JP6863069B2 - X-ray fluorescence analyzer and sample container used for it - Google Patents

X-ray fluorescence analyzer and sample container used for it Download PDF

Info

Publication number
JP6863069B2
JP6863069B2 JP2017098486A JP2017098486A JP6863069B2 JP 6863069 B2 JP6863069 B2 JP 6863069B2 JP 2017098486 A JP2017098486 A JP 2017098486A JP 2017098486 A JP2017098486 A JP 2017098486A JP 6863069 B2 JP6863069 B2 JP 6863069B2
Authority
JP
Japan
Prior art keywords
sample
container
ray
side wall
sample container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017098486A
Other languages
Japanese (ja)
Other versions
JP2017207491A (en
Inventor
章程 徐
章程 徐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Publication of JP2017207491A publication Critical patent/JP2017207491A/en
Application granted granted Critical
Publication of JP6863069B2 publication Critical patent/JP6863069B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6402Atomic fluorescence; Laser induced fluorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N2021/6482Sample cells, cuvettes

Landscapes

  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Optics & Photonics (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Description

本発明は粉末サンプル又は軽量な材料サンプル中の元素成分及びその含有量を測定するためのX線蛍光分析装置及び該X線蛍光分析装置用のサンプル容器に関する。 The present invention relates to an X-ray fluorescence analyzer for measuring elemental components and their contents in a powder sample or a lightweight material sample, and a sample container for the X-ray fluorescence analyzer.

X線蛍光分析装置はX線管が放出する一次X線を利用して分析サンプルにおける被分析元素の特徴的なX線を励起し、且つエネルギー分散又は波長分散の方法を採用して特徴的なX線を検出する元素分析装置である。粉末サンプル又は軽量な材料(例えば食品又は生体材料)サンプルを分析する時に、X線蛍光分析装置の構造を図1に示す。該X線蛍光分析装置10はサンプルを保存するためのサンプルカップ11、X線発生装置12及びX線検出装置13を含む。サンプルカップ11はサンプル蓋110、円筒形の側壁111、及び治具113で円筒形の側壁111の下方に固定されるマイラーフィルム112を含む。X線検出装置はアナライザ結晶に基づく波長分散型検出システムであっても、固体検出装置に基づくエネルギー分散型検出システムであってもよい。 The X-ray fluorescence analyzer excites the characteristic X-rays of the element to be analyzed in the analysis sample by using the primary X-rays emitted by the X-ray tube, and adopts the method of energy dispersion or wavelength dispersion. It is an elemental analyzer that detects X-rays. The structure of an X-ray fluorescence analyzer is shown in FIG. 1 when analyzing a powder sample or a lightweight material (eg, food or biomaterial) sample. The X-ray fluorescence analyzer 10 includes a sample cup 11 for storing a sample, an X-ray generator 12, and an X-ray detector 13. The sample cup 11 includes a sample lid 110, a cylindrical side wall 111, and a Mylar film 112 fixed below the cylindrical side wall 111 with a jig 113. The X-ray detector may be a wavelength dispersive detection system based on an analyzer crystal or an energy dispersive detection system based on a solid-state detector.

X線発生装置12におけるX線管(X線フィルターとコリメータを採用することもある)は一次X線a1とa2等を放出する。一次X線はマイラーフィルム112を貫通してサンプルカップ11におけるサンプル(図示せず)に照射(励起)し、照射されるサンプルはX線蛍光を放出し、且つ一部の蛍光(図1に示すY1とY2等)はX線検出装置13で受光され、X線蛍光スペクトルを取得する。X線蛍光スペクトルによって、サンプルの元素に対して定性および定量分析を行う。 The X-ray tube (sometimes adopting an X-ray filter and a collimator) in the X-ray generator 12 emits primary X-rays a1 and a2 and the like. Primary X-rays penetrate the Mylar film 112 and irradiate (excite) a sample (not shown) in the sample cup 11, and the irradiated sample emits X-ray fluorescence and some fluorescence (shown in FIG. 1). Y1 and Y2, etc.) are received by the X-ray detection device 13 to acquire an X-ray fluorescence spectrum. Qualitative and quantitative analysis is performed on the elements of the sample by X-ray fluorescence spectrum.

