JPS627973B2 - - Google Patents

Info

Publication number
JPS627973B2
JPS627973B2 JP52037150A JP3715077A JPS627973B2 JP S627973 B2 JPS627973 B2 JP S627973B2 JP 52037150 A JP52037150 A JP 52037150A JP 3715077 A JP3715077 A JP 3715077A JP S627973 B2 JPS627973 B2 JP S627973B2
Authority
JP
Japan
Prior art keywords
ray
liquid sample
fluorescence
wavelength
rays
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52037150A
Other languages
Japanese (ja)
Other versions
JPS53122484A (en
Inventor
Hideo Okashita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP3715077A priority Critical patent/JPS53122484A/en
Publication of JPS53122484A publication Critical patent/JPS53122484A/en
Publication of JPS627973B2 publication Critical patent/JPS627973B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/223Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material by irradiating the sample with X-rays or gamma-rays and by measuring X-ray fluorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/07Investigating materials by wave or particle radiation secondary emission
    • G01N2223/076X-ray fluorescence

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Description

【発明の詳細な説明】 この発明は、けい光X線分析装置の液体試料容
器の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement of a liquid sample container for a fluorescence X-ray analyzer.

すべての原子は十分なエネルギーのX線で励起
されると、一種の光電効果が起こり、加速電子で
衝撃されたときと等しく電子殼の内部に近いK、
Lなどの軌道内の電子が原子の外に放出される
が、その放出に寄与するエネルギーに相当する波
長が、原子の吸収端になり、K軌道から1種、L
軌道からは3種のエネルギー準位に対応する吸収
が起こつて、これら電子に空準位の生じた軌道
へ、外部のLやM軌道から電子が落ちこみ、両準
位のエネルギー差に相当した波長のX線がけい光
として発生する。このX線は二次X線またはけい
光X線と呼ばれ、各原子特有の波長をもつてお
り、その波長は原子番号の増加とともに、K系
列、L系列ともに短くなる。けい光X線分析装置
では、固体、粉体、または液体の試料を連続波長
のX線で励起し、けい光X線を発生させ、コリメ
ータを通過させた後、ゴニオメータに分光用単結
晶をとりつけ、適当な検出器で走査することによ
つて回折角対強度の関係を記録する。Bragg式に
よればnλ=2 d sinθとなるから、結晶格
子間隔dが正確に判明している結晶を用いれば、
回折角θを測定することによつて波長λが決定さ
れ、それによつて被検元素の定性が行われ、強度
によつて定量が行われる。
When all atoms are excited by X-rays of sufficient energy, a kind of photoelectric effect occurs, with K close to the inside of the electron shell, equivalent to when bombarded with accelerated electrons.
Electrons in orbits such as L are emitted to the outside of the atom, but the wavelength corresponding to the energy contributing to the emission becomes the absorption edge of the atom, and one kind of electron from the K orbit, L
Absorption corresponding to three types of energy levels occurs from the orbit, and electrons from the external L and M orbits fall into the orbits where these electrons have vacant levels, and the wavelength corresponding to the energy difference between the two levels is generated. X-rays are generated as fluorescence. This X-ray is called a secondary X-ray or fluorescence X-ray, and has a wavelength unique to each atom, and the wavelength becomes shorter for both the K series and the L series as the atomic number increases. In a fluorescence X-ray analyzer, a solid, powder, or liquid sample is excited with continuous wavelength X-rays to generate fluorescence X-rays, which are passed through a collimator and then a single crystal for spectroscopy is attached to a goniometer. , record the relationship of diffraction angle versus intensity by scanning with a suitable detector. According to the Bragg equation, nλ=2 d sinθ, so if we use a crystal whose crystal lattice spacing d is accurately known,
By measuring the diffraction angle θ, the wavelength λ is determined, and the analyte element is qualitatively determined based on this, and quantified based on the intensity.

ところで液体試料の場合においては、X線管か
らの1次X線が液体試料を透過し、これが液体お
よび容器底面で吸収されるので、分析対象元素の
けい光X線の励起効率が悪く、したがつて液体試
料分析の感度のより向上が一つの課題であつた。
By the way, in the case of a liquid sample, the primary X-rays from the X-ray tube pass through the liquid sample and are absorbed by the liquid and the bottom of the container, so the excitation efficiency of the fluorescent X-rays of the element to be analyzed is poor and One of the challenges was to further improve the sensitivity of liquid sample analysis.

