JP6868079B2 - Manufacturing method of hardened cementum - Google Patents

Manufacturing method of hardened cementum Download PDF

Info

Publication number
JP6868079B2
JP6868079B2 JP2019210273A JP2019210273A JP6868079B2 JP 6868079 B2 JP6868079 B2 JP 6868079B2 JP 2019210273 A JP2019210273 A JP 2019210273A JP 2019210273 A JP2019210273 A JP 2019210273A JP 6868079 B2 JP6868079 B2 JP 6868079B2
Authority
JP
Japan
Prior art keywords
water
molded product
cured
compressive strength
cementum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019210273A
Other languages
Japanese (ja)
Other versions
JP2020023440A (en
Inventor
克哉 河野
克哉 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP2019210273A priority Critical patent/JP6868079B2/en
Publication of JP2020023440A publication Critical patent/JP2020023440A/en
Application granted granted Critical
Publication of JP6868079B2 publication Critical patent/JP6868079B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)

Description

本発明は、セメント質硬化体の製造方法に関する。 The present invention relates to a method for producing a hardened cementum.

近年、高い圧縮強度を有するセメント質硬化体が種々提案されている。
例えば、特許文献1には、(A)セメント、(B)BET比表面積が5〜25m/gの微粉末、(C)ブレーン比表面積が3,500〜10,000cm/gの無機粉末、(D)細骨材、(E)減水剤、及び、(F)水、を含むセメント組成物であって、前記(D)細骨材が、2CaO・SiO及び2CaO・Al・SiOを含有し、2CaO・SiO100質量部に対して、2CaO・Al・SiOと4CaO・Al・Feとの合計量が10〜100質量部である焼成物を含むことを特徴とするセメント組成物が記載されている。
該セメント組成物を硬化してなるセメント質硬化体は、上記細骨材に含まれる焼成物を絶乾状態で用いた場合、250N/mmを超えるような高い圧縮強度を有し、上記細骨材に含まれる焼成物を表乾状態で用いた場合、200N/mm以上の高い圧縮強度を有し、かつ、自己収縮率が小さいものである。
In recent years, various hardened cementums having high compressive strength have been proposed.
For example, Patent Document 1 describes (A) cement, (B) fine powder having a BET specific surface area of 5 to 25 m 2 / g, and (C) inorganic powder having a brain specific surface area of 3,500 to 10,000 cm 2 / g. , (D) Fine Aggregate, (E) Water Reducer, and (F) Water. The fine aggregate is 2CaO · SiO 2 and 2CaO · Al 2 O 3 · containing SiO 2, relative to 2CaO · SiO 2 100 parts by weight of a total amount of 2CaO · Al 2 O 3 · SiO 2 and 4CaO · Al 2 O 3 · Fe 2 O 3 is 10 to 100 parts by weight Cement compositions characterized by containing certain calcined products have been described.
The hardened cementaceous product obtained by curing the cement composition has a high compressive strength exceeding 250 N / mm 2 when the calcined product contained in the fine aggregate is used in an absolutely dry state, and the fine aggregate is said to be fine. When the calcined product contained in the aggregate is used in a surface dry state, it has a high compressive strength of 200 N / mm 2 or more and a small self-shrinkage rate.

特開2009−227574号公報JP-A-2009-227574

本発明は、高い圧縮強度を有するセメント質硬化体を得ることができるセメント質硬化体の製造方法を提供することを目的とする。 An object of the present invention is to provide a method for producing a hardened cementum, which can obtain a hardened cementum having high compressive strength.

本発明者は、上記課題を解決するために鋭意検討した結果、少なくともセメントと水と減水剤を含むセメント組成物を打設する成形工程と、未硬化の成形体を、10〜40℃で10時間以上、封緘養生または気中養生した後、脱型する1次養生工程と、硬化した成形体に吸水させる吸水工程と、吸水させた成形体を、15℃以上で養生する2次養生工程を含むセメント質硬化体の製造方法によれば、上記目的を達成できることを見出し、本発明を完成した。 As a result of diligent studies to solve the above problems, the present inventor has carried out a molding step of placing at least a cement composition containing cement, water and a water reducing agent, and an uncured molded product at 10 to 40 ° C. A primary curing step of removing the mold after sealing or aerial curing for an hour or longer, a water absorption step of allowing the cured molded body to absorb water, and a secondary curing step of curing the absorbed molded product at 15 ° C. or higher. The present invention has been completed by finding that the above object can be achieved by the method for producing a hardened cementaceous product.

すなわち、本発明は、以下の[1]〜[7]を提供するものである。
[1] 圧縮強度が80N/mm以上のセメント質硬化体の製造方法であって、少なくともセメントと水と減水剤を含むセメント組成物を型枠内に打設して、未硬化の成形体を得る成形工程と、上記未硬化の成形体を、10〜40℃で10時間以上、封緘養生または気中養生した後、上記型枠から脱型し、硬化した成形体を得る1次養生工程と、上記硬化した成形体に吸水させる吸水工程と、上記吸水させた成形体を、15℃以上で養生する2次養生工程を含むことを特徴とするセメント質硬化体の製造方法。
[2] 上記吸水工程において、上記硬化した成形体を水中に浸漬させる前記[1]に記載のセメント質硬化体の製造方法。
[3] 上記吸水工程において、上記硬化した成形体を、減圧下の水の中に浸漬させる前記[2]に記載のセメント質硬化体の製造方法。
[4] 上記吸水工程において、上記硬化した成形体を、90℃以上の水の中に浸漬させた後、成形体を浸漬させたまま、水温を40℃以下に冷却する前記[2]に記載のセメント質硬化体の製造方法。
That is, the present invention provides the following [1] to [7].
[1] A method for producing a hardened cement material having a compressive strength of 80 N / mm 2 or more, wherein a cement composition containing at least cement, water and a water reducing agent is cast in a mold to form an uncured molded product. And the primary curing step of obtaining a cured molded product by removing the mold from the mold after sealing or aerial curing the uncured molded product at 10 to 40 ° C. for 10 hours or more. A method for producing a hardened cement material, which comprises a water absorption step of causing the cured molded body to absorb water and a secondary curing step of curing the water-absorbed molded body at 15 ° C. or higher.
[2] The method for producing a hardened cementum according to the above [1], wherein in the water absorption step, the hardened molded product is immersed in water.
[3] The method for producing a cementum-cured product according to the above [2], wherein in the water absorption step, the cured molded product is immersed in water under reduced pressure.
[4] The above-mentioned [2], wherein in the water absorption step, the cured molded product is immersed in water at 90 ° C. or higher, and then the water temperature is cooled to 40 ° C. or lower while the molded product is immersed. How to manufacture a hardened cementum.

