JP2008008795A - Analyzing device - Google Patents

Analyzing device Download PDF

Info

Publication number
JP2008008795A
JP2008008795A JP2006180339A JP2006180339A JP2008008795A JP 2008008795 A JP2008008795 A JP 2008008795A JP 2006180339 A JP2006180339 A JP 2006180339A JP 2006180339 A JP2006180339 A JP 2006180339A JP 2008008795 A JP2008008795 A JP 2008008795A
Authority
JP
Japan
Prior art keywords
light
intensity
reflected
test solution
detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006180339A
Other languages
Japanese (ja)
Inventor
Osamu Okabayashi
理 岡林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2006180339A priority Critical patent/JP2008008795A/en
Publication of JP2008008795A publication Critical patent/JP2008008795A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an analyzing device capable of securing the reproducibility of analysis. <P>SOLUTION: The analyzing device comprises a reflected light measuring system 3 for measuring the intensity of the light emitted from the light source 21 and reflected to suspension A. The reflected light measuring system 3 comprises an upper detector 31 for measuring the intensity of the light reflected to the upper part of the suspension A, and a lower detector 32 for measuring the intensity of the light reflected by the lower part of the suspension A. Therefore, even when particles contained in the suspension precipitate in response to an effect of gravity, the intensities of the lights reflected to the upper part (supernatant part of the suspension) of the suspension A and the lower part (precipitation part of the suspension) of the suspension A are measured. Therefore, when the component concentration contained in the suspension is analyzed using the added value (average value may be used) of them, the reproducibility of analysis is secured. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、生化学分析、免疫検査等の分析を自動で行う分析装置に関するものである。   The present invention relates to an analyzer for automatically performing analyzes such as biochemical analysis and immunoassay.

生化学分析、免疫検査等の分析を行う分析装置が広く知られている。たとえば、生化学分析を行う分析装置は、キュベットと称される反応容器に試薬と検体とを分注した後、試薬と検体との混合液(以下、「検液」という)に光を照射し、透過した光量(吸光度)を測定することにより、検体を分析していた。   Analytical apparatuses that perform analyzes such as biochemical analysis and immunological tests are widely known. For example, an analyzer that performs biochemical analysis dispenses a reagent and a sample into a reaction container called a cuvette, and then irradiates a mixed solution of the reagent and the sample (hereinafter referred to as “test solution”) with light. The sample was analyzed by measuring the amount of light transmitted (absorbance).

一方、セルの内部を流れる懸濁液または乳濁液にレーザ光を照射し、透過した光の強度(吸光度)を測定するとともに、散乱した光の強度を測定する粒度測定装置が提案されている(たとえば、特許文献1参照)。   On the other hand, there has been proposed a particle size measuring apparatus that irradiates a suspension or emulsion flowing inside a cell with laser light, measures the intensity (absorbance) of the transmitted light, and measures the intensity of the scattered light. (For example, refer to Patent Document 1).

したがって、生化学分析、免疫検査等を行う分析装置に、上述した粒度測定装置において提案されているような反射した光の強度を測定する測定手段を所定の位置に設ければ、検液に含まれる粒子の粒子径が大きくても反射光の強度を測定することにより検体の分析が可能となる。   Therefore, if a measuring means for measuring the intensity of reflected light as proposed in the above-mentioned particle size measuring apparatus is provided at a predetermined position in an analyzer that performs biochemical analysis, immunoassay, etc., it is included in the test solution. Even if the particle diameter of the particles to be measured is large, the specimen can be analyzed by measuring the intensity of the reflected light.

特開平5−87725号公報JP-A-5-87725

しかしながら、試薬および検体の分注から時間が経過するにつれて、検液の反応が進んで検液に含まれる粒子の粒子径が大きくなるとともに、重力の影響を受けて粒子の沈澱が進行する。したがって、生化学分析、免疫検査等を行う分析装置の所定の位置に、反射した光の強度(光量)を測定する測定手段を設けただけでは、検液の上澄み部分と沈澱部分とでは反射した光の強度が異なるため、分析の再現性が担保されない。   However, as time elapses from the dispensing of the reagent and the specimen, the reaction of the test solution proceeds, the particle diameter of the particles contained in the test solution increases, and the precipitation of the particles proceeds under the influence of gravity. Therefore, if a measuring means for measuring the intensity (light quantity) of the reflected light is provided at a predetermined position of an analyzer for performing biochemical analysis, immunological test, etc., the reflected light is reflected at the supernatant portion and the precipitated portion of the test solution. Since the light intensity is different, the reproducibility of the analysis is not guaranteed.

