JP6864988B2 - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
JP6864988B2
JP6864988B2 JP2016026677A JP2016026677A JP6864988B2 JP 6864988 B2 JP6864988 B2 JP 6864988B2 JP 2016026677 A JP2016026677 A JP 2016026677A JP 2016026677 A JP2016026677 A JP 2016026677A JP 6864988 B2 JP6864988 B2 JP 6864988B2
Authority
JP
Japan
Prior art keywords
heat transfer
support hole
transfer tube
peripheral surface
inner peripheral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016026677A
Other languages
Japanese (ja)
Other versions
JP2017145985A (en
Inventor
誠道 池田
誠道 池田
山▲崎▼ 淳司
淳司 山▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Precision Products Co Ltd
Original Assignee
Sumitomo Precision Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Precision Products Co Ltd filed Critical Sumitomo Precision Products Co Ltd
Priority to JP2016026677A priority Critical patent/JP6864988B2/en
Priority to KR1020170010182A priority patent/KR20170096579A/en
Publication of JP2017145985A publication Critical patent/JP2017145985A/en
Application granted granted Critical
Publication of JP6864988B2 publication Critical patent/JP6864988B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/007Auxiliary supports for elements
    • F28F9/013Auxiliary supports for elements for tubes or tube-assemblies
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0061Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for phase-change applications
    • F28D2021/0064Vaporizers, e.g. evaporators

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Description

ここに開示する技術は、熱交換装置に関する。 The techniques disclosed herein relate to heat exchangers.

特許文献1には、例えば低温液化ガスといった流体の昇温を行う熱交換装置の1つとして、水中燃焼式気化装置(Submerged Combustion Vaporizer)が記載されている。水中燃焼式気化装置は、液化天然ガスを気化するための装置であり、水槽内に浸漬されかつ、バーナーからの燃焼ガスを、周面に形成された気泡噴出孔を通じて水中に噴出する複数のスパージパイプと、水槽内に浸漬されかつ、スパージパイプの上側に配置された伝熱管を有する熱交換器と、を備えている。水中に気泡として噴出された燃焼ガスが水槽内の水を撹拌しつつ、伝熱管内を流れる低温液化ガスを加熱する。このことによって、低温液化ガスを気化させる。 Patent Document 1 describes an underwater combustion type vaporizer (Submerged Combustion Vaporizer) as one of the heat exchange devices for raising the temperature of a fluid such as a low temperature liquefied gas. The underwater combustion type vaporizer is a device for vaporizing liquefied natural gas, and is a plurality of spurge pipes that are immersed in a water tank and eject combustion gas from a burner into water through bubble ejection holes formed on the peripheral surface. And a heat exchanger having a heat transfer tube immersed in a water tank and arranged above the spurge pipe. The combustion gas ejected as bubbles into the water heats the low-temperature liquefied gas flowing in the heat transfer tube while stirring the water in the water tank. This vaporizes the cryogenic liquefied gas.

また、水中燃焼式気化装置と同様に、水槽内に配設したスパージパイプから高温のガスを気泡として噴出することによって、水槽内に浸漬されかつ、スパージパイプの上側に配置された伝熱管内を流れる低温液化ガスを気化する気化装置として、スチームエジェクタ式気化装置等の、中間熱媒体式気化装置も知られている。 Further, as in the case of the underwater combustion type vaporizer, a high temperature gas is ejected as bubbles from a spurge pipe arranged in the water tank, so that the gas is immersed in the water tank and flows in a heat transfer tube arranged above the spurge pipe. As a vaporizer for vaporizing the liquefied gas, an intermediate heat medium type vaporizer such as a steam ejector type vaporizer is also known.

さらに、水槽内に配設したスパージパイプから高温のガスを気泡として噴出することによって、水槽内に浸漬した熱交換器の伝熱管内を流れる天然ガス等の温度を高めるよう構成された熱交換装置も知られている。 Furthermore, there is also a heat exchange device configured to raise the temperature of natural gas or the like flowing in the heat transfer tube of the heat exchanger immersed in the water tank by ejecting high-temperature gas as bubbles from a spurge pipe arranged in the water tank. Are known.

特開2015−55269号公報JP-A-2015-55269

前述した水中燃焼式気化装置や中間熱媒体式気化装置等を含む熱交換装置において、水槽内に浸漬された伝熱管は支持部材によって支持される。支持部材は、特許文献1の図2に示されているように、伝熱管の管軸に直交するように広がる板状の部材であって、特許文献1には明示されていないが、厚み方向に貫通する支持孔を有している。伝熱管は、支持部材を貫通するように支持孔に内挿されることで、支持部材に支持される。支持部材は、例えばフェノール系樹脂等の合成樹脂によって構成される。 In the heat exchange device including the above-mentioned underwater combustion type vaporizer, intermediate heat medium type vaporizer, and the like, the heat transfer tube immersed in the water tank is supported by the support member. As shown in FIG. 2 of Patent Document 1, the support member is a plate-shaped member that spreads so as to be orthogonal to the tube axis of the heat transfer tube, and is not specified in Patent Document 1, but is in the thickness direction. It has a support hole that penetrates through. The heat transfer tube is supported by the support member by being inserted into the support hole so as to penetrate the support member. The support member is made of a synthetic resin such as a phenolic resin.

本願発明者らは、こうした構成の熱交換装置において、ステンレス製の伝熱管の腐食が起こり得ることを見出した。 The inventors of the present application have found that corrosion of a heat transfer tube made of stainless steel can occur in a heat exchange device having such a configuration.

ここに開示する技術は、かかる点に鑑みてなされたものであり、その目的とするところは、水槽内に浸漬した伝熱管を有する熱交換装置において、伝熱管の腐食を防止することにある。 The technique disclosed herein has been made in view of this point, and an object thereof is to prevent corrosion of the heat transfer tube in a heat exchange device having a heat transfer tube immersed in a water tank.

本願発明者らが、熱交換装置における伝熱管の腐食について検討をしたところ、この腐食は、支持部材が伝熱管を支持している箇所における隙間腐食であることが判明した。 When the inventors of the present application examined the corrosion of the heat transfer tube in the heat exchange device, it was found that this corrosion was the crevice corrosion at the place where the support member supports the heat transfer tube.

つまり、水槽に貯留されている水は、一般的には工業用水であり、塩化物イオンの濃度が比較的高い。一方で、支持部材の支持箇所には、ステンレス製の伝熱管の外周面と、合成樹脂製の支持孔の内周面とが接触している箇所に隙間が形成される。隙間内部に塩化物イオンが濃縮される結果、伝熱管の不動態皮膜が破壊されて、伝熱管が局部的に腐食してしまうのである。 That is, the water stored in the aquarium is generally industrial water and has a relatively high concentration of chloride ions. On the other hand, in the support portion of the support member, a gap is formed at a portion where the outer peripheral surface of the stainless steel heat transfer tube and the inner peripheral surface of the support hole made of synthetic resin are in contact with each other. As a result of the concentration of chloride ions inside the gap, the passivation film of the heat transfer tube is destroyed and the heat transfer tube is locally corroded.

ここで、水中燃焼式気化装置や中間熱媒体式気化装置等の熱交換装置が運転すると、水槽内の水が激しく流動するため、隙間内部に塩化物イオンが濃縮されることが抑制される。つまり、伝熱管の腐食が防止される。しかしながら、水中燃焼式気化装置や中間熱媒体式気化装置等は、急激な需要増加をカバーするための、ピークシェービング用やエマージェンシー用としても使用される場合があり、その場合、長期間に亘って運転されないことがある。長期間に亘って運転されずに、水槽内の水が停滞した状態が継続すると、伝熱管の隙間腐食が起こり易くなる。 Here, when a heat exchange device such as an underwater combustion type vaporizer or an intermediate heat medium type vaporizer is operated, the water in the water tank flows violently, so that the concentration of chloride ions in the gap is suppressed. That is, corrosion of the heat transfer tube is prevented. However, underwater combustion type vaporizers, intermediate heat medium type vaporizers, etc. may also be used for peak shaving and emergency to cover a rapid increase in demand, in which case, for a long period of time. It may not be driven. If the water in the water tank remains stagnant without being operated for a long period of time, crevice corrosion of the heat transfer tube is likely to occur.

