JP2015132634A - Autoanalyzer and analytical method - Google Patents

Autoanalyzer and analytical method Download PDF

Info

Publication number
JP2015132634A
JP2015132634A JP2015090431A JP2015090431A JP2015132634A JP 2015132634 A JP2015132634 A JP 2015132634A JP 2015090431 A JP2015090431 A JP 2015090431A JP 2015090431 A JP2015090431 A JP 2015090431A JP 2015132634 A JP2015132634 A JP 2015132634A
Authority
JP
Japan
Prior art keywords
light
scattered light
latex particles
reaction
reagent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015090431A
Other languages
Japanese (ja)
Other versions
JP6031552B2 (en
Inventor
剛史 與儀
Takeshi Yogi
剛史 與儀
足立 作一郎
Sakuichiro Adachi
作一郎 足立
三村 智憲
Tomonori Mimura
智憲 三村
創 山崎
So Yamazaki
創 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Hitachi High Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp, Hitachi High Tech Corp filed Critical Hitachi High Technologies Corp
Priority to JP2015090431A priority Critical patent/JP6031552B2/en
Publication of JP2015132634A publication Critical patent/JP2015132634A/en
Application granted granted Critical
Publication of JP6031552B2 publication Critical patent/JP6031552B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a device and a preferable condition of a reagent for highly sensitively measuring a latex immune reaction, by a scattered light measurement method on an autoanalyzer.SOLUTION: Irradiation light having a wavelength in the range of 0.65-0.75 μm is used and scattered light generated from reaction liquid is received during rotation movement of a reaction vessel 8, by a light receiving angle of 15-35° to an irradiation direction of the irradiation light. A reagent contains latex particles which have an average peak particle diameter of 0.3 μm-0.43 μm and to which an antibody is sensitized. The reaction liquid contains the latex particles in concentration in which absorbance of the irradiation light having a wavelength of 0.7 μm is 0.25 abs-1.10 abs. Light quantity change of the scattered light, caused by agglutination of the latex particles through an antigen in a sample is measured to determine the quantity.

Description

本発明は、抗原抗体反応を用いた微粒子凝集反応を散乱光測定する方法及び分析装置に関し、特に自動分析装置上での散乱光測定法に関する。   The present invention relates to a method and an analyzer for measuring scattered light of a fine particle agglutination reaction using an antigen-antibody reaction, and more particularly to a method for measuring scattered light on an automatic analyzer.

光源からの光を、サンプルと試薬とが混合した反応液に照射し、特定波長の透過光量の変化から吸光度を算出し、ランベルト・ベールの法則に従い血液サンプル中の被測定物質の濃度を定量する自動分析装置が広く用いられている(例えば、特許文献1)。これらの自動分析装置においては、回転と停止を繰り返すセルディスクの円周上に、反応液を保持する多数のセルを並べ、セルディスク回転中に、所定位置に配置された透過光測定部にて15秒程度の間隔で約10分間、セル内の反応液を透過した透過光量の時系列データを反応過程データとして取得し、光量の変化から吸光度を算出し、被測定物質の濃度を定量する。   Light from the light source is applied to the reaction mixture of the sample and reagent, the absorbance is calculated from the change in the amount of transmitted light at a specific wavelength, and the concentration of the analyte in the blood sample is quantified according to the Lambert-Beer law Automatic analyzers are widely used (for example, Patent Document 1). In these automatic analyzers, a large number of cells that hold the reaction solution are arranged on the circumference of the cell disk that repeats rotation and stop, and the transmitted light measurement unit arranged at a predetermined position during the cell disk rotation. Time series data of the amount of transmitted light that has passed through the reaction solution in the cell for about 10 minutes at intervals of about 15 seconds is acquired as reaction process data, the absorbance is calculated from the change in the amount of light, and the concentration of the substance to be measured is quantified.

自動分析装置で測定される反応には主に基質と酵素との呈色反応と、抗原と抗体との免疫反応の2種類がある。前者の反応を用いた分析は生化学分析と呼ばれ、検査項目としてLDH(乳酸脱水素酵素)、ALP(アルカリホスファターゼ)、AST(アスパラギン酸アミノトンラフェナーゼ)などがある。後者の反応を用いた分析は免疫分析と呼ばれ、検査項目としてCRP(C反応性蛋白)、IgG(免疫グロブリン)、RF(リウマトイド因子)などがある。後者で測定される被測定物質の中には、血中濃度が低い低濃度領域において定量が要求される検査項目が存在し、そのような項目では、表面に抗体を感作(結合)させたラテックス粒子を増感剤として用いたラテックス免疫分析が用いられる(例えば、特許文献2)。   There are mainly two types of reactions measured by an automatic analyzer, ie, a color reaction between a substrate and an enzyme and an immune reaction between an antigen and an antibody. The analysis using the former reaction is called biochemical analysis, and there are LDH (lactate dehydrogenase), ALP (alkaline phosphatase), AST (aminoton raffinase aspartate) and the like as test items. Analysis using the latter reaction is called immunoassay, and test items include CRP (C-reactive protein), IgG (immunoglobulin), and RF (rheumatoid factor). Among the analytes measured in the latter, there are test items that require quantification in low-concentration regions where the blood concentration is low. In such items, antibodies are sensitized (bound) on the surface. Latex immunoassay using latex particles as a sensitizer is used (for example, Patent Document 2).

ラテックス免疫分析では、サンプルに含まれる被測定物質である抗原を、試薬に含まれるラテックス粒子表面の抗体が認識し結合した結果、ラテックス粒子が抗原を介して凝集し、ラテックス粒子の凝集体が生成される。従来の自動分析装置では、この凝集体が分散した反応液に光を照射し、ラテックス粒子の凝集体に散乱されずに透過した透過光量を測定する。抗原の濃度が高いほど一定時間後の凝集体の大きさは大きくなり、より多くの光が散乱されるため透過光量が減少する。そのため、反応過程データとして測定した光量から抗原の濃度を定量できる。   In latex immunoassay, antigens to be measured contained in a sample are recognized and bound by the antibody on the latex particle surface contained in the reagent, resulting in latex particles aggregating through the antigen and forming latex particle aggregates. Is done. In the conventional automatic analyzer, light is irradiated to the reaction liquid in which the aggregates are dispersed, and the amount of transmitted light transmitted without being scattered by the aggregates of latex particles is measured. The higher the concentration of the antigen, the larger the size of the aggregate after a certain time, and more light is scattered, so the amount of transmitted light decreases. Therefore, the concentration of the antigen can be quantified from the amount of light measured as reaction process data.