本発明は、上記に鑑みてなされたものであって、分析の再現性を担保可能な分析装置を提供することを目的とする。   The present invention has been made in view of the above, and an object of the present invention is to provide an analyzer capable of ensuring the reproducibility of analysis.

上述した課題を解決し、目的を達成するために、本発明は、光源から照射され、検液に反射した光の強度を測定する反射光測定系を備えた分析装置であって、前記反射光測定系が、検液の上部位置に反射した光の強度を測定する上部検出器と、検液の下部位置に反射した光の強度を測定する下部検出器とを備えたことを特徴とする。   In order to solve the above-described problems and achieve the object, the present invention is an analyzer including a reflected light measurement system that measures the intensity of light irradiated from a light source and reflected on a test solution, and the reflected light The measurement system includes an upper detector that measures the intensity of light reflected on the upper position of the test solution, and a lower detector that measures the intensity of light reflected on the lower position of the test solution.

また、本発明は、上記発明において、上部検出器と下部検出器とを光源から検液に入射する入射光の光軸と平行に配設したことを特徴とする。   In the invention described above, the present invention is characterized in that the upper detector and the lower detector are arranged in parallel to the optical axis of the incident light incident on the test solution from the light source.

本発明にかかる分析装置は、検液の上部に反射した光の強度を測定する上部検出器と、検液の下部に反射した光の強度を測定する下部検出器とを備えたので、重力の影響を受けて検液に含まれる粒子が沈澱しても、検液の上部(検液の上澄み部分)と検液の下部とに反射した光(検液で散乱した光で後方に向かう光)の強度をそれぞれ測定するので、これらを加算した値(平均値でもよい)を用いて検液に含まれる成分を分析すれば、分析の再現性を担保できる。なお、検液に含まれる成分は、検液に含まれる成分を予め定めた標準検体に反射した光の強度から求めた検量線を参照することにより求められる。   The analyzer according to the present invention includes an upper detector that measures the intensity of the light reflected on the upper part of the test solution, and a lower detector that measures the intensity of the light reflected on the lower part of the test solution. Even if the particles contained in the test solution are precipitated due to the influence, the light reflected on the upper part of the test solution (the supernatant part of the test solution) and the lower part of the test solution (light that is scattered backward from the test solution) Therefore, the reproducibility of the analysis can be ensured by analyzing the components contained in the test solution using a value obtained by adding them (which may be an average value). The component contained in the test solution can be obtained by referring to a calibration curve obtained from the intensity of light reflected from a predetermined standard sample.

また、上部検出器と下部検出器とを光源から検液に入射する入射光の光軸と平行に配設したので、上部検出器は検液の上部(上澄み)から反射する光の強度を、下部検出器は検液の下部を測定できる。これは、検出器が検液のどの部分に反射した光の強度を測定したか不明確となる事態を回避したものである。   In addition, since the upper detector and the lower detector are arranged in parallel to the optical axis of the incident light incident on the test solution from the light source, the upper detector determines the intensity of light reflected from the upper part (supernatant) of the test solution. The lower detector can measure the lower part of the test solution. This avoids a situation where it is unclear which part of the test solution the light intensity reflected by the detector is measured.

以下に添付図面を参照して、本発明の実施の形態にかかる分析装置を詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。   Hereinafter, an analysis apparatus according to an embodiment of the present invention will be described in detail with reference to the accompanying drawings. Note that the present invention is not limited to the embodiments.

本発明にかかる分析装置は、生化学分析、免疫検査等の分析を自動で行う分析装置に適用可能であるが、ここでは、臨床検査等に用いられる生化学分析装置を例に説明する。   The analysis apparatus according to the present invention can be applied to an analysis apparatus that automatically performs analysis such as biochemical analysis and immunological test. Here, a biochemical analysis apparatus used for clinical tests and the like will be described as an example.