[5] 上記1次養生工程において、上記硬化した成形体が5〜100N/mmの圧縮強度を発現した時に、上記硬化した成形体を上記型枠から脱型する前記[1]〜[4]のいずれかに記載のセメント質硬化体の製造方法。
[6] 上記2次養生工程において、上記吸水させた成形体を、50〜98℃で1時間以上、蒸気養生または温水養生する前記[1]〜[5]のいずれかに記載のセメント質硬化体の製造方法。
[7] 上記2次養生工程において、上記蒸気養生または温水養生後の成形体を、100〜200℃で1時間以上、加熱する前記[6]に記載のセメント質硬化体の製造方法。
なお、出願人は、本発明に関連して、特願2015−34112、および特願2015−104920(以下、先願という。)を先に出願している。先願の出願番号をここに記載することにより、先願に係る発明の内容をこの出願に含めるものとする。
[5] In the primary curing step, when the cured molded product develops a compressive strength of 5 to 100 N / mm 2 , the cured molded product is removed from the mold, and the cured products are removed from the mold [1] to [4]. ]. The method for producing a hardened cementaceous product according to any one of.
[6] The cementum hardening according to any one of [1] to [5], wherein in the secondary curing step, the water-absorbed molded product is steam-cured or warm-water-cured at 50 to 98 ° C. for 1 hour or longer. How to make a body.
[7] The method for producing a hardened cementum according to the above [6], wherein in the secondary curing step, the molded product after steam curing or hot water curing is heated at 100 to 200 ° C. for 1 hour or more.
The applicant has previously filed Japanese Patent Application No. 2015-34112 and Japanese Patent Application No. 2015-104920 (hereinafter referred to as "prior application") in connection with the present invention. By stating the application number of the prior application here, the content of the invention of the prior application shall be included in this application.

本発明のセメント質硬化体の製造法によれば、高い圧縮強度を有するセメント質硬化体を得ることができる。 According to the method for producing a hardened cementum of the present invention, a hardened cementum having high compressive strength can be obtained.

本発明のセメント質硬化体の製造方法は、圧縮強度が80N/mm以上のセメント質硬化体の製造方法であって、少なくともセメントと水と減水剤を含むセメント組成物を型枠内に打設して、未硬化の成形体を得る成形工程と、未硬化の成形体を、10〜40℃で10時間以上、封緘養生または気中養生した後、型枠から脱型し、硬化した成形体を得る1次養生工程と、硬化した成形体に吸水させる吸水工程と、吸水させた成形体を、15℃以上で養生する2次養生工程を含むものである。
以下、工程ごとに詳しく説明する。
The method for producing a hardened cement material of the present invention is a method for producing a hardened cement material having a compressive strength of 80 N / mm 2 or more, and a cement composition containing at least cement, water and a water reducing agent is poured into a mold. A molding step of setting to obtain an uncured molded body, and a molding in which the uncured molded body is sealed or cured in the air at 10 to 40 ° C. for 10 hours or more, and then removed from the mold and cured. It includes a primary curing step of obtaining a body, a water absorbing step of causing a cured molded body to absorb water, and a secondary curing step of curing the absorbed molded body at 15 ° C. or higher.
Hereinafter, each step will be described in detail.

[成形工程]
本工程は、少なくともセメントと水と減水剤を含むセメント組成物を型枠内に打設して、未硬化の成形体を得る工程である。
本発明で用いられるセメント組成物は、少なくともセメントと水と減水剤を含むものであればよく、ペースト、モルタル、またはコンクリートのいずれでもよい。
また、本発明で用いられるセメント組成物の原料およびその配合は、本発明の製造方法によって得られるセメント質硬化体の圧縮強度が、80N/mm以上になるものであれば、特に限定されるものではない。セメント質硬化体の圧縮強度が80N/mm未満になるような原料および配合を採用した場合、本発明の製造方法中の吸水工程を行うことによる圧縮強度の向上効果が小さくなり、本発明の目的を達成することが困難となる。
[Molding process]
This step is a step of casting a cement composition containing at least cement, water and a water reducing agent into a mold to obtain an uncured molded product.
The cement composition used in the present invention may be any paste, mortar, or concrete as long as it contains at least cement, water, and a water reducing agent.
Further, the raw materials of the cement composition used in the present invention and the composition thereof are particularly limited as long as the compressive strength of the cementum cured product obtained by the production method of the present invention is 80 N / mm 2 or more. It's not a thing. When raw materials and formulations such that the compressive strength of the cementitious cured product is less than 80 N / mm 2 are adopted, the effect of improving the compressive strength by performing the water absorption step in the production method of the present invention is reduced, and the effect of improving the compressive strength of the present invention is reduced. It becomes difficult to achieve the purpose.

セメントの種類は、特に限定されるものではなく、例えば、普通ポルトランドセメント、早強ポルトランドセメント、超早強ポルトランドセメント、中庸熱ポルトランドセメント、耐硫酸塩ポルトランドセメント、低熱ポルトランドセメント等の各種ポルトランドセメントを使用することができる。
セメントの量は、セメント質硬化体の圧縮強度をより高める観点から、結合材(セメント、および、任意で配合されるセメント以外の無機粉末からなる粉体原料)中のセメントの割合として、好ましくは30質量%以上、より好ましくは40質量%以上、さらに好ましくは60質量%以上、特に好ましくは80質量%以上である。
The type of cement is not particularly limited, and for example, various Portland cements such as ordinary Portland cement, early-strength Portland cement, ultra-early-strength Portland cement, moderate heat Portland cement, sulfate-resistant Portland cement, and low heat Portland cement can be used. Can be used.
The amount of cement is preferably the ratio of cement in the binder (powder raw material consisting of cement and an inorganic powder other than cement which is optionally blended) from the viewpoint of further increasing the compressive strength of the hardened cement material. It is 30% by mass or more, more preferably 40% by mass or more, still more preferably 60% by mass or more, and particularly preferably 80% by mass or more.

水としては、水道水等を使用することができる。
水と結合材の比(水/結合材の質量比)は、セメント質硬化体の圧縮強度をより高める観点から、好ましくは0.35以下、より好ましくは0.33以下、特に好ましくは0.30以下である。
As water, tap water or the like can be used.
The ratio of water to binder (mass ratio of water / binder) is preferably 0.35 or less, more preferably 0.33 or less, and particularly preferably 0., from the viewpoint of further increasing the compressive strength of the cementum cured product. It is 30 or less.

減水剤としては、ナフタレンスルホン酸系、メラミン系、ポリカルボン酸系等の減水剤、AE減水剤、高性能減水剤又は高性能AE減水剤を使用することができる。中でも、セメント組成物の流動性の向上およびセメント質硬化体の圧縮強度の増大の観点から、ナフタレンスルホン酸系又はポリカルボン酸系の高性能減水剤又は高性能AE減水剤が好ましい。
減水剤の配合量は、結合材100質量部に対して、好ましくは0.4〜4.0質量部、より好ましくは0.6〜3.5質量部、さらに好ましくは0.7〜3.0質量部、特に好ましくは0.8〜2.5質量部である。該量が0.4質量部以上であれば、減水性能が向上し、セメント組成物の流動性が向上する。該量が4.0質量部以下であれば、セメント質硬化体の圧縮強度がより高くなる。
As the water reducing agent, a water reducing agent such as naphthalene sulfonic acid type, melamine type, polycarboxylic acid type, AE water reducing agent, high performance water reducing agent or high performance AE water reducing agent can be used. Among them, a naphthalene sulfonic acid-based or polycarboxylic acid-based high-performance water reducing agent or a high-performance AE water reducing agent is preferable from the viewpoint of improving the fluidity of the cement composition and increasing the compressive strength of the cementum cured product.
The blending amount of the water reducing agent is preferably 0.4 to 4.0 parts by mass, more preferably 0.6 to 3.5 parts by mass, and further preferably 0.7 to 3.% by mass with respect to 100 parts by mass of the binder. It is 0 parts by mass, particularly preferably 0.8 to 2.5 parts by mass. When the amount is 0.4 parts by mass or more, the water reduction performance is improved and the fluidity of the cement composition is improved. When the amount is 4.0 parts by mass or less, the compressive strength of the cementum cured product becomes higher.