近年、ラテックス免疫分析のさらなる高感度化が望まれている。そこで、透過光を測定するのではなく、散乱光を測定することが試みられてきた。例えば、ダイアフラムを用いて透過光と散乱光とを分離し、吸光度と散乱光を同時に測定するシステム(特許文献3)等が開示されている。また、散乱光測定に適した試薬粒径なども開示されている(特許文献4)。   In recent years, higher sensitivity of latex immunoassay has been desired. Therefore, it has been attempted to measure scattered light instead of measuring transmitted light. For example, a system (Patent Document 3) that separates transmitted light and scattered light using a diaphragm and simultaneously measures absorbance and scattered light is disclosed. Moreover, the reagent particle diameter etc. which are suitable for a scattered light measurement are also disclosed (patent document 4).

米国特許第4451433号明細書U.S. Pat. No. 4,451,433 特許1612184号明細書Japanese Patent No. 16112184 特開2001−141654号公報JP 2001-141654 A 特許1635792号明細書Japanese Patent No. 16357792

C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles, J. Wiley & Sons, 1983C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles, J. Wiley & Sons, 1983

特許文献2には大まかな高感度化のための波長及び粒径などが記載されているものの、吸光度測定に関してのものであり、散乱光測定に適用できるかは不明であった。また、特許文献3には、透過光測定と同時に散乱光測定を行うことより高感度にする構成が示されているが、自動分析装置に適した構成として考慮されたものではない。さらに試薬を含めた好適な条件の検討はなされていない。   Although Patent Document 2 describes a wavelength and particle size for roughly increasing sensitivity, it relates to absorbance measurement, and it is unclear whether it can be applied to scattered light measurement. In addition, Patent Document 3 discloses a configuration that achieves higher sensitivity by performing scattered light measurement simultaneously with transmitted light measurement, but is not considered as a configuration suitable for an automatic analyzer. Furthermore, examination of suitable conditions including a reagent is not made | formed.

ラテックス試薬には主に粒子直径(以下、粒径)500nm以下のラテックス粒子が用いられており、個々の粒子による光散乱特性(散乱光強度、及びその角度分布)は粒径と波長の比により大きく変化すると考えられる(非特許文献1参照)。このため散乱光測定の場合、波長と粒径等の選定により感度は大きく変わりうる。特許文献4には散乱光測定に関して記載があるが、特許文献2の吸光度測定の場合と同じ範囲であり、散乱光測定に用いた場合、必ずしも一様に高感度化に適した波長及び粒径ではないと推測され、波長や粒径によっては感度が悪化することも懸念される。しかし、波長や粒径等を変更して実験するには膨大な時間とコストがかかり、現実的に包括的な傾向把握は困難であった。   Latex particles with a particle diameter (hereinafter referred to as particle size) of 500 nm or less are mainly used as latex reagents, and the light scattering characteristics (scattered light intensity and its angular distribution) of each particle depend on the ratio between the particle size and the wavelength. It is thought that it will change greatly (refer nonpatent literature 1). For this reason, in the case of scattered light measurement, the sensitivity can vary greatly depending on the selection of wavelength, particle size, and the like. Patent Document 4 describes scattered light measurement, but it is in the same range as the absorbance measurement in Patent Document 2, and when used for scattered light measurement, the wavelength and particle size are always suitable for high sensitivity. It is speculated that this is not, and there is a concern that the sensitivity may deteriorate depending on the wavelength and the particle size. However, it takes a lot of time and cost to experiment by changing the wavelength, particle size, etc., and it is difficult to grasp a comprehensive trend in practice.

さらには、ラテックス表面に感作させる抗体の結合性等を考慮した条件検討もされてこなかった。すなわち、自動分析装置上で散乱光測定をする際の、装置条件である波長・受光角度、ならびに試薬条件である粒径・密度・抗原抗体の結合定数などと感度との関係は明らかでなく、ラテックス免疫分析を高感度に行うための好適な各条件の組み合わせは知られていなかった。   In addition, conditions have not been studied in consideration of the binding properties of antibodies to be sensitized to the latex surface. That is, when measuring scattered light on an automatic analyzer, the relationship between sensitivity and wavelength and light receiving angle, which are instrument conditions, particle size, density, antigen antibody binding constant, etc., which are reagent conditions, is not clear, No suitable combination of conditions for performing latex immunoassay with high sensitivity has been known.

本発明は、自動分析装置上で散乱光測定法によってラテックス免疫反応を高感度に測定するための、装置ならびに試薬上の好適な条件を提供するものである。   The present invention provides suitable conditions on the apparatus and the reagent for measuring latex immune reaction with high sensitivity by the scattered light measurement method on an automatic analyzer.

本発明では、抗原抗体反応として、結合定数から一定反応時間中に想定される凝集体の数を見積もり、凝集体を光学的にモデル化することでシミュレーションを行い、凝集に伴う散乱光の変化が生じやすい試薬ならびに装置の条件を得た。   In the present invention, as an antigen-antibody reaction, the number of aggregates assumed during a certain reaction time is estimated from the binding constant, and simulation is performed by optically modeling the aggregates. Reproducible reagents and equipment conditions were obtained.