(実施の形態)
まず、図1を参照し、本発明の実施の形態にかかる分析装置を説明する。なお、図1は本発明の実施の形態にかかる分析装置の測定光学系の構成を示す概念図、図2は本発明の実施の形態にかかる分析装置のブロック図である。
(Embodiment)
First, an analyzer according to an embodiment of the present invention will be described with reference to FIG. FIG. 1 is a conceptual diagram showing the configuration of the measurement optical system of the analyzer according to the embodiment of the present invention, and FIG. 2 is a block diagram of the analyzer according to the embodiment of the present invention.

本発明の実施の形態にかかる分析装置は、測定光学系1を有している。測定光学系1は、図1に示すように、透過光測定系2と、反射光測定系3とを有している。   The analyzer according to the embodiment of the present invention has a measurement optical system 1. The measurement optical system 1 includes a transmitted light measurement system 2 and a reflected light measurement system 3 as shown in FIG.

透過光測定系2は、吸光度測定系と称されるものであり、光源21から照射された光が透過した検液Aの吸光度を測定可能である。透過光測定系2は、従前の分析装置と同様に、光源21、集光レンズ22、コリメーションレンズ23、グレーティング24、PDA25を同一直線上に配設することにより構成してある。   The transmitted light measurement system 2 is called an absorbance measurement system, and can measure the absorbance of the test solution A through which the light emitted from the light source 21 has been transmitted. The transmitted light measurement system 2 is configured by arranging a light source 21, a condensing lens 22, a collimation lens 23, a grating 24, and a PDA 25 on the same straight line as in a conventional analyzer.

光源21は、検液Aを分析するための照射光を出射するものであり、340〜800ナノメートルの波長の光を出射可能である。集光レンズ22は、図1に示すように、光源21から出射した照射光を一旦集光するものであり、集光した照射光は検液Aに入射する。コリメーションレンズ23は、検液Aを透過した光を平行光に収束させるものであり、平行光に収束した光がグレーティング24に入射する。グレーティング24は、検液Aに特異的に吸収される波長の光を選択する回析格子であり、測定項目ごとに予め定めたものが使用される。PDA(Photo Detector Array)25は、グレーティング24から入射した光の強度(光量)を測定する光検出素子群であり、吸光度は、予めブランク試料に関する光の強度を測定しておくことにより比較対照が可能となる。   The light source 21 emits irradiation light for analyzing the test solution A, and can emit light having a wavelength of 340 to 800 nanometers. As shown in FIG. 1, the condensing lens 22 temporarily condenses the irradiation light emitted from the light source 21, and the condensed irradiation light enters the test solution A. The collimation lens 23 converges the light transmitted through the test solution A into parallel light, and the light converged on the parallel light enters the grating 24. The grating 24 is a diffraction grating that selects light having a wavelength that is specifically absorbed by the test solution A, and a grating that is predetermined for each measurement item is used. A PDA (Photo Detector Array) 25 is a group of light detecting elements that measure the intensity (light quantity) of light incident from the grating 24. The absorbance is measured by measuring the intensity of light relating to a blank sample in advance. It becomes possible.

集光レンズ22とコリメーションレンズ23との間には、キュベットと称させる反応容器C(以下「キュベット」という)が位置している。キュベットCは、角筒形状をした有底の透明容器であり、上方部が開口したものである。なお、キュベットCは、集光レンズ22とコリメーションレンズ23との間に位置するものであれば、集光レンズ22とコリメーションレンズ23との間に固定したものであっても良いし、所定時間ごとに通過するものであっても良い。   Between the condensing lens 22 and the collimation lens 23, a reaction container C (hereinafter referred to as “cuvet”) called a cuvette is located. The cuvette C is a bottomed transparent container having a rectangular tube shape, and an upper portion is opened. As long as the cuvette C is located between the condenser lens 22 and the collimation lens 23, the cuvette C may be fixed between the condenser lens 22 and the collimation lens 23, or every predetermined time. It may be one that passes through.

キュベットCには、試薬と検体とが分注可能であり、上述した透過光測定系2は、その混合液(検液A)の吸光度(OD:Optical Density(光学濃度))を測定可能である。検液Aの吸光度は、キュベットCが集光レンズ22とコリメーションレンズ23との間を通過するごと、あるいは、所定時間ごとに測定可能である。   Reagents and specimens can be dispensed into the cuvette C, and the transmitted light measurement system 2 described above can measure the absorbance (OD: Optical Density (optical density)) of the mixed solution (test solution A). . The absorbance of the test solution A can be measured every time the cuvette C passes between the condenser lens 22 and the collimation lens 23 or every predetermined time.