伝熱管の腐食は、支持部材が伝熱管を支持している箇所において起こることから、熱交換装置が長期間に亘って運転されないときには、水槽内の支持部材の位置を、定期的にずらすことが考えられる。例えば支持部材の配設位置をずらすことによって、伝熱管と支持孔との接触箇所を、定期的に変更すれば、伝熱管の隙間腐食を抑制することが可能になる。しかしながら、この対策は、メンテナンスが煩雑になってしまうという不都合がある。 Corrosion of the heat transfer tube occurs where the support member supports the heat transfer tube. Therefore, when the heat exchange device is not operated for a long period of time, the position of the support member in the water tank may be shifted regularly. Conceivable. For example, by shifting the arrangement position of the support member and periodically changing the contact point between the heat transfer tube and the support hole, it is possible to suppress the interstitial corrosion of the heat transfer tube. However, this measure has the disadvantage that maintenance becomes complicated.

そこで、本願発明者等は、伝熱管と支持孔との接触面積を、できるだけ小さくすることで、伝熱管の腐食を防止することにした。 Therefore, the inventors of the present application have decided to prevent corrosion of the heat transfer tube by making the contact area between the heat transfer tube and the support hole as small as possible.

ここに開示する熱交換装置は、水槽内に浸漬されかつ、高温のガスを水中に噴出するよう構成されたスパージパイプと、前記水槽内における前記スパージパイプの上側に配置された伝熱管を有しかつ、前記スパージパイプから噴出された気泡による水の攪拌と加熱により、前記伝熱管の内部を流れる流体を昇温するように構成された熱交換器と、前記水槽内に浸漬されかつ、前記伝熱管を支持するように構成された支持部材と、を備える。
Heat exchanger you disclosed herein, and is immersed in the water tank has a Supajipaipu configured to jet a high-temperature gas in water, the heat transfer tubes disposed on the upper side of the Supajipaipu in the water tank and A heat exchanger configured to raise the temperature of the fluid flowing inside the heat transfer tube by stirring and heating water by bubbles ejected from the spurge pipe, and the heat transfer tube immersed in the water tank. It comprises a support member configured to support it.

前記支持部材は、前記伝熱管の管軸に直交するように広がる板状の部材であって、前記伝熱管が貫通する支持孔を有し、前記支持孔は、その内周面が、前記支持部材の厚み方向にテーパ状に形成され、前記支持孔の最小径は、前記伝熱管の外径よりも大であり、前記伝熱管は、前記支持孔の最小径のエッジ状の箇所に、点接触、又は、線接触するように接触して支持されている。
The support member is a plate-shaped member that extends so as to be orthogonal to the tube axis of the heat transfer tube, and has a support hole through which the heat transfer tube penetrates. is tapered in the thickness direction of the member, the smallest diameter of the support hole is larger than the outer diameter of the heat transfer tubes, the heat transfer tube, the minimum diameter of the edge-shaped portions of said support hole, the point It is supported by contact so as to make contact or line contact.

この構成によると、支持孔の内周面が、支持部材の厚み方向にテーパ状となっているため、支持孔内に挿入された伝熱管の外周面は、支持孔における最小径の箇所でのみ、支持孔の内周面と接触する。支持孔の内周面と伝熱管の外周面との接触箇所が、支持部材の厚み方向に広がらないため、支持孔の内周面と伝熱管の外周面との接触面積は、小さくなる。その結果、支持孔の内周面と、伝熱管の外周面との接触箇所における隙間腐食を、抑制することが可能になる。 According to this configuration, since the inner peripheral surface of the support hole is tapered in the thickness direction of the support member, the outer peripheral surface of the heat transfer tube inserted into the support hole is only at the portion having the smallest diameter in the support hole. , Contact the inner peripheral surface of the support hole. Since the contact point between the inner peripheral surface of the support hole and the outer peripheral surface of the heat transfer tube does not widen in the thickness direction of the support member, the contact area between the inner peripheral surface of the support hole and the outer peripheral surface of the heat transfer tube becomes smaller. As a result, it becomes possible to suppress crevice corrosion at the contact points between the inner peripheral surface of the support hole and the outer peripheral surface of the heat transfer tube.

前記支持孔の最小径は、前記伝熱管の外径よりも大であり、前記伝熱管は、前記支持孔の最小径のエッジ状の箇所に接触して支持されため伝熱管の外周面は、支持孔の内周面と、点接触、又は、線接触する。両者の接触面積が小さくなるため、支持孔の内周面と、伝熱管の外周面との接触箇所における隙間腐食を、抑制することが可能になる。
The minimum diameter of the support hole, than the outer diameter of the heat transfer tube Ri Oh large, the heat transfer tube, since that will be supported in contact with the minimum diameter of the edge-shaped portions of said support hole, the outer periphery of the heat transfer tube The surface makes point contact or line contact with the inner peripheral surface of the support hole. Since the contact area between the two is small, it is possible to suppress crevice corrosion at the contact point between the inner peripheral surface of the support hole and the outer peripheral surface of the heat transfer tube.

ここで、「点接触」は、接触面積が微小であって、支持孔の内周面と伝熱管の外周面との接触部分が、実質的に点とみなすことができるような接触状態を意味し、数学的な意味における「点」とは異なる。また、「線接触」も、接触幅が微小であって、支持孔の内周面と伝熱管の外周面との接触部分が、実質的に線とみなすことができるような接触状態を意味し、数学的な意味における「線」とは異なる。また、「線接触」は、支持孔の内周面と伝熱管の外周面との接触部分が、伝熱管の周方向、又は、管軸方向に、ある程度の長さを有し、この意味で「点接触」と相違する。Here, "point contact" means a contact state in which the contact area is very small and the contact portion between the inner peripheral surface of the support hole and the outer peripheral surface of the heat transfer tube can be regarded as a substantially point. However, it is different from the "point" in the mathematical sense. Further, "line contact" also means a contact state in which the contact width is very small and the contact portion between the inner peripheral surface of the support hole and the outer peripheral surface of the heat transfer tube can be regarded as a line substantially. , Different from "line" in the mathematical sense. Further, "line contact" means that the contact portion between the inner peripheral surface of the support hole and the outer peripheral surface of the heat transfer tube has a certain length in the circumferential direction of the heat transfer tube or the tube axis direction. It is different from "point contact".

