましい。By the above steps, the base film 11, the photocurable resin composition layer, and the laminated body 14 in which the cover film 13 is sequentially laminated if necessary are formed. Then, in the present invention, the photocurable resin composition layer is subsequently irradiated with ultraviolet rays from at least one surface of the laminate 14. At least one of the ultraviolet rays irradiated to the laminate is ultraviolet rays emitted from the ultraviolet light source 15 having an emission peak only in the ultraviolet absorption wavelength band of the photopolymerization initiator, and is contained in the photocurable resin composition layer. When the transmission intermediate wavelength of the ultraviolet absorber having the largest transmission intermediate wavelength value among the ultraviolet absorbers is λ A (nm), the wavelength λ BL (nm) of the emission peak of the ultraviolet light source on the base film side and the cover film side. The emission peak wavelength of either the emission peak wavelength λ CL (nm) of the ultraviolet light source or the emission peak wavelength λ RL (nm) of the ultraviolet light source on the photocurable resin composition layer side is the transmission intermediate wavelength of the ultraviolet absorber. It is an ultraviolet ray on the longer wavelength side. Further, the wavelength λ BL (nm) of the emission peak of the ultraviolet light source on the base film side, the wavelength λ CL (nm) of the emission peak of the ultraviolet light source on the cover film side, and the emission peak of the ultraviolet light source on the photocurable resin composition layer side. It is preferable that the wavelength on the short wavelength side of the half-value width of the emission peak of any of the wavelengths λ RL (nm) of the above is also on the long wavelength side of the transmission intermediate wavelength of the ultraviolet absorber.

本発明における紫外線としては、波長が100nm〜410nmの紫外線を使用することができるが、波長が380nm〜410nmの範囲に単一の発光ピークを有する光源から照射される紫外線であることが好ましく、LEDを使用する光源が好ましい。LEDは使用されるダイオードの種類により発光ピーク波長が異なるため、最適な発光ピーク波長を簡単に得ることができる。また、本発明においては、二種類以上の光源を組み合わせて使用することもできるが、全ての光源の発光ピーク波長は紫外線吸収剤の透過中間波長より長波長側に位置することが好ましい。また、従来から紫外線光源として用いられている、メタルハライドランプ、高圧水銀ランプ、低圧水銀ランプ、パルス型キセノンランプ、キセノン/水銀混合ランプ、低圧殺菌ランプ、無電極ランプなども、波長フィルターを使用して波長が380nm〜410nmの範囲に単一の発光ピークを有する発光スペクトルに整形して使用することができる。 As the ultraviolet rays in the present invention, ultraviolet rays having a wavelength of 100 nm to 410 nm can be used, but ultraviolet rays emitted from a light source having a single emission peak in the wavelength range of 380 nm to 410 nm are preferable, and LEDs are used. A light source using is preferred. Since the emission peak wavelength of the LED differs depending on the type of diode used, the optimum emission peak wavelength can be easily obtained. Further, in the present invention, two or more types of light sources can be used in combination, but it is preferable that the emission peak wavelengths of all the light sources are located on the longer wavelength side than the transmission intermediate wavelength of the ultraviolet absorber. In addition, metal halide lamps, high-pressure mercury lamps, low-pressure mercury lamps, pulse-type xenon lamps, xenon / mercury mixed lamps, low-pressure sterilization lamps, electrodeless lamps, etc., which have been conventionally used as ultraviolet light sources, also use wavelength filters. It can be shaped into an emission spectrum having a single emission peak in the wavelength range of 380 nm to 410 nm.

なお、本発明では、本発明の課題解決に影響を与えない範囲で、紫外線光源15から照射される光以外の光を併せて照射することができる。 In the present invention, light other than the light emitted from the ultraviolet light source 15 can be irradiated together as long as the problem solving of the present invention is not affected.

本発明における紫外線の照射条件としては、光硬化型樹脂組成物層の厚さなどによって異なるため、特に制限するものではないが、例えば、積算光量が20〜10000mJ/cmとなるよう照射すればよく、好ましくは100〜5000mJ/cmである。The ultraviolet irradiation conditions in the present invention are not particularly limited because they differ depending on the thickness of the photocurable resin composition layer and the like, but for example, if irradiation is performed so that the integrated light amount is 20 to 10,000 mJ / cm 2. It is often, preferably 100 to 5000 mJ / cm 2 .