サンプルは粉末又は軽量な材料(食品又は生体材料等)である場合で、一次X線はサンプルを励起し、更にサンプルカップ11外に貫通し、且つ最終的にX線蛍光分析装置の外殻(図示せず)で吸収されるので、再利用してサンプルを励起することができない。このように、発生する蛍光X線の合計量は少ないので、X線蛍光分析装置の感度は低い。 When the sample is a powder or a lightweight material (food, biomaterial, etc.), the primary X-ray excites the sample, further penetrates the outside of the sample cup 11, and finally the outer shell of the X-ray fluorescence analyzer (the outer shell of the X-ray fluorescence analyzer. Since it is absorbed in (not shown), it cannot be reused to excite the sample. As described above, since the total amount of fluorescent X-rays generated is small, the sensitivity of the X-ray fluorescence analyzer is low.

実用新案登録第2584946号公報Utility Model Registration No. 2584946

上記問題を解決するために、一般的にはX線管のパワーを向上させ、X線検出装置13の検出面積(エネルギー分散型)を増加させ又はX線の光路をできるだけ短縮させる。X線管のパワーを向上させてX線検出装置13の検出面積(エネルギー分散型)を増加させると全体のX線蛍光分析装置の製造コストを増加させ、且つハイパワーのX線管を使用すると、X線蛍光分析装置の体積を更に増加させる。本発明はサンプル容器の構造を変化することによって、粉末サンプル又は生物サンプルを分析する時のX線蛍光分析感度を向上させる新しい方法を提供する。 In order to solve the above problem, generally, the power of the X-ray tube is improved, the detection area (energy dispersive type) of the X-ray detector 13 is increased, or the optical path of the X-ray is shortened as much as possible. Increasing the power of the X-ray tube to increase the detection area (energy dispersive type) of the X-ray detection device 13 will increase the manufacturing cost of the entire X-ray fluorescence analyzer, and if a high-power X-ray tube is used, , Further increase the volume of the X-ray fluorescence analyzer. The present invention provides a new method for improving the sensitivity of X-ray fluorescence analysis when analyzing a powder sample or a biological sample by changing the structure of the sample container.

本発明はX線蛍光分析装置用のサンプル容器を提供し、前記サンプル容器は容器蓋、容器側壁及び容器底部からなり、サンプルを保存することに用いられ、そのうち、前記容器蓋と前記容器側壁のうちの少なくとも一つにはフッ化リチウム等の多結晶粉末材料は嵌め込まれる。多結晶材料の回折作用ので、サンプルと容器壁を貫通する一部のX線はサンプルに戻ってX線蛍光を再励起することによって、サンプルのX線蛍光の合計量を向上させ、装置の感度も向上させる。 The present invention provides a sample container for an X-ray fluorescence analyzer, wherein the sample container consists of a container lid, a container side wall and a container bottom, and is used for storing a sample, of which the container lid and the container side wall At least one of them is fitted with a polycrystalline powder material such as lithium fluoride. Due to the diffractive action of the polycrystalline material, some X-rays penetrating the sample and vessel wall return to the sample to re-excitate the X-ray fluorescence, thus increasing the total amount of X-ray fluorescence of the sample and increasing the sensitivity of the device. Also improve.

前記容器蓋は前記サンプルに接触可能な内表面と外部に接触可能な外表面を有し、前記容器蓋は前記内表面と前記外表面との間の部分が前記多結晶粉末を含む材料からなる;前記容器側壁は前記サンプルに接触可能な内側面と外部に接触可能な外側面を有し、前記容器側壁は前記内側面と前記外側面との間の部分が前記多結晶粉末を含む材料からなる。このように、フッ化リチウム多結晶粉末はサンプルカップ21におけるサンプルを汚染し、且つ外部はフッ化リチウム多結晶粉末に接触することを回避する。 The container lid has an inner surface that can contact the sample and an outer surface that can contact the outside, and the container lid is made of a material in which a portion between the inner surface and the outer surface contains the polycrystalline powder. The container side wall has an inner surface that can contact the sample and an outer surface that can contact the outside, and the container side wall is made of a material in which a portion between the inner surface and the outer surface contains the polycrystalline powder. Become. In this way, the lithium fluoride polycrystalline powder contaminates the sample in the sample cup 21 and prevents the outside from coming into contact with the lithium fluoride polycrystalline powder.

