JP6863429B2 - TOC processing device and processing method - Google Patents

TOC processing device and processing method Download PDF

Info

Publication number
JP6863429B2
JP6863429B2 JP2019184590A JP2019184590A JP6863429B2 JP 6863429 B2 JP6863429 B2 JP 6863429B2 JP 2019184590 A JP2019184590 A JP 2019184590A JP 2019184590 A JP2019184590 A JP 2019184590A JP 6863429 B2 JP6863429 B2 JP 6863429B2
Authority
JP
Japan
Prior art keywords
toc
value
meter
water
measured value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019184590A
Other languages
Japanese (ja)
Other versions
JP2021058845A (en
Inventor
康晴 港
康晴 港
友野 佐々木
友野 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2019184590A priority Critical patent/JP6863429B2/en
Priority to PCT/JP2020/034829 priority patent/WO2021070573A1/en
Priority to KR1020227004545A priority patent/KR20220073728A/en
Priority to CN202080059668.7A priority patent/CN114269696A/en
Publication of JP2021058845A publication Critical patent/JP2021058845A/en
Application granted granted Critical
Publication of JP6863429B2 publication Critical patent/JP6863429B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/32Treatment of water, waste water, or sewage by irradiation with ultraviolet light
    • C02F1/325Irradiation devices or lamp constructions
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/008Control or steering systems not provided for elsewhere in subclass C02F
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/32Treatment of water, waste water, or sewage by irradiation with ultraviolet light
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/469Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis
    • C02F1/4693Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis electrodialysis
    • C02F1/4695Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis electrodialysis electrodeionisation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/32Details relating to UV-irradiation devices
    • C02F2201/326Lamp control systems
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/20Total organic carbon [TOC]
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/40Liquid flow rate

Description

本発明はTOC処理装置及び処理方法に係り、特に、紫外線(UV)照射により有機物(TOC成分)を酸化分解するUV酸化装置を用いるTOC処理装置及び処理方法に関する。 The present invention relates to a TOC treatment apparatus and a treatment method, and more particularly to a TOC treatment apparatus and a treatment method using a UV oxidation apparatus that oxidatively decomposes an organic substance (TOC component) by irradiation with ultraviolet rays (UV).

河川水、工業用水、水道水などの原水から、半導体製造工程、医薬品製造工程等で使用される超純水を製造する場合の一般的な製造システムは、前処理システム、一次純水システム及び二次純水製造工程(サブシステム)からなる。 General manufacturing systems for producing ultrapure water used in semiconductor manufacturing processes, pharmaceutical manufacturing processes, etc. from raw water such as river water, industrial water, and tap water are pretreatment systems, primary pure water systems, and secondary pure water systems. It consists of a sub-pure water production process (subsystem).

サブシステムでは、一般に一次純水システムからサブタンクに導入された一次純水をポンプで取り出し、熱交換器で超純水の水温が所望の温度になるよう調整した後、UV酸化装置に導入し、UV照射により水中のTOCを酸化分解する。UV酸化装置の流出水を後段のイオン交換装置に導入して、酸化分解により発生した炭酸や有機酸などのイオン性物質を除去する。このようにして得られた超純水は、ユースポイントに送給されて使用され、余剰の戻り水はサブタンクに循環される。 In the subsystem, generally, the primary pure water introduced into the sub tank is taken out from the primary pure water system by a pump, the water temperature of the ultrapure water is adjusted to a desired temperature by a heat exchanger, and then introduced into a UV oxidizing device. TOC in water is oxidatively decomposed by UV irradiation. The effluent from the UV oxidizing device is introduced into the ion exchange device at the subsequent stage to remove ionic substances such as carbonic acid and organic acids generated by oxidative decomposition. The ultrapure water obtained in this way is sent to the use point for use, and the surplus return water is circulated to the sub tank.

このように、UV酸化装置と後段のイオン交換装置とを組み合わせて水中の有機物を酸化分解して除去する手段は、一次純水システムにも適用されている。 As described above, the means for oxidatively decomposing and removing organic substances in water by combining a UV oxidizing device and a subsequent ion exchange device is also applied to a primary pure water system.