本発明における紫外線の照射箇所には、冷却装置16を有していることが好ましい。冷却装置16により積層体14を冷却し、紫外線照射によって光硬化型樹脂組成物層を硬化させる温度(T)を制御することにより、ベースフィルム11等の熱変形を抑制することができる。冷却方式としては、空冷方式、水冷方式等の公知の方法を挙げることができる。図3に示すように、ベースフィルム11上に光硬化型樹脂組成物を所定の厚みに流延した後、紫外線照射前に、光硬化型樹脂組成物層上にカバーフィルム13を積層せずに積層体14とする場合には、冷却を光硬化型樹脂組成物層側から行うと光硬化型樹脂組成物層の表面の平滑性が損なわれるため、冷却装置16はベースフィルム側に設置することが好ましい。 It is preferable that the cooling device 16 is provided at the ultraviolet irradiation portion in the present invention. By cooling the laminate 14 with the cooling device 16 and controlling the temperature (T) at which the photocurable resin composition layer is cured by irradiation with ultraviolet rays, thermal deformation of the base film 11 and the like can be suppressed. Examples of the cooling method include known methods such as an air cooling method and a water cooling method. As shown in FIG. 3, after the photocurable resin composition is cast on the base film 11 to a predetermined thickness and then before the irradiation with ultraviolet rays, the cover film 13 is not laminated on the photocurable resin composition layer. In the case of the laminated body 14, if the cooling is performed from the photocurable resin composition layer side, the smoothness of the surface of the photocurable resin composition layer is impaired. Therefore, the cooling device 16 should be installed on the base film side. Is preferable.

本発明においては、積層体14に紫外線を照射して光硬化型樹脂組成物層を硬化させた後、積層体14からカバーフィルム13及び/またはベースフィルム11を剥離させることで光硬化型樹脂フィルム17が得られる。そして、光硬化型樹脂フィルム17は、公知の巻取装置により、ロール状に巻き取ることができる。剥離したカバーフィルム13及び/またはベースフィルム14は、公知の巻取装置により、ロール状に巻き取っても良い。なお、光硬化型樹脂フィルム17は、カバーフィルム13又はベースフィルム14のどちらかの一方を剥離することなく、カバーフィルム13又はベースフィルム14のどちらかの一方と一体となった状態でロール状に巻き取ることもできる。また、光硬化樹脂フィルム17と一体となってロール状に巻き取られたカバーフィルム13又はベースフィルム11は、光硬化樹脂フィルム17を使用する際に剥離することが通常であるが、例えば、光硬化樹脂フィルム17との接着強度が十分な強度となるように材料設計することで、光硬化樹脂フィルムと一体とし、光硬化型樹脂フィルムの一部として使用することもできる。 In the present invention, the laminate 14 is irradiated with ultraviolet rays to cure the photocurable resin composition layer, and then the cover film 13 and / or the base film 11 is peeled from the laminate 14 to cure the photocurable resin film. 17 is obtained. Then, the photocurable resin film 17 can be wound into a roll by a known winding device. The peeled cover film 13 and / or the base film 14 may be wound in a roll shape by a known winding device. The photocurable resin film 17 is rolled in a state of being integrated with either the cover film 13 or the base film 14 without peeling off either the cover film 13 or the base film 14. It can also be wound up. Further, the cover film 13 or the base film 11 that is integrally wound with the photocurable resin film 17 in a roll shape is usually peeled off when the photocurable resin film 17 is used. By designing the material so that the adhesive strength with the cured resin film 17 is sufficient, it can be integrated with the photocurable resin film and used as a part of the photocurable resin film.