反射光測定系3は、後方散乱測定系と称されるものであり、光源21から照射され、検液Aに反射した光の強度を測定可能である。反射光測定系3は、上述した透過光測定系2の光源21および集光レンズ22と、一対の光検出器31,32とにより構成される。   The reflected light measurement system 3 is called a backscattering measurement system, and can measure the intensity of light irradiated from the light source 21 and reflected by the test solution A. The reflected light measurement system 3 includes the light source 21 and the condenser lens 22 of the transmitted light measurement system 2 described above, and a pair of photodetectors 31 and 32.

一対の光検出器31,32は、集光レンズ22とコリメーションレンズ23との間であって、光源21側に配設してある。一対の光検出器31,32は、入射光の光軸の上部に配設した上部検出器31と、入射光の光軸の下部に配設した下部検出器32とからなる。これら上部検出器31と下部検出器32とは、光源21からキュベットCへ入射する入射光を遮らない位置であって、入射光の光軸と平行となるように配設してある。したがって、上部検出器31は検液Aの上部(上澄み)に反射した光の強度を、下部検出器32は検液Aの下部に反射した光の強度を測定できる。これは、検出器が検液Aのどの部分に反射した光の強度を測定したものか不明確となる事態を回避したものである。たとえば、入射光の光軸に対して手前上がりとなるように上部検出器31を配設した場合には、検液Aの上澄みに入射した後、沈澱した部分に反射した光の強度を検出器が測定することになり、好ましくない。   The pair of photodetectors 31 and 32 are disposed on the light source 21 side between the condenser lens 22 and the collimation lens 23. The pair of photodetectors 31 and 32 includes an upper detector 31 disposed above the optical axis of incident light and a lower detector 32 disposed below the optical axis of incident light. The upper detector 31 and the lower detector 32 are disposed so as not to block incident light incident on the cuvette C from the light source 21 and are parallel to the optical axis of the incident light. Therefore, the upper detector 31 can measure the intensity of light reflected on the upper portion (supernatant) of the test solution A, and the lower detector 32 can measure the intensity of light reflected on the lower portion of the test solution A. This avoids a situation in which it is unclear which part of the sample A the intensity of light reflected by the detector is measured. For example, when the upper detector 31 is disposed so as to rise toward the optical axis of the incident light, the intensity of the light reflected on the sedimented portion after entering the supernatant of the test solution A is detected by the detector. However, this is not preferable.

このように、上部検出器31は、検液Aの上部(上澄み)に反射した光の強度を測定可能であり、下部検出器32は、検液Aの下部に反射した光の強度を測定可能である。したがって、反射光測定系3は、キュベットCが集光レンズ22とコリメーションレンズ23の間を通過するごと、あるいは、所定時間ごとに、検液Aに反射した光の強度を測定可能である。   Thus, the upper detector 31 can measure the intensity of the light reflected on the upper part (supernatant) of the test solution A, and the lower detector 32 can measure the intensity of the light reflected on the lower part of the test solution A. It is. Therefore, the reflected light measurement system 3 can measure the intensity of the light reflected on the test solution A every time the cuvette C passes between the condenser lens 22 and the collimation lens 23 or every predetermined time.

図2に示すように、上述した光源21、PDA25、上部検出器31および下部検出器32は、制御部4に接続してあり、統括的に制御可能である。制御部4は、たとえば、マイクロコンピュータ等を採用可能である。   As shown in FIG. 2, the light source 21, the PDA 25, the upper detector 31, and the lower detector 32 described above are connected to the control unit 4 and can be controlled comprehensively. The control unit 4 can employ, for example, a microcomputer.