前記サンプル容器は円筒形のサンプルカップであり、前記容器側壁は円筒形の側壁である。 The sample container is a cylindrical sample cup, and the side wall of the container is a cylindrical side wall.

前記容器底部は治具で前記円筒形の側壁の下方に固定されるマイラーフィルムである。 The bottom of the container is a Mylar film fixed below the cylindrical side wall with a jig.

前記X線蛍光分析装置はX線発生装置とX線検出装置を含み、前記X線発生装置はX線を前記マイラーフィルムを経て前記サンプル容器における前記サンプルに入射し、前記サンプルにX線蛍光を放出させ、前記X線検出装置は前記X線蛍光中の一部を検出する。 The X-ray fluorescence analyzer includes an X-ray generator and an X-ray detector, and the X-ray generator incidents X-rays on the sample in the sample container via the Mylar film and causes the sample to undergo X-ray fluorescence. Upon emission, the X-ray detector detects a portion of the X-ray fluorescence.

本発明はX線蛍光分析装置を更に提供し、それはX線発生装置と、X線検出装置と、前記サンプル容器とを含み、前記X線発生装置はX線を前記マイラーフィルムを経て前記サンプル容器における前記サンプルに入射し、前記サンプルに蛍光を放出させ、前記X線検出装置は前記蛍光中の一部を検出する。 The present invention further provides an X-ray fluorescence analyzer, which includes an X-ray generator, an X-ray detector, and the sample container, wherein the X-ray generator transmits X-rays through the Mylar film and the sample container. The X-ray detector detects a part of the fluorescence by incident on the sample in the above and causing the sample to emit fluorescence.

サンプルカップに嵌め込まれる多結晶粉末の回折作用ので、X線発生装置から放出されるX線はサンプルカップにおけるサンプルを繰り返して照射(励起)し、サンプルからの蛍光信号を強化させる。そのために、X線検出装置23は強化された蛍光を検出でき、したがってX線蛍光分析装置20の感度を向上させる。 Due to the diffracting action of the polycrystalline powder fitted in the sample cup, the X-rays emitted from the X-ray generator repeatedly irradiate (excit) the sample in the sample cup to enhance the fluorescence signal from the sample. Therefore, the X-ray detector 23 can detect the enhanced fluorescence, thus improving the sensitivity of the X-ray fluorescence analyzer 20.

従来のX線蛍光分析装置の部分構造模式図である。It is a partial structure schematic diagram of the conventional X-ray fluorescence analyzer. 本発明によるX線蛍光分析装置の部分構造模式図である。It is a partial structure schematic diagram of the X-ray fluorescence analyzer according to this invention.

以下、図面を組み合わせて、本発明の実施例を具体的に説明する。 Hereinafter, examples of the present invention will be specifically described by combining the drawings.

図2は本発明によるX線蛍光分析装置の部分構造模式図である。図2に示すのように、X線蛍光分析装置20はサンプル容器21、X線発生装置22及びX線検出装置23を含む。 FIG. 2 is a schematic partial structure diagram of the X-ray fluorescence analyzer according to the present invention. As shown in FIG. 2, the X-ray fluorescence analyzer 20 includes a sample container 21, an X-ray generator 22, and an X-ray detector 23.

サンプル容器21は容器蓋210、容器側壁211及び容器底部212からなり、サンプルを保存することに用いられる。サンプル容器21は円筒形のサンプルカップ(以下サンプルカップ21と称される)で、容器側壁211は円筒形の側壁(以下側壁211と称される)である。 The sample container 21 includes a container lid 210, a container side wall 211, and a container bottom 212, and is used for storing a sample. The sample container 21 is a cylindrical sample cup (hereinafter referred to as a sample cup 21), and the container side wall 211 is a cylindrical side wall (hereinafter referred to as a side wall 211).