以下、実施例により本発明の一例を具体的に説明するが、本発明はこれによって限定されるものではない。
(実施例1)
光硬化型樹脂組成物Aとして以下の成分の混合物を使用した。
・6官能ウレタンアクリレートオリゴマー(根上工業社製UN−3320HA):80重量部
・3官能アクリルモノマー(トリメチロールプロパントリアクリレート)(共栄社化学社製TMP−A):20重量部
・紫外線吸収剤(2−[2−ヒドロキシ−5−(1,1,3,3−テトラメチルブチル)フェニル]ベンゾトリアゾール)(ADEKA社製アデカスタブLA−29):0.5重量部
・光重合開始剤(2,4,6−トリメチルベンゾイル−ジフェニルフォスフィンオキサイド)(IGM Resins B.V.社製TPO):2重量部
Hereinafter, an example of the present invention will be specifically described with reference to Examples, but the present invention is not limited thereto.
(Example 1)
A mixture of the following components was used as the photocurable resin composition A.
-Hexfunctional urethane acrylate oligomer (UN-3320HA manufactured by Negami Kogyo Co., Ltd.): 80 parts by weight-Trifunctional acrylic monomer (trimethylolpropane triacrylate) (TMP-A manufactured by Kyoeisha Chemical Co., Ltd.): 20 parts by weight-UV absorber (2) -[2-Hydroxy-5- (1,1,3,3-tetramethylbutyl) phenyl] benzotriazole) (ADEKA Adecaster LA-29): 0.5 part by weight, photopolymerization initiator (2,4) , 6-trimethylbenzoyl-diphenylphosphine oxide) (TGM Resins B.V. TPO): 2 parts by weight

ベースフィルム及びカバーフィルムとして使用したポリエチレンテレフタレートフィルムについて、紫外可視分光光度計(株式会社島津製作所製、紫外可視分光光度計UV−2450)を用いて200nm〜500nmの範囲の透過スペクトルを測定し、上述の紫外線吸収剤の透過中間波長を決定する方法と同様の方法により透過中間波長を求めたところ、316nmであった。また、光硬化型樹脂組成物Aを硬化してなる光硬化型樹脂フィルムについて、200nm〜500nmの範囲の透過スペクトルを測定し、上述の紫外線吸収剤の透過中間波長を決定する方法により紫外線吸収剤の透過中間波長を求めたところ、375nmであった。積算光量は、紫外線測定器(ウシオ電機社製、UIT−θLED)で測定した。 Regarding the polyethylene terephthalate film used as the base film and the cover film, the transmission spectrum in the range of 200 nm to 500 nm was measured using an ultraviolet visible spectrophotometer (UV-2450, manufactured by Shimadzu Corporation), and described above. When the transmitted intermediate wavelength was determined by the same method as the method for determining the transmitted intermediate wavelength of the ultraviolet absorber, it was 316 nm. Further, with respect to the photocurable resin film obtained by curing the photocurable resin composition A, the ultraviolet absorber is measured by measuring the transmission spectrum in the range of 200 nm to 500 nm and determining the transmission intermediate wavelength of the ultraviolet absorber described above. When the transmission intermediate wavelength of was determined, it was 375 nm. The integrated light intensity was measured with an ultraviolet measuring device (UIT-θLED manufactured by Ushio, Inc.).

図6に、実施例1における、紫外線吸収剤の紫外線透過スペクトル31光硬化型樹脂フィルムの紫外線透過スペクトルに相当)、光重合開始剤(TPO)の紫外線吸収スペクトル32及びLED光源の発光スペクトル33の関係を示した。また、表1に、実施例1における、λCF値、λ値、及びλCL値を示した。図6及び表1から明らかなように、実施例1では、紫外線光源は405nmに唯一の発光ピークを有し、405nmには光重合開始剤の紫外線吸収波長帯が存在するとともに、λCF<λ<λCLの関係を充足する。FIG. 6 shows the ultraviolet transmission spectrum of the ultraviolet absorber (corresponding to the ultraviolet transmission spectrum of the photocurable resin film 31), the ultraviolet absorption spectrum 32 of the photopolymerization initiator (TPO), and the emission spectrum 33 of the LED light source in Example 1. The relationship was shown. Table 1 shows the λ CF value, the λ A value, and the λ CL value in Example 1. As is clear from FIG. 6 and Table 1, in Example 1, the ultraviolet light source has the only emission peak at 405 nm, the ultraviolet absorption wavelength band of the photopolymerization initiator exists at 405 nm, and λ CF <λ. The relationship of ACL is satisfied.