本発明による自動分析装置は、サンプルを保持するサンプル容器と、平均ピーク粒径が0.3μm〜0.43μmであって抗体が感作されたラテックス粒子を含む試薬を保持する試薬容器と、サンプル容器内のサンプルと試薬容器内の試薬とを混合した反応液を保持する反応容器と、反応容器を回転移動させる回転機構と、反応容器内の反応液に、波長0.65〜0.75μmの範囲の照射光を照射する光源部と、照射光の照射方向に対して15〜35°の受光角度に配置され、反応容器の回転移動中に、反応液から生じる散乱光を受光する光検出器とを有する。ここで、反応液は、波長0.7μmの照射光に対する吸光度が0.25abs〜1.10absとなる濃度でラテックス粒子を含み、ラテックス粒子がサンプル内の抗原を介して凝集することで起こる散乱光の光量変化を測定する。   An automatic analyzer according to the present invention includes a sample container for holding a sample, a reagent container for holding a reagent containing latex particles having an average peak particle size of 0.3 μm to 0.43 μm and sensitized with an antibody, and a sample A reaction container holding a reaction liquid in which the sample in the container and the reagent in the reagent container are mixed, a rotating mechanism for rotating the reaction container, and a reaction liquid in the reaction container having a wavelength of 0.65 to 0.75 μm. A light source unit that irradiates a range of irradiation light, and a photodetector that is disposed at a light receiving angle of 15 to 35 ° with respect to the irradiation direction of the irradiation light and that receives scattered light generated from the reaction solution during the rotational movement of the reaction vessel And have. Here, the reaction solution contains latex particles at a concentration of 0.25 abs to 1.10 abs with respect to irradiation light having a wavelength of 0.7 μm, and the scattered light caused by aggregation of the latex particles via the antigen in the sample. Measure the change in light intensity.

反応液に含まれるラテックス粒子の濃度は、波長0.7μmの照射光に対する吸光度が0.25abs〜0.50absとなる濃度がより好ましく、0.25abs〜0.31absとなる濃度が更に好ましい。   The concentration of the latex particles contained in the reaction solution is more preferably a concentration at which the absorbance with respect to irradiation light with a wavelength of 0.7 μm is 0.25 abs to 0.50 abs, and further preferably a concentration at which the absorbance is 0.25 abs to 0.31 abs.

また、本発明による分析方法は自動分析装置を用いた抗原抗体反応に基づく被測定物質の分析方法であり、反応容器内でサンプルと、平均ピーク粒径が0.3μm〜0.43μmであって抗体が感作されたラテックス粒子を含む試薬を混合して反応液とする工程と、反応容器を回転移動中に、反応容器内の反応液に、波長0.65〜0.75μmの範囲の照射光を照射し、照射光の照射方向に対して15〜35°の角度に散乱された散乱光を検出する工程と、ラテックス粒子がサンプル内の抗原を介して凝集することで起こる散乱光の光量変化を測定する工程とを有し、反応液は、波長0.7μmの照射光に対する吸光度が0.25abs〜1.10absとなる濃度でラテックス粒子を含むものである。   The analysis method according to the present invention is a method for analyzing a substance to be measured based on an antigen-antibody reaction using an automatic analyzer, and the sample and the average peak particle size are 0.3 μm to 0.43 μm in the reaction container. Mixing a reagent containing latex particles sensitized with an antibody to make a reaction solution, and irradiating the reaction solution in the reaction vessel in the wavelength range of 0.65 to 0.75 μm while rotating the reaction vessel A step of detecting the scattered light scattered at an angle of 15 to 35 ° with respect to the irradiation direction of the irradiated light, and the amount of scattered light caused by the latex particles aggregating through the antigen in the sample The reaction solution contains latex particles at a concentration such that the absorbance with respect to irradiation light with a wavelength of 0.7 μm is 0.25 abs to 1.10 abs.

本発明によれば、抗原抗体反応を用いたラテックス粒子の凝集を高感度に測定し、低濃度まで測定することが可能である。それにより低濃度の抗原もしくは抗体を算出することが可能となる。
上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
According to the present invention, it is possible to measure the aggregation of latex particles using an antigen-antibody reaction with high sensitivity and to measure to a low concentration. This makes it possible to calculate a low concentration of antigen or antibody.
Problems, configurations, and effects other than those described above will be clarified by the following description of embodiments.

散乱光測定の概略説明図。Schematic explanatory drawing of scattered light measurement. 抗原の結合率の、抗体濃度依存性を示す図。The figure which shows the antibody binding rate dependence of the antigen binding rate. 凝集体の構成粒子個数の抗原濃度依存性を示す図。The figure which shows the antigen density | concentration dependence of the structure particle number of an aggregate. 透過光の光量変化率に対する散乱光の光量変化率(光量変化率倍率)を示す図。The figure which shows the light quantity change rate (light quantity change rate magnification) of the scattered light with respect to the light quantity change rate of the transmitted light. 自動分析装置の全体構成例を示す概略図。Schematic which shows the example of whole structure of an automatic analyzer. 散乱光測定部の概略図。Schematic of a scattered light measurement part. 光量変化率倍率の角度依存性を示す図。The figure which shows the angle dependence of light quantity change rate magnification.

以下、図面を参照して本発明の実施の形態を説明する。自動分析装置に組み込む散乱光測定部に有用な構成として、以下の装置構成(照射光の波長及び散乱光を受光する角度)を選定した。   Embodiments of the present invention will be described below with reference to the drawings. The following apparatus configuration (wavelength of irradiated light and angle for receiving scattered light) was selected as a useful configuration for the scattered light measurement unit incorporated in the automatic analyzer.