従来、UV酸化装置とイオン交換装置とを組み合わせたTOC除去技術に関しては、処理水TOCの低減や安定化を目的に様々な検討がなされている。 Conventionally, various studies have been conducted on a TOC removal technique that combines a UV oxidizing device and an ion exchange device for the purpose of reducing and stabilizing the treated water TOC.

例えば、特許文献1には、UV酸化装置とイオン交換装置を組み込んだ超純水製造システムにおいて、超純水のTOCを測定し、この結果に基づいて原水流入量を制御する技術が提案されている。 For example, Patent Document 1 proposes a technique for measuring the TOC of ultrapure water in an ultrapure water production system incorporating a UV oxidizing device and an ion exchange device, and controlling the inflow of raw water based on the result. There is.

この特許文献1は、処理水TOCを一定に制御するために流量を変動させる技術であり、流量が変動した場合に目的のTOC濃度の超純水を製造することは記載されていない。 This Patent Document 1 is a technique for varying the flow rate in order to control the TOC of treated water to be constant, and does not describe the production of ultrapure water having a target TOC concentration when the flow rate fluctuates.

特許文献2には、UV酸化装置の入口水と出口水の過酸化水素(H)濃度を測定し、この測定結果に基づいてUV酸化装置のUV照射量を制御する技術が提案されている。しかし、H濃度は必ずしもTOC濃度に比例するものではないため、特許文献2はTOC濃度の制御技術としては不十分である。 Patent Document 2 proposes a technique for measuring the hydrogen peroxide (H 2 O 2 ) concentration in the inlet water and outlet water of a UV oxidizing device and controlling the UV irradiation amount of the UV oxidizing device based on the measurement result. ing. However, since the H 2 O 2 concentration is not necessarily proportional to the TOC concentration, Patent Document 2 is insufficient as a control technique for the TOC concentration.

特許文献3には、UV酸化装置の後段のイオン交換装置の出口水の溶存酸素(DO)濃度とTOC濃度とを測定し、これらの測定値に基づいてUV酸化装置のUV照射量をフィードバック制御する技術が提案されているが、流量変動への対応については言及されていない。 In Patent Document 3, the dissolved oxygen (DO) concentration and the TOC concentration of the outlet water of the ion exchange device at the subsequent stage of the UV oxidizing device are measured, and the UV irradiation amount of the UV oxidizing device is feedback-controlled based on these measured values. However, there is no mention of how to deal with fluctuations in flow rate.

特許文献4には、UV酸化装置の照度調整手段を組み込んだ装置として、点灯もしくは調光点灯するUVランプと消灯するUVランプとを自動で切り換えるようにした装置が提案されている。 Patent Document 4 proposes a device incorporating a means for adjusting the illuminance of a UV oxidizing device, which automatically switches between a UV lamp that is turned on or dimmed and a UV lamp that is turned off.

特開2016−107249公報JP-A-2016-107249 特開2009−112941号公報Japanese Unexamined Patent Publication No. 2009-112941 特開2002−263643号公報Japanese Unexamined Patent Publication No. 2002-263634 特開2003−24774号公報Japanese Unexamined Patent Publication No. 2003-24774

本発明は、目標TOC濃度の処理水を安定して製造することができるTOC処理装置及び処理方法を提供することを目的とする。 An object of the present invention is to provide a TOC treatment apparatus and a treatment method capable of stably producing treated water having a target TOC concentration.