例えば、伝熱管が円管であるときに、支持部材の支持孔を横断面円形状とすれば、伝熱管の外周面は、支持孔における最小径の箇所において一点で接触する。支持孔の内周面と伝熱管の外周面との接触面積が小さくなって、支持孔の内周面と、伝熱管の外周面との接触箇所における隙間腐食を、抑制することが可能になる。また、伝熱管が円管であるときに、支持部材の支持孔を横断面円形状とすれば、両者の接触箇所は、伝熱管の最下位置でかつ、支持孔の最下位置となる。ここで、伝熱管の位置がずれて、支持孔の内周面と伝熱管の外周面との接触箇所が変化しても、支持孔の内周面と伝熱管の外周面とが共に円形状であれば、両者は、常に、一点で接触する。この構成は、支持孔の内周面と伝熱管の外周面との接触面積を、常に小さく保つことが可能である。 For example, when the heat transfer tube is a circular tube, if the support hole of the support member has a circular cross section, the outer peripheral surfaces of the heat transfer tube come into contact with each other at a point having the smallest diameter in the support hole. The contact area between the inner peripheral surface of the support hole and the outer peripheral surface of the heat transfer tube becomes smaller, and it becomes possible to suppress crevice corrosion at the contact point between the inner peripheral surface of the support hole and the outer peripheral surface of the heat transfer tube. .. Further, when the heat transfer tube is a circular tube, if the support hole of the support member has a circular cross-sectional shape, the contact point between the two is the lowest position of the heat transfer tube and the lowest position of the support hole. Here, even if the position of the heat transfer tube shifts and the contact point between the inner peripheral surface of the support hole and the outer peripheral surface of the heat transfer tube changes, both the inner peripheral surface of the support hole and the outer peripheral surface of the heat transfer tube have a circular shape. If so, they will always come into contact at one point. With this configuration, the contact area between the inner peripheral surface of the support hole and the outer peripheral surface of the heat transfer tube can always be kept small.

前記支持孔の内周面には、前記伝熱管の前記管軸に沿う方向に伸びる複数の凹溝が、縞状に形成されている、としてもよい。 On the inner peripheral surface of the support hole, a plurality of concave grooves extending in a direction along the tube axis of the heat transfer tube may be formed in a striped pattern.

こうすることで、支持孔の内周面と、伝熱管の外周面との接触箇所、つまり、支持孔の最小径の箇所において、凹溝の分だけ、支持孔の内周面と伝熱管の外周面との接触面積が小さくなる。支持孔の内周面と伝熱管の外周面との接触箇所における隙間腐食を、さらに抑制することが可能になる。 By doing so, at the contact point between the inner peripheral surface of the support hole and the outer peripheral surface of the heat transfer tube, that is, the part having the minimum diameter of the support hole, the inner peripheral surface of the support hole and the heat transfer tube are formed by the amount of the concave groove. The contact area with the outer peripheral surface becomes smaller. Gap corrosion at the contact points between the inner peripheral surface of the support hole and the outer peripheral surface of the heat transfer tube can be further suppressed.

前記支持孔の内周面には、格子状の凹部が形成されている、としてもよい。こうすることで、支持孔の内周面と、伝熱管の外周面との接触箇所において、凹部の分だけ、支持孔の内周面と伝熱管の外周面との接触面積が小さくなる。支持孔の内周面と伝熱管の外周面との接触箇所における隙間腐食を、さらに抑制することが可能になる。 A grid-like recess may be formed on the inner peripheral surface of the support hole. By doing so, at the contact point between the inner peripheral surface of the support hole and the outer peripheral surface of the heat transfer tube, the contact area between the inner peripheral surface of the support hole and the outer peripheral surface of the heat transfer tube is reduced by the amount of the recess. Gap corrosion at the contact points between the inner peripheral surface of the support hole and the outer peripheral surface of the heat transfer tube can be further suppressed.

以上説明したように、前記の熱交換装置によると、支持孔内に挿入された伝熱管の外周面と、支持孔の内周面との接触面積が小さくなるから、支持孔の内周面と、伝熱管の外周面との接触箇所における隙間腐食を、抑制することが可能になる。 As described above, according to the heat exchange device, the contact area between the outer peripheral surface of the heat transfer tube inserted into the support hole and the inner peripheral surface of the support hole becomes smaller, so that the contact area with the inner peripheral surface of the support hole becomes smaller. , Gap corrosion at the contact point with the outer peripheral surface of the heat transfer tube can be suppressed.

図1は、水中燃焼式気化装置の全体構成を示す概念図である。FIG. 1 is a conceptual diagram showing the overall configuration of an underwater combustion type vaporizer. 図2は、水槽内に配設された熱交換器とスパージパイプとを示す正面図である。FIG. 2 is a front view showing a heat exchanger and a spurge pipe arranged in a water tank. 図3は、図2に示す熱交換器とスパージパイプとの平面図である。FIG. 3 is a plan view of the heat exchanger shown in FIG. 2 and the spurge pipe. 図4は、支持部材の一部を拡大して示す側面図である。FIG. 4 is an enlarged side view showing a part of the support member. 図5は、図4のV−V断面を示す図である。FIG. 5 is a diagram showing a VV cross section of FIG. 図6は、支持孔の部分を拡大して示す側面図である。FIG. 6 is an enlarged side view showing a portion of the support hole. 図7は、図4のVII−VII断面を示す図である。FIG. 7 is a diagram showing a cross section of VII-VII of FIG. 図8(a)〜(c)は、支持孔の変形例を示す図である。8 (a) to 8 (c) are views showing a modified example of the support hole. 図9は、横断面矩形状の支持孔を示す図6対応図である。FIG. 9 is a view corresponding to FIG. 6 showing a support hole having a rectangular cross section. 図10は、支持孔の変形例を示す図である。FIG. 10 is a diagram showing a modified example of the support hole. 図11は、横断面菱形の支持孔を示す図6対応図である。FIG. 11 is a diagram corresponding to FIG. 6 showing a support hole having a diamond-shaped cross section. 図12(a)〜(c)は、支持孔の変形例を示す図である。12 (a) to 12 (c) are views showing a modified example of the support hole. 図13は、支持孔の内周面に形成する凹溝を例示する図である。FIG. 13 is a diagram illustrating a concave groove formed on the inner peripheral surface of the support hole. 図14は、支持孔の内周面に形成する格子状の凹部を例示する図である。FIG. 14 is a diagram illustrating a grid-like recess formed on the inner peripheral surface of the support hole. 図15は、支持孔の変形例を示す図6対応図である。FIG. 15 is a diagram corresponding to FIG. 6 showing a modified example of the support hole.

以下、熱交換装置の実施形態を図面に基づいて説明する。図1は、熱交換装置の一つとしての水中燃焼式気化装置1の全体を概略的に示している。図2及び図3はそれぞれ、水槽11内に浸漬された熱交換器32、スパージパイプ15及び伝熱管31を支持する支持部材4の構成を示している。水中燃焼式気化装置1は、低温液化ガスの気化装置の1つであり、ここでは、液化天然ガス(LNG)を気化する。 Hereinafter, embodiments of the heat exchange apparatus will be described with reference to the drawings. FIG. 1 schematically shows the entire underwater combustion type vaporizer 1 as one of the heat exchange devices. 2 and 3, respectively, show the configuration of the support member 4 that supports the heat exchanger 32, the spurge pipe 15, and the heat transfer tube 31 immersed in the water tank 11. The underwater combustion type vaporizer 1 is one of the vaporizers for the low temperature liquefied gas, and here, the liquefied natural gas (LNG) is vaporized.

水中燃焼式気化装置1は、例えば直方体状の水槽11中に浸漬されると共に、LNGの流路となる多数の伝熱管31が多段に曲げ成形されて構成された熱交換器32を備えている。各伝熱管31の一端は、LNGの入口となるLNG入口管12bに連通し、他端が、気化した天然ガス(NG)の出口となるNG出口管12cに連通している。図1では、伝熱管31は簡易化して図示しているが、実際には、図2及び図3に示すように、X方向に延びると共に、Z方向に多段に曲げ成形された伝熱管31が、Y方向に多数、並んで配置されており、各伝熱管31は、LNG入口管12bに接続されるLNG入口ヘッダ33と、NG出口管12cに接続されるNG出口ヘッダ34とのそれぞれに連通している。伝熱管31の、曲げの段数、本数、及び配置は、水中燃焼式気化装置1の性能に応じて、適宜決定される。 The underwater combustion type vaporizer 1 includes, for example, a heat exchanger 32 that is immersed in a rectangular parallelepiped water tank 11 and has a large number of heat transfer tubes 31 that serve as LNG flow paths bent and molded in multiple stages. .. One end of each heat transfer tube 31 communicates with the LNG inlet tube 12b, which is the inlet of LNG, and the other end communicates with the NG outlet tube 12c, which is the outlet of vaporized natural gas (NG). In FIG. 1, the heat transfer tube 31 is shown in a simplified manner, but in reality, as shown in FIGS. 2 and 3, the heat transfer tube 31 extending in the X direction and being bent and formed in multiple stages in the Z direction is actually formed. , A large number of heat transfer tubes 31 are arranged side by side in the Y direction, and each heat transfer tube 31 communicates with the LNG inlet header 33 connected to the LNG inlet tube 12b and the NG outlet header 34 connected to the NG outlet tube 12c. doing. The number, number, and arrangement of bending steps of the heat transfer tube 31 are appropriately determined according to the performance of the underwater combustion type vaporizer 1.