制御部4には、データ処理部5(以下、DPRという)が接続してある。DPR5は、制御部4が取得した各種データを処理する部分である。DPR5は、入力部51と出力部52とを備えている。入力部51は、たとえば、キーボードやマウス等であり、検体数や検査項目等の各種情報が入力可能である。出力部52は、たとえば、ディスプレイパネルやプリンタ等であり、分析結果を含む分析内容等の各種情報が出力可能である。   A data processing unit 5 (hereinafter referred to as DPR) is connected to the control unit 4. The DPR 5 is a part that processes various data acquired by the control unit 4. The DPR 5 includes an input unit 51 and an output unit 52. The input unit 51 is, for example, a keyboard or a mouse, and can input various information such as the number of specimens and examination items. The output unit 52 is, for example, a display panel or a printer, and can output various types of information such as analysis contents including analysis results.

また、DPR5は、制御部4を介して、PDA25、上部検出器31および下部検出器32と接続してあり、PDA25が測定した光量情報(吸光度情報)、上部検出器31および下部検出器32が測定した反射光の強度に基づいて、検体の成分濃度等を分析可能である。吸光度は、PDA25によって予めブランク試料(たとえば、水)に関する光量を測定しておくことにより比較対照が可能である。また、反射光の強度は、上部検出器31および下部検出器32によって予めブランク試料(たとえば、水)に関する光の強度を求めておくことにより比較対照が可能である。これらの分析結果は、出力部52に出力可能である。   The DPR 5 is connected to the PDA 25, the upper detector 31 and the lower detector 32 via the control unit 4, and the light quantity information (absorbance information) measured by the PDA 25, the upper detector 31 and the lower detector 32 are Based on the measured intensity of the reflected light, it is possible to analyze the component concentration and the like of the specimen. The absorbance can be compared and compared by measuring the amount of light relating to the blank sample (for example, water) in advance by the PDA 25. Further, the intensity of the reflected light can be compared and contrasted by obtaining the intensity of the light relating to the blank sample (for example, water) in advance by the upper detector 31 and the lower detector 32. These analysis results can be output to the output unit 52.

上述した本実施の形態にかかる分析装置は、分析を開始するにあたって、検液Aに含まれる成分濃度を予め定めた標準検体の吸光度および反射光の強度を所定時間ごとに測定し、検量線を作成する。すなわち、反射光測定系3が測定した反射光の強度がゼロから所定の値となるまでは、吸光度に検液Aの成分濃度を関連付けた検量線を作成し、反射光測定系3が所定の反射光強度を検出した場合は、それ以後(所定の反射光強度以上の範囲)反射光の強度に検液Aの成分濃度を関連付けた検量線を作成する。反射光の強度に検液Aの成分濃度を関連付けた検量線は、上部検出器31が測定した反射光の強度と下部検出器32が測定した反射光の強度との和と、検液Aの成分濃度とが関連付けてある。このため、検液Aの上部(上澄み部分)と検液Aの下部(沈澱部分)とにおいて、反射光の強度が大きく異なる場合でも、検液全体を対象とした検量線が作成される。   When starting the analysis, the analyzer according to the present embodiment described above measures the absorbance and reflected light intensity of a standard sample with predetermined component concentrations contained in the test solution A every predetermined time, and generates a calibration curve. create. That is, until the intensity of the reflected light measured by the reflected light measurement system 3 reaches a predetermined value from zero, a calibration curve is created in which the component concentration of the test solution A is associated with the absorbance. When the reflected light intensity is detected, a calibration curve in which the component concentration of the test solution A is associated with the intensity of the reflected light thereafter (in a range equal to or greater than the predetermined reflected light intensity) is created. The calibration curve in which the component concentration of the test solution A is associated with the intensity of the reflected light is the sum of the intensity of the reflected light measured by the upper detector 31 and the intensity of the reflected light measured by the lower detector 32, and The component concentration is related. Therefore, a calibration curve for the entire test solution is created even when the intensity of the reflected light differs greatly between the upper portion (supernatant portion) of the test solution A and the lower portion (precipitation portion) of the test solution A.

その後、分析を開始すると、反射光測定系3が所定の値の反射光強度を検出するまでは、所定時間ごとに吸光度を測定する。そして、検量線を参照し、測定した吸光度から、検液Aの成分濃度を分析する。   Thereafter, when the analysis is started, the absorbance is measured every predetermined time until the reflected light measurement system 3 detects the reflected light intensity having a predetermined value. Then, referring to the calibration curve, the component concentration of the test solution A is analyzed from the measured absorbance.

