JP6871068B2 - Sputtering equipment - Google Patents

Sputtering equipment Download PDF

Info

Publication number
JP6871068B2
JP6871068B2 JP2017108369A JP2017108369A JP6871068B2 JP 6871068 B2 JP6871068 B2 JP 6871068B2 JP 2017108369 A JP2017108369 A JP 2017108369A JP 2017108369 A JP2017108369 A JP 2017108369A JP 6871068 B2 JP6871068 B2 JP 6871068B2
Authority
JP
Japan
Prior art keywords
vacuum chamber
film
target
shield plate
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017108369A
Other languages
Japanese (ja)
Other versions
JP2018204061A (en
Inventor
藤井 佳詞
佳詞 藤井
中村 真也
真也 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2017108369A priority Critical patent/JP6871068B2/en
Priority to TW107108978A priority patent/TWI778032B/en
Priority to CN201810521449.0A priority patent/CN108977779B/en
Priority to KR1020180062539A priority patent/KR102471178B1/en
Publication of JP2018204061A publication Critical patent/JP2018204061A/en
Application granted granted Critical
Publication of JP6871068B2 publication Critical patent/JP6871068B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • C23C14/564Means for minimising impurities in the coating chamber such as dust, moisture, residual gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0605Carbon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/50Substrate holders
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks

Description

本発明は、スパッタリング装置に関し、より詳しくは、被成膜物の表面にカーボン膜を成膜するものに関する。 The present invention relates to a sputtering apparatus, and more particularly to an apparatus for forming a carbon film on the surface of an object to be filmed.

従来、この種のスパッタリング装置は、不揮発性メモリ等のデバイスの電極膜としてカーボン膜を成膜することに利用されている(例えば、特許文献1参照)。このものは、カーボン製のターゲットが設けられる真空チャンバと、真空チャンバを真空引きする真空ポンプと、真空チャンバ内でターゲットに対向配置されて成膜対象物を保持するステージとを備える。また、真空チャンバには、その内壁から隙間を存して設置されてターゲットとステージとの間の成膜空間を囲繞するシールド板が設けられる。そして、真空ポンプにより真空チャンバ内を所定圧力に真空引きした後、ターゲットをスパッタリングすることで、成膜対象物表面にカーボン膜が成膜される。 Conventionally, this type of sputtering apparatus has been used to form a carbon film as an electrode film for a device such as a non-volatile memory (see, for example, Patent Document 1). This includes a vacuum chamber provided with a carbon target, a vacuum pump that evacuates the vacuum chamber, and a stage that is arranged in the vacuum chamber so as to face the target and holds an object to be formed. Further, the vacuum chamber is provided with a shield plate which is installed with a gap from the inner wall thereof and surrounds the film formation space between the target and the stage. Then, the inside of the vacuum chamber is evacuated to a predetermined pressure by a vacuum pump, and then the target is sputtered to form a carbon film on the surface of the object to be formed.

ここで、カーボン製のターゲットをスパッタリングして成膜対象物表面に成膜したとき、成膜直後の成膜対象物表面に微細なパーティクルが付着することがある。このようなパーティクルの付着は製品歩留まりを低下させる原因となることから、成膜対象物の表面へのパーティクルの付着を可及的に抑制する必要がある。そこで、本発明者らは、鋭意研究を重ね、真空チャンバ内に浮遊するカーボン粒子が微細なパーティクルとして成膜直後の成膜対象物の表面に付着していることを知見するのに至った。即ち、カーボン製のターゲットをスパッタリングすると、ターゲットから飛散するカーボン粒子は、成膜対象物のみならず、ターゲット周辺に存する部品やシールド板の表面にも付着、堆積するが、このように付着したカーボン粒子が何らかの原因で再離脱し、この再離脱したカーボン粒子が、真空排気されずに真空チャンバ内で浮遊していることに起因していると考えられる。 Here, when a carbon target is sputtered to form a film on the surface of the film-forming object, fine particles may adhere to the surface of the film-forming object immediately after the film formation. Since such adhesion of particles causes a decrease in product yield, it is necessary to suppress the adhesion of particles to the surface of the film-forming object as much as possible. Therefore, the present inventors have conducted extensive research and have come to find that the carbon particles floating in the vacuum chamber are attached to the surface of the film-forming object immediately after the film-forming as fine particles. That is, when the carbon target is sputtered, the carbon particles scattered from the target adhere and accumulate not only on the film-forming object but also on the surface of the parts and the shield plate existing around the target. It is considered that the particles are re-disengaged for some reason, and the re-disengaged carbon particles are suspended in the vacuum chamber without being evacuated.