容器底部212は治具213で側壁211の下方に固定されるマイラーフィルム(以下マイラーフィルム212と称される)である。X線発生装置22はX線(例えばa1、a2)をマイラーフィルム212を経てサンプルカップ21におけるサンプルに入射し、サンプルに蛍光を放出させ、X線検出装置23は蛍光中の一部(例えばd1、d2)を検出する。容器蓋210と側壁211における少なくとも一つは多結晶粉末を含む材料からなる。本実施例において、例えば、図2に示すのように、容器蓋210と側壁211はいずれも多結晶粉末を含む材料からなる。多結晶粉末はフッ化リチウムであることができる。 The container bottom 212 is a Mylar film (hereinafter referred to as Mylar film 212) fixed below the side wall 211 by a jig 213. The X-ray generator 22 incidents X-rays (for example, a1 and a2) on the sample in the sample cup 21 via the Mylar film 212 to emit fluorescence to the sample, and the X-ray detector 23 emits a part of the fluorescence (for example, d1). , D2) is detected. At least one of the container lid 210 and the side wall 211 is made of a material containing polycrystalline powder. In this embodiment, for example, as shown in FIG. 2, both the container lid 210 and the side wall 211 are made of a material containing polycrystalline powder. The polycrystalline powder can be lithium fluoride.

容器蓋210はサンプルカップ21におけるサンプルに接触可能な内表面210aと外部に接触可能な外表面210bを有し、容器蓋210は内表面210aと外表面210bとの間の部分が例えばフッ化リチウムを含む材料からなる。側壁211はサンプルカップ21におけるサンプルに接触可能な内側面211aと外部に接触可能な外側面211bを有し、側壁211は内側面211aと外側面211bとの間の部分が例えばフッ化リチウム多結晶粉末を含む材料からなる。このように、フッ化リチウム多結晶粉末はサンプルカップ21におけるサンプルを汚染し、且つ外部はフッ化リチウム多結晶粉末に接触することを回避する。 The container lid 210 has an inner surface 210a that can contact the sample in the sample cup 21 and an outer surface 210b that can contact the outside, and the container lid 210 has a portion between the inner surface 210a and the outer surface 210b, for example, lithium fluoride. Consists of materials containing. The side wall 211 has an inner surface 211a that can contact the sample in the sample cup 21 and an outer surface 211b that can contact the outside, and the side wall 211 has a portion between the inner surface 211a and the outer surface 211b, for example, a lithium fluoride polycrystal. Consists of materials containing powder. In this way, the lithium fluoride polycrystalline powder contaminates the sample in the sample cup 21 and prevents the outside from coming into contact with the lithium fluoride polycrystalline powder.

従来の技術におけるサンプルカップの側壁は一般的に高密度ポリエチレン又はその他の材料を射出成形してなる。本発明において、例えば、サンプルカップ21の側壁211の内側面211aと外側面211bとの間にフッ化リチウム多結晶粉末は嵌め込まれ、且つ容器蓋210の内表面210aと外表面210bとの間にフッ化リチウム多結晶粉末は嵌め込まれ、図2における点状物により示される。 The sidewalls of the sample cup in the prior art are generally made by injection molding high density polyethylene or other material. In the present invention, for example, the lithium fluoride polycrystalline powder is fitted between the inner side surface 211a and the outer side surface 211b of the side wall 211 of the sample cup 21, and between the inner surface 210a and the outer surface 210b of the container lid 210. The lithium fluoride polycrystalline powder is inlaid and is shown by the dots in FIG.