はじめに、照射光の波長について以下のように検討した。自動分析装置に搭載される散乱光測定部は、従来の吸光光度計と同時に使用されるため、吸光光度計に適した一定液量の血液サンプルを用いる必要があり、サンプルに含まれる外乱因子としての乳ビ・溶血・黄疸の影響を受ける可能性がある。乳ビ・溶血・黄疸は、650nm未満の波長で吸収が大きい。このことから、照射光の波長は、サンプルに含まれる外乱影響を受けにくいように、650nm以上が好ましい。また、自動分析装置ではセルの回転移動中に計測しなければならず、迷光を発生させないように、1mm以下の精度で現場メンテナンス調整等によってセルと照射光束の位置あわせを行う必要がある。メンテナンス性を向上させるためには、目視にて迷光の有無を確認できなければならない。そのため照射光の波長は、位置あわせを容易にできるように、可視光領域の400〜750nmの範囲内が好適である。上記2つの条件を満たす波長範囲として、650〜750nmを好適な波長として選定した。   First, the wavelength of irradiation light was examined as follows. Since the scattered light measurement unit mounted on the automatic analyzer is used at the same time as a conventional absorptiometer, it is necessary to use a blood sample with a constant volume suitable for the absorptiometer. May be affected by milk, hemolysis and jaundice. Milk powder, hemolysis, and jaundice are highly absorbed at wavelengths less than 650 nm. For this reason, the wavelength of the irradiation light is preferably 650 nm or more so as not to be affected by the disturbance included in the sample. In addition, the automatic analyzer must perform measurement while the cell is rotating, and it is necessary to align the cell and the irradiated light beam by on-site maintenance adjustment or the like with an accuracy of 1 mm or less so as not to generate stray light. In order to improve maintainability, the presence or absence of stray light must be confirmed visually. Therefore, the wavelength of the irradiation light is preferably in the range of 400 to 750 nm in the visible light region so that alignment can be easily performed. As a wavelength range satisfying the above two conditions, 650 to 750 nm was selected as a suitable wavelength.

自動分析装置ではなく、散乱光測定を専用に行う専用機では、測定中にセルが回転しないため、セルと光束の位置あわせ精度が必要ではない。そのため微妙な調整が必要とされず、可視光領域外の波長を測定に用いることが可能であった。しかし、自動分析装置上での散乱光測定に不可視光を用いると、メンテナンス性が悪くなり、実用に適さない。   In a dedicated machine that is dedicated to measuring scattered light rather than an automatic analyzer, the cell does not rotate during the measurement, so that the alignment accuracy between the cell and the light beam is not necessary. Therefore, fine adjustment is not required, and it is possible to use a wavelength outside the visible light region for measurement. However, if invisible light is used for scattered light measurement on an automatic analyzer, the maintainability deteriorates and is not suitable for practical use.

散乱光を受光する角度の選定は、以下のように行った。自動分析装置上での測定であるため、透過光測定も同時に行う必要がある。そのため、透過光が通過する透光面が確保された角型のセルが用いられる。この角型のセルは、透過光測定に適した構造となっており、散乱光測定を行う場合には、測定角度が制限される。具体的には、各面の中で透光面が光学的ゆがみが最も小さいように設計されており、さらにセルが隣接して配置されるため、透光面を通過した範囲の光のみが精度よく測定できる。そのため、セルの前面もしくは後面を通過する散乱光を計測する必要がある。つまり散乱光は、照射光進行方向に対して前方もしくは、後方で計測する必要がある。その中で、ノイズ低減のため光量を確保する必要があるため、一般的に後方側と比べ光量の大きい前方側の散乱光を受光する方が有利であり、35°以下の角度が望まれる。さらに、15°未満の角度では散乱光よりも2桁以上強度が強い透過光の影響を受け、ノイズが増えてしまうことがある。そのため空気中において15〜35°となる散乱光受光角度を選定した。   The angle for receiving the scattered light was selected as follows. Since the measurement is performed on an automatic analyzer, the transmitted light must be measured at the same time. For this reason, a rectangular cell having a transparent surface through which transmitted light passes is used. This square cell has a structure suitable for transmitted light measurement, and the measurement angle is limited when scattered light measurement is performed. Specifically, the light-transmitting surface is designed to have the least optical distortion among the surfaces, and the cells are arranged adjacent to each other, so only the light in the range that has passed through the light-transmitting surface is accurate. Can measure well. Therefore, it is necessary to measure scattered light passing through the front surface or the rear surface of the cell. That is, the scattered light needs to be measured in front of or behind the irradiation light traveling direction. Among them, since it is necessary to secure a light amount for noise reduction, it is generally more advantageous to receive scattered light on the front side having a larger light amount than the rear side, and an angle of 35 ° or less is desired. In addition, at an angle of less than 15 °, noise may increase due to the influence of transmitted light that is two orders of magnitude stronger than scattered light. Therefore, the scattered light receiving angle that is 15 to 35 ° in air is selected.

上記装置構成を考慮し、さらに散乱光測定において有用な試薬組成を検討した。
まず、一定光量の散乱光を確保するためには、粒子の平均粒径が0.25μm以上である必要がある。また、沈殿がなく試薬を長期間維持するには、粒子の平均粒径が0.50μm以下である必要がある。このことから、ラテックス粒子の粒径範囲は0.25〜0.50μmとした。
In consideration of the above-described apparatus configuration, a useful reagent composition in the scattered light measurement was examined.
First, in order to ensure a certain amount of scattered light, the average particle size of the particles needs to be 0.25 μm or more. Further, in order to maintain the reagent for a long time without precipitation, the average particle size of the particles needs to be 0.50 μm or less. For this reason, the particle size range of the latex particles was set to 0.25 to 0.50 μm.

さらに、一定光量を確保するための反応液中のラテックス粒子の密度は、吸光度(波長0.7μm)に換算して0.25abs以上が必要である。また、透過光測定での測定範囲を考慮すると、凝集前の吸光度(波長0.7μm)に換算して1.5abs以下であることが望まれる。それ以上の場合は、透過光測定において再現性や直線性の面で測定範囲から逸脱する可能性があるためである。   Furthermore, the density of the latex particles in the reaction solution for ensuring a constant light amount needs to be 0.25 abs or more in terms of absorbance (wavelength 0.7 μm). In consideration of the measurement range in transmitted light measurement, it is desirable that the absorbance is 1.5 abs or less in terms of absorbance before aggregation (wavelength 0.7 μm). In the case of more than that, there is a possibility of deviating from the measurement range in terms of reproducibility and linearity in transmitted light measurement.