国際公開第2015/122159号International Publication No. 2015/122159

本発明は、上記知見に基づきなされたものであり、成膜対象物の表面に付着するパーティクルの数を可及的に少なくすることができるスパッタリング装置を提供することをその課題とするものである。 The present invention has been made based on the above findings, and an object of the present invention is to provide a sputtering apparatus capable of reducing the number of particles adhering to the surface of a film-forming object as much as possible. ..

上記課題を解決するために、カーボン製のターゲットが設けられる真空チャンバと、真空チャンバを真空引きする真空ポンプと、真空チャンバ内で成膜対象物を保持するステージと、真空チャンバの内壁面から隙間を存して設置されてターゲットとステージとの間の成膜空間を囲繞するシールド板とを備え、真空ポンプにより真空チャンバ内を所定圧力に真空引きした後、ターゲットをスパッタリングすることで、成膜対象物表面にカーボン膜を成膜する本発明のスパッタリング装置は、表面が123K以下の温度に冷却される吸着体を更に備え、吸着体が、成膜対象物に対する輻射が防止される真空チャンバ内の所定位置に、シールド板の外表面部分に隙間を存して設けられることを特徴とする。 In order to solve the above problems, a vacuum chamber provided with a carbon target, a vacuum pump that evacuates the vacuum chamber, a stage that holds an object to be formed in the vacuum chamber, and a gap from the inner wall surface of the vacuum chamber. It is provided with a shield plate that surrounds the film formation space between the target and the stage, and the inside of the vacuum chamber is evacuated to a predetermined pressure by a vacuum pump, and then the target is evacuated to form a film. The sputtering apparatus of the present invention for forming a carbon film on the surface of an object further includes an adsorbent whose surface is cooled to a temperature of 123 K or less, and the adsorbent is in a vacuum chamber in which radiation to the object to be formed is prevented. It is characterized in that a gap is provided in the outer surface portion of the shield plate at a predetermined position.

本発明によれば、真空チャンバ内で浮遊するカーボン粒子が一旦吸着体に吸着されると、この吸着体の表面が123K以下の温度に冷却されていることで、再離脱が防止される。結果として、真空チャンバ内で浮遊しているカーボン粒子の量が少なくすることで、成膜対象物の表面に付着するパーティクルの数を可及的に少なくできる。この場合、成膜対象物に対する輻射が防止される真空チャンバ内の所定位置に吸着体が配置されているため、膜質が変化する等の成膜対象物に対する成膜プロセスに悪影響を与えるといった不具合は生じない。さらに、吸着体からの輻射でシールド板自体が所定温度に冷却されることで、シールド板自体が吸着体としての役割を果たすようになり、成膜空間を画成するシールド板でカーボン粒子を吸着し、保持させることで、浮遊するカーボン粒子の量がより一層少なくでき、有利である。 According to the present invention, once the carbon particles suspended in the vacuum chamber are adsorbed on the adsorbent, the surface of the adsorbent is cooled to a temperature of 123 K or less, so that re-separation is prevented. As a result, by reducing the amount of carbon particles suspended in the vacuum chamber, the number of particles adhering to the surface of the film-forming object can be reduced as much as possible. In this case, since the adsorbent is arranged at a predetermined position in the vacuum chamber where radiation to the film-forming object is prevented, there is a problem that the film quality is changed and the film-forming process for the film-forming object is adversely affected. Does not occur. Furthermore, the shield plate itself is cooled to a predetermined temperature by radiation from the adsorbent, so that the shield plate itself plays a role as an adsorbent, and carbon particles are adsorbed by the shield plate that defines the film formation space. However, by retaining the particles, the amount of suspended carbon particles can be further reduced, which is advantageous.

本発明においては、前記ターゲットと前記ステージとが対向配置されると共に両者を結ぶ延長線に対して直交する方向に局所的に膨出させた排気空間部を設け、排気空間部に開設した排気口に前記真空ポンプが接続されることが好ましい In the present invention, the target and the stage are arranged to face each other, and an exhaust space portion is provided that is locally expanded in a direction orthogonal to an extension line connecting the two, and an exhaust port is provided in the exhaust space portion. It said vacuum pump to be connected to is preferred.

この場合、前記シールド板の外表面部分を前記排気空間部の排気ガス流入口に対峙する範囲とすることが好ましい。これによれば、真空チャンバ内の成膜空間から排気空間部に通じる排気ガスの排気経路中に吸着体が存することで、カーボン粒子をより吸着させ易くでき、有利である。 In this case, it is preferable that the outer surface portion of the shield plate is in a range facing the exhaust gas inflow port of the exhaust space portion. According to this, the presence of the adsorbent in the exhaust path of the exhaust gas leading from the film forming space in the vacuum chamber to the exhaust space portion makes it easier to adsorb carbon particles, which is advantageous.