厚さ50μmのポリエチレンテレフタレートフィルムからなるベースフィルム上に、塗工装置としてダイコーターを用いて厚みが70μmとなるように光硬化型樹脂組成物Aを流延して光硬化型樹脂組成物層を形成し、光硬化型樹脂組成物層表面に厚さ50μmのポリエチレンテレフタレートフィルムからなるカバーフィルムを積層して積層体とした。次いで、単一の発光ピークを有し、そのピーク波長λCLが405nmの発光ダイオード光源(アイテックシステム社製)を用いて、表1に示した照射条件で紫外線を照射し、光硬化型樹脂フィルムを作製した。A photocurable resin composition A was cast on a base film made of a polyethylene terephthalate film having a thickness of 50 μm using a die coater as a coating device so as to have a thickness of 70 μm to form a photocurable resin composition layer. A cover film made of a polyethylene terephthalate film having a thickness of 50 μm was laminated on the surface of the photocurable resin composition layer to form a laminated body. Next, a photocurable resin film is irradiated with ultraviolet rays under the irradiation conditions shown in Table 1 using a light emitting diode light source (manufactured by Aitec System Co., Ltd.) having a single emission peak and having a peak wavelength λ CL of 405 nm. Was produced.

(実施例2)
光源をピーク波長λCLが395nmの発光ダイオード光源(ウシオ電機社製)に変更し、照射条件を表1に示した照射条件に変更したこと以外は実施例1と同じ条件で光硬化型樹脂フィルムを作製した。
(Example 2)
A photocurable resin film under the same conditions as in Example 1 except that the light source was changed to a light emitting diode light source (manufactured by Ushio, Inc.) having a peak wavelength λ CL of 395 nm and the irradiation conditions were changed to the irradiation conditions shown in Table 1. Was produced.

(実施例3)
光源をピーク波長λCLが385nmの発光ダイオード光源(アイテックシステム社製)に変更し、照射条件を表1に示した照射条件に変更したこと以外は実施例1と同じ条件で光硬化型樹脂フィルムを作製した。
(Example 3)
A photocurable resin film under the same conditions as in Example 1 except that the light source was changed to a light emitting diode light source (manufactured by Aitec System Co., Ltd.) having a peak wavelength λ CL of 385 nm and the irradiation conditions were changed to the irradiation conditions shown in Table 1. Was produced.

(比較例1)
光源をLEDから無電極紫外線ランプ(ヘレウス株式会社製、Hバルブ)に変更し、照射条件を表1に示した照射条件に変更したこと以外は実施例1と同じ条件で、光硬化型樹脂フィルムを作製した。
(Comparative Example 1)
A photocurable resin film under the same conditions as in Example 1 except that the light source was changed from an LED to an electrodeless ultraviolet lamp (H valve manufactured by Heleus Co., Ltd.) and the irradiation conditions were changed to the irradiation conditions shown in Table 1. Was produced.

図7に、比較例1における、紫外線吸収剤の紫外線透過スペクトル31、光重合開始剤の紫外線吸収スペクトル32及び無電極紫外線ランプ(ヘレウス株式会社製、Hバルブ)の発光スペクトル34の関係を示した。比較例1の光源である無電極紫外線ランプは、紫外線吸収剤の透過中間波長より長波長側で、且つ光重合開始剤の紫外線吸収波長帯に発光があるものの、それ以外の波長においても幅広く発光している。このため、無電極紫外線ランプの発光ピークの波長は存在しない。 FIG. 7 shows the relationship between the ultraviolet transmission spectrum 31 of the ultraviolet absorber, the ultraviolet absorption spectrum 32 of the photopolymerization initiator, and the emission spectrum 34 of the electrodeless ultraviolet lamp (H valve manufactured by Heleus Co., Ltd.) in Comparative Example 1. .. The electrodeless ultraviolet lamp, which is the light source of Comparative Example 1, emits light at a wavelength longer than the transmission intermediate wavelength of the ultraviolet absorber and in the ultraviolet absorption wavelength band of the photopolymerization initiator, but also emits light widely at other wavelengths. doing. Therefore, there is no wavelength of the emission peak of the electrodeless ultraviolet lamp.