本発明のTOC処理装置は、被処理水に紫外線を照射してTOC成分を分解する紫外線酸化装置と、その後段の脱イオン装置とを備えてなるTOC処理装置において、該紫外線酸化装置の被処理水流量を計測する流量計と、該脱イオン装置の流出水のTOC濃度を計測するTOC計と、該流量計の計測値と該TOC計の計測値が入力され、これらの計測値に基づいて、前記紫外線酸化装置の紫外線照射量を制御する制御手段とを備えることを特徴とする。 The TOC treatment apparatus of the present invention is a TOC treatment apparatus including an ultraviolet oxidation apparatus for decomposing TOC components by irradiating water to be treated with ultraviolet rays and a deionization apparatus in the subsequent stage, and the TOC treatment apparatus is to be treated. A flow meter for measuring the water flow rate, a TOC meter for measuring the TOC concentration of the outflow water of the deionizer, a measured value of the flow meter and a measured value of the TOC meter are input, and based on these measured values. It is characterized by comprising a control means for controlling the ultraviolet irradiation amount of the ultraviolet oxidizing apparatus.

本発明の一態様では、前記制御手段は、前記流量計の計測値と前記TOC計の計測値との積と、前記流量計の計測値と目標TOC値との積との差に基づいて、又は前記TOC計の計測値と目標TOC値との差に対し前記流量計の計測値を乗じた値に基づいて、前記紫外線照射量を制御する。 In one aspect of the present invention, the control means is based on the difference between the product of the measured value of the flow meter and the measured value of the TOC meter and the product of the measured value of the flow meter and the target TOC value. Alternatively, the ultraviolet irradiation amount is controlled based on the value obtained by multiplying the difference between the measured value of the TOC meter and the target TOC value by the measured value of the flow meter.

本発明のTOC処理方法は、被処理水に紫外線を照射してTOC成分を分解する紫外線酸化装置と、その後段の脱イオン装置と、該紫外線酸化装置の被処理水流量を計測する流量計と、該脱イオン装置の流出水のTOC濃度を計測するTOC計と、該流量計の計測値と該TOC計の計測値が入力され、これらの計測値に基づいて、前記紫外線酸化装置の紫外線照射量を制御する制御手段とを用いたTOC処理方法であって、前記流量計の計測値と前記TOC計の計測値との積と、前記流量計の計測値と目標TOC値との積との差に基づいて、又は前記TOC計の計測値と目標TOC値との差に対し前記流量計の計測値を乗じた値に基づいて、前記紫外線照射量を制御することを特徴とする。 The TOC treatment method of the present invention includes an ultraviolet oxidizing device that irradiates the water to be treated with ultraviolet rays to decompose the TOC component, a deionizing device in the subsequent stage, and a flow meter that measures the flow rate of the water to be treated by the ultraviolet oxidizing device. , The TOC meter that measures the TOC concentration of the effluent of the deionizer, the measured value of the flow meter, and the measured value of the TOC meter are input, and based on these measured values, the ultraviolet irradiation of the ultraviolet oxidizing device It is a TOC processing method using a control means for controlling the amount, and is a product of the measured value of the flow meter and the measured value of the TOC meter, and the product of the measured value of the flow meter and the target TOC value. It is characterized in that the ultraviolet irradiation amount is controlled based on the difference or based on the value obtained by multiplying the difference between the measured value of the TOC meter and the target TOC value by the measured value of the flow meter.

本発明のTOC処理装置及び処理方法によると、原水の流量及びTOC濃度が変動しても、目標TOC濃度を有した処理水を安定して製造することができる。なお、紫外線酸化装置の流量と、紫外線酸化装置への流入水のTOC値とに基づいて紫外線酸化装置を制御することも可能であるが、処理水の水質を保証するために、本発明では処理水のTOC値を監視する。 According to the TOC treatment apparatus and treatment method of the present invention, treated water having a target TOC concentration can be stably produced even if the flow rate and TOC concentration of raw water fluctuate. It is also possible to control the ultraviolet oxidizing device based on the flow rate of the ultraviolet oxidizing device and the TOC value of the inflow water to the ultraviolet oxidizing device, but in order to guarantee the water quality of the treated water, the treatment is performed in the present invention. Monitor the TOC value of water.

本発明装置及び方法の説明図である。It is explanatory drawing of the apparatus and method of this invention. 実施例の説明図である。It is explanatory drawing of an Example.