一方、反射光測定系3が所定の値の反射光強度を検出した場合は、所定時間ごとに反射光の強度を測定する。具体的には、上部検出器31が測定した反射光の強度と、下部検出器32が測定した反射光の強度とを測定し、その和を測定した反射光の強度とする。そして、検量線を参照し、測定した反射光の強度から、検液Aの成分濃度を分析する。   On the other hand, when the reflected light measurement system 3 detects a reflected light intensity having a predetermined value, the intensity of the reflected light is measured every predetermined time. Specifically, the intensity of the reflected light measured by the upper detector 31 and the intensity of the reflected light measured by the lower detector 32 are measured, and the sum thereof is taken as the measured intensity of the reflected light. Then, referring to the calibration curve, the component concentration of the test solution A is analyzed from the measured intensity of the reflected light.

上述した実施の形態にかかる分析装置は、検液の上部に反射した光の強度を測定する上部検出器31と、検液の下部に反射した光の強度を測定する下部検出器32とを備えたので、重力の影響を受けて検液に含まれる粒子が沈澱しても、検液の上部(検液の上澄み部分)と検液の下部(検液の沈澱部分)とに反射した光の強度をそれぞれ測定するので、これらを加算した値を用いて検液に含まれる成分を分析すれば、分析の再現性を担保できる。   The analyzer according to the embodiment described above includes an upper detector 31 that measures the intensity of light reflected on the upper part of the test solution, and a lower detector 32 that measures the intensity of light reflected on the lower part of the test solution. Therefore, even if the particles contained in the test solution settle due to the influence of gravity, the light reflected from the upper part of the test solution (the supernatant part of the test solution) and the lower part of the test solution (the precipitation part of the test solution) Since each strength is measured, the reproducibility of the analysis can be ensured by analyzing the components contained in the test solution using the value obtained by adding them.

また、上部検出器31と下部検出器32とを光源21から検液に入射する入射光の光軸と平行に配設したので、上部検出器31および下部検出器32が検液Aのどの部分に反射した光の強度を測定したか不明確となる事態を回避できる。   In addition, since the upper detector 31 and the lower detector 32 are arranged in parallel to the optical axis of the incident light incident on the test solution from the light source 21, the upper detector 31 and the lower detector 32 are arranged in any part of the test sample A. It is possible to avoid a situation where it is unclear whether the intensity of the reflected light is measured.

また、上述した実施の形態にかかる分析装置では、上部検出器31が測定した反射光の強度と下部検出器32が測定した反射光の強度との和と、検液Aの成分濃度とを関連付けて、反射光の強度に検液Aの成分濃度を関連付けた検量線を作成し、上部検出器31が測定した反射光の強度と下部検出器32が測定した反射光の強度との和に基づいて検液Aの成分濃度を分析するものとした。しかしながら、上部検出器31が測定した反射光の強度と下部検出器32が測定した反射光の強度との平均値と、検液Aの成分濃度とを関連付けて、反射光の強度に検液Aの成分濃度を関連付けた検量線を作成し、上部検出器31が測定した反射光の強度と下部検出器32が測定した反射光の強度との平均値に基づいて検液Aの成分濃度を分析するものとしても良い。また、上部検出器31が測定した反射光の強度変化と下部検出器32が測定した反射光の強度変化との差を分析するものとしても良い。   In the analyzer according to the above-described embodiment, the sum of the reflected light intensity measured by the upper detector 31 and the reflected light intensity measured by the lower detector 32 is associated with the component concentration of the test solution A. Then, a calibration curve in which the component concentration of the test solution A is associated with the intensity of the reflected light is created, and based on the sum of the intensity of the reflected light measured by the upper detector 31 and the intensity of the reflected light measured by the lower detector 32. Thus, the component concentration of the test solution A was analyzed. However, the average value of the intensity of the reflected light measured by the upper detector 31 and the intensity of the reflected light measured by the lower detector 32 is associated with the component concentration of the test solution A, and the test solution A is related to the intensity of the reflected light. A calibration curve relating the component concentrations of the sample A is prepared, and the component concentration of the test solution A is analyzed based on the average value of the intensity of the reflected light measured by the upper detector 31 and the intensity of the reflected light measured by the lower detector 32 It is good to do. Alternatively, the difference between the reflected light intensity change measured by the upper detector 31 and the reflected light intensity change measured by the lower detector 32 may be analyzed.