本発明で用いられるセメント組成物には、本発明の目的を阻害しない範囲内で、必要に応じて他の原料を配合してもよい。必要に応じて配合される他の原料としては、セメント以外の結合材、骨材、繊維、消泡剤、収縮低減剤等が挙げられる。
セメント以外の結合材としては、例えば、シリカフューム、石英粉末(珪石粉末)、火山灰、フライアッシュ、高炉スラグ粉末、石灰石粉末、石膏類(無水石膏等)、膨張材等が挙げられる。これらは1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
If necessary, other raw materials may be added to the cement composition used in the present invention as long as the object of the present invention is not impaired. Examples of other raw materials to be blended as needed include binders other than cement, aggregates, fibers, antifoaming agents, shrinkage reducing agents and the like.
Examples of binders other than cement include silica fume, quartz powder (silica stone powder), volcanic ash, fly ash, blast furnace slag powder, limestone powder, plasters (anhydrous plaster, etc.), and expansion materials. These may be used individually by 1 type, and may be used in combination of 2 or more type.

本発明で用いられるセメント組成物中の単位結合材量(単位体積当たりの結合材の量)は、好ましくは400kg/m以上、より好ましくは450kg/m以上、特に好ましくは500kg/m以上である。該量が400kg/m以上であれば、セメント質硬化体の圧縮強度がより高くなる。 Unit binder amount of cement composition used in the present invention (the amount of the binder per unit volume) is preferably from 400 kg / m 3 or more, more preferably 450 kg / m 3 or more, particularly preferably 500 kg / m 3 That is all. When the amount is 400 kg / m 3 or more, the compressive strength of the cementum cured product becomes higher.

骨材としては、細骨材のみ、または、細骨材と粗骨材の組み合わせが挙げられる。
細骨材としては、川砂、陸砂、山砂、海砂、砕砂、珪砂、人工細骨材、スラグ細骨材またはこれらの混合物等が挙げられる。粗骨材としては、川砂利、陸砂利、山砂利、海砂利、砕石、人工粗骨材、スラグ粗骨材またはこれらの混合物等が挙げられる。
本発明で用いられるセメント組成物中の骨材(細骨材と粗骨材の合計)の割合は、好ましくは65体積%以下、より好ましくは60体積%以下、特に好ましくは55体積%以下である。該割合が65体積%以下であれば、セメント質硬化体の圧縮強度がより高くなる。
Examples of the aggregate include only fine aggregate or a combination of fine aggregate and coarse aggregate.
Examples of the fine aggregate include river sand, land sand, mountain sand, sea sand, crushed sand, silica sand, artificial fine aggregate, slag fine aggregate or a mixture thereof. Examples of the coarse aggregate include river gravel, land gravel, mountain gravel, sea gravel, crushed stone, artificial coarse aggregate, slag coarse aggregate or a mixture thereof.
The proportion of aggregate (total of fine aggregate and coarse aggregate) in the cement composition used in the present invention is preferably 65% by volume or less, more preferably 60% by volume or less, and particularly preferably 55% by volume or less. is there. When the ratio is 65% by volume or less, the compressive strength of the cementum cured product becomes higher.

繊維としては、金属繊維、有機繊維及び炭素繊維からなる群より選ばれる一種以上が挙げられる。セメント組成物が繊維を含むことによって、セメント質硬化体の曲げ強度や破壊エネルギー等を向上させることができる。
繊維の寸法は、好ましくは、直径が0.05〜0.5mmで、長さが5〜25mm、より好ましくは、直径が0.1〜0.3mmで、長さが8〜20mmである。
繊維のアスペクト比(繊維の長さ/繊維の直径)は、好ましくは20〜200、より好ましくは40〜150、特に好ましくは50〜100である。
本発明で用いられるセメント組成物中の繊維の割合は、好ましくは4体積%以下、より好ましくは3体積%以下である。
Examples of the fiber include one or more selected from the group consisting of metal fiber, organic fiber and carbon fiber. When the cement composition contains fibers, it is possible to improve the bending strength, fracture energy, etc. of the cementum hardened body.
The dimensions of the fibers are preferably 0.05 to 0.5 mm in diameter and 5 to 25 mm in length, more preferably 0.1 to 0.3 mm in diameter and 8 to 20 mm in length.
The fiber aspect ratio (fiber length / fiber diameter) is preferably 20-200, more preferably 40-150, and particularly preferably 50-100.
The proportion of fibers in the cement composition used in the present invention is preferably 4% by volume or less, more preferably 3% by volume or less.

消泡剤、収縮低減剤等としては、市販品を使用することができる。
消泡剤の配合量は、結合材100質量部に対して、好ましくは0.001〜0.1質量部、より好ましくは0.01〜0.07質量部、特に好ましくは0.01〜0.05質量部である。該量が0.001質量部以上であれば、セメント質硬化体の圧縮強度が高くなる。該量が0.1質量部を超えると、セメント質硬化体の圧縮強度の向上効果が頭打ちとなる。
収縮低減剤の配合量は、結合材100質量部に対して、好ましくは3質量部以下、より好ましくは0.3〜2.5質量部、特に好ましくは0.5〜2質量部である。該量が3質量部以下であると、セメント質硬化体の圧縮強度がより高くなる。
Commercially available products can be used as the defoaming agent, shrinkage reducing agent and the like.
The amount of the defoaming agent to be blended is preferably 0.001 to 0.1 parts by mass, more preferably 0.01 to 0.07 parts by mass, and particularly preferably 0.01 to 0, based on 100 parts by mass of the binder. It is 0.05 parts by mass. When the amount is 0.001 part by mass or more, the compressive strength of the cementum cured product is high. When the amount exceeds 0.1 parts by mass, the effect of improving the compressive strength of the cementum cured product reaches a plateau.
The blending amount of the shrinkage reducing agent is preferably 3 parts by mass or less, more preferably 0.3 to 2.5 parts by mass, and particularly preferably 0.5 to 2 parts by mass with respect to 100 parts by mass of the binder. When the amount is 3 parts by mass or less, the compressive strength of the cementum cured product becomes higher.

本工程において、セメント組成物の打設を行う前に、セメント組成物を混練する方法としては、特に限定されるものではない。また、混練に用いる装置も特に限定されるものではなく、オムニミキサ、パン型ミキサ、二軸練りミキサ、傾胴ミキサ等の慣用のミキサを使用することができる。さらに、打設(成形)方法も特に限定されるものではない。 In this step, the method of kneading the cement composition before placing the cement composition is not particularly limited. Further, the apparatus used for kneading is not particularly limited, and a conventional mixer such as an omni mixer, a pan-type mixer, a biaxial kneading mixer, and a tilting mixer can be used. Further, the casting (molding) method is not particularly limited.