以下、本発明について図1を参照してさらに詳細に説明する。 Hereinafter, the present invention will be described in more detail with reference to FIG.

図1において、被処理水は、ライン1を介して低圧紫外線酸化装置(以下、UV装置ということがある。)2に供給され、紫外線が照射されることによりTOC成分が分解される。この実施の形態では、UV装置2は、調光型低圧UV装置である。 In FIG. 1, the water to be treated is supplied to a low-pressure ultraviolet oxidizing device (hereinafter, may be referred to as a UV device) 2 via a line 1, and the TOC component is decomposed by irradiation with ultraviolet rays. In this embodiment, the UV device 2 is a dimmable low voltage UV device.

UV装置2の流出水は、ライン3を介して脱イオン装置4に供給され、脱イオン処理水がライン5へ流出する。脱イオン装置としては、混床式イオン交換装置、2段型イオン交換装置、電気脱イオン装置などのいずれでもよい。 The outflow water of the UV device 2 is supplied to the deionization device 4 via the line 3, and the deionized treated water flows out to the line 5. The deionizing device may be any of a mixed bed type ion exchange device, a two-stage ion exchange device, an electric deionization device, and the like.

ライン5にTOC計6が設けられており、その計測値がUV装置2の制御装置7に入力される。また、UV装置2の流水量を測定するためにライン1,3,5のいずれかに流量計(図示略)が設けられ、その計測値(流量データ)が制御装置7に入力される。 A TOC total 6 is provided on the line 5, and the measured value thereof is input to the control device 7 of the UV device 2. Further, a flow meter (not shown) is provided on any of the lines 1, 3 and 5 in order to measure the flow rate of the UV device 2, and the measured value (flow rate data) is input to the control device 7.

制御装置7は、TOC計6で計測された処理水TOC値と目標TOC値との差(ΔTOC)と流量値(F)との積F・ΔTOCを演算し、これに基づいて(即ち、F・ΔTOCがゼロとなることを目標として)低圧UV装置への投入電力を制御する。又は、制御装置7は、TOC計6で計測されたTOC値と流量値Fとの積と、目標TOC値と流量値Fとの積との差(この差の値はF・ΔTOCに等しい。)を演算し、これに基づいてUV装置2への投入電力を制御する。投入電力の制御方式としては、PID制御方式などを採用することができるが、これに限定されない。 The control device 7 calculates the product F · ΔTOC of the difference (ΔTOC) between the treated water TOC value and the target TOC value measured by the TOC total 6 and the flow rate value (F), and based on this (that is, F). Control the power input to the low voltage UV device (with the goal of zero ΔTOC). Alternatively, the control device 7 has a difference between the product of the TOC value and the flow rate value F measured by the TOC total 6 and the product of the target TOC value and the flow rate value F (the value of this difference is equal to F · ΔTOC. ) Is calculated, and the input power to the UV device 2 is controlled based on this. As the input power control method, a PID control method or the like can be adopted, but the control method is not limited to this.

このように、処理水のTOC計測値、処理水の目標TOC値、及び被処理水流量との3者に基づいて、UV装置2への投入電力を制御することにより、被処理水のTOC値及び被処理水の流量の一方又は双方が変動しても、ほぼ目標通りのTOC濃度の処理水を安定して製造することができる。 In this way, the TOC value of the treated water is controlled by controlling the input power to the UV device 2 based on the TOC measured value of the treated water, the target TOC value of the treated water, and the flow rate of the treated water. Even if one or both of the flow rates of the water to be treated fluctuate, the treated water having a TOC concentration almost as targeted can be stably produced.

なお、この実施の形態では、UV装置2として調光型UV装置を用いている。超純水製造工程のUV装置には、点灯するUVランプの本数を切り替えるタイプのUV装置も用いられているが、このタイプの場合、点灯するランプの数を少なくしたときに紫外線の照射ムラが生じ、処理水のTOC値が変動し易くなる。そのため、この実施の形態では、UV装置2として、調光型UV装置を採用している。 In this embodiment, a dimming type UV device is used as the UV device 2. A type of UV device that switches the number of UV lamps that are lit is also used for the UV device in the ultrapure water manufacturing process, but in this type, uneven irradiation of ultraviolet rays occurs when the number of lamps that are lit is reduced. As a result, the TOC value of the treated water tends to fluctuate. Therefore, in this embodiment, a dimming type UV device is adopted as the UV device 2.