水槽11は、例えば矩形板状の天板11aで覆われている。この天板11aは、作業員が歩くこともでき、その所定箇所に円筒状のダウンカマー13が水槽11内に浸漬するように配設されている。 The water tank 11 is covered with, for example, a rectangular plate-shaped top plate 11a. The top plate 11a is arranged so that a worker can walk and a cylindrical downcomer 13 is immersed in the water tank 11 at a predetermined position thereof.

ダウンカマー13の上端には、図外の燃料供給源から燃料供給管6を介して供給された燃料ガスと、ブロワー14を通じて供給された空気と、を燃焼させるバーナー2が設けられている。 At the upper end of the downcomer 13, a burner 2 for burning the fuel gas supplied from the fuel supply source (not shown) via the fuel supply pipe 6 and the air supplied through the blower 14 is provided.

水槽11の底部には、ダウンカマー13に連通すると共に、バーナー2の燃焼ガスが噴出する多数の気泡噴出孔(図示省略)が形成されたスパージパイプ15が配置されている。このスパージパイプ15も、図1では1本しか描いていないが、実際には、図2及び図3に示すように、各々がY方向に延びると共に、X方向に多数並べられており、熱交換器32の全体に燃焼ガスを含む気泡Bが供給されるようになっている。スパージパイプ15の本数やその配置は特に限定されない。 At the bottom of the water tank 11, a spurge pipe 15 is arranged, which communicates with the downcomer 13 and has a large number of bubble ejection holes (not shown) for ejecting the combustion gas of the burner 2. Although only one of these spurge pipes 15 is drawn in FIG. 1, in reality, as shown in FIGS. 2 and 3, each of them extends in the Y direction and is arranged in large numbers in the X direction, and is a heat exchanger. Bubbles B containing combustion gas are supplied to the entire 32. The number of spurge pipes 15 and their arrangement are not particularly limited.

ダウンカマー13と各スパージパイプ15との間には、マニホールド17が介設している。マニホールド17は、ダウンカマー13の下端部に接続されていると共に、図3に示すように、X方向に延びて配設されている。各スパージパイプ15の基端は、マニホールド17に連通しており、マニホールド17は、バーナー2からの燃焼ガスを、各スパージパイプ15に分配する機能を有している。尚、各スパージパイプ15は、断面円形状であり、その先端は閉塞している。 A manifold 17 is interposed between the downcomer 13 and each spudge pipe 15. The manifold 17 is connected to the lower end of the downcomer 13 and is arranged so as to extend in the X direction as shown in FIG. The base end of each spudge pipe 15 communicates with the manifold 17, and the manifold 17 has a function of distributing the combustion gas from the burner 2 to each spudge pipe 15. Each spurge pipe 15 has a circular cross section, and its tip is closed.

水槽11の天板11aには、水槽11内に噴出された燃焼ガスを排気する煙突状のスタック16が設けられ、その上端は大気に開放されている。 The top plate 11a of the water tank 11 is provided with a chimney-shaped stack 16 for exhausting the combustion gas ejected into the water tank 11, and the upper end thereof is open to the atmosphere.

水中燃焼式気化装置1は、バーナー2の燃焼ガスをスパージパイプ15の気泡噴出孔を通じて水槽11内に気泡Bとして噴出させることによって、水槽11内の水を撹拌しつつ、伝熱管31内を流れるLNGを加熱する。このことによって、LNGを気化させてNGとし、これをNG出口管12cから送り出すように構成されている。水中燃焼式気化装置1は、燃焼ガスを気泡Bとして水槽11内に噴出して水槽11内の水を撹拌すること、及び、スタック16から排出する排気ガスの温度を、水槽11内の温水温度とほぼ同等に低くすることにより、燃焼ガス中の燃焼生成水を100%再凝縮させ、その潜熱を全て温水に与えることが可能であることから熱効率が極めて高いという特徴がある。 The underwater combustion type vaporizer 1 ejects the combustion gas of the burner 2 into the water tank 11 as bubbles B through the bubble ejection holes of the spurge pipe 15, so that the water in the water tank 11 is agitated and the LNG flowing in the heat transfer tube 31 flows. To heat. As a result, LNG is vaporized to be NG, and this is sent out from the NG outlet pipe 12c. The underwater combustion type vaporizer 1 ejects combustion gas as bubbles B into the water tank 11 to agitate the water in the water tank 11, and sets the temperature of the exhaust gas discharged from the stack 16 to the temperature of the hot water in the water tank 11. By lowering it to almost the same level as, it is possible to recondense 100% of the combustion generated water in the combustion gas and give all the latent heat to the hot water, so that the thermal efficiency is extremely high.

次に、熱交換器32の伝熱管31を支持する支持部材4の構成について、詳細に説明をする。図2及び図3に示すように、支持部材4は、X方向に延びる伝熱管31の管軸に対して直交するように広がる板状の部材である。支持部材4は、水槽11内に設置した基礎の上に立設している。支持部材4は、X方向に所定の間隔を空けて、図例では5個、配置されている。伝熱管31は、例えばステンレス鋼製の円管である。支持部材4は、合成樹脂製、例えばフェノール系樹脂製である。 Next, the configuration of the support member 4 that supports the heat transfer tube 31 of the heat exchanger 32 will be described in detail. As shown in FIGS. 2 and 3, the support member 4 is a plate-shaped member that extends orthogonally to the tube axis of the heat transfer tube 31 extending in the X direction. The support member 4 is erected on a foundation installed in the water tank 11. Five support members 4 are arranged in the X direction at predetermined intervals in the X direction. The heat transfer tube 31 is, for example, a circular tube made of stainless steel. The support member 4 is made of a synthetic resin, for example, a phenolic resin.

支持部材4は、図4に一部を拡大して示すように、厚み方向に貫通する支持孔41を有しており、伝熱管31は、支持孔41に内挿される。前述したように、熱交換器32は、複数の伝熱管31が、Y方向及びZ方向のそれぞれに並んで配設されており、支持部材4には、伝熱管31の一つ一つに対応するように、複数の支持孔41が、所定の配置で設けられている。 The support member 4 has a support hole 41 penetrating in the thickness direction, as shown in an enlarged part in FIG. 4, and the heat transfer tube 31 is inserted into the support hole 41. As described above, in the heat exchanger 32, a plurality of heat transfer tubes 31 are arranged side by side in each of the Y direction and the Z direction, and the support member 4 corresponds to each of the heat transfer tubes 31. As such, a plurality of support holes 41 are provided in a predetermined arrangement.