[1次養生工程]
本工程は、前工程で得られた未硬化の成形体を、10〜40℃で10時間以上、封緘養生または気中養生した後、型枠から脱型し、硬化した成形体を得る工程である。
養生温度は、10〜40℃、好ましくは15〜30℃である。該温度が10℃以上であれば、養生時間を短くすることができる。該温度が40℃以下であれば、セメント質硬化体の圧縮強度がより高くなる。
養生時間は10時間以上、好ましくは12〜72時間、より好ましくは18〜54時間、特に好ましくは24〜48時間である。該時間が10時間以上であれば、脱型の際に、硬化した成形体に欠けや割れ等の欠陥が生じにくくなる。
[Primary curing process]
In this step, the uncured molded product obtained in the previous step is sealed or cured in the air at 10 to 40 ° C. for 10 hours or more, and then removed from the mold to obtain a cured molded product. is there.
The curing temperature is 10 to 40 ° C, preferably 15 to 30 ° C. When the temperature is 10 ° C. or higher, the curing time can be shortened. When the temperature is 40 ° C. or lower, the compressive strength of the cementum cured product becomes higher.
The curing time is 10 hours or more, preferably 12 to 72 hours, more preferably 18 to 54 hours, and particularly preferably 24 to 48 hours. If the time is 10 hours or more, defects such as chips and cracks are less likely to occur in the cured molded product during demolding.

また、本工程において、硬化した成形体が5〜100N/mmの圧縮強度を発現した時に、硬化した成形体を型枠から脱型することが、好ましい。該圧縮強度が5N/mm以上(より好ましくは10N/mm以上、特に好ましくは20N/mm以上)であれば、脱型の際に、硬化した成形体に欠けや割れ等の欠陥が生じにくくなる。該圧縮強度が100N/mm以下(より好ましくは80N/mm以下、特に好ましくは60N/mm以下)であれば、後述する吸水工程において、少ない労力で、硬化した成形体に吸水させることができる。
また、該圧縮強度が、好ましくは5〜30N/mm、より好ましくは5〜25N/mm、特に好ましくは5〜20N/mmであれば、後述する吸水工程において、沸騰していない水の中に浸漬させる場合において、吸水率をより大きくすることができる。
Further, in this step, it is preferable to remove the cured molded product from the mold when the cured molded product exhibits a compressive strength of 5 to 100 N / mm 2. If the compressive strength is 5 N / mm 2 or more (more preferably 10 N / mm 2 or more, particularly preferably 20 N / mm 2 or more), the cured molded product has defects such as chips and cracks during demolding. It is less likely to occur. When the compressive strength is 100 N / mm 2 or less (more preferably 80 N / mm 2 or less, particularly preferably 60 N / mm 2 or less), the cured molded product is allowed to absorb water with less effort in the water absorption step described later. Can be done.
Further, if the compressive strength is preferably 5 to 30 N / mm 2 , more preferably 5 to 25 N / mm 2 , and particularly preferably 5 to 20 N / mm 2 , the water is not boiled in the water absorption step described later. When immersed in, the water absorption rate can be increased.

[吸水工程]
本工程は、前工程で得られた硬化した成形体に吸水させる工程である。
硬化した成形体に吸水させる方法としては、該成形体を水中に浸漬させる方法が挙げられる。
また、該成形体を水中に浸漬させる方法において、短時間で吸水量を増やし、セメント質硬化体の圧縮強度をより高くする観点から、(1)該成形体を、減圧下の水の中に浸漬させる方法、(2)該成形体を、90℃以上の水(好ましくは、沸騰している水)の中に浸漬させた後、該成形体を浸漬させたまま、水温を40℃以下に低下させる方法、又は(3)該成形体を、90℃以上の水(好ましくは、沸騰している水)の中に浸漬させた後、該成形体を90℃以上の水(好ましくは、沸騰している水)から取り出して、次いで、40℃以下の水に浸漬させる方法、が好ましい。
[Water absorption process]
This step is a step of allowing the cured molded product obtained in the previous step to absorb water.
Examples of the method of allowing the cured molded product to absorb water include a method of immersing the molded product in water.
Further, in the method of immersing the molded body in water, from the viewpoint of increasing the amount of water absorption in a short time and increasing the compressive strength of the cementified cured product, (1) the molded body is placed in water under reduced pressure. Method of dipping, (2) After immersing the molded body in water of 90 ° C. or higher (preferably boiling water), the water temperature is lowered to 40 ° C. or lower while the molded body is immersed. Method of lowering, or (3) After immersing the molded product in water at 90 ° C. or higher (preferably boiling water), the molded product is immersed in water at 90 ° C. or higher (preferably boiling). A method of removing the water from the water and then immersing it in water at 40 ° C. or lower is preferable.

上記成形体を、減圧下の水の中に浸漬させる方法としては、真空ポンプや大型の減圧容器等の設備を利用する方法等が挙げられる。
上記成形体を、沸騰している水の中に浸漬させる方法としては、高温高圧容器や、熱温水水槽(熱水または温水を収容した水槽)等の設備を利用する方法等が挙げられる。
硬化した成形体を、減圧下の水または90℃以上の水の中に浸漬させる時間は、吸水率をより高くする観点から、好ましくは3分間以上、より好ましくは8分間以上、特に好ましくは20分間以上である。該時間の上限は特に限定されるものではないが、セメント質硬化体の圧縮強度をより高くする観点から、好ましくは60分間、より好ましくは45分間である。
Examples of the method of immersing the molded product in water under reduced pressure include a method of using equipment such as a vacuum pump and a large decompressing container.
Examples of the method of immersing the molded body in boiling water include a method of using equipment such as a high-temperature and high-pressure container and a hot / hot water tank (a water tank containing hot water or hot water).
The time for immersing the cured molded product in water under reduced pressure or water at 90 ° C. or higher is preferably 3 minutes or longer, more preferably 8 minutes or longer, and particularly preferably 20 minutes or longer from the viewpoint of increasing the water absorption rate. More than a minute. The upper limit of the time is not particularly limited, but is preferably 60 minutes, more preferably 45 minutes from the viewpoint of increasing the compressive strength of the cementum cured product.

吸水工程における吸水率は、セメント組成物がペーストまたはモルタルである場合、φ50×100mmの硬化した成形体100体積%に対する水の割合として、好ましくは0.2体積%以上、より好ましくは0.3〜2.0体積%、さらに好ましくは0.35〜1.7体積%、さらに好ましくは0.35〜1.2体積%、さらに好ましくは0.35〜0.8体積%、さらに好ましくは0.35〜0.6体積%、特に好ましくは0.35〜0.5体積%であり、セメント組成物がコンクリートである場合、φ100×200mmの硬化した成形体100体積%に対する水の割合として、好ましくは0.2体積%以上、より好ましくは0.3〜2.0体積%、さらに好ましくは0.35〜1.7体積%、さらに好ましくは0.35〜1.2体積%、さらに好ましくは0.35〜0.8体積%、さらに好ましくは0.35〜0.6体積%、特に好ましくは0.35〜0.5体積%である。
セメント組成物がペースト、モルタル、コンクリートのいずれであっても、吸水率が0.2体積%以上であれば、セメント質硬化体の圧縮強度をより高めることができる。
吸水率が0.2体積%以下であると、圧縮強度が80N/mm以上のセメント質硬化体を得るための材料の選定が容易となる。
When the cement composition is a paste or mortar, the water absorption rate in the water absorption step is preferably 0.2% by volume or more, more preferably 0.3, as a ratio of water to 100% by volume of the cured compact having a diameter of 50 × 100 mm. ~ 2.0% by volume, more preferably 0.35 to 1.7% by volume, still more preferably 0.35 to 1.2% by volume, still more preferably 0.35 to 0.8% by volume, still more preferably 0. .35 to 0.6% by volume, particularly preferably 0.35 to 0.5% by volume, and when the cement composition is concrete, the ratio of water to 100% by volume of the cured compact of φ100 × 200 mm is It is preferably 0.2% by volume or more, more preferably 0.3 to 2.0% by volume, still more preferably 0.35 to 1.7% by volume, still more preferably 0.35 to 1.2% by volume, still more preferably. Is 0.35 to 0.8% by volume, more preferably 0.35 to 0.6% by volume, and particularly preferably 0.35 to 0.5% by volume.
Regardless of whether the cement composition is paste, mortar, or concrete, the compressive strength of the hardened cementum can be further increased if the water absorption rate is 0.2% by volume or more.
When the water absorption rate is 0.2% by volume or less, it becomes easy to select a material for obtaining a cementum cured product having a compressive strength of 80 N / mm 2 or more.