本発明の実施形態のスパッタリング装置を示す模式的断面図。The schematic cross-sectional view which shows the sputtering apparatus of embodiment of this invention. 図1のII−II線に沿う断面図。FIG. 2 is a cross-sectional view taken along the line II-II of FIG. 本実施形態の変形例を示す図。The figure which shows the modification of this embodiment.

以下、図面を参照し、成膜対象物をシリコンウエハ(以下、単に「基板W」という)とし、真空チャンバの上部にスパッタリング用のカーボン製ターゲット、その下部に基板Wが設置されるステージが設けられたものを例に本発明のスパッタリング装置の実施形態を説明する。 Hereinafter, referring to the drawings, the object to be filmed is a silicon wafer (hereinafter, simply referred to as “substrate W”), a carbon target for sputtering is provided above the vacuum chamber, and a stage on which the substrate W is installed is provided below the target. An embodiment of the sputtering apparatus of the present invention will be described by taking the above-mentioned one as an example.

図1及び図2を参照して、SMは、本実施形態のマグネトロン方式のスパッタリング装置である。スパッタリング装置SMは真空チャンバ1を備え、真空チャンバ1の上部にカソードユニットCuが着脱自在に取付けられている。カソードユニットCuは、カーボン製のターゲット2と、このターゲット2の上方に配置された磁石ユニット3とで構成されている。 With reference to FIGS. 1 and 2, the SM is a magnetron-type sputtering apparatus of the present embodiment. The sputtering apparatus SM includes a vacuum chamber 1, and a cathode unit Cu is detachably attached to the upper part of the vacuum chamber 1. The cathode unit Cu is composed of a carbon target 2 and a magnet unit 3 arranged above the target 2.

ターゲット2は、基板Wの輪郭に応じて平面視円形に形成されたものである。ターゲット2は、バッキングプレート21に装着した状態で、そのスパッタ面22を下方にして、真空チャンバ1の上壁に設けた絶縁体Ibを介して真空チャンバ1の上部に取り付けられている。また、ターゲット2には、公知の構造を持つスパッタ電源Eが接続され、スパッタリングによる成膜時、負の電位を持った直流電力が投入できるようにしている。ターゲット2の上方に配置される磁石ユニット3は、ターゲット2のスパッタ面22の下方空間に磁場を発生させ、スパッタ時にスパッタ面22の下方で電離した電子等を捕捉してターゲット2から飛散したスパッタ粒子を効率よくイオン化する閉鎖磁場若しくはカスプ磁場構造を有するものである。磁石ユニット自体としては公知のものが利用できるため、これ以上の説明は省略する。 The target 2 is formed in a circular shape in a plan view according to the contour of the substrate W. The target 2 is attached to the upper part of the vacuum chamber 1 via an insulator Ib provided on the upper wall of the vacuum chamber 1 with the sputtering surface 22 facing downward while being attached to the backing plate 21. Further, a sputtering power source E having a known structure is connected to the target 2 so that DC power having a negative potential can be applied during film formation by sputtering. The magnet unit 3 arranged above the target 2 generates a magnetic field in the space below the sputter surface 22 of the target 2, captures ions and the like ionized below the sputter surface 22 during sputter, and scatters the spatter from the target 2. It has a closed magnetic field or cusp magnetic field structure that efficiently ionizes particles. Since a known magnet unit itself can be used, further description will be omitted.

真空チャンバ1の底部中央には、ターゲット2に対向させてステージ4が他の絶縁体Ibを介して配置されている。ステージ4は、特に図示して説明しないが、例えば筒状の輪郭を持つ金属製の基台と、この基台の上面に接着されるチャックプレートとで構成され、成膜中、基板Wを吸着保持できるようにしている。なお、静電チャックの構造については、単極型や双極型等の公知のものが利用できるため、これ以上の詳細な説明は省略する。また、基台には、冷媒循環用の通路やヒータを内蔵し、成膜中、基板Wを所定温度に制御することができるようにしてもよい。 At the center of the bottom of the vacuum chamber 1, a stage 4 is arranged so as to face the target 2 via another insulator Ib. Although not particularly illustrated, the stage 4 is composed of, for example, a metal base having a tubular contour and a chuck plate adhered to the upper surface of the base, and adsorbs the substrate W during film formation. I am trying to hold it. As for the structure of the electrostatic chuck, known ones such as a unipolar type and a bipolar type can be used, so further detailed description thereof will be omitted. Further, the base may include a passage for circulating a refrigerant and a heater so that the substrate W can be controlled to a predetermined temperature during film formation.