各支持孔41は、図5〜図7に示すように、内周面42がテーパ状に形成されている。つまり、支持孔41は、横断面円形状であり、支持部材4における第1面411に開口する開口部421の径と、第2面412に開口する開口部422の径は同じではなく、図5に示すように、第2面412における開口部422の径φは、第1面411における開口部421の径φよりも小さい。また、第2面412における開口部422の径φは、伝熱管31の径φよりも大きい。 As shown in FIGS. 5 to 7, each support hole 41 has an inner peripheral surface 42 formed in a tapered shape. That is, the support hole 41 has a circular cross section, and the diameter of the opening 421 that opens in the first surface 411 of the support member 4 and the diameter of the opening 422 that opens in the second surface 412 are not the same. as shown in 5, the diameter phi 2 of the opening 422 in the second surface 412 is smaller than the diameter phi 1 of the opening 421 in the first surface 411. Further, the diameter φ 2 of the opening 422 on the second surface 412 is larger than the diameter φ 2 of the heat transfer tube 31.

伝熱管31の外周面は、支持孔41の内周面42に対して、図6及び図7に示すように、支持孔41の最小径の箇所(つまり、第2面412に開口する開口部422)において、実質的に一点で接触をする。こうして、伝熱管31の外周面と支持孔41の内周面42との接触面積が小さくなる。 As shown in FIGS. 6 and 7, the outer peripheral surface of the heat transfer tube 31 is an opening having a minimum diameter of the support hole 41 (that is, an opening opening in the second surface 412) with respect to the inner peripheral surface 42 of the support hole 41. In 422), the contact is made substantially at one point. In this way, the contact area between the outer peripheral surface of the heat transfer tube 31 and the inner peripheral surface 42 of the support hole 41 becomes smaller.

水槽11内に貯留される水は、一般的には、工業用水であり、塩化物イオンの濃度が比較的高い。また、水中燃焼式気化装置1は、エマージェンシー用として使用される場合には、長期間に亘って(例えば1年や2年といった期間に亘って)、運転されないことも起こり得る。そのため、水中燃焼式気化装置1では、ステンレス鋼製の伝熱管31の外周面と、合成樹脂製の支持孔41の内周面42との間の接触箇所において、伝熱管31に隙間腐食が生じる虞がある。しかしながら、前記の構成では、伝熱管31の外周面と支持孔41の内周面42との接触面積を、できるだけ小さくしているため、隙間腐食を抑制することが可能になる。 The water stored in the water tank 11 is generally industrial water and has a relatively high concentration of chloride ions. Further, when the underwater combustion type vaporizer 1 is used for emergency use, it may not be operated for a long period of time (for example, for a period of one year or two years). Therefore, in the underwater combustion type vaporizer 1, gap corrosion occurs in the heat transfer tube 31 at the contact point between the outer peripheral surface of the stainless steel heat transfer tube 31 and the inner peripheral surface 42 of the synthetic resin support hole 41. There is a risk. However, in the above configuration, since the contact area between the outer peripheral surface of the heat transfer tube 31 and the inner peripheral surface 42 of the support hole 41 is made as small as possible, it is possible to suppress crevice corrosion.

尚、支持孔41内において伝熱管31は、支持孔41の最下位置に接触するとは限らない。寸法精度等の関係や、支持部材4が、間隔を空けて複数配置されていることや、水平方向に伸びる伝熱管31が、多数であることなどから、支持孔41内の伝熱管31の位置がずれることも起こり得る。この点に関し、円管である伝熱管31に対し、支持孔41を、横断面円形状とすることは、伝熱管31の位置に関わらず、伝熱管31の外周面と支持孔41の内周面42との接触箇所を、常に一つにすることが可能になる。つまり、多数の支持孔41のいずれにおいても、接触面積を小さくすることが可能になる。 The heat transfer tube 31 does not always come into contact with the lowest position of the support hole 41 in the support hole 41. The position of the heat transfer tube 31 in the support hole 41 due to the relationship such as dimensional accuracy, the fact that a plurality of support members 4 are arranged at intervals, and the large number of heat transfer tubes 31 extending in the horizontal direction. Can also shift. In this regard, the fact that the support hole 41 has a circular cross-sectional shape with respect to the heat transfer tube 31 which is a circular tube means that the outer peripheral surface of the heat transfer tube 31 and the inner circumference of the support hole 41 are formed regardless of the position of the heat transfer tube 31. It is possible to always have one contact point with the surface 42. That is, it is possible to reduce the contact area in any of the large number of support holes 41.

ここで、第1面411における開口部421の径φと、第2面412における開口部422の径φとの差は、大きい方が、テーパ角度が大きくなるため、伝熱管31の外周面と支持孔41の内周面42との接触面積を小さくする上では有利である。また、第2面412における開口部422の径φと、伝熱管31の径φとの差も、大きい方が、接触箇所における、2つの面の曲率差が大きくなるため、接触面積を小さくする上では有利になる。 Here, the larger the difference between the diameter φ 1 of the opening 421 on the first surface 411 and the diameter φ 2 of the opening 422 on the second surface 412, the larger the taper angle, and therefore the outer circumference of the heat transfer tube 31. It is advantageous in reducing the contact area between the surface and the inner peripheral surface 42 of the support hole 41. Moreover, as small as the diameter phi 2 of the opening 422 in the second surface 412, also the difference between the diameter phi of the heat transfer tube 31, the larger is the contact point, the curvature difference between the two surfaces is increased, the contact area It will be advantageous in doing so.

尚、支持部材4に設けられた多数の支持孔41は、そのテーパの向きが全て同じであってもよいし、テーパの向きが異なっていてもよい。 The large number of support holes 41 provided in the support member 4 may all have the same taper direction, or the taper directions may be different.

支持孔の形状は、前述した形状に限定されない。以下、支持孔の形状の変形例について、図面を参照しながら説明をする。図8(a)〜(c)は、支持孔が曲線によって構成された各例を示している。尚、図8(a)〜(c)はそれぞれ、支持孔の内周面の形状を抜き出して、概念的に示す図である。 The shape of the support hole is not limited to the shape described above. Hereinafter, a modified example of the shape of the support hole will be described with reference to the drawings. 8 (a) to 8 (c) show each example in which the support hole is formed by a curved line. 8 (a) to 8 (c) are views conceptually showing the shapes of the inner peripheral surfaces of the support holes, respectively.

先ず、図8(a)は、横断面円形状でかつ、内周面がテーパ状に構成された支持孔51を示している。図8(a)の支持孔51と、図5〜図7に示す支持孔41との違いは、内周面のテーパの構成である。図8(a)の支持孔51は、内周面が、支持部材4における厚み方向の中央で最小径となり、そこから、第1面411及び第2面412のそれぞれに向かって径が拡大するように構成されている。図示は省略するが、伝熱管31の外周面は、支持孔51における最小径の箇所において、実質的に一点で、支持孔51の内周面に接触する。支持孔51の最小径は、伝熱管31の外径よりも大きいことが、接触面積を小さくする上で好ましい。尚、最小径の箇所は、支持部材4における厚み方向の中央に限らない。最小径の箇所は、支持部材4における厚み方向の中央から、第1面411の方に、ずれていてもよいし、第2面412の方に、ずれていてもよい。 First, FIG. 8A shows a support hole 51 having a circular cross section and a tapered inner peripheral surface. The difference between the support hole 51 in FIG. 8A and the support hole 41 shown in FIGS. 5 to 7 is the structure of the inner peripheral surface of the taper. The inner peripheral surface of the support hole 51 in FIG. 8A has a minimum diameter at the center in the thickness direction of the support member 4, and the diameter increases from there toward each of the first surface 411 and the second surface 412. It is configured as follows. Although not shown, the outer peripheral surface of the heat transfer tube 31 comes into contact with the inner peripheral surface of the support hole 51 at substantially one point at the portion having the smallest diameter in the support hole 51. It is preferable that the minimum diameter of the support hole 51 is larger than the outer diameter of the heat transfer tube 31 in order to reduce the contact area. The location of the minimum diameter is not limited to the center of the support member 4 in the thickness direction. The portion having the minimum diameter may be deviated from the center of the support member 4 in the thickness direction toward the first surface 411 or toward the second surface 412.