この調光型UV装置の場合、投入電力を1倍〜6.6倍の範囲で変動させることにより、TOC分解量を1倍〜7.7倍の範囲で変化させることができる。 In the case of this dimming type UV device, the TOC decomposition amount can be changed in the range of 1 time to 7.7 times by changing the input power in the range of 1 time to 6.6 times.

なお、被処理水は、超純水製造装置のサブシステムに流入する水や、サブシステムを流れる途中の水が好適であるが、その他の水であってもよい。 The water to be treated is preferably water that flows into the subsystem of the ultrapure water production apparatus or water that is flowing through the subsystem, but may be other water.

[実施例1]
図2に示すように、超純水にイソプロピルアルコール(IPA)をスパイクによって添加することにより、規定IPA濃度(すなわち規定TOC濃度)の水とした。これを調光型低圧UV装置(出力制御可能範囲30〜100%)2に通水して紫外線酸化処理し、次いで混床型イオン交換塔に通水して処理水とした。UV装置給水と処理水のTOC濃度をTOC計で測定した。
[Example 1]
As shown in FIG. 2, isopropyl alcohol (IPA) was added to ultrapure water by spikes to obtain water having a specified IPA concentration (that is, a specified TOC concentration). This was passed through a dimmable low-pressure UV device (output controllable range 30 to 100%) 2 for ultraviolet oxidation treatment, and then passed through a mixed-bed ion exchange tower to obtain treated water. The TOC concentration of the UV device water supply and the treated water was measured with a TOC meter.

通水流量を12m/hrと一定とし、IPAスパイク量を変化させることにより、給水TOCを表1の通り14〜23μg/Lの範囲で変化させた。なお、表1の各工程1〜10の通水時間はそれぞれ60minとした。処理水のTOC目標値を1.5μg/Lとし、該目標値と、処理水TOC計測値及び被処理水流量とに基づいて、UV装置への投入電力をPID制御した。処理水のTOC濃度の計測値と、UV装置のTOC負荷量([流量]×[給水TOC])を表1に示す。 By keeping the water flow rate constant at 12 m 3 / hr and changing the IPA spike amount, the water supply TOC was changed in the range of 14 to 23 μg / L as shown in Table 1. The water flow time of each of the steps 1 to 10 in Table 1 was set to 60 min. The TOC target value of the treated water was set to 1.5 μg / L, and the input power to the UV apparatus was PID controlled based on the target value, the treated water TOC measured value, and the flow rate of the treated water. Table 1 shows the measured values of the TOC concentration of the treated water and the TOC load of the UV device ([flow rate] × [water supply TOC]).

Figure 0006863429
Figure 0006863429

表1の通り、給水TOCが変動しても、TOC負荷量252mg/hr以下であれば、処理水TOC値は0.5〜1.5μg/Lの範囲で安定することが認められた。また、TOC負荷量が252mg/hrを超えると、処理水TOC値は目標値(1.5μg/L)を超えるようになることが認められた。これは、UV装置のTOC負荷がUV装置の処理能力を超えるためであると考えられる。 As shown in Table 1, even if the water supply TOC fluctuates, if the TOC load is 252 mg / hr or less, the treated water TOC value is found to be stable in the range of 0.5 to 1.5 μg / L. It was also found that when the TOC loading amount exceeded 252 mg / hr, the treated water TOC value exceeded the target value (1.5 μg / L). It is considered that this is because the TOC load of the UV device exceeds the processing capacity of the UV device.