図2に示すのように、X線発生装置22はX線a1をマイラーフィルム212を経てサンプルカップ21におけるサンプルに入射し、サンプルを励起して、側壁211におけるフッ化リチウム多結晶粉末に照射する。フッ化リチウム多結晶粉末の回折作用ので、回折光になり、例えばb1、b2である。回折光b1は容器蓋210におけるフッ化リチウム多結晶粉末に照射され、フッ化リチウム多結晶粉末の回折作用ので、更に回折光c1になる。それと同時に、回折光b2は側壁211におけるフッ化リチウム多結晶粉末に更に照射され、フッ化リチウム多結晶粉末の回折作用ので、更に回折光c2になる。 As shown in FIG. 2, the X-ray generator 22 incidents X-rays a1 on the sample in the sample cup 21 via the Mylar film 212, excites the sample, and irradiates the lithium fluoride polycrystalline powder on the side wall 211. .. Due to the diffracting action of the lithium fluoride polycrystalline powder, it becomes diffracted light, for example, b1 and b2. The diffracted light b1 is irradiated on the lithium fluoride polycrystalline powder in the container lid 210, and due to the diffracting action of the lithium fluoride polycrystalline powder, it becomes the diffracted light c1. At the same time, the diffracted light b2 is further irradiated to the lithium fluoride polycrystalline powder on the side wall 211, and due to the diffracting action of the lithium fluoride polycrystalline powder, it becomes further diffracted light c2.

回折光b1、b2及びc1、c2は回折過程において、それぞれにサンプルカップ21におけるサンプルに繰り返して照射され、そのために、X線a1がサンプルを照射する経路はa1、b1、c1及びa1、b2、c2を含み、最終的にサンプルカップ21外に貫通される。回折されたX線は再利用されることができるので、サンプルカップ21におけるサンプルを繰り返して照射し、即ち、サンプルを繰り返して励起するので、繰り返して励起されるサンプルは強化されたX線蛍光d1、d2等(蛍光信号)を放出する。このように、X線検出装置23は強化された蛍光d1、d2等を検出し、X線蛍光分析装置20の感度を向上させる。 In the diffraction process, the diffracted lights b1, b2 and c1 and c2 are repeatedly irradiated to the sample in the sample cup 21, respectively, so that the X-ray a1 irradiates the sample with the paths a1, b1, c1 and a1, b2, respectively. It contains c2 and is finally penetrated out of the sample cup 21. Since the diffracted X-rays can be reused, the sample in the sample cup 21 is repeatedly irradiated, that is, the sample is repeatedly excited, so that the repeatedly excited sample is an enhanced X-ray fluorescence d1. , D2 etc. (fluorescent signal). In this way, the X-ray detection device 23 detects the enhanced fluorescence d1, d2, etc., and improves the sensitivity of the X-ray fluorescence analyzer 20.

また、図2に示すX線a1、a2、回折光b1、b2、c1、c2及び蛍光d1、d2は例に過ぎず、包括的ではない。 Further, the X-rays a1, a2, diffracted light b1, b2, c1, c2 and fluorescence d1 and d2 shown in FIG. 2 are merely examples and are not comprehensive.

本実施例において、X線検出装置23はアナライザ結晶に基づく波長分散型検出装置であっても、又は固体検出装置に基づくエネルギー分散型検出装置であってもよい。 In this embodiment, the X-ray detector 23 may be a wavelength dispersive detector based on an analyzer crystal or an energy dispersive detector based on a solids detector.

本発明の特定の実施例を説明したが、これらの実施例は実例の方式だけで説明し、本発明の範囲を限定するものではない。実際に、本明細書に述べた革新的な方法は各種の他の形式で実施できる;また、本発明の精神から逸脱しない前提で、本明細書に述べた方法とシステムに対して各種の省略、置換及び変化を行う。添付の請求項及びその均等内容は本発明の範囲と精神における各種の形式又は修正が含まれることを目的とする。 Although specific examples of the present invention have been described, these examples will be described only by means of examples and do not limit the scope of the present invention. In fact, the innovative methods described herein can be implemented in a variety of other forms; and without departing from the spirit of the invention, various abbreviations for the methods and systems described herein. , Substitution and change. The appended claims and their equivalents are intended to include various forms or modifications in the scope and spirit of the invention.