[2次養生工程]
本工程は、前工程で得られた吸水させた成形体を、15℃以上で養生する工程である。
養生温度は、15℃以上、好ましくは50〜98℃、より好ましくは70〜95℃である。該温度が15℃以上であれば、養生時間をより短くすることができる。養生温度が98℃以下であれば、セメント質硬化体の圧縮強度がより高くなる。
養生時間は、好ましくは1時間以上、より好ましくは2〜72時間、特に好ましくは3〜48時間である。該時間が1時間以上であれば、セメント質硬化体の圧縮強度がより高くなる。
[Secondary curing process]
This step is a step of curing the water-absorbed molded product obtained in the previous step at 15 ° C. or higher.
The curing temperature is 15 ° C. or higher, preferably 50 to 98 ° C., more preferably 70 to 95 ° C. When the temperature is 15 ° C. or higher, the curing time can be shortened. When the curing temperature is 98 ° C. or lower, the compressive strength of the cementum cured product becomes higher.
The curing time is preferably 1 hour or more, more preferably 2 to 72 hours, and particularly preferably 3 to 48 hours. When the time is 1 hour or more, the compressive strength of the cementum hardened product becomes higher.

養生方法としては、特に限定されるものではなく、蒸気養生、温水養生、水中養生、気中養生、及び湿空養生等が挙げられる。
中でも、養生時間の短縮およびセメント質硬化体の圧縮強度の増大の観点から、50〜98℃(好ましくは60〜95℃、より好ましくは70〜95℃)で1時間以上(好ましくは2〜72時間、より好ましくは3〜48時間、さらに好ましくは10〜48時間、特に好ましくは18〜48時間)、蒸気養生または温水養生することが好ましい。
The curing method is not particularly limited, and examples thereof include steam curing, hot water curing, underwater curing, aerial curing, and wet air curing.
Above all, from the viewpoint of shortening the curing time and increasing the compressive strength of the hardened cementum, the temperature is 50 to 98 ° C. (preferably 60 to 95 ° C., more preferably 70 to 95 ° C.) for 1 hour or more (preferably 2 to 72 ° C.). Time, more preferably 3 to 48 hours, still more preferably 10 to 48 hours, particularly preferably 18 to 48 hours), steam curing or hot water curing is preferred.

セメント質硬化体の圧縮強度をより高くする観点から、上述した養生方法によって養生が行われた成形体を、さらに、100〜200℃で1時間以上加熱することが好ましい。
加熱温度は、好ましくは100〜200℃、より好ましくは150〜190℃、特に好ましくは170〜180℃である。加熱温度が100℃以上であれば、加熱時間をより短くすることができる。加熱温度が200℃以下であれば、セメント質硬化体の圧縮強度がより高くなる。
加熱時間は、好ましくは1時間以上、より好ましくは24〜72時間、特に好ましくは36〜48時間である。加熱時間が1時間以上であれば、セメント質硬化体の圧縮強度がより高くなる。
From the viewpoint of increasing the compressive strength of the hardened cementum, it is preferable to further heat the molded product cured by the above-mentioned curing method at 100 to 200 ° C. for 1 hour or more.
The heating temperature is preferably 100 to 200 ° C, more preferably 150 to 190 ° C, and particularly preferably 170 to 180 ° C. When the heating temperature is 100 ° C. or higher, the heating time can be shortened. When the heating temperature is 200 ° C. or lower, the compressive strength of the cementum cured product becomes higher.
The heating time is preferably 1 hour or longer, more preferably 24-72 hours, and particularly preferably 36-48 hours. If the heating time is 1 hour or more, the compressive strength of the cementum cured product becomes higher.

本発明の製造方法によって得られたセメント質硬化体は、従来の製造方法によって得られたセメント質硬化体と比べて、セメント組成物の成分組成(原料の配合)が同じであっても、圧縮強度がより高いものである。 The hardened cementum obtained by the production method of the present invention is compressed as compared with the hardened cementum obtained by the conventional production method even if the component composition (blending of raw materials) of the cement composition is the same. The strength is higher.

以下、本発明を実施例により具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
[使用材料]
使用材料は、以下に示すとおりである。
(1)セメントA(低熱ポルトランドセメント;太平洋セメント社製)
(2)セメントB(シリカフュームプレミックスセメント;太平洋セメント社製)
(3)セメントC( 高炉セメントB種;太平洋セメント社製)
(4)シリカフューム(BET比表面積:17m/g)
(5)珪石粉末(50%累積粒径:7μm、最大粒径:67μm、95%累積粒径:27μm)
(6)細骨材A(珪砂、最大粒径:1.0mm、0.6mm以下の粒径のもの:98質量%、0.3mm以下の粒径のもの:45質量%、0.15mm以下の粒径のもの:3質量%)
(7)細骨材B(砕砂、粗粒率:2.79、表乾密度:2.62g/cm
(8)粗骨材(砕石、粗粒率:6.72、表乾密度:2.62g/cm
(9)ポリカルボン酸系高性能減水剤A(フローリック社製、商品名「フローリックSF500U」)
(10)ポリカルボン酸系高性能減水剤B(BASFジャパン社製、商品名「マスターグレニウムSP8シリーズ」)
(11)消泡剤(BASFジャパン社製、商品名「マスターエア404」)
(12)水(水道水)
Hereinafter, the present invention will be specifically described with reference to Examples, but the present invention is not limited to these Examples.
[Material used]
The materials used are as shown below.
(1) Cement A (low-grade Portland cement; manufactured by Taiheiyo Cement)
(2) Cement B (Silica Fume Premix Cement; manufactured by Taiheiyo Cement Co., Ltd.)
(3) Cement C (Blast furnace cement type B; manufactured by Taiheiyo Cement Co., Ltd.)
(4) Silica fume (BET specific surface area: 17 m 2 / g)
(5) Silica stone powder (50% cumulative particle size: 7 μm, maximum particle size: 67 μm, 95% cumulative particle size: 27 μm)
(6) Fine aggregate A (silica sand, maximum particle size: 1.0 mm, particle size of 0.6 mm or less: 98% by mass, particle size of 0.3 mm or less: 45% by mass, 0.15 mm or less Particle size: 3% by mass)
(7) Fine aggregate B (crushed sand, coarse grain ratio: 2.79, surface dry density: 2.62 g / cm 3 )
(8) Coarse aggregate (crushed stone, coarse grain ratio: 6.72, surface dry density: 2.62 g / cm 3 )
(9) Polycarboxylic acid-based high-performance water reducing agent A (manufactured by Floric, trade name "Floric SF500U")
(10) Polycarboxylic acid-based high-performance water reducing agent B (manufactured by BASF Japan, trade name "Master Grenium SP8 series")
(11) Defoamer (manufactured by BASF Japan, trade name "Master Air 404")
(12) Water (tap water)

[実施例1]
表1に示す配合に従って、セメントA、シリカフューム、及び、珪石粉末を混合した。得られた混合物と細骨材Aを、オムニミキサに投入して、15秒間空練りを行った。
次いで、水、ポリカルボン酸系高性能減水剤A、および消泡剤をオムニミキサに投入して、2分間混練した。
混練後、オムニミキサ内の側壁に付着した混練物を掻き落とし、さらに4分間混練を行った。
[Example 1]
Cement A, silica fume, and silica stone powder were mixed according to the formulation shown in Table 1. The obtained mixture and fine aggregate A were put into an omnimixer and kneaded for 15 seconds.
Next, water, a polycarboxylic acid-based high-performance water reducing agent A, and a defoaming agent were added to the omnimixer and kneaded for 2 minutes.
After kneading, the kneaded material adhering to the side wall in the omnimixer was scraped off, and kneading was further carried out for 4 minutes.