これらを用いて評価する場合の、評価指標を考える。図1は、抗原抗体反応による散乱光測定の時間経過を説明する概略図である。散乱光測定部をもつ自動分析装置上では、まず、第一試薬を添加したサンプルにラテックス粒子が分散した第二試薬を混合し(基準状態)、一定時間経った後(凝集状態)の散乱光又は透過光の変化光量を検出する。別途、既知濃度の抗原を用いて変化光量を測定したキャリブレーションデータを用意し、そのデータと比較することで、サンプル中の抗原の濃度を算出する。その際、変化光量は照射光の強度にも比例するため、変化光量を同じく照射光の強度に比例する基準状態の光量で割った光量変化率を定義した。光量変化率が大きいほど、僅かな凝集変化を捉えることが可能である。さらに、透過光と散乱光の光量変化率の比を、光量変化率倍率(散乱光光量変化率/透過光光量変化率)とした。これが大きいほど散乱光測定において高感度であると考えられるため、以下、光量変化率倍率を評価指標として評価した。   Consider the evaluation index when evaluating using these. FIG. 1 is a schematic diagram illustrating the time course of scattered light measurement by antigen-antibody reaction. On an automatic analyzer with a scattered light measurement unit, first, a sample to which the first reagent is added is mixed with a second reagent in which latex particles are dispersed (reference state), and the scattered light after a certain period of time (aggregation state). Alternatively, the amount of change in transmitted light is detected. Separately, calibration data obtained by measuring the amount of change using an antigen with a known concentration is prepared, and the concentration of the antigen in the sample is calculated by comparing with the data. At this time, since the amount of change light is also proportional to the intensity of irradiation light, a light amount change rate is defined by dividing the amount of change light by the light amount of the reference state that is also proportional to the intensity of irradiation light. As the light amount change rate is larger, it is possible to capture a slight aggregation change. Furthermore, the ratio of the light amount change rate between the transmitted light and the scattered light was defined as the light amount change rate magnification (scattered light amount change rate / transmitted light amount change rate). Since it is considered that the larger this is, the higher the sensitivity in the scattered light measurement, the light quantity change rate magnification was evaluated as an evaluation index.

次に、反応液中のラテックス粒子がどの程度凝集するかを以下のように想定した。ラテックス免疫分析法で従来測定可能な被測定物質濃度は、約10-11 mol/L以上の濃度領域と考えられる。高感度化の構成検討には、10-12 mol/L程度の低濃度の抗原測定を測定可能とする構成を検討した。 Next, how much the latex particles in the reaction solution aggregate was assumed as follows. The concentration of a substance to be measured that can be conventionally measured by latex immunoassay is considered to be a concentration region of about 10 −11 mol / L or more. In order to examine the configuration for increasing the sensitivity, a configuration that enables measurement of antigens at a low concentration of about 10 −12 mol / L was studied.

ここで、反応液に含まれるラテックス粒子の密度が薄すぎる場合、照射光がほとんど散乱されずに散乱光量が小さくなる。その結果、受光した信号中で相対的なノイズが増加してしまう。そのため、ある程度の散乱光量を得るために、反応液には一般的に約106個/mm3以上の濃度のラテックス粒子が分散されている。このラテックス粒子の密度は、検出目標である10-12 mol/L(≒6×105個/mm3)の抗原濃度と比べ、十分に過多である。つまり、被測定物質である抗原の1分子当たり、複数個のラテックス粒子が分散している状態である。そのため、一定の反応時間中に凝集するラテックス粒子の凝集割合(全ラテックス粒子中の凝集しているラテックス粒子の体積割合)は、反応液中の全抗原の中で、抗体と結合している抗原の割合である結合率に比例すると考えられる。 Here, when the density of the latex particles contained in the reaction liquid is too thin, the amount of scattered light is reduced without almost irradiating the irradiation light. As a result, relative noise increases in the received signal. Therefore, in order to obtain a certain amount of scattered light, latex particles having a concentration of about 10 6 particles / mm 3 or more are generally dispersed in the reaction solution. The density of the latex particles is sufficiently excessive compared with the antigen concentration of 10 −12 mol / L (≈6 × 10 5 particles / mm 3 ) which is the detection target. That is, a plurality of latex particles are dispersed per molecule of the antigen to be measured. Therefore, the aggregation ratio of latex particles that aggregate during a certain reaction time (volume ratio of aggregated latex particles in all latex particles) is the antigen bound to the antibody among all antigens in the reaction solution. It is thought that it is proportional to the coupling rate which is the ratio of.

以下、粒子の単位表面積に感作された抗体数が一定であるとして反応液中の抗体数を見積もり、抗原の結合率つまり粒子の凝集割合を評価した。   Hereinafter, assuming that the number of antibodies sensitized to the unit surface area of the particles is constant, the number of antibodies in the reaction solution was estimated, and the antigen binding rate, that is, the particle aggregation rate was evaluated.