図8(b)は、横断面楕円形状でかつ、内周面がテーパ状に構成された支持孔52を示している。支持孔52の楕円の長軸は、水平方向に伸びていてもよい。また、支持孔52の楕円の長軸は、垂直方向に伸びていてもよい。また、横断面楕円形状の支持孔52における最小径(つまり、短軸の長さ)は、伝熱管31の径よりも大きいことが好ましい。こうすることで、伝熱管31の外周面と、支持孔51における最小径の箇所との接触面積をできるだけ小さくすることが可能になる。 FIG. 8B shows a support hole 52 having an elliptical cross section and a tapered inner peripheral surface. The long axis of the ellipse of the support hole 52 may extend in the horizontal direction. Further, the long axis of the ellipse of the support hole 52 may extend in the vertical direction. Further, the minimum diameter (that is, the length of the minor axis) of the support hole 52 having an elliptical cross section is preferably larger than the diameter of the heat transfer tube 31. By doing so, it is possible to reduce the contact area between the outer peripheral surface of the heat transfer tube 31 and the minimum diameter portion of the support hole 51 as much as possible.

図8(c)に示す支持孔53は、横断面楕円形状でかつ、支持部材4における厚み方向の中央で最小径となり、そこから、第1面411及び第2面412のそれぞれに向かって径が拡大するように構成されている。支持孔53の楕円の長軸は、水平方向に伸びていてもよい。また、支持孔53の楕円の長軸は、垂直方向に伸びていてもよい。伝熱管31の外周面は、図示は省略するが、支持孔53における最小径の箇所において、支持孔53の内周面に接触する。図8(c)に示す支持孔53おいても、支持孔53の最小径は、伝熱管31の外径よりも大きいことが、両者の接触面積を小さくする上で有利になる。最小径の箇所は、支持部材4における厚み方向の中央から、第1面411の方に、ずれていてもよいし、第2面412の方に、ずれていてもよい。 The support hole 53 shown in FIG. 8C has an elliptical cross section and has a minimum diameter at the center in the thickness direction of the support member 4, and has a diameter toward each of the first surface 411 and the second surface 412. Is configured to expand. The long axis of the ellipse of the support hole 53 may extend in the horizontal direction. Further, the long axis of the ellipse of the support hole 53 may extend in the vertical direction. Although not shown, the outer peripheral surface of the heat transfer tube 31 contacts the inner peripheral surface of the support hole 53 at the minimum diameter portion of the support hole 53. Even in the support hole 53 shown in FIG. 8C, it is advantageous that the minimum diameter of the support hole 53 is larger than the outer diameter of the heat transfer tube 31 in order to reduce the contact area between the two. The portion having the minimum diameter may be deviated from the center of the support member 4 in the thickness direction toward the first surface 411 or toward the second surface 412.

図9〜図12は、支持孔が直線によって構成された各例を示している。先ず、図9は、横断面が矩形状に構成された支持孔61を示している。支持孔61の横断面は、図例では、正方形状であるが、長方形状としてもよい。長方形状横断面を有する支持孔は、垂直方向に長い縦長であっても、水平方向に長い横長であってもよい。図9に示すように、支持孔61の内周面610は、第1面411から第2面412に向かって径が縮小するテーパ状に構成されている。支持孔61の最小径は、伝熱管31の径よりも大きいことが好ましい。ここでいう支持孔61の「最小径」は、第2面412の開口部612において向かい合う辺の間隔に相当する。伝熱管31の外周面は、横断面矩形状の支持孔61における最小径の開口部612において、支持孔61の内周面610と接触する。接触箇所は、伝熱管31の外周面の曲線と、支持孔61における開口部612の直線との接触になるため、実質的に点接触となり、両者の接触面積が小さくなる。図9に示す横断面矩形状の支持孔61では、図例に示すように、伝熱管31が支持孔61の下部においてのみ接触をする場合は、点接触となって接触面積を小さくすることが可能になるが、前述したように、伝熱管31の位置がずれると、伝熱管31の外周面が、支持孔61の内周面610における下部と側部との両方に接触する場合がある。 9 to 12 show each example in which the support holes are formed by straight lines. First, FIG. 9 shows a support hole 61 having a rectangular cross section. The cross section of the support hole 61 is square in the illustrated example, but may be rectangular. The support hole having a rectangular cross section may be vertically long vertically or horizontally long horizontally. As shown in FIG. 9, the inner peripheral surface 610 of the support hole 61 is formed in a tapered shape whose diameter decreases from the first surface 411 to the second surface 412. The minimum diameter of the support hole 61 is preferably larger than the diameter of the heat transfer tube 31. The "minimum diameter" of the support hole 61 referred to here corresponds to the distance between the opposite sides of the opening 612 of the second surface 412. The outer peripheral surface of the heat transfer tube 31 comes into contact with the inner peripheral surface 610 of the support hole 61 at the opening 612 having the smallest diameter in the support hole 61 having a rectangular cross section. Since the contact point is the contact between the curve of the outer peripheral surface of the heat transfer tube 31 and the straight line of the opening 612 in the support hole 61, it is substantially a point contact, and the contact area between the two is reduced. In the support hole 61 having a rectangular cross section shown in FIG. 9, when the heat transfer tube 31 makes contact only in the lower part of the support hole 61 as shown in the example, it is possible to make point contact and reduce the contact area. However, as described above, if the position of the heat transfer tube 31 is displaced, the outer peripheral surface of the heat transfer tube 31 may come into contact with both the lower portion and the side portion of the inner peripheral surface 610 of the support hole 61.

図10は、横断面が矩形状の支持孔の変形例として、支持孔62を示している。この支持孔62は、内周面が、支持部材4の厚み方向の中央で最小径となり、そこから、第1面411及び第2面412のそれぞれに対向かって径が大きくなるように構成されている。伝熱管31の外周面は、図示は省略するが、支持孔62における最小径の箇所において、支持孔62の内周面に接触する。図10の支持孔62においても、最小径は、伝熱管31の外径よりも大きいことが、接触面積を小さくする上で有利になる。また、最小径の箇所は、支持部材4における厚み方向の中央に限らない。最小径の箇所は、支持部材4における厚み方向の中央から、第1面411の方に、ずれていてもよいし、第2面412の方に、ずれていてもよい。 FIG. 10 shows the support hole 62 as a modified example of the support hole having a rectangular cross section. The inner peripheral surface of the support hole 62 has a minimum diameter at the center of the support member 4 in the thickness direction, and the diameter of the support hole 62 increases toward each of the first surface 411 and the second surface 412. There is. Although not shown, the outer peripheral surface of the heat transfer tube 31 contacts the inner peripheral surface of the support hole 62 at the minimum diameter portion of the support hole 62. Also in the support hole 62 of FIG. 10, it is advantageous that the minimum diameter is larger than the outer diameter of the heat transfer tube 31 in order to reduce the contact area. Further, the portion having the minimum diameter is not limited to the center in the thickness direction of the support member 4. The portion having the minimum diameter may be deviated from the center of the support member 4 in the thickness direction toward the first surface 411 or toward the second surface 412.