この発明は、液体試料容器に改良を加え、分析
感度を高めようとするもので、液体試料容器の試
料から見て1次X線入射方向と反対方向の容器内
面に、その特性X線波長が、分析対象元素の吸収
端波長よりも短かく、かつなるべく近似値の元素
で構成される材料の2次X線励起板を配置してな
るけい光X線分析装置の液体試料容器にかかるも
のである。
This invention aims to enhance the analysis sensitivity by improving the liquid sample container, and the characteristic , which is attached to a liquid sample container of a fluorescence X-ray analyzer, which is equipped with a secondary X-ray excitation plate made of a material that is shorter than the absorption edge wavelength of the element to be analyzed and is composed of an element with a value as close as possible. be.

被検元素からのけい光X線励起効率は、被検元
素の吸収端波長よりも短い波長の特性X線で励起
することによつて向上させられ、なお好ましくは
その両波長値がなるべく近似しているものを選ぶ
とよい。特性X線波長が短いことは、原子番号が
高いことを意味しているので、元素周期表にした
がつて被検元素の吸収端波長と同位の特性X線波
長をもつ元素より上位の元素、なお好ましくは上
位で近い元素を選択し、その特性X線によつて被
検試料元素を励起するのが効率を向上することと
なる。被検元素が不明、または多種にわたるとき
は、それらの予想の吸収端波長の最短のものを比
較対象とする。
The fluorescence X-ray excitation efficiency from the test element can be improved by exciting it with a characteristic X-ray having a wavelength shorter than the absorption edge wavelength of the test element, and preferably the values of both wavelengths are as close as possible. It is a good idea to choose one that is available. A short characteristic X-ray wavelength means a high atomic number, so according to the periodic table of elements, elements that are higher than the element whose characteristic X-ray wavelength is the same as the absorption edge wavelength of the test element, Preferably, an element close to the top is selected and the test sample element is excited by the characteristic X-rays to improve efficiency. When the test elements are unknown or there are many different types, the one with the shortest predicted absorption edge wavelength is used for comparison.

つぎに実施例について説明する。 Next, examples will be described.

図はこの発明を実施したけい光X線分析装置の
液体試料容器の側断面図である。図において1は
試料容器本体で液体試料0ならびに溶剤などに不
活性の樹脂材料などで製られており、上部に液体
試料収容部2、下部に気泡閉じ込め部3をもち、
中間は注入口4で連絡されている。5は外筐、
6,7はそれぞれ上、下の袋ナツト蓋を示してお
り、8はマイラーフイルム、9は中蓋、10,1
1はOリングを示している。
The figure is a side sectional view of a liquid sample container of a fluorescence X-ray analyzer embodying the present invention. In the figure, 1 is the sample container body, which is made of a resin material that is inert to liquid samples and solvents, and has a liquid sample storage section 2 at the top and a bubble trapping section 3 at the bottom.
The middle part is connected by an inlet 4. 5 is the outer casing;
6 and 7 indicate the upper and lower bag nut lids, respectively, 8 is mylar film, 9 is the inner lid, 10, 1
1 indicates an O-ring.

この液体試料容器に被検液を収容するには、ま
ず下の袋ナツト蓋7をまわしてはずし、中蓋9を
もとりはずし、ついで容器全体を図示とは上下逆
にして、容器内に液体試料を一ぱい入れる。そこ
で再び中蓋9、袋ナツト蓋7をはめ込んで上下逆
にして正置すると、液を収容するときに混入した
気泡は12の部分に集つてたまり、液体試料収容
部2には非検液体試料が充満される。けい光X線
分析装置で分析にかけられるとき、この容器の上
面は真空器筐中に置かれ、それによる減圧のた
め、マイラーフイルム8はやや外方に向つて吸引
されるが、注入口4の下方突出形状のため、その
内部には気泡は生じない。
To store the test liquid in this liquid sample container, first unscrew the lower bag nut lid 7, remove the inner lid 9, then turn the entire container upside down from the illustration and place the liquid sample in the container. Add a cup of. Then, when the inner lid 9 and bag nut lid 7 are fitted again and placed upside down, the air bubbles that got mixed in when storing the liquid will gather at the part 12, and the liquid sample containing part 2 will be filled with the untested liquid sample. is filled. When subjected to analysis using a fluorescence X-ray analyzer, the top surface of this container is placed in a vacuum chamber, and due to the resulting reduced pressure, the mylar film 8 is sucked slightly outward, but the inlet 4 Due to its downwardly protruding shape, no air bubbles are generated inside it.