ラテックス粒子の粒径が同一で、数密度が異なる反応液の場合、反応液に含まれる抗体の数は、ラテックス粒子の数密度に比例する。吸光度(波長0.7μm)に換算して0.25abs〜1.5absのラテックス粒子の密度は、0.3μmの粒径粒子の数密度に換算すると2.8×106〜1.7×107個/mm3に相当する。抗体の直径を15nmとし、かつその抗体を粒子表面に敷き詰めた最大密度に対して活性のある抗体を感作できている割合を10%と見積もると、粒子表面の抗体密度は510個/μm2である。さらに一つの抗体に反応基が二つあると考えた場合、0.3μmの粒径粒子表面に抗体の結合部位は約290個程度あるため、反応液中の抗体の結合部位の濃度は約1.4×10-9〜8.2×10-9 mol/Lの範囲で、6倍の幅を持つ。ここで、図2に示すように、一般的な抗原抗体反応の結合定数:108 mol/L、抗原濃度:10-12 mol/L、抗体濃度:1.4×10-9〜8.2×10-9 mol/Lの範囲において、抗原の抗体との結合率はほぼ抗体濃度に比例する。つまり、ラテックス粒子の凝集割合は抗原の結合率に、抗原の結合率は抗体の濃度に、抗体の濃度はラテックス粒子の数密度にそれぞれ比例するため、結果、ラテックス粒子の凝集割合はラテックス粒子の数密度にほぼ比例する。 In the case of reaction liquids having the same latex particle size and different number densities, the number of antibodies contained in the reaction liquid is proportional to the number density of latex particles. The density of latex particles of 0.25 abs to 1.5 abs in terms of absorbance (wavelength 0.7 μm) is 2.8 × 10 6 to 1.7 × 10 in terms of the number density of particles having a particle diameter of 0.3 μm. It corresponds to 7 pieces / mm 3 . Assuming that the ratio of the antibody diameter is 15 nm and that the active antibody is sensitized to the maximum density when the antibody is spread on the particle surface is estimated to be 10%, the antibody density on the particle surface is 510 / μm 2. It is. Further, assuming that one antibody has two reactive groups, there are about 290 antibody binding sites on the surface of a 0.3 μm particle size particle, so the concentration of antibody binding sites in the reaction solution is about 1 It has a width 6 times in the range of 4 × 10 −9 to 8.2 × 10 −9 mol / L. Here, as shown in FIG. 2, the binding constant of a general antigen-antibody reaction: 10 8 mol / L, antigen concentration: 10 −12 mol / L, antibody concentration: 1.4 × 10 −9 to 8.2. In the range of × 10 -9 mol / L, the binding rate of the antigen to the antibody is almost proportional to the antibody concentration. In other words, the aggregation rate of latex particles is proportional to the antigen binding rate, the antigen binding rate is proportional to the antibody concentration, and the antibody concentration is proportional to the number density of latex particles. It is almost proportional to the number density.

一方、ラテックス粒子の反応液中における重量%濃度が一定でラテックス粒子の粒径が異なる場合、粒子の個数は粒径の3乗の逆数となる。さらに、粒子の表面積は各粒子の粒径の2乗に比例するため、結果として反応液に含まれる全抗体濃度は、粒径の逆数に比例する。そのため、考慮する粒径範囲幅0.25〜0.5μmの中で反応液に含まれる抗体濃度幅は2倍以下であり、上記の粒子の密度考慮幅(6倍)と比較し小さいため、以下の光学シミュレーションでは凝集している凝集体の数を一定とした。   On the other hand, when the concentration by weight of latex particles in the reaction solution is constant and the particle size of latex particles is different, the number of particles is the inverse of the cube of the particle size. Furthermore, since the surface area of the particles is proportional to the square of the particle size of each particle, as a result, the total antibody concentration contained in the reaction solution is proportional to the inverse of the particle size. Therefore, the antibody concentration range contained in the reaction solution in the particle size range width of 0.25 to 0.5 μm to be considered is 2 times or less, and is smaller than the density consideration range (6 times) of the above particles. In the following optical simulation, the number of aggregated aggregates was made constant.

さらに、十分薄い濃度の抗原濃度下では、凝集体は2個の粒子が結合した凝集体が主であると考えられる。図3は、ナノピアCRP(積水メディカル社製)のCRP抗原濃度(0〜0.3mg/dL(試薬の測定可能範囲は0.01〜42mg/dL))ごとの凝集体のラテックス粒子個数分布の例を示す図である。各CRP濃度のキャリブレータ(2.4μL)、第一試薬(120μL)ならびに第二試薬(120μL)を混合し、混合から300秒後に反応液を基板へ塗布、サンプル化した。そのサンプルを走査型電子顕微鏡で観察し、凝集体を構成するラテックス粒子個数を計数することで分布を求めたところ、抗原濃度が大きくなるにつれ、凝集体の中で2個のラテックス粒子から構成される凝集体が増加する様子が実際に確認された。   Furthermore, it is considered that the aggregate is mainly an aggregate in which two particles are bound under a sufficiently thin antigen concentration. FIG. 3 shows the latex particle number distribution of aggregates for each CRP antigen concentration (0 to 0.3 mg / dL (the reagent measurable range is 0.01 to 42 mg / dL)) of Nanopia CRP (manufactured by Sekisui Medical). It is a figure which shows an example. A calibrator (2.4 μL), a first reagent (120 μL) and a second reagent (120 μL) at each CRP concentration were mixed, and after 300 seconds from mixing, the reaction solution was applied to the substrate and sampled. The sample was observed with a scanning electron microscope, and the distribution was obtained by counting the number of latex particles constituting the aggregate. As the antigen concentration increased, the aggregate was composed of two latex particles. It was actually confirmed that the aggregates increased.

上記に基づき、同一抗原濃度下におけるラテックス粒子の粒径、密度ごとの2個凝集体の体積割合を設定した。   Based on the above, the particle size of latex particles under the same antigen concentration and the volume ratio of two aggregates for each density were set.

また、Mishchenko MI, Travis LD, Mackowski DW., T-matrix computations of light scattering by nonspherical particles, a review. J Quant Spectrosc Radiat Transfer, 1996において、散乱断面積ならびに散乱光の角度ごとの強度分布の点において、2個凝集体とほぼ同型の回転楕円体が、その断面積と等しい真球粒子と近似的に等しいことが電場計算によって確認されている。これを参考に各2個凝集体を、それらの各担体粒子の断面積の和と等しい断面積をもつ真球粒子に置き換えて光学モデル化を行った。   In Mishchenko MI, Travis LD, Mackowski DW., T-matrix computations of light scattering by nonspherical particles, a review.J Quant Spectrosc Radiat Transfer, 1996 It has been confirmed by electric field calculation that a spheroid approximately the same type as the two aggregates is approximately equal to a true spherical particle having the same cross-sectional area. With reference to this, the two agglomerates were replaced with true spherical particles having a cross-sectional area equal to the sum of the cross-sectional areas of the carrier particles, and optical modeling was performed.