Claims (7)

線蛍光分析装置用のサンプル容器であって、
前記サンプル容器は容器蓋、容器側壁及び容器底部からなり、サンプルを保存することに用いられ、
前記容器蓋と前記容器側壁のうちの少なくとも一つには多結晶粉末材料が嵌め込まれることを特徴とするサンプル容器。
A sample container for a line fluorescence analyzer
The sample container consists of a container lid, a container side wall and a container bottom, and is used for storing a sample.
A sample container characterized in that a polycrystalline powder material is fitted in at least one of the container lid and the container side wall.
前記容器蓋は前記サンプルに接触可能な内表面と外部に接触可能な外表面を有し、前記容器蓋は前記内表面と前記外表面との間の部分に前記多結晶粉末材料が嵌め込まれ、
前記容器側壁は前記サンプルに接触可能な内側面と外部に接触可能な外側面を有し、前記容器側壁は前記内側面と前記外側面との間の部分に前記多結晶粉末材料が嵌め込まれることを特徴とする、請求項1に記載のサンプル容器。
The container lid has an inner surface that can contact the sample and an outer surface that can contact the outside, and the container lid is fitted with the polycrystalline powder material in a portion between the inner surface and the outer surface.
The container side wall has an inner surface that can contact the sample and an outer surface that can contact the outside, and the container side wall is fitted with the polycrystalline powder material in a portion between the inner side surface and the outer surface. The sample container according to claim 1.
前記多結晶粉末材料はフッ化リチウム多結晶粉末であることを特徴とする、請求項2に記載のサンプル容器。 The sample container according to claim 2, wherein the polycrystalline powder material is a lithium fluoride polycrystalline powder. 前記サンプル容器は円筒形のサンプルカップであり、前記容器側壁は円筒形の側壁であることを特徴とする、請求項3に記載のサンプル容器。 The sample container according to claim 3, wherein the sample container is a cylindrical sample cup, and the side wall of the container is a cylindrical side wall. 前記容器底部は治具で前記円筒形の側壁の下方に固定されるマイラーフィルムであることを特徴とする、請求項4に記載のサンプル容器。 The sample container according to claim 4, wherein the bottom of the container is a Mylar film fixed below the cylindrical side wall with a jig. 前記X線蛍光分析装置はX線発生装置とX線検出装置を含み、前記X線発生装置はX線を前記マイラーフィルムを経て前記サンプル容器における前記サンプルに入射し、前記サンプルに蛍光を放出させ、前記X線検出装置は前記蛍光中の一部を検出することを特徴とする、請求項に記載のサンプル容器。 The X-ray fluorescence analyzer includes an X-ray generator and an X-ray detector, and the X-ray generator causes X-rays to enter the sample in the sample container via the Mylar film and emit fluorescence to the sample. The sample container according to claim 5 , wherein the X-ray detection device detects a part of the fluorescence. X線発生装置と、X線検出装置と、請求項に記載のサンプル容器とを含み、
前記X線発生装置はX線を前記マイラーフィルムを経て前記サンプル容器における前記サンプルに入射し、前記サンプルに蛍光を放出させ、前記X線検出装置は前記蛍光中の一部を検出することを特徴とするX線蛍光分析装置。
The X-ray generator, the X-ray detector, and the sample container according to claim 5 are included.
The X-ray generator is characterized in that X-rays are incident on the sample in the sample container via the Mylar film to emit fluorescence to the sample, and the X-ray detector detects a part of the fluorescence. X-ray fluorescence analyzer.
JP2017098486A 2016-05-18 2017-05-17 X-ray fluorescence analyzer and sample container used for it Active JP6863069B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610330739.8A CN107402196B (en) 2016-05-18 2016-05-18 X-ray fluorescence analysis instrument and sample container therefor
CN201610330739.8 2016-05-18

Publications (2)

Publication Number Publication Date
JP2017207491A JP2017207491A (en) 2017-11-24
JP6863069B2 true JP6863069B2 (en) 2021-04-21

Family

ID=60394522

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017098486A Active JP6863069B2 (en) 2016-05-18 2017-05-17 X-ray fluorescence analyzer and sample container used for it

Country Status (2)