図11は、横断面を菱形に構成した例として、支持孔63を示している。支持孔63の内周面は、第1面411から第2面412に向かって径が縮小するテーパ状に構成されている。支持孔63の最小径、つまり、第2面412の開口部632において向かい合う辺同士の間隔は、伝熱管31の径よりも大きいことが好ましい。伝熱管31の外周面は、横断面菱形の支持孔63における最小径の開口部632において、支持孔63の内周面と2箇所で接触する。各接触箇所は、伝熱管31の外周面の曲線と、支持孔63における最小径の開口部632の直線との接触になるため、実質的に点接触となり、接触面積が小さくなる。 FIG. 11 shows the support hole 63 as an example in which the cross section is formed in a rhombus shape. The inner peripheral surface of the support hole 63 is formed in a tapered shape whose diameter decreases from the first surface 411 to the second surface 412. It is preferable that the minimum diameter of the support hole 63, that is, the distance between the sides facing each other in the opening 632 of the second surface 412 is larger than the diameter of the heat transfer tube 31. The outer peripheral surface of the heat transfer tube 31 comes into contact with the inner peripheral surface of the support hole 63 at two points in the opening 632 having the smallest diameter in the support hole 63 having a diamond-shaped cross section. Since each contact point is in contact with the curve of the outer peripheral surface of the heat transfer tube 31 and the straight line of the opening 632 having the smallest diameter in the support hole 63, it is substantially a point contact, and the contact area is reduced.

図12(a)は、横断面が菱形の支持孔の変形例として、支持孔64を示している。この支持孔64は、内周面が、支持部材4における厚み方向の中央で最小径となり、そこから、第1面411及び第2面412のそれぞれに向かって径が拡大するように構成されている。支持孔64の最小径は、伝熱管31の径よりも大きいことが好ましい。伝熱管31の外周面は、横断面菱形の支持孔64における最小径の箇所において、支持孔64の内周面と、2箇所で接触する。各箇所の接触面積は小さいため、伝熱管31の外周面と支持孔64の内周面との接触面積も、小さくなる。尚、最小径の箇所は、支持部材4における厚み方向の中央に限らない。最小径の箇所は、支持部材4における厚み方向の中央から、第1面411の方に、ずれていてもよいし、第2面412の方に、ずれていてもよい。 FIG. 12A shows the support hole 64 as a modified example of the support hole having a diamond-shaped cross section. The inner peripheral surface of the support hole 64 has a minimum diameter at the center in the thickness direction of the support member 4, and the diameter increases from there toward each of the first surface 411 and the second surface 412. There is. The minimum diameter of the support hole 64 is preferably larger than the diameter of the heat transfer tube 31. The outer peripheral surface of the heat transfer tube 31 comes into contact with the inner peripheral surface of the support hole 64 at two locations at the minimum diameter portion of the support hole 64 having a diamond-shaped cross section. Since the contact area of each portion is small, the contact area between the outer peripheral surface of the heat transfer tube 31 and the inner peripheral surface of the support hole 64 is also small. The location of the minimum diameter is not limited to the center of the support member 4 in the thickness direction. The portion having the minimum diameter may be deviated from the center of the support member 4 in the thickness direction toward the first surface 411 or toward the second surface 412.

図12(b)は、横断面が三角形の支持孔65を例示している。支持孔65は、正面視で逆三角形状である。支持孔65の内周面は、テーパ状に構成されている。支持孔65の最小径は、伝熱管31の径よりも大きいことが好ましい。こうすることで、伝熱管31の外周面が、支持孔65の内周面に対し3箇所で接触することが回避される。伝熱管31の外周面は、横断面三角形状の支持孔65における最小径の箇所において、支持孔65の内周面と、2箇所で接触する。各接触箇所は、伝熱管31の外周面の曲線と、支持孔65の内周面の直線との接触になるため、実質的に点接触となり、接触面積が小さくなる。 FIG. 12B illustrates a support hole 65 having a triangular cross section. The support hole 65 has an inverted triangular shape when viewed from the front. The inner peripheral surface of the support hole 65 is formed in a tapered shape. The minimum diameter of the support hole 65 is preferably larger than the diameter of the heat transfer tube 31. By doing so, it is possible to prevent the outer peripheral surface of the heat transfer tube 31 from coming into contact with the inner peripheral surface of the support hole 65 at three points. The outer peripheral surface of the heat transfer tube 31 comes into contact with the inner peripheral surface of the support hole 65 at two points at the minimum diameter portion of the support hole 65 having a triangular cross section. Since each contact point is in contact with the curve of the outer peripheral surface of the heat transfer tube 31 and the straight line of the inner peripheral surface of the support hole 65, it is substantially a point contact, and the contact area is reduced.

図12(c)は、横断面が三角形の支持孔の変形例として、支持孔66を示している。この支持孔66の内周面は、2つのテーパが組み合わさって構成されている。支持孔66の最小径の箇所は、支持部材4の厚み方向の中央に位置する。支持孔66の最小径は、伝熱管31の径よりも大きいことが好ましい。この支持孔66においても、図12(b)に示す支持孔65と同様に、伝熱管31の外周面は、横断面三角形状の支持孔66における最小径の箇所において、支持孔66の内周面と、2箇所で接触する。各接触箇所は、伝熱管31の外周面の曲線と、支持孔66の内周面の直線との接触になるため、実質的に点接触となり、接触面積が小さくなる。 FIG. 12C shows the support hole 66 as a modified example of the support hole having a triangular cross section. The inner peripheral surface of the support hole 66 is formed by combining two tapers. The portion having the smallest diameter of the support hole 66 is located at the center of the support member 4 in the thickness direction. The minimum diameter of the support hole 66 is preferably larger than the diameter of the heat transfer tube 31. In the support hole 66 as well, similarly to the support hole 65 shown in FIG. 12B, the outer peripheral surface of the heat transfer tube 31 is the inner circumference of the support hole 66 at the minimum diameter portion of the support hole 66 having a triangular cross section. It comes into contact with the surface at two points. Since each contact point is in contact with the curve of the outer peripheral surface of the heat transfer tube 31 and the straight line of the inner peripheral surface of the support hole 66, it is substantially a point contact, and the contact area is reduced.

前述した各構成の支持孔41、51、52、53、61、62、63、64、65、66においては、伝熱管31の外周面と接触する支持孔の内周面には、図13に示すように、伝熱管31の管軸に沿う方向に伸びる複数の凹溝81を、縞状に形成してもよい。こうすることで、伝熱管31の外周面と支持孔41、51、52、53、61、62、63、64、65、66の内周面との接触箇所における、接触面積をさらに小さくすることが可能になる。 In the support holes 41, 51, 52, 53, 61, 62, 63, 64, 65, 66 of each configuration described above, the inner peripheral surface of the support hole in contact with the outer peripheral surface of the heat transfer tube 31 is shown in FIG. As shown, a plurality of concave grooves 81 extending in the direction along the tube axis of the heat transfer tube 31 may be formed in a striped shape. By doing so, the contact area at the contact point between the outer peripheral surface of the heat transfer tube 31 and the inner peripheral surface of the support holes 41, 51, 52, 53, 61, 62, 63, 64, 65, 66 can be further reduced. Becomes possible.

これとは異なり、図14に示すように、支持孔41、51、52、53、61、62、63、64、65、66の内周面には、多数の凸部を設けることによって、格子状の凹部82を設けてもよい。こうすることでも、伝熱管31の外周面と支持孔41、51、52、53、61、62、63、64、65、66の内周面との接触箇所における、接触面積をさらに小さくすることが可能になる。 Unlike this, as shown in FIG. 14, the inner peripheral surfaces of the support holes 41, 51, 52, 53, 61, 62, 63, 64, 65, 66 are provided with a large number of convex portions to form a grid. A recess 82 may be provided. By doing so, the contact area at the contact point between the outer peripheral surface of the heat transfer tube 31 and the inner peripheral surface of the support holes 41, 51, 52, 53, 61, 62, 63, 64, 65, 66 can be further reduced. Becomes possible.