得られた光硬化型樹脂フィルムの反応率は以下の方法で決定した。まず、赤外イメージングシステム(株式会社パーキンエルマー製、SpectrumSpotlight300)を用い、紫外線照射前の光硬化型樹脂組成物及び作製した光硬化型樹脂フィルムについて、それぞれIRスペクトルを測定し、ビニル基のCH面外変角振動の吸収ピーク(810cm−1付近)の高さを求めた。そして、比較例及び実施例ともに紫外線照射前の光硬化型樹脂組成物の吸収ピークの高さを基準値として、光硬化型樹脂フィルムにおける吸収ピークの高さについて、基準値からの差を基準値で除して100を乗じた値を、各光硬化型樹脂フィルムの反応率(%)として算出した。反応率が50%以上となった状態を飽和硬化状態(表1では○と表記)と判断した。The reaction rate of the obtained photocurable resin film was determined by the following method. First, using an infrared imaging system (SpectrumSportlight300, manufactured by PerkinElmer Co., Ltd.), the IR spectra of the photocurable resin composition before ultraviolet irradiation and the prepared photocurable resin film were measured, and the CH surface of the vinyl group was measured. The height of the absorption peak ( around 810 cm -1 ) of the external variation angle vibration was determined. Then, in both Comparative Examples and Examples, the height of the absorption peak of the photocurable resin composition before irradiation with ultraviolet rays is used as a reference value, and the difference from the reference value is used as the reference value for the height of the absorption peak in the photocurable resin film. The value obtained by dividing by and multiplying by 100 was calculated as the reaction rate (%) of each photocurable resin film. A state in which the reaction rate was 50% or more was determined to be a saturated cured state (denoted as ◯ in Table 1).

得られた光硬化型樹脂フィルムとポリエチレンテレフタレートフィルムの剥離性は、手で剥がした際の状況から以下の基準で評価した。◎:ほとんど抵抗なく剥離できる、〇:軽く剥離できる、△:剥離できるが抵抗がある、×:剥離しにくい 、××:剥離できない。 The peelability of the obtained photocurable resin film and polyethylene terephthalate film was evaluated according to the following criteria based on the situation when the film was peeled off by hand. ⊚: Can be peeled with almost no resistance, 〇: Can be peeled lightly, Δ: Can be peeled but has resistance, ×: Difficult to peel, XX: Cannot be peeled.

得られた光硬化型樹脂フィルムの反応率及び剥離性を表1に示した。すべての実施例及び比較例は飽和硬化状態に到達していた。剥離性については、実施例1〜3がほとんど抵抗なく剥離できる、もしくは軽く剥離できる状態であったが、比較例1はカバーフィルム及びベースフィルムとの融着により剥離できない状態であった。これは、比較例1では重合開始に寄与する波長の光量を担保するために必然的に寄与しない波長の光も多量に照射されるため、積層体の温度上昇をもたらしたためと考えられる。 Table 1 shows the reaction rate and peelability of the obtained photocurable resin film. All Examples and Comparative Examples had reached a saturated cured state. Regarding the peelability, Examples 1 to 3 were in a state where they could be peeled off with almost no resistance or lightly peeled off, but Comparative Example 1 was in a state where they could not be peeled off due to fusion with the cover film and the base film. It is considered that this is because in Comparative Example 1, a large amount of light having a wavelength that does not necessarily contribute to secure the amount of light having a wavelength that contributes to the initiation of polymerization is also irradiated, resulting in an increase in the temperature of the laminate.

Figure 0006871487
Figure 0006871487

11 ベースフィルム
12 塗工ヘッド
122 塗工ヘッド
123 定量供給ヘッド
13 カバーフィルム
14 積層体
15 紫外線光源
16 冷却装置
17 光硬化型樹脂フィルム
18 積層ロール
21 上昇部分補助線
22 短波長側のベースラインの延長線
23 長波長側のベースラインの延長線
24 透過開始点
25 透過終了点
31 紫外線吸収剤の紫外線透過スペクトル(透過率)
32 光重合開始剤の紫外線吸収スペクトル(吸光度)
33 LED光源の発光スペクトル(光強度)
34 無電極紫外線ランプの発光スペクトル(光強度)
11 Base film 12 Coating head 122 Coating head 123 Fixed quantity supply head 13 Cover film 14 Laminated body 15 Ultraviolet light source 16 Cooling device 17 Photocurable resin film 18 Laminated roll 21 Rising part Auxiliary line 22 Extension of baseline on the short wavelength side Line 23 Extension of baseline on the long wavelength side 24 Transmission start point 25 Transmission end point 31 UV transmission spectrum (transmittance) of UV absorber
32 Ultraviolet absorption spectrum (absorbance) of photopolymerization initiator
33 LED light source emission spectrum (light intensity)
34 Emission spectrum (light intensity) of electrodeless ultraviolet lamp