また、真空チャンバ1内には、その内壁面1aから隙間を存して設置されてターゲット2とステージ4との間の成膜空間1bを囲繞するシールド板5を備える。シールド板5は、ターゲット2の周囲を囲繞し、かつ、真空チャンバ1の下方にのびる略筒状の上板部51と、ステージ4の周囲を囲繞し、かつ、真空チャンバ1の上方にのびる略筒状の下板部52とを有し、上板部51の下端と下板部52の上端とを周方向で隙間を存してオーバラップさせている。なお、上板部51及び下板部52は一体に形成されていてもよく、また、周方向に複数部分に分割して組み合わせるようにしてもよい。 Further, the vacuum chamber 1 is provided with a shield plate 5 which is installed with a gap from the inner wall surface 1a and surrounds the film formation space 1b between the target 2 and the stage 4. The shield plate 5 surrounds the periphery of the target 2 and extends below the vacuum chamber 1 with a substantially tubular upper plate portion 51, and surrounds the periphery of the stage 4 and extends above the vacuum chamber 1. It has a tubular lower plate portion 52, and the lower end of the upper plate portion 51 and the upper end of the lower plate portion 52 are overlapped with a gap in the circumferential direction. The upper plate portion 51 and the lower plate portion 52 may be integrally formed, or may be divided into a plurality of portions in the circumferential direction and combined.

更に、真空チャンバ1には所定のガスを導入するガス導入手段6が設けられている。ガスとしては、成膜空間1bにプラズマを形成する際に導入されるアルゴンガス等の希ガスだけでなく、成膜に応じて適宜導入される酸素ガスや窒素ガスなどの反応ガスも含まれる。ガス導入手段6は、上板部51の外周に設けられたガスリング61と、ガスリング61に接続された、真空チャンバ1の側壁を貫通するガス管62とを有し、ガス管62がマスフローコントローラ63を介して図示省略のガス源に連通している。この場合、詳細な図示を省略したが、ガスリング61にはガス拡散部が付設され、ガス管62からのスパッタガスがガス拡散部で拡散されて、ガスリング61に周方向に等間隔で穿設されたガス噴射口61aから同等流量でスパッタガスが噴射されるようにしている。そして、ガス噴射口61aから噴射されたスパッタガスは、上板部51に形成したガス孔(図示せず)から成膜空間1b内に所定の流量で導入され、成膜中、成膜空間1b内の圧力分布をその全体に亘って同等にできるようにしている。なお、成膜空間1b内の圧力分布をその全体に亘って同等にするための手法は、これに限定されるものではなく、他の公知の手法を適宜採用できる。 Further, the vacuum chamber 1 is provided with a gas introducing means 6 for introducing a predetermined gas. The gas includes not only a rare gas such as argon gas introduced when forming plasma in the film forming space 1b, but also a reaction gas such as oxygen gas and nitrogen gas appropriately introduced according to the film forming. The gas introducing means 6 has a gas ring 61 provided on the outer periphery of the upper plate portion 51 and a gas pipe 62 connected to the gas ring 61 and penetrating the side wall of the vacuum chamber 1, and the gas pipe 62 is a mass flow controller. It communicates with a gas source (not shown) via a controller 63. In this case, although detailed illustration is omitted, a gas diffusion portion is attached to the gas ring 61, and the sputter gas from the gas pipe 62 is diffused by the gas diffusion portion to perforate the gas ring 61 at equal intervals in the circumferential direction. Sputter gas is injected at the same flow rate from the provided gas injection port 61a. Then, the sputter gas injected from the gas injection port 61a is introduced into the film forming space 1b from a gas hole (not shown) formed in the upper plate portion 51 at a predetermined flow rate, and is introduced into the film forming space 1b at a predetermined flow rate, and is introduced into the film forming space 1b during the film forming process. The pressure distribution inside is made equal throughout. The method for making the pressure distribution in the film formation space 1b equal throughout the film formation space 1b is not limited to this, and other known methods can be appropriately adopted.