[実施例2]
実施例1において、給水流量を7〜16m/hrで変化させ、IPAのスパイク量を、給水TOC濃度が21μg/Lとなるように、給水流量に比例する量とした。その他は実施例1と同様にして試験を行った。処理水のTOC濃度の計測値と、UV装置のTOC負荷量([流量]×[給水TOC])を表2に示す。
[Example 2]
In Example 1, the water supply flow rate was changed at 7 to 16 m 3 / hr, and the spike amount of IPA was set to an amount proportional to the water supply flow rate so that the water supply TOC concentration was 21 μg / L. Others were tested in the same manner as in Example 1. Table 2 shows the measured values of the TOC concentration of the treated water and the TOC load of the UV device ([flow rate] × [water supply TOC]).

Figure 0006863429
Figure 0006863429

表2の通り、給水TOC値を一定とし、給水流量を変動させた場合でも、TOC負荷量252mg/hr以下であれば、処理水TOC値は0.5〜1.5μg/Lの範囲で安定することが認められた。また、TOC負荷量が252mg/hrを超えると、処理水TOC値は目標値(1.5μg/L)を超えるようになることが認められた。 As shown in Table 2, even when the water supply TOC value is constant and the water supply flow rate is changed, the treated water TOC value is stable in the range of 0.5 to 1.5 μg / L if the TOC load is 252 mg / hr or less. Was allowed to do. It was also found that when the TOC loading amount exceeded 252 mg / hr, the treated water TOC value exceeded the target value (1.5 μg / L).

以上の実施例1,2から明らかな通り、本発明によると、低圧UV装置及び脱イオン装置を用いるTOC除去技術において、TOC濃度が安定した処理水を供給することができる。 As is clear from Examples 1 and 2 above, according to the present invention, it is possible to supply treated water having a stable TOC concentration in the TOC removal technique using a low-pressure UV device and a deionization device.

UV装置の出力制御を自動制御することで、制御可能なTOCの幅が増加し、伴って電力使用量の変化幅も増大する。そのため、本発明は、電力削減や、急なTOC上昇トラブルに対しても有効である。 By automatically controlling the output control of the UV device, the range of controllable TOCs increases, and the range of changes in power consumption also increases. Therefore, the present invention is also effective for power reduction and sudden TOC rise trouble.

2 低圧UV装置
4 脱イオン装置
6 TOC計
7 制御装置
2 Low-voltage UV device 4 Deionizer 6 TOC meter 7 Control device

Claims (3)