Claims (7)

ベースフィルムの一方の表面に、紫外線吸収剤及び光重合開始剤を含む液状の光硬化型樹脂組成物からなる少なくとも一層の光硬化型樹脂組成物層を形成し、積層体とした後、前記積層体の、前記ベースフィルム側及び前記光硬化型樹脂組成物層側の少なくとも一方の面から、前記光硬化型樹脂組成物層に紫外線を照射することで、前記光硬化型樹脂組成物層を硬化させる、光硬化型樹脂フィルムの製造方法であって、前記紫外線の少なくとも一つが、前記光重合開始剤の紫外線吸収波長帯のみに発光ピークを有し、波長が380nm〜410nmの範囲に単一の発光ピークを有する光源により照射され、前記ベースフィルムの透過中間波長をλBF(nm)、前記紫外線吸収剤のうち透過中間波長の値が最も大きい紫外線吸収剤の透過中間波長をλ(nm)、前記ベースフィルム側の光源の発光ピークの波長をλBL(nm)、前記光硬化型樹脂組成物層側の光源の発光ピークの波長をλRL(nm)としたとき、λBF<λ<λBL及び/又はλ<λRLであることを特徴とする光硬化型樹脂フィルムの製造方法。 At least one layer of a photocurable resin composition composed of a liquid photocurable resin composition containing an ultraviolet absorber and a photopolymerization initiator is formed on one surface of the base film to form a laminate, and then the laminate is formed. The photocurable resin composition layer is cured by irradiating the photocurable resin composition layer with ultraviolet rays from at least one surface of the body, the base film side and the photocurable resin composition layer side. let a method for producing a photocurable resin film, at least one of the ultraviolet rays, the emission peak possess only UV absorption band of the photopolymerization initiator, the wavelength of single in the range of 380nm~410nm illuminated by the light source to have a light emission peak, the transmission medium wavelength lambda BF (nm) of the base film, a transparent intermediate wavelength value of the transmission medium wavelength largest ultraviolet absorber of the ultraviolet absorber lambda a (nm ), When the wavelength of the emission peak of the light source on the base film side is λ BL (nm) and the wavelength of the emission peak of the light source on the photocurable resin composition layer side is λ RL (nm), λ BFA method for producing a photocurable resin film, characterized in that A <λ BL and / or λ ARL. ベースフィルム及びカバーフィルムの間に、紫外線吸収剤及び光重合開始剤を含む液状の光硬化型樹脂組成物からなる少なくとも一層の光硬化型樹脂組成物層を形成し、積層体とした後、前記積層体の、前記ベースフィルム側及び前記カバーフィルム側の少なくとも一方の面から、前記光硬化型樹脂組成物層に紫外線を照射することで、前記光硬化型樹脂組成物層を硬化させる、光硬化型樹脂フィルムの製造方法であって、前記紫外線の少なくとも一つが、前記光重合開始剤の紫外線吸収波長帯のみに発光ピークを有し、波長が380nm〜410nmの範囲に単一の発光ピークを有する光源により照射され、前記ベースフィルムの透過中間波長をλBF(nm)、前記カバーフィルムの透過中間波長をλCF(nm)、前記紫外線吸収剤のうち透過中間波長の値が最も大きい紫外線吸収剤の透過中間波長をλ(nm)、前記ベースフィルム側の光源の発光ピークの波長をλBL(nm)、前記カバーフィルム側の光源の発光ピークの波長をλCL(nm)としたとき、λBF<λ<λBL及び/又はλCF<λ<λCLであることを特徴とする光硬化型樹脂フィルムの製造方法。 At least one layer of a photocurable resin composition composed of a liquid photocurable resin composition containing an ultraviolet absorber and a photopolymerization initiator is formed between the base film and the cover film to form a laminate, and then the above-mentioned The photocurable resin composition layer is cured by irradiating the photocurable resin composition layer with ultraviolet rays from at least one surface of the laminate on the base film side and the cover film side. a method of manufacturing a mold resin film, perforated at least one of the ultraviolet rays, have a light emission peak only in the ultraviolet absorption band of the photopolymerization initiator, a wavelength of a single emission peak in the range of 380nm~410nm The transmission intermediate wavelength