得られた混練物を、φ50×100mmの円筒形の型枠に打設して、未硬化の成形体を得た。打設後、未硬化の成形体について、20℃で48時間、封緘養生を行い、次いで、脱型して、硬化した成形体を得た。
この成形体を、沸騰している水(水温:100℃)に30分間浸漬した後、該成形体を水に浸漬させたまま、水温が30℃以下になるまで冷却した。浸漬前後の成形体の質量を測定し、得られた測定値から、吸水率を算出した。
浸漬後、この成形体を90℃で48時間蒸気養生して、セメント質硬化体を得た。
硬化した成形体の脱型時の圧縮強度、及び、得られたセメント質硬化体の圧縮強度を、「JIS A 1108(コンクリートの圧縮強度試験方法)」に準じて測定した。
The obtained kneaded product was cast into a cylindrical mold having a diameter of 50 × 100 mm to obtain an uncured molded product. After casting, the uncured molded product was sealed and cured at 20 ° C. for 48 hours, and then demolded to obtain a cured molded product.
The molded product was immersed in boiling water (water temperature: 100 ° C.) for 30 minutes, and then cooled while the molded product was immersed in water until the water temperature became 30 ° C. or lower. The mass of the molded product before and after immersion was measured, and the water absorption rate was calculated from the obtained measured values.
After the immersion, the molded product was steam-cured at 90 ° C. for 48 hours to obtain a cementum cured product.
The compressive strength of the cured molded product at the time of demolding and the compressive strength of the obtained cementic cured product were measured according to "JIS A 1108 (compressive strength test method for concrete)".

[実施例2]
水に浸漬後の成形体を、90℃で48時間蒸気養生した後、さらに180℃で48時間加熱を行った以外は、実施例1と同様にして、セメント質硬化体を得た。
得られたセメント質硬化体の圧縮強度を、実施例1と同様にして測定した。
[Example 2]
The molded product after being immersed in water was steam-cured at 90 ° C. for 48 hours and then heated at 180 ° C. for 48 hours in the same manner as in Example 1 to obtain a cementum cured product.
The compressive strength of the obtained hardened cementum was measured in the same manner as in Example 1.

[比較例1]
脱型後の成形体を90℃で48時間蒸気養生した以外は実施例1と同様にして、セメント質硬化体を得た。
得られたセメント質硬化体の圧縮強度を、実施例1と同様にして測定した。
[比較例2]
脱型後の成形体を90℃で48時間蒸気養生し、さらに180℃で48時間加熱を行った以外は、実施例2と同様にして、セメント質硬化体を得た。
得られたセメント質硬化体の圧縮強度を、実施例1と同様にして測定した。
[Comparative Example 1]
A cementum hardened product was obtained in the same manner as in Example 1 except that the molded product after demolding was steam-cured at 90 ° C. for 48 hours.
The compressive strength of the obtained hardened cementum was measured in the same manner as in Example 1.
[Comparative Example 2]
A hardened cementum was obtained in the same manner as in Example 2 except that the molded product after demolding was steam-cured at 90 ° C. for 48 hours and further heated at 180 ° C. for 48 hours.
The compressive strength of the obtained hardened cementum was measured in the same manner as in Example 1.

[実施例3]
表1に示す配合に従って、2軸型強制練りミキサを使用して、セメントBと細骨材Bを、30秒間空練りした後、水、高性能減水剤B、消泡剤をミキサに投入して3分間混練した。次いで、粗骨材をミキサに投入して3分間混練した。5分間静置した後、さらに30秒間混練した。
得られた混練物を、φ100×200mmの円筒形の型枠に打設して、未硬化の成形体を得た。打設後、未硬化の成形体について、20℃で24時間、封緘養生を行い、次いで、脱型して、硬化した成形体を得た。
[Example 3]
According to the formulation shown in Table 1, cement B and fine aggregate B are kneaded for 30 seconds using a biaxial forced kneading mixer, and then water, a high-performance water reducing agent B, and a defoaming agent are added to the mixer. Kneaded for 3 minutes. Then, the coarse aggregate was put into the mixer and kneaded for 3 minutes. After allowing to stand for 5 minutes, it was kneaded for another 30 seconds.
The obtained kneaded product was cast into a cylindrical mold having a diameter of 100 × 200 mm to obtain an uncured molded product. After casting, the uncured molded product was sealed and cured at 20 ° C. for 24 hours, and then demolded to obtain a cured molded product.

この成形体を、沸騰している水に浸漬した後、該成形体を水に浸漬させたまま、水温が30℃以下になるまで冷却した。
浸漬後、この成形体について、材齢が28日となるまで、20℃で水中養生を行い、セメント質硬化体を得た。
吸水率の算出、硬化した成形体の脱型時の圧縮強度、及び、得られたセメント質硬化体の圧縮強度の測定を、実施例1と同様にして行った。
After immersing the molded product in boiling water, the molded product was cooled while being immersed in water until the water temperature became 30 ° C. or lower.
After the immersion, the molded product was cured in water at 20 ° C. until the material age reached 28 days to obtain a cementum cured product.
The water absorption rate was calculated, the compressive strength of the cured molded product at the time of demolding, and the compressive strength of the obtained cementum cured product were measured in the same manner as in Example 1.

[実施例4]
硬化した成形体を沸騰している水に浸漬する代わりに、減圧したデシケーター内で水に浸漬した以外は、実施例3と同様にして、セメント質硬化体を得た。なお、減圧は、アズワン社製の「アスピレーター(AS−01)」を使用して行った。
吸水率の算出、硬化した成形体の脱型時の圧縮強度、及び、得られたセメント質硬化体の圧縮強度の測定を、実施例1と同様にして行った。
[実施例5]
水に浸漬後の成形体について、材齢が28日となるまで、20℃で水中養生を行った後、さらに180℃で48時間加熱を行った以外は、実施例3と同様にして、セメント質硬化体を得た。
得られたセメント質硬化体の圧縮強度を、実施例1と同様にして測定した。
[Example 4]
A cementum cured product was obtained in the same manner as in Example 3 except that the cured molded product was immersed in water in a depressurized desiccator instead of being immersed in boiling water. The depressurization was performed using "Aspirator (AS-01)" manufactured by AS ONE Corporation.
The water absorption rate was calculated, the compressive strength of the cured molded product at the time of demolding, and the compressive strength of the obtained cementum cured product were measured in the same manner as in Example 1.
[Example 5]
The molded product after being immersed in water was cured in water at 20 ° C. until the age of the material reached 28 days, and then heated at 180 ° C. for 48 hours in the same manner as in Example 3. A quality cured product was obtained.
The compressive strength of the obtained hardened cementum was measured in the same manner as in Example 1.