また、真空チャンバ1には、ターゲット2とステージ4とを結ぶ中心線(延長線)Clに対して直交する方向に局所的に膨出させた排気空間部11が設けられ、この排気空間部11を区画する底壁面には、排気口11aが開設されている。排気口11aには、排気管を介してクライオポンプやターボ分子ポンプ等の真空ポンプVpが接続されている。成膜中、成膜空間1bに導入されたスパッタガスの一部は排気ガスとなって、シールド板5の継ぎ目や、シールド板5とターゲット2またはステージ4との隙間から、シールド板5の外表面と真空チャンバ1の内壁面1aとの間の隙間を通って排気ガス流入口11bから排気空間部11に流れ、排気口11aを介して真空ポンプVpへと真空排気される。このとき、成膜空間1bと排気空間部11との間には、数Pa程度の圧力差が生じるようになる。 Further, the vacuum chamber 1 is provided with an exhaust space portion 11 locally expanded in a direction orthogonal to the center line (extension line) Cl connecting the target 2 and the stage 4, and the exhaust space portion 11 is provided. An exhaust port 11a is provided on the bottom wall surface for partitioning. A vacuum pump Vp such as a cryopump or a turbo molecular pump is connected to the exhaust port 11a via an exhaust pipe. During film formation, a part of the sputter gas introduced into the film formation space 1b becomes exhaust gas, and is outside the shield plate 5 through the seam of the shield plate 5 or the gap between the shield plate 5 and the target 2 or the stage 4. It flows from the exhaust gas inflow port 11b to the exhaust space 11 through the gap between the surface and the inner wall surface 1a of the vacuum chamber 1, and is evacuated to the vacuum pump Vp through the exhaust port 11a. At this time, a pressure difference of about several Pa is generated between the film forming space 1b and the exhaust space portion 11.

基板Wに対して所定の薄膜を成膜する場合、図外の真空搬送ロボットによりステージ4上へと基板Wを搬入し、ステージ4のチャックプレート上面に基板Wを設置する(この場合、基板Wの上面が成膜面となる)。そして、真空搬送ロボットを退避させると共に、静電チャック用の電極に対してチャック電源から所定電圧を印加して、チャックプレート上面に基板Wを静電吸着する。次に、真空チャンバ1内が所定圧力(例えば、1×10−5Pa)まで真空引きされると、ガス導入手段6を介してスパッタガスとしてのアルゴンガスを一定の流量で導入し、これに併せてターゲット2にスパッタ電源Eから所定電力を投入する。これにより、成膜空間1b内にプラズマが形成され、プラズマ中のアルゴンガスのイオンでターゲットがスパッタリングされ、ターゲット2からのスパッタ粒子(カーボン粒子)が基板Wの上面に付着、堆積してカーボン膜が成膜される。このようにターゲット2をスパッタリングしてカーボン膜を成膜する場合、真空チャンバ1内に浮遊するカーボン粒子が微細なパーティクルとして成膜直後の成膜対象物の表面に付着していることを知見するのに至った。これは、ターゲットから飛散するカーボン粒子は、基板Wだけじゃなく、ターゲット2周辺に存する部品やシールド板5の表面にも付着、堆積するが、このように付着したカーボン粒子が何らかの原因で再離脱し、この再離脱したカーボン粒子が、真空排気されずに真空チャンバ1内で浮遊していることに起因していると考えられる。 When forming a predetermined thin film on the substrate W, the substrate W is carried onto the stage 4 by a vacuum transfer robot (not shown), and the substrate W is installed on the upper surface of the chuck plate of the stage 4 (in this case, the substrate W). The upper surface of the film is the film formation surface). Then, the vacuum transfer robot is retracted, and a predetermined voltage is applied from the chuck power supply to the electrode for the electrostatic chuck to electrostatically attract the substrate W to the upper surface of the chuck plate. Next, when the inside of the vacuum chamber 1 is evacuated to a predetermined pressure (for example, 1 × 10 -5 Pa), argon gas as a sputtering gas is introduced at a constant flow rate through the gas introducing means 6 and into the vacuum chamber 1. At the same time, a predetermined power is applied to the target 2 from the sputtering power source E. As a result, plasma is formed in the film formation space 1b, the target is sputtered by the ions of argon gas in the plasma, and the sputtered particles (carbon particles) from the target 2 adhere to and deposit on the upper surface of the substrate W to form a carbon film. Is formed. When the target 2 is sputtered to form a carbon film in this way, it is found that the carbon particles floating in the vacuum chamber 1 are attached to the surface of the film-forming object immediately after the film formation as fine particles. It came to. This is because the carbon particles scattered from the target adhere and accumulate not only on the substrate W but also on the parts existing around the target 2 and the surface of the shield plate 5, but the carbon particles adhered in this way re-separate for some reason. However, it is considered that the carbon particles that have re-emerged are suspended in the vacuum chamber 1 without being evacuated.

そこで、本実施形態では、成膜対象物Wに対する輻射が防止される真空チャンバ1内の所定位置に、表面が123K以下の温度に冷却される吸着体7を設けることとした。この場合、吸着体7は、シールド板5の下板部52の外表面部分52aに隙間を存して設けられ、図示省略の冷凍機等の冷却機構により上記温度に表面が冷却されている。冷却機構としては公知のものを用いることができるため、ここでは詳細な説明を省略する。吸着体7は、モータ等の昇降機構7aにより上下方向に移動自在に構成されているが、真空チャンバ1の底壁面に立設してもよい。 Therefore, in the present embodiment, the adsorbent 7 whose surface is cooled to a temperature of 123 K or less is provided at a predetermined position in the vacuum chamber 1 in which radiation to the film-forming object W is prevented. In this case, the adsorbent 7 is provided with a gap in the outer surface portion 52a of the lower plate portion 52 of the shield plate 5, and the surface is cooled to the above temperature by a cooling mechanism such as a refrigerator (not shown). Since a known cooling mechanism can be used, detailed description thereof will be omitted here. Although the adsorbent 7 is configured to be movable in the vertical direction by an elevating mechanism 7a such as a motor, it may be erected on the bottom wall surface of the vacuum chamber 1.