of the base film is λ BF (nm), the transmission intermediate wavelength of the cover film is λ CF (nm), and the ultraviolet absorption having the largest transmission intermediate wavelength value among the ultraviolet absorbers is irradiated by the light source. When the transmission intermediate wavelength of the agent is λ A (nm), the wavelength of the emission peak of the light source on the base film side is λ BL (nm), and the wavelength of the emission peak of the light source on the cover film side is λ CL (nm). , Λ BFABL and / or λ CFACL , a method for producing a photocurable resin film. 前記積層体が、前記ベースフィルム上に、紫外線吸収剤及び光重合開始剤を含む液状の光硬化型樹脂組成物を、フィルム状に流延することで、少なくとも一層の光硬化型樹脂組成物層を形成し、前記光硬化型樹脂組成物層の上に前記カバーフィルムを積層して形成されることを特徴とする請求項2に記載の光硬化型樹脂フィルムの製造方法。 At least one layer of the photocurable resin composition layer is formed by casting a liquid photocurable resin composition containing an ultraviolet absorber and a photopolymerization initiator on the base film in the form of a film. The method for producing a photocurable resin film according to claim 2, wherein the cover film is formed by laminating the cover film on the photocurable resin composition layer. 前記カバーフィルムを前記光硬化型樹脂組成物層の上に積層する前に、あらかじめ、前記カバーフィルムの前記光硬化型樹脂組成物層側の表面に、少なくとも一層の、紫外線吸収剤及び光重合開始剤を含む液状の光硬化型樹脂組成物からなる層を形成することを特徴とする請求項3に記載の光硬化型樹脂フィルムの製造方法。 Before laminating the cover film on the photocurable resin composition layer, at least one layer of an ultraviolet absorber and photopolymerization are started on the surface of the cover film on the photocurable resin composition layer side in advance. The method for producing a photocurable resin film according to claim 3, wherein a layer made of a liquid photocurable resin composition containing an agent is formed. 前記ベースフィルム及び/又は前記カバーフィルムがポリエステルフィルムであることを特徴とする、請求項2乃至4の何れかに記載の光硬化型樹脂フィルムの製造方法。 The method for producing a photocurable resin film according to any one of claims 2 to 4, wherein the base film and / or the cover film is a polyester film. 前記光源が発光ダイオードからなることを特徴とする請求項1乃至5の何れかに記載の光硬化型樹脂フィルムの製造方法。 The method for producing a photocurable resin film according to any one of claims 1 to 5, wherein the light source comprises a light emitting diode. 前記紫外線吸収剤の透過中間波長λAが350nm以上であることを特徴とする、請求項1乃至6の何れかに記載の光硬化型樹脂フィルムの製造方法。
The method for producing a photocurable resin film according to any one of claims 1 to 6, wherein the transmission intermediate wavelength λA of the ultraviolet absorber is 350 nm or more.
JP2021510481A 2019-10-10 2020-09-30 Manufacturing method of photocurable resin film Active JP6871487B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2019186616 2019-10-10
JP2019186616 2019-10-10
PCT/JP2020/037298 WO2021070715A1 (en) 2019-10-10 2020-09-30 Photocurable-resin-based film production method

Publications (2)

Publication Number Publication Date
JP6871487B1 true JP6871487B1 (en) 2021-05-12
JPWO2021070715A1 JPWO2021070715A1 (en) 2021-10-28

Family

ID=75437916

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021510481A Active JP6871487B1 (en) 2019-10-10 2020-09-30 Manufacturing method of photocurable resin film

Country Status (3)