さて、図において13は二次X線励起板であり
液体試料収容部2の底面に設置される。
Now, in the figure, reference numeral 13 denotes a secondary X-ray excitation plate, which is installed on the bottom surface of the liquid sample storage section 2.

この二次X線励起板は、被検液体試料が重油で
あり、分析対象元素がイオウ(S)の場合には、
ロジウム(Rh)などが好適である。イオウの吸
収端波長は5.018Åであり、ロジウムの特性X線
波長はRLαで4.597Å、RLβで4.374Åであ
り、波長が短く、近傍で、かつ材料として入手し
易く取扱いに便であるからである。
This secondary X-ray excitation plate can be used when the liquid sample to be tested is heavy oil and the element to be analyzed is sulfur (S).
Rhodium (Rh) and the like are suitable. The absorption edge wavelength of sulfur is 5.018 Å, and the characteristic X-ray wavelength of rhodium is 4.597 Å for RLα 1 and 4.374 Å for RLβ 1 , which are short wavelengths, nearby, and easily available as a material, making it convenient to handle. It is from.

被検元素がチタン(Ti、吸収端波長2.49Å)の
場合には、励起板材料としてはバナジウム(V、
特性X線波長Kβ2.28Å)が、被検元素がバナジ
ウムの場合には励起板材料としてはクロムKβ
2.08Å波長が使用されてよい。
When the test element is titanium (Ti, absorption edge wavelength 2.49 Å), the excitation plate material is vanadium (V,
If the characteristic X-ray wavelength Kβ is 2.28 Å), but the test element is vanadium, the excitation plate material is chromium Kβ.
A 2.08 Å wavelength may be used.

一次X線は被検元素からけい光X線を励起する
とともに、その液体を吸収なく通過した分は励起
板13を照射し、その材質元素から2次X線を励
起する。この2次X線はさらに被検元素を照射
し、これからさらにけい光X線を励起する。この
けい光X線と、前記一次X線によるけい光X線と
が相乗して被検元素を励起するので、励起X線の
利用効率が極めて高い状態で、けい光X線を得る
ことができるのである。
The primary X-rays excites fluorescent X-rays from the element to be tested, and the portion that passes through the liquid without being absorbed irradiates the excitation plate 13 to excite secondary X-rays from the material element. These secondary X-rays further irradiate the element to be detected, which further excites fluorescent X-rays. These fluorescent X-rays and the fluorescent X-rays from the primary X-rays work together to excite the test element, so it is possible to obtain fluorescent X-rays with extremely high utilization efficiency of the excited X-rays. It is.

液体試料収容部2の液層厚は試料の量によつて
も変化させられるが、また励起板13からの二次
X線の液層による吸収をも考慮して、実験的に最
適条件が選ばれるであろう。
The thickness of the liquid layer in the liquid sample storage section 2 can be changed depending on the amount of sample, but the optimum conditions are experimentally selected by taking into consideration the absorption of secondary X-rays from the excitation plate 13 by the liquid layer. It will be.

この発明は以上のように構成されているのでけ
い光X線分析における液体試料のけい光X線励起
効率の低いのを改良し、感度の高い分析を行うこ
とができる効果を奏するものである。
Since the present invention is constructed as described above, it has the effect of improving the low fluorescence X-ray excitation efficiency of a liquid sample in fluorescence X-ray analysis and enabling highly sensitive analysis.

【図面の簡単な説明】[Brief explanation of the drawing]

図はこの発明の実施例のけい光X線分析装置の
液体試料容器の側断面図である。 図中下記各符号はそれぞれ附記の部分を示す。
0……液体試料、1……試料容器、2……液体試
料収容部、3……気泡閉じこめ部、4……注入
口、5……外筐、6……袋ナツト蓋、7……袋ナ
ツト蓋、8……マイラーフイルム、9……中蓋、
10……Oリング、11……Oリング、12……
気泡、13……二次X線励起板。
The figure is a side sectional view of a liquid sample container of a fluorescence X-ray analyzer according to an embodiment of the present invention. In the figure, each reference symbol below indicates a supplementary part.
0...liquid sample, 1...sample container, 2...liquid sample storage section, 3...bubble confinement section, 4...inlet, 5...outer casing, 6...bag nut lid, 7...bag Nut lid, 8... Mylar film, 9... Inner lid,
10...O-ring, 11...O-ring, 12...
Bubbles, 13... Secondary X-ray excitation plate.