上記のように自動分析装置上で散乱光測定を行う際に想定される範囲から、波長:700nm、角度:20°(±2.5°)、抗原抗体の結合定数:108 mol/L以上、試薬粒径範囲:0.25〜0.50μm、密度:凝集前の吸光度0.25〜1.5absをパラメータとし、モンテカルロ法を用いた光学シミュレーションによって基準状態、ならびに凝集状態における反応液からの散乱光の光量を算出した。光学シミュレーションにあたり、非特許文献1に記載の散乱光理論を用いた。 From the range assumed when the scattered light measurement is performed on the automatic analyzer as described above, wavelength: 700 nm, angle: 20 ° (± 2.5 °), antigen-antibody binding constant: 10 8 mol / L or more , Reagent particle size range: 0.25 to 0.50 μm, density: absorbance before flocculation 0.25 to 1.5 abs as parameters, by optical simulation using the Monte Carlo method. The amount of scattered light was calculated. In the optical simulation, the scattered light theory described in Non-Patent Document 1 was used.

光学シミュレーションによって得られた結果から、図4に、ラテックス粒子が凝集することによって生じる散乱光の光量変化率を透過光の光量変化率で割った、光量変化率倍率を示す。光量変化率が大きいほど、僅かな凝集変化を捉えることが可能であるため、図4において、光量変化率倍率が大きい粒径、密度ほど、透過光測定よりも散乱光測定の方が高感度とみなせる。こうして、自動分析装置上で散乱光測定を行う際に好適と判断される以下の条件が見出された。なお、上記シミュレーションにおいてパラメータとして採用した抗原抗体の結合定数や抗原濃度の値は一般的な値であり、多少変化しても、光学シミュレーションの上記前提は変わらないため、図4に示した光量変化倍率には影響しない。抗原抗体の結合定数は、例えば108 mol/L以上、1011 mol/L以下であっても、図4に示した関係が成り立つ。 From the results obtained by the optical simulation, FIG. 4 shows the light amount change rate magnification obtained by dividing the light amount change rate of the scattered light caused by the aggregation of latex particles by the light amount change rate of the transmitted light. Since it is possible to capture a slight change in aggregation as the light quantity change rate is larger, in FIG. 4, the scattered light measurement is more sensitive than the transmitted light measurement as the particle diameter and density are larger. It can be considered. Thus, the following conditions have been found that are judged to be suitable when the scattered light measurement is performed on the automatic analyzer. The values of antigen-antibody binding constants and antigen concentrations used as parameters in the simulation are general values. Even if the values change slightly, the above assumption of the optical simulation does not change. Does not affect magnification. The relationship shown in FIG. 4 is established even when the antigen-antibody binding constant is, for example, from 10 8 mol / L to 10 11 mol / L.

図4から、試薬中のラテックス粒子の粒径0.3μmから0.43μm、反応液中のラテックス粒子の凝集前の密度が吸光度に換算し0.25〜1.10absという条件において、透過光測定よりも散乱光測定が2倍以上の高感度を達成できることが見出された。さらに、試薬中のラテックス粒子の粒径0.3μmから0.43μm、反応液中のラテックス粒子の凝集前の密度が吸光度に換算して0.25〜0.50absという条件においては、透過光測定よりも散乱光測定が4倍以上の高感度を達成できることが見出された。またさらには、試薬中のラテックス粒子の粒径0.3μmから0.43μm、反応液中のラテックス粒子の凝集前の密度が凝吸光度に換算して0.25〜0.31absという条件において、透過光測定よりも散乱光測定が6倍以上の高感度を達成できると見出された。   From FIG. 4, the transmitted light measurement is performed under the conditions that the particle size of the latex particles in the reagent is 0.3 μm to 0.43 μm, and the density before aggregation of the latex particles in the reaction solution is converted to absorbance and is 0.25 to 1.10 abs. It was found that the scattered light measurement can achieve more than twice as high sensitivity. Further, the transmitted light measurement is performed under the conditions that the particle size of the latex particles in the reagent is 0.3 μm to 0.43 μm and the density of the latex particles in the reaction solution before aggregation is 0.25 to 0.50 abs in terms of absorbance. It has been found that the scattered light measurement can achieve a sensitivity of 4 times or more. Furthermore, the transmission is performed under the conditions that the particle size of the latex particles in the reagent is 0.3 μm to 0.43 μm, and the density before aggregation of the latex particles in the reaction solution is 0.25 to 0.31 abs in terms of coagulation absorbance. It has been found that the scattered light measurement can achieve a sensitivity 6 times higher than the light measurement.

以上に示した装置構成と試薬組成により、ラテックス粒子凝集反応に伴う光量変化を測定する際に、高感度な散乱光測定が可能となることがわかった。   It was found that the apparatus configuration and reagent composition described above enable highly sensitive scattered light measurement when measuring the change in the amount of light accompanying the latex particle agglutination reaction.

図5は、本発明による自動分析装置の全体構成例を示す概略図である。本実施例の自動分析装置は透過光測定と同時に散乱光測定を実行できる。本実施例の自動分析装置は、サンプルディスク3、試薬ディスク6、セルディスク9の3種類のディスクと、これらのディスク間でサンプルや試薬を移動させる分注機構、これらを制御する制御回路23、透過光測定回路24、散乱光測定回路25、測定したデータを処理するPC(コンピュータ)等のデータ処理部26、データ処理部26に対しデータを入出力するインターフェースである入力部27、出力部28を有する。データ処理部26は、データを解析する解析部、及び、制御データ、測定データ、解析に用いるデータ、解析結果データ等を格納するデータ格納部を備える。   FIG. 5 is a schematic diagram showing an example of the overall configuration of the automatic analyzer according to the present invention. The automatic analyzer of this embodiment can execute scattered light measurement simultaneously with transmitted light measurement. The automatic analyzer according to this embodiment includes three types of disks, a sample disk 3, a reagent disk 6 and a cell disk 9, a dispensing mechanism for moving samples and reagents between these disks, a control circuit 23 for controlling these, A transmitted light measurement circuit 24, a scattered light measurement circuit 25, a data processing unit 26 such as a PC (computer) that processes the measured data, an input unit 27 that is an interface for inputting / outputting data to / from the data processing unit 26, and an output unit 28 Have The data processing unit 26 includes an analysis unit that analyzes data, and a data storage unit that stores control data, measurement data, data used for analysis, analysis result data, and the like.