[比較例3]
脱型後の成形体について、材齢が28日となるまで、20℃で水中養生を行った以外は、実施例3と同様にして、セメント質硬化体を得た。
得られたセメント質硬化体の圧縮強度を、実施例1と同様にして測定した。
[比較例4]
脱型後の成形体について、材齢が28日となるまで、20℃で水中養生を行った後、さらに180℃で48時間加熱を行った以外は、実施例3と同様にして、セメント質硬化体を得た。
得られたセメント質硬化体の圧縮強度を、実施例1と同様にして測定した。
[Comparative Example 3]
A hardened cementum was obtained in the same manner as in Example 3 except that the molded product after demolding was cured in water at 20 ° C. until the material age was 28 days.
The compressive strength of the obtained hardened cementum was measured in the same manner as in Example 1.
[Comparative Example 4]
The molded product after demolding was cemented in the same manner as in Example 3 except that it was cured in water at 20 ° C. and then heated at 180 ° C. for 48 hours until the material age was 28 days. A cured product was obtained.
The compressive strength of the obtained hardened cementum was measured in the same manner as in Example 1.

[実施例6]
表1に示す配合に従って、2軸型強制練りミキサを使用して、セメントBと細骨材Bを30秒間空練りした後、水、高性能減水剤B、及び消泡剤をミキサに投入して、2分間混練した。次いで、粗骨材をミキサに投入して2分間混練した。5分間静置した後、さらに30秒間混練した。
得られた混練物を、φ100×200mmの円筒形の型枠に打設して、未硬化の成形体を得た。打設後、未硬化の成形体について、20℃で24時間、封緘養生を行い、次いで、脱型して、硬化した成形体を得た。
この成形体を、沸騰している水に浸漬した後、該成形体を沸騰している水から取り出し、次いで、20℃の水に浸漬して冷却した。
浸漬後、この成形体を55℃で24時間蒸気養生を行った。
吸水率の算出、硬化した成形体の脱型時の圧縮強度、及び、得られたセメント質硬化体の圧縮強度の測定を、実施例1と同様にして行った。
[Example 6]
According to the formulation shown in Table 1, cement B and fine aggregate B are kneaded for 30 seconds using a biaxial forced kneading mixer, and then water, a high-performance water reducing agent B, and a defoaming agent are added to the mixer. And kneaded for 2 minutes. Then, the coarse aggregate was put into the mixer and kneaded for 2 minutes. After allowing to stand for 5 minutes, it was kneaded for another 30 seconds.
The obtained kneaded product was cast into a cylindrical mold having a diameter of 100 × 200 mm to obtain an uncured molded product. After casting, the uncured molded product was sealed and cured at 20 ° C. for 24 hours, and then demolded to obtain a cured molded product.
After immersing the molded product in boiling water, the molded product was taken out of boiling water and then immersed in water at 20 ° C. for cooling.
After the immersion, the molded product was steam-cured at 55 ° C. for 24 hours.
The water absorption rate was calculated, the compressive strength of the cured molded product at the time of demolding, and the compressive strength of the obtained cementum cured product were measured in the same manner as in Example 1.

[比較例5]
脱型後の成形体について、55℃で24時間蒸気養生を行った以外は、実施例6と同様にして、セメント質硬化体を得た。
得られたセメント質硬化体の圧縮強度を、実施例1と同様にして測定した。
[Comparative Example 5]
A hardened cementum was obtained in the same manner as in Example 6 except that the molded product after demolding was steam-cured at 55 ° C. for 24 hours.
The compressive strength of the obtained hardened cementum was measured in the same manner as in Example 1.

[実施例7]
表1に示す配合に従って、2軸型強制練りミキサを使用して、セメントCと細骨材Bを30秒間空練りした後、水、高性能減水剤B、及び消泡剤をミキサに投入して、2分間混練した。次いで、粗骨材をミキサに投入して、1.5分間混練した。5分間静置した後、さらに20秒間混練した。該混練によって得られた混練物を用いた以外は、実施例3と同様にして、セメント質硬化体を得た。
吸水率の算出、硬化した成形体の脱型時の圧縮強度、及び、得られたセメント質硬化体の圧縮強度の測定を、実施例1と同様にして行った。
[Example 7]
According to the formulation shown in Table 1, cement C and fine aggregate B are kneaded for 30 seconds using a biaxial forced kneading mixer, and then water, a high-performance water reducing agent B, and a defoaming agent are added to the mixer. And kneaded for 2 minutes. Then, the coarse aggregate was put into the mixer and kneaded for 1.5 minutes. After allowing to stand for 5 minutes, it was kneaded for another 20 seconds. A cementum hardened product was obtained in the same manner as in Example 3 except that the kneaded product obtained by the kneading was used.
The water absorption rate was calculated, the compressive strength of the cured molded product at the time of demolding, and the compressive strength of the obtained cementum cured product were measured in the same manner as in Example 1.

[比較例6]
脱型後の成形体について、材齢が28日となるまで、20℃で水中養生を行った以外は、実施例7と同様にして、セメント質硬化体を得た。
得られたセメント質硬化体の圧縮強度を実施例1と同様にして測定した。
[Comparative Example 6]
A hardened cementum was obtained in the same manner as in Example 7 except that the molded product after demolding was cured in water at 20 ° C. until the material age was 28 days.
The compressive strength of the obtained hardened cementum was measured in the same manner as in Example 1.

[実施例8]
セメントCの代わりにセメントAを使用し、かつ、水に浸漬後の成形体について、55℃で24時間蒸気養生を行った以外は、実施例7と同様にして、セメント質硬化体を得た。
吸水率の算出、硬化した成形体の脱型時の圧縮強度、及び、得られたセメント質硬化体の圧縮強度の測定を、実施例1と同様にして行った。
[Example 8]
A hardened cementum was obtained in the same manner as in Example 7 except that cement A was used instead of cement C and the molded product after being immersed in water was steam-cured at 55 ° C. for 24 hours. ..
The water absorption rate was calculated, the compressive strength of the cured molded product at the time of demolding, and the compressive strength of the obtained cementum cured product were measured in the same manner as in Example 1.

[比較例7]
脱型後の成形体について、55℃で24時間蒸気養生を行って、セメント質硬化体を得た以外は、実施例8と同様にして、セメント質硬化体を得た。
得られたセメント質硬化体の圧縮強度を実施例1と同様にして測定した。
結果を表2に示す。
[Comparative Example 7]
The molded product after demolding was steam-cured at 55 ° C. for 24 hours to obtain a cementum-cured product in the same manner as in Example 8 except that a cementum-cured product was obtained.
The compressive strength of the obtained hardened cementum was measured in the same manner as in Example 1.
The results are shown in Table 2.

Figure 0006868079
Figure 0006868079

Figure 0006868079
Figure 0006868079

表2から、本発明の製造方法によって得られたセメント質硬化体(実施例1〜8)は、吸水工程を行わない製造方法によって得られたセメント質硬化体(比較例1〜7)と比べて、圧縮強度が向上していることがわかる。
具体的には、実施例1におけるセメント質硬化体は、比較例1におけるセメント質硬化体と成分組成(原料の配合)が同じであり、かつ、吸水工程を行う点を除いて、比較例1の製造方法と同様にして製造されたものであるが、比較例1の圧縮強度(202N/mm)よりも大きい圧縮強度(238N/mm)を有することがわかる。
From Table 2, the cementum cured product (Examples 1 to 8) obtained by the production method of the present invention is compared with the cementum cured product (Comparative Examples 1 to 7) obtained by the production method without the water absorption step. It can be seen that the compressive strength is improved.
Specifically, the hardened cementum in Example 1 has the same composition (blending of raw materials) as the hardened cementum in Comparative Example 1, except that a water absorption step is performed. production method and although those prepared in a similar manner, it can be seen that having a larger compressive strength than compressive strength of Comparative example 1 (202N / mm 3) ( 238N / mm 3).