図15は、支持孔の変形例を示している。この支持孔71は、その内周面から径方向の内方に突出する突起710を、2つ備えている。伝熱管31の外周面は、この2つの突起710に接触している。伝熱管31の外周面と支持孔71の内周面との接触箇所において、
突起710によって構成される支持孔71の内周面は、伝熱管31の外周面に対して180°以上の角度を有することになり、伝熱管31の外周面と支持孔71の内周面とは、実質的に点接触となる。この構成の支持孔71も、伝熱管31の外周面と支持孔71の内周面との接触面積が小さくなることで、隙間腐食が抑制される。
FIG. 15 shows a modified example of the support hole. The support hole 71 includes two protrusions 710 that project inward in the radial direction from the inner peripheral surface thereof. The outer peripheral surface of the heat transfer tube 31 is in contact with the two protrusions 710. At the contact point between the outer peripheral surface of the heat transfer tube 31 and the inner peripheral surface of the support hole 71,
The inner peripheral surface of the support hole 71 formed by the protrusions 710 has an angle of 180 ° or more with respect to the outer peripheral surface of the heat transfer tube 31, and the outer peripheral surface of the heat transfer tube 31 and the inner peripheral surface of the support hole 71. Is substantially a point contact. The support hole 71 having this configuration also suppresses crevice corrosion by reducing the contact area between the outer peripheral surface of the heat transfer tube 31 and the inner peripheral surface of the support hole 71.

尚、ここに開示する技術は、水中燃焼式気化装置1に適用することに限らず、水槽内に配設されたスパージパイプを有するスチームエジェクタ式の気化装置を始めとした、中間熱媒体式気化装置に適用することも可能である。また、低温液化ガスの気化装置に限らず、水槽内に浸漬した熱交換器の、伝熱管内を流れる流体を昇温する熱交換装置に対して、広く適用することが可能である。 The technique disclosed here is not limited to the underwater combustion type vaporizer 1, and is an intermediate heat medium type vaporizer including a steam ejector type vaporizer having a spurge pipe arranged in the water tank. It is also possible to apply to. Further, it can be widely applied not only to a low-temperature liquefied gas vaporizer but also to a heat exchanger of a heat exchanger immersed in a water tank, which raises the temperature of a fluid flowing in a heat transfer tube.

1 水中燃焼式気化装置(熱交換装置)
11 水槽
15 スパージパイプ
31 伝熱管
32 熱交換器
4 支持部材
41、51、52、53、61、62、63、64、65、66 支持孔
42、610 内周面
81 凹溝
82 凹部
1 Underwater combustion type vaporizer (heat exchange device)
11 Water tank 15 Spare pipe 31 Heat transfer tube 32 Heat exchanger 4 Support members 41, 51, 52, 53, 61, 62, 63, 64, 65, 66 Support holes 42, 610 Inner peripheral surface 81 Concave groove 82 Concave

Claims (3)

水槽内に浸漬されかつ、高温のガスを水中に噴出するよう構成されたスパージパイプと、
前記水槽内における前記スパージパイプの上側に配置された伝熱管を有しかつ、前記スパージパイプから噴出された気泡による水の攪拌と加熱により、前記伝熱管の内部を流れる流体を昇温するように構成された熱交換器と、
前記水槽内に浸漬されかつ、前記伝熱管を支持するように構成された支持部材と、を備え、
前記支持部材は、前記伝熱管の管軸に直交するように広がる板状の部材であって、前記伝熱管が貫通する支持孔を有し、
前記支持孔は、その内周面が、前記支持部材の厚み方向にテーパ状に形成され、
前記支持孔の最小径は、前記伝熱管の外径よりも大であり、
前記伝熱管は、前記支持孔の最小径のエッジ状の箇所に、点接触、又は、線接触するように接触して支持されている熱交換装置。
A spurge pipe that is immersed in a water tank and is configured to eject high-temperature gas into the water.
It has a heat transfer tube arranged above the spurge pipe in the water tank, and is configured to raise the temperature of the fluid flowing inside the spurge pipe by stirring and heating water by bubbles ejected from the spurge pipe. With a heat exchanger
A support member immersed in the water tank and configured to support the heat transfer tube is provided.
The support member is a plate-shaped member that extends so as to be orthogonal to the tube axis of the heat transfer tube, and has a support hole through which the heat transfer tube penetrates.
The inner peripheral surface of the support hole is formed in a tapered shape in the thickness direction of the support member.
The minimum diameter of the support hole is larger than the outer diameter of the heat transfer tube.
The heat transfer tube is a heat exchange device that is supported by contacting an edge-shaped portion having the minimum diameter of the support hole so as to make point contact or line contact.
請求項に記載の熱交換装置において、
前記支持孔の内周面には、前記伝熱管の前記管軸に沿う方向に伸びる複数の凹溝が、縞状に形成されている熱交換装置。
In the heat exchange device according to claim 1,
A heat exchange device in which a plurality of concave grooves extending in a direction along the tube axis of the heat transfer tube are formed in a striped pattern on the inner peripheral surface of the support hole.
請求項に記載の熱交換装置において、
前記支持孔の内周面には、格子状の凹部が形成されている熱交換装置。
In the heat exchange device according to claim 1,
A heat exchange device in which a grid-like recess is formed on the inner peripheral surface of the support hole.
JP2016026677A 2016-02-16 2016-02-16 Heat exchanger Active JP6864988B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016026677A JP6864988B2 (en) 2016-02-16 2016-02-16 Heat exchanger
KR1020170010182A KR20170096579A (en) 2016-02-16 2017-01-23 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016026677A JP6864988B2 (en) 2016-02-16 2016-02-16 Heat exchanger

Publications (2)

Publication Number Publication Date
JP2017145985A JP2017145985A (en) 2017-08-24
JP6864988B2 true JP6864988B2 (en) 2021-04-28

Family

ID=59682043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016026677A Active JP6864988B2 (en) 2016-02-16 2016-02-16 Heat exchanger

Country Status (2)

Country Link
JP (1) JP6864988B2 (en)
KR (1) KR20170096579A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110925727B (en) * 2019-12-05 2021-04-23 西安石油大学 Adjustable flue gas uniform distribution device for submerged combustion gasifier

Also Published As

Publication number Publication date
JP2017145985A (en) 2017-08-24
KR20170096579A (en) 2017-08-24

Similar Documents

Publication Publication Date Title
US8720387B2 (en) Heat exchanger
JP6184511B2 (en) 3D channel gas heat exchanger
US8418753B2 (en) Heat exchange tube
US8813688B2 (en) Heat exchanger
KR101959657B1 (en) Refrigerant heat exchanger
US20190101307A1 (en) Tubular heat exchanger
WO2009078577A1 (en) Boiler for improving heat exchanging property
KR20220077115A (en) Heat exchanger unit
EP3173722B1 (en) Heat exchanger
JP6864988B2 (en) Heat exchanger
JP5541877B2 (en) Spreading tube device and heat exchanger using the same
CN104471321A (en) Water heating apparatus with parallel heat exchangers
WO2018047786A1 (en) Heat exchanger
JP5770959B1 (en) Heat exchanger
US20180252478A1 (en) Curved plate heat exchanger
US9314802B2 (en) Spraying tube device and heat exchanger using the same
JP6525607B2 (en) Low temperature liquefied gas vaporizer
JP6136944B2 (en) Evaporator
JP7169205B2 (en) Cryogenic liquefied gas vaporizer
JP6887830B2 (en) Vaporizer
JP2005156033A (en) Fin for heat exchanger of water heater, and heat exchanger for water heater provided with the same
JP5719468B1 (en) Heat exchanger
JP5858877B2 (en) Heat exchanger
WO2021144912A1 (en) Heat exchanger
KR20080074828A (en) Multiple tube type steam boiler

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200114

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200313

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201013

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20201214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210323

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210405

R150 Certificate of patent or registration of utility model

Ref document number: 6864988

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250