超純水製造用一次純水システム又はサブシステムにおけるTOC処理装置であって、
被処理水に紫外線を照射してTOC成分を分解する紫外線酸化装置と、その後段の脱イオン装置とを備えてなるTOC処理装置において、
該紫外線酸化装置の被処理水流量を計測する流量計と、
該脱イオン装置の流出水のTOC濃度を計測するTOC計と、
該流量計の計測値と該TOC計の計測値が入力され、これらの計測値に基づいて、前記紫外線酸化装置の紫外線照射量を制御する制御手段と
を備え
前記制御手段は、前記流量計の計測値と前記TOC計の計測値との積と、前記流量計の計測値と目標TOC値との積との差に基づいて、又は前記TOC計の計測値と目標TOC値との差に対し前記流量計の計測値を乗じた値に基づいて、前記紫外線照射量を制御することを特徴とするTOC処理装置。
A TOC processing device in a primary pure water system or subsystem for producing ultrapure water.
In a TOC treatment device including an ultraviolet oxidation device that irradiates water to be treated with ultraviolet rays to decompose TOC components and a deionization device in the subsequent stage.
A flow meter that measures the flow rate of water to be treated by the ultraviolet oxidizing device,
A TOC meter that measures the TOC concentration of the effluent of the deionizer,
The measured value of the flow meter and the measured value of the TOC meter are input, and the control means for controlling the ultraviolet irradiation amount of the ultraviolet oxidizing device is provided based on these measured values .
The control means is based on the difference between the product of the measured value of the flow meter and the measured value of the TOC meter and the product of the measured value of the flow meter and the target TOC value, or the measured value of the TOC meter. A TOC processing apparatus characterized in that the ultraviolet irradiation amount is controlled based on a value obtained by multiplying the difference between the target TOC value and the target TOC value by the measured value of the flow meter.
超純水製造用一次純水システム又はサブシステムにおけるTOC処理方法において、
被処理水に紫外線を照射してTOC成分を分解する紫外線酸化装置と、その後段の脱イオン装置と、
該紫外線酸化装置の被処理水流量を計測する流量計と、
該脱イオン装置の流出水のTOC濃度を計測するTOC計と、
該流量計の計測値と該TOC計の計測値が入力され、これらの計測値に基づいて、前記紫外線酸化装置の紫外線照射量を制御する制御手段と
を用いたTOC処理方法であって、
前記流量計の計測値と前記TOC計の計測値との積と、前記流量計の計測値と目標TOC値との積との差に基づいて、又は前記TOC計の計測値と目標TOC値との差に対し前記流量計の計測値を乗じた値に基づいて、前記紫外線照射量を制御することを特徴とするTOC処理方法。
In the TOC treatment method in the primary pure water system or subsystem for ultrapure water production
An ultraviolet oxidizing device that irradiates the water to be treated with ultraviolet rays to decompose the TOC component, and a deionizing device in the subsequent stage.
A flow meter that measures the flow rate of water to be treated by the ultraviolet oxidizing device,
A TOC meter that measures the TOC concentration of the effluent of the deionizer,
It is a TOC processing method using a control means for controlling the ultraviolet irradiation amount of the ultraviolet oxidizing apparatus based on the measured values of the flow meter and the measured values of the TOC meter.
Based on the product of the measured value of the flow meter and the measured value of the TOC meter and the product of the measured value of the flow meter and the target TOC value, or the measured value of the TOC meter and the target TOC value A TOC processing method characterized in that the ultraviolet irradiation amount is controlled based on a value obtained by multiplying the difference between the above and the measured value of the flow meter.
前記紫外線酸化装置は、調光型紫外線酸化装置であり、該紫外線酸化装置への投入電力をPID制御することにより、前記紫外線照射量を制御する、請求項2のTOC処理方法。The TOC treatment method according to claim 2, wherein the ultraviolet oxidizing device is a dimming type ultraviolet oxidizing device, and the amount of ultraviolet irradiation is controlled by controlling the power input to the ultraviolet oxidizing device by PID.
JP2019184590A 2019-10-07 2019-10-07 TOC processing device and processing method Active JP6863429B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2019184590A JP6863429B2 (en) 2019-10-07 2019-10-07 TOC processing device and processing method
PCT/JP2020/034829 WO2021070573A1 (en) 2019-10-07 2020-09-15 Toc treatment apparatus and treatment method
KR1020227004545A KR20220073728A (en) 2019-10-07 2020-09-15 TOC processing apparatus and processing method
CN202080059668.7A CN114269696A (en) 2019-10-07 2020-09-15 TOC processing device and processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019184590A JP6863429B2 (en) 2019-10-07 2019-10-07 TOC processing device and processing method

Publications (2)

Publication Number Publication Date
JP2021058845A JP2021058845A (en) 2021-04-15
JP6863429B2 true JP6863429B2 (en) 2021-04-21

Family

ID=75381081

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019184590A Active JP6863429B2 (en) 2019-10-07 2019-10-07 TOC processing device and processing method

Country Status (4)

Country Link
JP (1) JP6863429B2 (en)
KR (1) KR20220073728A (en)
CN (1) CN114269696A (en)
WO (1) WO2021070573A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024014218A1 (en) * 2022-07-14 2024-01-18 栗田工業株式会社 Ultrapure water production apparatus and method for operating ultrapure water production apparatus
CN115432768B (en) * 2022-08-24 2023-06-09 乐富意得(上海)流体技术有限公司 Control method of ultraviolet device for water treatment