以上によれば、真空チャンバ1内で浮遊するカーボン粒子が一旦吸着体7に吸着されると、この吸着体7の表面が123K以下の温度に冷却されていることで、再離脱が防止される。結果として、真空チャンバ1内で浮遊しているカーボン粒子の量が少なくすることで、基板Wの表面に付着するパーティクルの数を可及的に少なくできる。この場合、基板Wに対する輻射が防止される真空チャンバ内の所定位置に吸着体7が配置されているため、膜質が変化する等の基板Wに対する成膜プロセスに悪影響を与えるといった不具合は生じない。また、吸着体7からの輻射でシールド板5自体が123K以下の温度に冷却されることで、シールド板5自体が吸着体としての役割を果たすようになり、成膜空間1bを画成するシールド板5でカーボン粒子を吸着し、保持させることで、浮遊するカーボン粒子の量がより一層少なくでき、有利である。この場合、冷却されたシールド板5からの輻射で基板Wが冷却されないように、基板Wとシールド板5とを10mm以上離間させればよい。 According to the above, once the carbon particles floating in the vacuum chamber 1 are adsorbed on the adsorbent 7, the surface of the adsorbent 7 is cooled to a temperature of 123 K or less, so that re-separation is prevented. .. As a result, by reducing the amount of carbon particles suspended in the vacuum chamber 1, the number of particles adhering to the surface of the substrate W can be reduced as much as possible. In this case, since the adsorbent 7 is arranged at a predetermined position in the vacuum chamber where radiation to the substrate W is prevented, there is no problem that the film quality is changed or the film forming process on the substrate W is adversely affected. Further, when the shield plate 5 itself is cooled to a temperature of 123 K or less by the radiation from the adsorbent 7, the shield plate 5 itself plays a role as an adsorbent, and the shield defining the film formation space 1b. By adsorbing and holding the carbon particles on the plate 5, the amount of floating carbon particles can be further reduced, which is advantageous. In this case, the substrate W and the shield plate 5 may be separated by 10 mm or more so that the substrate W is not cooled by the radiation from the cooled shield plate 5.

次に、本発明の効果を確認するため、以下の発明実験を行った。即ち、基板Wを直径300mmのシリコンウエハ、ターゲット2をφ400mmのカーボン製のものとし、上記スパッタリング装置SMを用いて基板Wにカーボン膜を成膜した。スパッタ条件として、ターゲット2と基板Wとの間の距離を60mm、スパッタ電源Eによる投入電力を2kW、スパッタ時間を120secに設定した。また、スパッタガスとしてアルゴンガスを用い、スパッタリング中、スパッタガスの分圧を0.1Paとした。また、比較実験として、上記スパッタリング装置SMから吸着体7を取り外し、同一の条件で成膜した。 Next, in order to confirm the effect of the present invention, the following invention experiment was carried out. That is, the substrate W was made of a silicon wafer having a diameter of 300 mm and the target 2 was made of carbon having a diameter of 400 mm, and a carbon film was formed on the substrate W using the sputtering apparatus SM. As the sputtering conditions, the distance between the target 2 and the substrate W was set to 60 mm, the input power from the sputtering power source E was set to 2 kW, and the sputtering time was set to 120 sec. Argon gas was used as the sputtering gas, and the partial pressure of the sputtering gas was set to 0.1 Pa during sputtering. Further, as a comparative experiment, the adsorbent 7 was removed from the sputtering apparatus SM, and a film was formed under the same conditions.

成膜前と成膜後に基板Wに付着する0.1μm以上のパーティクルの数を測定し、成膜中に基板Wに付着したパーティクル数を求めた。これによれば、発明実験では84個であったのに対し、比較実験では145個であり、吸着体7を設けることによりパーティクル数を少なくできることが判った。 The number of particles of 0.1 μm or more adhering to the substrate W before and after the film formation was measured, and the number of particles adhering to the substrate W during the film formation was determined. According to this, the number of particles was 84 in the invention experiment, but it was 145 in the comparative experiment, and it was found that the number of particles can be reduced by providing the adsorbent 7.