Claims (1)

【特許請求の範囲】 1 液体試料容器の試料から見て1次X線入射方
向と反対方向の容器内面に、その特性X線波長が
分析対象元素の吸収端波長よりも短い値の元素で
構成される材料の2次X線励起板を配置してなる
けい光X線分析装置の液体試料容器。 2 2次X線励起板を附設した容器底体の位置を
変え、被検液層厚を変化できるようにした特許請
求の範囲第1項記載のけい光X線分析装置の液体
試料容器。 3 2次X線励起板が交換できるようにされてい
る特許請求の範囲第1項記載のけい光X線分析装
置の液体試料容器。
[Claims] 1. An element whose characteristic X-ray wavelength is shorter than the absorption edge wavelength of the element to be analyzed is formed on the inner surface of the liquid sample container in the direction opposite to the primary X-ray incident direction when viewed from the sample. A liquid sample container for a fluorescence X-ray analyzer in which a secondary X-ray excitation plate of a material to be used is arranged. 2. A liquid sample container for a fluorescence X-ray analyzer according to claim 1, wherein the thickness of the sample liquid layer can be changed by changing the position of the bottom body of the container provided with the secondary X-ray excitation plate. 3. A liquid sample container for a fluorescence X-ray analyzer according to claim 1, wherein the secondary X-ray excitation plate is replaceable.
JP3715077A 1977-03-31 1977-03-31 Liquid specimen vessel of fluorescent x-ray analyzer Granted JPS53122484A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3715077A JPS53122484A (en) 1977-03-31 1977-03-31 Liquid specimen vessel of fluorescent x-ray analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3715077A JPS53122484A (en) 1977-03-31 1977-03-31 Liquid specimen vessel of fluorescent x-ray analyzer

Publications (2)

Publication Number Publication Date
JPS53122484A JPS53122484A (en) 1978-10-25
JPS627973B2 true JPS627973B2 (en) 1987-02-20

Family

ID=12489574

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3715077A Granted JPS53122484A (en) 1977-03-31 1977-03-31 Liquid specimen vessel of fluorescent x-ray analyzer

Country Status (1)

Country Link
JP (1) JPS53122484A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2741155B1 (en) * 1995-11-15 1997-12-05 Commissariat Energie Atomique APPARATUS FOR ANALYZING A FLUORESCENCE X SOLUTION

Also Published As

Publication number Publication date
JPS53122484A (en) 1978-10-25

Similar Documents

Publication Publication Date Title
JP4874118B2 (en) X-ray fluorescence analyzer
US5732120A (en) Fluorescent X-ray analyzing apparatus
Sahle et al. A compact von Hámos spectrometer for parallel X-ray Raman scattering and X-ray emission spectroscopy at ID20 of the European Synchrotron Radiation Facility
Lewis An X-ray absorption edge study of zeolite-supported platinum
JPS627973B2 (en)
US2835820A (en) Curved crystal fluorescent x-ray spectrograph
US3402292A (en) Apparatus for x-ray analysis of a material having a specific filter in the primary x-ray beam path
Giauque et al. Trace element determination using synchrotron radiation
RU2415406C1 (en) X-ray-fluorescent spectrometre with complete external reflection
Wobrauschek et al. Energy dispersive, X-ray fluorescence analysis
Iida X‐ray spectrometric applications of a synchrotron x‐ray microbeam
JP6863069B2 (en) X-ray fluorescence analyzer and sample container used for it
Siegbahn X-ray Spectroscopy
JPH0755733A (en) Sample holding carrier for fluorescent x-ray analysis, and fluorescent x-ray analysis
JP4241479B2 (en) Sample analysis method and sample analyzer
Vasin et al. X‐ray fluorescence analysis with sample excitation using radiation from a secondary target
Kavčič Chapter Application of Wavelength Dispersive X-Ray Spectroscopy in X-Ray Trace Element Analytical Techniques
US4349738A (en) Method of measuring the content of given element in a sample by means of X-ray radiation
Brown X-ray fluorescence analysis. A review
SU609080A1 (en) Device for dispersionless x-ray fluorescent analysis
JP2686217B2 (en) Total reflection X-ray fluorescence analyzer
Bertin et al. Sensitivity and Resolution; Spectral-Line Interference
JP2890127B2 (en) X-ray fluorescence sample holder
JP2940810B2 (en) X-ray fluorescence analyzer
JP2001194325A (en) Device and method for x-ray analysis