本発明の実施の形態にかかる分析装置の測定光学系の構成を示す概念図である。It is a conceptual diagram which shows the structure of the measurement optical system of the analyzer concerning embodiment of this invention. 本発明の実施の形態にかかる分析装置のブロック図である。It is a block diagram of the analyzer concerning an embodiment of the invention.

符号の説明Explanation of symbols

1 測定光学系
2 透過光測定系
3 反射光測定系
4 制御部
5 データ処理部(DPR)
21 光源
22 集光レンズ
23 コリメーションレンズ
24 グレーティング
31 上部検出器(光検出器)
32 下部検出器(光検出器)
C キュベット(反応容器)
DESCRIPTION OF SYMBOLS 1 Measurement optical system 2 Transmitted light measurement system 3 Reflected light measurement system 4 Control part 5 Data processing part (DPR)
21 Light source 22 Condensing lens 23 Collimation lens 24 Grating 31 Upper detector (light detector)
32 Lower detector (light detector)
C cuvette (reaction vessel)

Claims (2)

光源から照射され、検液に反射した光の強度を測定する反射光測定系を備えた分析装置であって、
前記反射光測定系が、検液の上部に反射した光の強度を測定する上部検出器と、検液の下部に反射した光の強度を測定する下部検出器とを備えたことを特徴とする分析装置。
An analyzer equipped with a reflected light measurement system for measuring the intensity of light irradiated from a light source and reflected by a test solution,
The reflected light measurement system includes an upper detector that measures the intensity of light reflected on the upper portion of the test solution, and a lower detector that measures the intensity of light reflected on the lower portion of the test solution. Analysis equipment.
上部検出器と下部検出器とを光源から検液に入射する入射光の光軸と平行に配設したことを特徴とする請求項1に記載の分析装置。   The analyzer according to claim 1, wherein the upper detector and the lower detector are arranged in parallel with an optical axis of incident light incident on the test solution from the light source.
JP2006180339A 2006-06-29 2006-06-29 Analyzing device Withdrawn JP2008008795A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006180339A JP2008008795A (en) 2006-06-29 2006-06-29 Analyzing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006180339A JP2008008795A (en) 2006-06-29 2006-06-29 Analyzing device

Publications (1)

Publication Number Publication Date
JP2008008795A true JP2008008795A (en) 2008-01-17

Family

ID=39067133

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006180339A Withdrawn JP2008008795A (en) 2006-06-29 2006-06-29 Analyzing device

Country Status (1)

Country Link
JP (1) JP2008008795A (en)

Similar Documents

Publication Publication Date Title
JP2008008794A (en) Analyzing device
EP2016390B1 (en) A method and a system for quantitative hemoglobin determination
JP6013796B2 (en) Automatic analyzer and sample measurement method
US8137920B2 (en) Multi-wavelength analyses of sol-particle specific binding assays
JP5740264B2 (en) Automatic analyzer and analysis method
EP2988111B1 (en) Analyzer and automatic analyzer
JP5984290B2 (en) Automatic analyzer
JP5296015B2 (en) Automatic analyzer
EP2541233A1 (en) Automatic analysis device
JP5216051B2 (en) Automatic analyzer and automatic analysis method
EP2466292B1 (en) System for performing scattering and absorbance assays
JP5661124B2 (en) Automatic analyzer
US7978325B2 (en) Biochemical analyzer
JP2005147826A (en) Fluorescence measurement instrument
JP5865713B2 (en) Automatic analyzer
US10856391B2 (en) Method to correct signal light intensities measured by a detector of a detection unit in a laboratory instrument
JP5946776B2 (en) Automatic analyzer
JP6437390B2 (en) Automatic analyzer
JP2008008795A (en) Analyzing device
JP6422414B2 (en) Method for performing nephelometric determination of a sample
JP2015132634A (en) Autoanalyzer and analytical method
JP5057226B2 (en) Microchip for blood test and method of using the same
JP2005049109A (en) Chemical analysis equipment
JP2020091185A (en) Analyzer and method for analysis
JP2013024746A (en) Automatic analyzer

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20090901