以上、本発明の実施形態について説明したが、本発明は上記に限定されるものではない。上記実施形態では、排気空間部11の排気ガス流入口11bに対峙する範囲のシールド板5の下板部52の外表面部分52aを隙間を存在して覆うように吸着体7を設けているが、図3に示すように、吸着体7の両端が真空チャンバ1の内壁面1aとシールド板5の下板部52との間の隙間にまで更にのびるように設けてもよい。尚、図3中、矢印は排気ガスの流れを示す。これによれば、シールド板5を効率よく冷却することができ、しかも、排気ガスに含まれるカーボン粒子を効率よく吸着し、保持させることで、排気ガス中のカーボン粒子が成膜空間1bに流れて基板Wに付着することを抑制することができ、有利である。 Although the embodiments of the present invention have been described above, the present invention is not limited to the above. In the above embodiment, the adsorbent 7 is provided so as to cover the outer surface portion 52a of the lower plate portion 52 of the shield plate 5 in the range facing the exhaust gas inflow port 11b of the exhaust space portion 11 with a gap. As shown in FIG. 3, both ends of the adsorbent 7 may be provided so as to extend further to the gap between the inner wall surface 1a of the vacuum chamber 1 and the lower plate portion 52 of the shield plate 5. In FIG. 3, the arrow indicates the flow of exhaust gas. According to this, the shield plate 5 can be efficiently cooled, and the carbon particles in the exhaust gas flow into the film forming space 1b by efficiently adsorbing and holding the carbon particles contained in the exhaust gas. It is advantageous because it can suppress the adhesion to the substrate W.

上記実施形態では、吸着体7によりシールド板5を冷却する場合を例に説明したが、シールド板5以外の構成部品でカーボン粒子が付着するものを冷却する場合にも本発明を適用することができる。 In the above embodiment, the case where the shield plate 5 is cooled by the adsorbent 7 has been described as an example, but the present invention can also be applied to the case where the components other than the shield plate 5 to which carbon particles are attached are cooled. it can.

SM…スパッタリング装置、Vp…真空ポンプ、W…基板(成膜対象物)、1…真空チャンバ、1a…真空チャンバ1の内壁面、11…排気空間部、11a…排気口、2…ターゲット、4…ステージ、5…シールド板、7…吸着体。
SM ... Sputtering device, Vp ... Vacuum pump, W ... Substrate (object to be deposited), 1 ... Vacuum chamber, 1a ... Inner wall surface of vacuum chamber 1, 11 ... Exhaust space, 11a ... Exhaust port, 2 ... Target, 4 ... stage, 5 ... shield plate, 7 ... adsorbent.

Claims (3)

カーボン製のターゲットが設けられる真空チャンバと、真空チャンバを真空引きする真空ポンプと、真空チャンバ内で成膜対象物を保持するステージと、真空チャンバの内壁面から隙間を存して設置されてターゲットとステージとの間の成膜空間を囲繞するシールド板とを備え、真空ポンプにより真空チャンバ内を所定圧力に真空引きした後、ターゲットをスパッタリングすることで、成膜対象物表面にカーボン膜を成膜するスパッタリング装置において、
表面が123K以下の温度に冷却される吸着体を更に備え、吸着体が、成膜対象物に対する輻射が防止される真空チャンバ内の所定位置に、シールド板の外表面部分に隙間を存して設けられることを特徴とするスパッタリング装置。
A vacuum chamber provided with a carbon target, a vacuum pump that evacuates the vacuum chamber, a stage that holds the object to be formed in the vacuum chamber, and a target that is installed with a gap from the inner wall surface of the vacuum chamber. It is equipped with a shield plate that surrounds the film formation space between the film and the stage, and after vacuuming the inside of the vacuum chamber to a predetermined pressure with a vacuum pump, the target is sputtered to form a carbon film on the surface of the film formation target. In a film sputtering device
Further provided with an adsorbent whose surface is cooled to a temperature of 123 K or less, the adsorbent has a gap in the outer surface portion of the shield plate at a predetermined position in the vacuum chamber where radiation to the film-forming object is prevented. sputtering system, characterized by being provided.
請求項1記載のスパッタリング装置において、前記ターゲットと前記ステージとが対向配置されると共に両者を結ぶ延長線に対して直交する方向に局所的に膨出させた排気空間部を設け、排気空間部に開設した排気口に前記真空ポンプが接続されることを特徴とするスパッタリング装置。 Te claim 1, wherein the sputtering apparatus odor, the target and the direction in which the stage and is orthogonal to the extension line connecting the two together are opposed is provided an exhaust space portion locally swelled, exhaust space portions A sputtering apparatus characterized in that the vacuum pump is connected to an exhaust port opened in. 前記シールド板の外表面部分を前記排気空間部の排気ガス流入口に対峙する範囲としたことを特徴とする請求項2記載のスパッタリング装置。 The sputtering apparatus according to claim 2, wherein the outer surface portion of the shield plate is set to a range facing the exhaust gas inflow port of the exhaust space portion.
JP2017108369A 2017-05-31 2017-05-31 Sputtering equipment Active JP6871068B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017108369A JP6871068B2 (en) 2017-05-31 2017-05-31 Sputtering equipment
TW107108978A TWI778032B (en) 2017-05-31 2018-03-16 Sputtering device
CN201810521449.0A CN108977779B (en) 2017-05-31 2018-05-28 Sputtering device
KR1020180062539A KR102471178B1 (en) 2017-05-31 2018-05-31 Sputtering apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017108369A JP6871068B2 (en) 2017-05-31 2017-05-31 Sputtering equipment