Country Link
JP (1) JP6863069B2 (en)
CN (1) CN107402196B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108956672B (en) * 2018-05-15 2021-12-17 江苏天瑞仪器股份有限公司 Detection method for detecting heavy metal by using special sample cup of food rapid detector

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3877677B2 (en) * 2002-12-18 2007-02-07 独立行政法人科学技術振興機構 Heat resistant diamond composite sintered body and its manufacturing method
JP4166099B2 (en) * 2003-02-14 2008-10-15 Tdk株式会社 Sample container
JP2005083885A (en) * 2003-09-08 2005-03-31 Kyoto Univ Sample container and fluid sample analysis method
WO2006049051A1 (en) * 2004-11-08 2006-05-11 Sii Nanotechnology Inc. Fluorescent x-ray analy sis device
EP2085772B8 (en) * 2008-02-04 2011-01-26 Orexplore Ab Apparatus and method for X-ray fluorescence analysis of a mineral sample
CN101776620B (en) * 2009-05-11 2014-06-25 中国建材检验认证集团股份有限公司 Bent crystal light splitting device of wavelength dispersion X-fluorescence spectrograph and operating method thereof
US7978820B2 (en) * 2009-10-22 2011-07-12 Panalytical B.V. X-ray diffraction and fluorescence
GB201214448D0 (en) * 2012-08-14 2012-09-26 Element Six Ltd Electrochemical deposition and x-ray fluorescence spectroscopy
CN203772767U (en) * 2014-04-01 2014-08-13 钢研纳克检测技术有限公司 Sample containing tool for X-ray fluorescence test
CN204495749U (en) * 2015-03-10 2015-07-22 深圳市禾苗分析仪器有限公司 Continuous diffraction light splitting and sniffer and sequential Xray fluorescence spectrometer
CN105115954A (en) * 2015-09-11 2015-12-02 深圳世绘林科技有限公司 Fluorescence spectrophotometer based on optical integrating sphere

Also Published As

Publication number Publication date
CN107402196A (en) 2017-11-28
CN107402196B (en) 2020-09-25
JP2017207491A (en) 2017-11-24

Similar Documents

Publication Publication Date Title
JP4854005B2 (en) X-ray fluorescence analyzer
US7436926B2 (en) Fluorescent X-ray analysis apparatus
US7424093B2 (en) Fluorescent x-ray analysis apparatus
JP5045999B2 (en) X-ray fluorescence analyzer
WO2009098868A1 (en) Fluorescence detector and fluorescence detection method
WO2018050501A1 (en) System and method for time-resolved fluoroimmunoassay detection
JP5404143B2 (en) Nondestructive inspection method and nondestructive inspection device for sealed container
JP2008008794A (en) Analyzing device
JP6863069B2 (en) X-ray fluorescence analyzer and sample container used for it
JP2017511482A (en) Container inspection
KR102332573B1 (en) X-ray fluorescence spectrometer
JP4621524B2 (en) Analysis equipment
US10989677B2 (en) Sample collecting device, sample collecting method, and fluorescent x-ray analysis apparatus using the same
JP2006275794A5 (en)
CN106687799B (en) Method for detecting the presence or absence of an ophthalmic lens, in particular a contact lens, in a container
JP2018146431A5 (en)
CN109459458A (en) Fluorescent x-ray analyzer and fluorescent x-ray analysis method
JP2014196925A (en) Fluorescent x-ray analyzer, and depth direction analysis method used for the same
WO2022168374A1 (en) Emission optical system, emission device, and optical measurement device
JP6363991B2 (en) Evaluation method of optical analyzer
JP2024001708A (en) Sample cell for fluid sample, and fluorescent x-ray analyzing device and fluorescent x-ray analyzing method using the same
JP2591287Y2 (en) Sample holder for X-ray fluorescence analysis
JPS627973B2 (en)
EP2511691A1 (en) System and method for calibration of an optical measuring apparatus
JP2008008795A (en) Analyzing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200708

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200818

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200911

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210302

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210315

R151 Written notification of patent or utility model registration

Ref document number: 6863069

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151