Country Link
JP (1) JP6871487B1 (en)
TW (1) TW202128856A (en)
WO (1) WO2021070715A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006306081A (en) * 2005-03-31 2006-11-09 Nippon Steel Chem Co Ltd Method for producing transparent film
JP2007290364A (en) * 2006-03-27 2007-11-08 Nippon Synthetic Chem Ind Co Ltd:The Continuous manufacturing method of resin substrate and resin substrate
JP2012250516A (en) * 2011-06-07 2012-12-20 Mitsubishi Rayon Co Ltd Method for continuously manufacturing transparent resin plate
JP2014076557A (en) * 2012-10-09 2014-05-01 Mitsubishi Rayon Co Ltd Method for producing article having fine rugged structure, and method for producing replica mold having fine rugged structure
JP2017024227A (en) * 2015-07-17 2017-02-02 日本合成化学工業株式会社 Method for production of molded product, plastic sheet used therefor and production method for plastic sheet roll
JP2019507206A (en) * 2015-12-29 2019-03-14 スリーエム イノベイティブ プロパティズ カンパニー Adhesive additive manufacturing method and adhesive article

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006306081A (en) * 2005-03-31 2006-11-09 Nippon Steel Chem Co Ltd Method for producing transparent film
JP2007290364A (en) * 2006-03-27 2007-11-08 Nippon Synthetic Chem Ind Co Ltd:The Continuous manufacturing method of resin substrate and resin substrate
JP2012250516A (en) * 2011-06-07 2012-12-20 Mitsubishi Rayon Co Ltd Method for continuously manufacturing transparent resin plate
JP2014076557A (en) * 2012-10-09 2014-05-01 Mitsubishi Rayon Co Ltd Method for producing article having fine rugged structure, and method for producing replica mold having fine rugged structure
JP2017024227A (en) * 2015-07-17 2017-02-02 日本合成化学工業株式会社 Method for production of molded product, plastic sheet used therefor and production method for plastic sheet roll
JP2019507206A (en) * 2015-12-29 2019-03-14 スリーエム イノベイティブ プロパティズ カンパニー Adhesive additive manufacturing method and adhesive article

Also Published As

Publication number Publication date
JPWO2021070715A1 (en) 2021-10-28
WO2021070715A1 (en) 2021-04-15
TW202128856A (en) 2021-08-01

Similar Documents

Publication Publication Date Title
CN107615113B (en) Wavelength conversion member, backlight unit and liquid crystal display device provided with same
CN109937323B (en) Light-absorbing film and backlight unit
WO2008001578A1 (en) Photochromic film, photochromic lens having the same, and process for producing photochromic lens
JP4900001B2 (en) Manufacturing method of optical film
KR102533969B1 (en) Method for manufacturing a plastic lens having a coating layer
JP7191120B2 (en) Manufacturing method of decorative film for molding, molding method, decorative film for molding, molding, automobile exterior plate, and electronic device
CN104321376A (en) Curable composition and cured material of the same
JP5078269B2 (en) Production method of transparent film
JP2010001419A (en) Uv nanoimprint molding and its manufacturing method
JP2009006513A (en) Hard coat film having ultraviolet absorptivity
JP6387651B2 (en) Blue light cut film, display device, and resin composition for blue light cut film
JP7131597B2 (en) liquid crystal display
JP5592445B2 (en) Production method of transparent film
JP6871487B1 (en) Manufacturing method of photocurable resin film
JP5987269B2 (en) Hard coat film, polarizing plate and image display device
JP2009126040A (en) Manufacturing method of transparent laminate film
JP4848059B2 (en) Manufacturing method of long laminate
JP4257075B2 (en) Manufacturing method of plastic lens
JPH11140130A (en) Near-infrared absorber
WO2013146163A1 (en) Polarizing plate fabrication method and fabrication apparatus
JP6715660B2 (en) Method for producing photocurable resin film and laminate obtained thereby
JP6147442B2 (en) Method for manufacturing coated optical fiber
JP2010168448A (en) Resin composition for hybrid optical element, and hybrid optical element
JP7236554B2 (en) Method for manufacturing curved member, and polycarbonate resin laminate with hard coat layer for thermal bending
JPH07175132A (en) Production of lens sheet

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210305

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210305

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20210305

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20210407

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210413

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210415

R150 Certificate of patent or registration of utility model

Ref document number: 6871487

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250