Publications (2)

Publication Number Publication Date
JP2018204061A JP2018204061A (en) 2018-12-27
JP6871068B2 true JP6871068B2 (en) 2021-05-12

Family

ID=64542174

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017108369A Active JP6871068B2 (en) 2017-05-31 2017-05-31 Sputtering equipment

Country Status (4)

Country Link
JP (1) JP6871068B2 (en)
KR (1) KR102471178B1 (en)
CN (1) CN108977779B (en)
TW (1) TWI778032B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110578127A (en) * 2019-10-31 2019-12-17 浙江工业大学 Device for increasing deposition rate of magnetron sputtering coating

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0830260B2 (en) * 1990-08-22 1996-03-27 アネルバ株式会社 Vacuum processing equipment
JPH0798867A (en) * 1993-09-30 1995-04-11 Kao Corp Apparatus for production of magnetic recording medium
JP2000017437A (en) * 1998-07-01 2000-01-18 Sony Corp Deposition apparatus
JP4233702B2 (en) * 1999-09-02 2009-03-04 株式会社アルバック Carbon sputtering equipment
JP4406188B2 (en) * 2002-06-12 2010-01-27 キヤノンアネルバ株式会社 Deposition equipment
JP2004083984A (en) * 2002-08-26 2004-03-18 Fujitsu Ltd Sputtering system
CN1266306C (en) * 2003-05-19 2006-07-26 力晶半导体股份有限公司 Sputtering apparatus and metal layer/metal compound layer making process therewith
US20080257263A1 (en) * 2007-04-23 2008-10-23 Applied Materials, Inc. Cooling shield for substrate processing chamber
KR101097738B1 (en) * 2009-10-09 2011-12-22 에스엔유 프리시젼 주식회사 Substrate processing apparatus and method
JP6238060B2 (en) 2013-12-20 2017-11-29 トヨタ自動車株式会社 Lithium ion secondary battery
CN104928635B (en) * 2014-03-21 2017-12-19 北京北方华创微电子装备有限公司 Magnetron sputtering chamber and magnetron sputtering apparatus

Also Published As

Publication number Publication date
TW201903180A (en) 2019-01-16
CN108977779A (en) 2018-12-11
KR102471178B1 (en) 2022-11-25
KR20180131497A (en) 2018-12-10
TWI778032B (en) 2022-09-21
CN108977779B (en) 2021-10-29
JP2018204061A (en) 2018-12-27

Similar Documents

Publication Publication Date Title
US11309169B2 (en) Biasable flux optimizer / collimator for PVD sputter chamber
EP1187172B1 (en) Sputtering apparatus and film manufacturing method
CN109868456B (en) Physical vapor deposition processing method and physical vapor deposition processing apparatus
JP6007070B2 (en) Sputtering method and sputtering apparatus
US11049701B2 (en) Biased cover ring for a substrate processing system
CN102428209A (en) Film-forming method and film-forming apparatus
JP6871068B2 (en) Sputtering equipment
KR20200102484A (en) Sputtering method and sputtering device
JP6871067B2 (en) Sputtering equipment
JP6088780B2 (en) Plasma processing method and plasma processing apparatus
JP6030404B2 (en) Sputtering equipment
JP7262235B2 (en) Sputtering apparatus and sputtering method
JP4553476B2 (en) Sputtering method and sputtering apparatus
CN109477219B (en) Single oxide metal deposition chamber
TWI417407B (en) Vent groove modified sputter target assembly and apparatus containing same
JP2021021120A (en) Sputtering method and sputtering apparatus
TW202039893A (en) Film forming apparatus and film forming method
JP2009120868A (en) Sputtering apparatus
WO2007114899A2 (en) Vent groove modified sputter target assembly
JP2015178653A (en) Sputtering device and sputtering method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200507

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210406

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210415

R150 Certificate of patent or registration of utility model

Ref document number: 6871068

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250