吸水工程を含むことによる上述の知見(実施例1と比較例1の差異)は、実施例2(圧縮強度:357N/mm)と比較例2(圧縮強度:290N/mm)、実施例3(圧縮強度:167N/mm)と比較例3(圧縮強度:143N/mm)、実施例5(圧縮強度:235N/mm)と比較例4(圧縮強度:197N/mm)、実施例6(圧縮強度:132N/mm)と比較例5(圧縮強度:115N/mm)、実施例7(圧縮強度:102N/mm)と比較例6(圧縮強度:92N/mm)、又は実施例8(圧縮強度:102N/mm)と比較例7(圧縮強度:90N/mm)を、各々、比較した場合であっても、同様に認められる。 The above-mentioned findings (difference between Example 1 and Comparative Example 1) by including the water absorption step are found in Example 2 (compressive strength: 357 N / mm 3 ) and Comparative Example 2 (compressive strength: 290 N / mm 3 ). 3 (compressive strength: 167 N / mm 3 ) and Comparative Example 3 (compressive strength: 143 N / mm 3 ), Example 5 (compressive strength: 235 N / mm 3 ) and Comparative Example 4 (compressive strength: 197 N / mm 3 ), example 6 (compressive strength: 132N / mm 3) and Comparative example 5 (compressive strength: 115N / mm 3), example 7 (compressive strength: 102N / mm 3) and Comparative example 6 (compressive strength: 92N / mm 3 ), or example 8 (compressive strength: 102N / mm 3) and Comparative example 7 (compressive strength: the 90 N / mm 3), respectively, even when compared, observed in the same manner.

Claims (3)

圧縮強度が80N/mm以上のセメント質硬化体の製造方法であって、
少なくともセメントと水と減水剤を含むセメント組成物を型枠内に打設して、未硬化の成形体を得る成形工程と、
上記未硬化の成形体を、10〜40℃で10時間以上、封緘養生または気中養生した後、上記型枠から脱型し、硬化した成形体を得る1次養生工程と、
上記硬化した成形体を、減圧下の水の中に浸漬させることによって、上記硬化した成形体に吸水させる吸水工程と、
上記吸水させた成形体を、15℃以上で養生する2次養生工程(ただし、減圧下の水の中に浸漬させる場合を除く。)を含むことを特徴とするセメント質硬化体の製造方法。
A method for producing a hardened cementum having a compressive strength of 80 N / mm 2 or more.
A molding process in which a cement composition containing at least cement, water, and a water reducing agent is cast into a mold to obtain an uncured molded product.
The uncured molded product is sealed or cured in the air at 10 to 40 ° C. for 10 hours or more, and then removed from the mold to obtain a cured molded product.
A water absorption step of immersing the cured molded product in water under reduced pressure to cause the cured molded product to absorb water.
A method for producing a hardened cementum, which comprises a secondary curing step of curing the water-absorbed molded product at 15 ° C. or higher (excluding the case of immersing the molded product in water under reduced pressure).
上記1次養生工程において、上記硬化した成形体が5〜100N/mmの圧縮強度を発現した時に、上記硬化した成形体を上記型枠から脱型する請求項1に記載のセメント質硬化体の製造方法。 The cementic cured product according to claim 1, wherein in the primary curing step, when the cured molded product exhibits a compressive strength of 5 to 100 N / mm 2, the cured molded product is removed from the mold. Manufacturing method. 上記2次養生工程が、上記吸水させた成形体を水中養生することによって行われる請求項1又は2に記載のセメント質硬化体の製造方法。 The method for producing a hardened cementum according to claim 1 or 2, wherein the secondary curing step is performed by curing the water-absorbed molded product in water.
JP2019210273A 2019-11-21 2019-11-21 Manufacturing method of hardened cementum Active JP6868079B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019210273A JP6868079B2 (en) 2019-11-21 2019-11-21 Manufacturing method of hardened cementum

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019210273A JP6868079B2 (en) 2019-11-21 2019-11-21 Manufacturing method of hardened cementum

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2015127931A Division JP6622013B2 (en) 2015-06-25 2015-06-25 Method for producing hardened cementitious body

Publications (2)

Publication Number Publication Date
JP2020023440A JP2020023440A (en) 2020-02-13
JP6868079B2 true JP6868079B2 (en) 2021-05-12

Family

ID=69618226

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019210273A Active JP6868079B2 (en) 2019-11-21 2019-11-21 Manufacturing method of hardened cementum

Country Status (1)

Country Link
JP (1) JP6868079B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3158210B2 (en) * 1991-04-11 2001-04-23 大成建設株式会社 Method for densifying the structure of cured product of hydraulic material
US6024791A (en) * 1993-03-25 2000-02-15 Mitomo Shoji Kabushiki Kaisha Molded bodies of cement type admixed and kneaded material having excellent bending strength and compression strength and a method of manufacturing the same
JP6516411B2 (en) * 2013-06-17 2019-05-22 宇部興産株式会社 High strength cement mortar composition and method of producing hardened high strength cement mortar

Also Published As

Publication number Publication date
JP2020023440A (en) 2020-02-13

Similar Documents

Publication Publication Date Title
JP6654964B2 (en) Cement composition
DE102016106642A1 (en) Process for the production of aerated concrete molded bodies
JP2018168003A (en) Method for producing high-strength precast concrete
JP2012087048A (en) Fly ash concrete and method for producing the same
JP5373677B2 (en) Manufacturing method of high-strength precast concrete
JP6940994B2 (en) Cement composition
JP2010228953A (en) Cement composition
JP6563270B2 (en) Cementitious hardened body and method for producing the same
JP6868079B2 (en) Manufacturing method of hardened cementum
JP2017100909A (en) White cement composition and manufacturing method of cement cured body using the same
JP5724188B2 (en) Concrete production method
JP6949568B2 (en) Explosion-proof panel and its manufacturing method
JP6622013B2 (en) Method for producing hardened cementitious body
JP6264644B2 (en) Admixture, cement composition and hardened cement
JP7157606B2 (en) Method for producing cementitious hardened body
TWI639578B (en) Hydration hardened body and method for manufacturing the same
JP6949524B2 (en) Cement composition
JP6646908B2 (en) Concrete member for high-speed traffic system structure and method of manufacturing the same
JP7252010B2 (en) Method for producing cementitious hardened body
JP6238356B2 (en) Method for manufacturing spliton block
JP7120881B2 (en) Method for producing cementitious hardened body
JP7020893B2 (en) Method for manufacturing cement composition and hardened cementum
JP2007269591A (en) Method of producing concrete product, and concrete product
JP5840341B2 (en) Method for producing high-strength concrete
JP2022152433A (en) Cement composition and method for manufacturing ultra-high strength cementitious hardened body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201009

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201020

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210406

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210409

R150 Certificate of patent or registration of utility model

Ref document number: 6868079

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250