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06198279A (en) * 1993-01-05 1994-07-19 Japan Organo Co Ltd Ultraviolet ray decomposition device
JP4294731B2 (en) * 1996-02-20 2009-07-15 野村マイクロ・サイエンス株式会社 Ultrapure water production method and ultrapure water production apparatus
JP3941139B2 (en) * 1996-10-22 2007-07-04 栗田工業株式会社 Ultrapure water production equipment
JP2001252652A (en) * 2000-03-14 2001-09-18 Toto Ltd Water purifying device
JP5211414B2 (en) * 2001-03-12 2013-06-12 栗田工業株式会社 Ultrapure water production equipment
JP4959072B2 (en) 2001-07-11 2012-06-20 株式会社日本フォトサイエンス Photochemical reaction processing apparatus and photochemical reaction processing method
JP5214107B2 (en) * 2005-02-09 2013-06-19 株式会社東芝 Ballast water purification equipment
JP5280038B2 (en) 2007-11-06 2013-09-04 野村マイクロ・サイエンス株式会社 Ultrapure water production equipment
JP5276855B2 (en) * 2008-02-18 2013-08-28 株式会社日立製作所 Ultraviolet water treatment facility and its ultraviolet irradiation amount control device
JP5454468B2 (en) * 2008-03-31 2014-03-26 栗田工業株式会社 Pure water production method and pure water production apparatus
JP5044634B2 (en) * 2009-12-24 2012-10-10 株式会社東芝 Water treatment system using ultraviolet irradiation
CA2824856A1 (en) * 2011-01-17 2012-07-26 Bruce Lee Coulter Method and system for providing ultrapure water
JP2016107249A (en) * 2014-12-10 2016-06-20 野村マイクロ・サイエンス株式会社 Ultrapure water production system and method
CN206705733U (en) * 2017-05-11 2017-12-05 浙江沃尔水务科技有限公司 A kind of Intelligent UV chlorination equipment

Also Published As

Publication number Publication date
KR20220073728A (en) 2022-06-03
CN114269696A (en) 2022-04-01
JP2021058845A (en) 2021-04-15
WO2021070573A1 (en) 2021-04-15

Similar Documents

Publication Publication Date Title
TWI460136B (en) Ultraviolet light activated oxidation process for the reduction of organic carbon in semiconductor process water
JP6722253B2 (en) Method and system for providing ultrapure water
WO2021070573A1 (en) Toc treatment apparatus and treatment method
US20080245737A1 (en) Method and system for providing ultrapure water
JP6778210B2 (en) Ultrapure water supply system and method with flexible lamp configuration
JP2008229506A (en) Pure water production system
JP5280038B2 (en) Ultrapure water production equipment
JP5211414B2 (en) Ultrapure water production equipment
JP3941139B2 (en) Ultrapure water production equipment
WO2021079584A1 (en) Water treatment system, ultrapure water production system, and water treatment method
JP2016005829A (en) Method and apparatus for producing ultrapure water
JP3506171B2 (en) Method and apparatus for removing TOC component
JP2008246387A (en) Method and apparatus for treatment of primary pure water production process water
JP2003126850A (en) Apparatus and method of treating organic substance- containing water
JP4683977B2 (en) Hydrogen peroxide injection control method and apparatus in accelerated oxidation water treatment method
US20190112210A1 (en) Accelerated oxidation treatment method and accelerated oxidation treatment device
WO2024080079A1 (en) Apparatus for producing pure water
JP7383141B2 (en) TOC removal device and TOC removal method
JP2024058285A (en) Pure water production equipment
WO2024014218A1 (en) Ultrapure water production apparatus and method for operating ultrapure water production apparatus
WO2022239314A1 (en) Pure water production apparatus and pure water production method
JP2008049247A (en) Ozone treatment apparatus and ozone injection control method
JP2019107631A (en) UV oxidation treatment method
JP2007196176A (en) Treatment method and arrangement of organic arsenic-containing waste water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200915

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20200915

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20201002

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201020

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210302

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210315

R150 Certificate of patent or registration of utility model

Ref document number: 6863429

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250