サンプルディスク3の円周上には、サンプル1を収めたサンプルカップ2が複数配置される。試薬ディスク6には、試薬4を収めた試薬ボトル5が複数配置される。セルディスク9の円周上には、内部でサンプル1と試薬4を混合して反応液7とするセル8が複数配置される。サンプル分注機構10は、サンプルカップ2からセル8にサンプル1を一定量移動させる。試薬分注機構11は、試薬ボトル5からセル8に試薬4を一定量移動させる。攪拌部12は、セル8内で、サンプル1と試薬4を攪拌し混合させる。洗浄部14は、分析の終了したセル8から反応液7を排出し洗浄する。洗浄されたセル8には再びサンプル分注機構10から次のサンプル1が分注され、試薬分注機構11から新しい試薬4が分注され、別の反応に使用される。セル8は温度・流量が制御された恒温槽内の恒温流体15に浸漬されており、セル8及びその中の反応液7が一定温度に保たれた状態で移動される。恒温流体15には例えば水を用い、恒温流体温度は制御回路により37±0.1℃に温調される。セルディスク円周上の一部に、透過光測定部13と散乱光測定部16が設けられている。   A plurality of sample cups 2 containing samples 1 are arranged on the circumference of the sample disk 3. A plurality of reagent bottles 5 containing the reagents 4 are arranged on the reagent disk 6. A plurality of cells 8 are prepared on the circumference of the cell disk 9 to mix the sample 1 and the reagent 4 and make the reaction solution 7 inside. The sample dispensing mechanism 10 moves the sample 1 from the sample cup 2 to the cell 8 by a certain amount. The reagent dispensing mechanism 11 moves the reagent 4 from the reagent bottle 5 to the cell 8 by a certain amount. The stirring unit 12 stirs and mixes the sample 1 and the reagent 4 in the cell 8. The cleaning unit 14 discharges the reaction solution 7 from the cell 8 after the analysis and cleans it. The next sample 1 is again dispensed from the sample dispensing mechanism 10 into the washed cell 8, and a new reagent 4 is dispensed from the reagent dispensing mechanism 11 and used for another reaction. The cell 8 is immersed in a constant temperature fluid 15 in a constant temperature bath whose temperature and flow rate are controlled, and the cell 8 and the reaction liquid 7 in the cell 8 are moved while being maintained at a constant temperature. For example, water is used as the constant temperature fluid 15, and the constant temperature fluid temperature is adjusted to 37 ± 0.1 ° C. by the control circuit. A transmitted light measuring unit 13 and a scattered light measuring unit 16 are provided on a part of the circumference of the cell disk.

透過光測定部13は、例えば、ハロゲンランプ光源からの光をセル8に照射し、透過光を回折格子で分光した後、フォトダイオードアレイで受光する構成とすることができる。受光する波長は、例えば340nm,405nm,450nm,480nm,505nm,546nm,570nm,600nm,660nm,700nm,750nm,800nmである。フォトダイオードアレイで受光した透過光量データは、透過光測定回路24を通じてPC内のデータ格納部に送られる。   The transmitted light measurement unit 13 can be configured, for example, to irradiate the cell 8 with light from a halogen lamp light source, split the transmitted light with a diffraction grating, and then receive the light with a photodiode array. The wavelengths received are, for example, 340 nm, 405 nm, 450 nm, 480 nm, 505 nm, 546 nm, 570 nm, 600 nm, 660 nm, 700 nm, 750 nm, and 800 nm. The transmitted light amount data received by the photodiode array is sent to the data storage unit in the PC through the transmitted light measurement circuit 24.

散乱光測定部16の概略を図6に示す。光源としては例えばLED光源等を用いることができ、LED光源ユニット17からの照射光18を移動中のセル8に照射し、透過光19を透過光受光器20で受光し、散乱光を散乱光受光器22で受光する。LED光源ユニット17では照射光波長として例えば700nmを用いることができる。本実施例では光源としてLEDを用いたが、レーザやキセノンランプ、ハロゲンランプでも良い。散乱光受光器22は、光軸に対して空気中において角度θだけ離れた方向の散乱光21を測定する。角度θは15〜35゜の範囲の角度であればよいが、本実施例ではθ=20゜とした。この散乱光受光器22は、セルディスク9の回転によるセル8の移動方向に対して概ね垂直な面内に配置される。ここでは、角度θの基準位置として、セル8内を光が通過する長さの中央部を起点とした。反応液7からの散乱光を受光する手段として、散乱角度の異なる受光器を備えておき、その中の受光器から信号を取得するようにすればよい。   An outline of the scattered light measurement unit 16 is shown in FIG. As the light source, for example, an LED light source or the like can be used. Irradiation light 18 from the LED light source unit 17 is irradiated to the moving cell 8, transmitted light 19 is received by the transmitted light receiver 20, and scattered light is scattered light. Light is received by the light receiver 22. In the LED light source unit 17, for example, 700 nm can be used as the irradiation light wavelength. In this embodiment, an LED is used as a light source, but a laser, a xenon lamp, or a halogen lamp may be used. The scattered light receiver 22 measures the scattered light 21 in a direction away from the optical axis by an angle θ in the air. The angle θ may be an angle in the range of 15 to 35 °, but in this embodiment, θ = 20 °. The scattered light receiver 22 is disposed in a plane substantially perpendicular to the moving direction of the cell 8 due to the rotation of the cell disk 9. Here, the reference position of the angle θ is the starting point at the center of the length that allows light to pass through the cell 8. As means for receiving scattered light from the reaction solution 7, light receivers having different scattering angles may be provided, and signals may be acquired from the light receivers therein.

本実施例では、それぞれの角度に受光器20,22としてフォトダイオードを配置したが、受光器を内部に多数保持する単体のリニアアレイを配置し、複数角度の散乱光を受光する構成であってもよい。これにより、受光角度の選択肢を広げることができる。また、受光器ではなくファイバやレンズなどの光学系を散乱光受光位置に配置し、別位置に配置された散乱光受光器に光を導いても良い。   In this embodiment, the photodiodes are arranged as the light receivers 20 and 22 at the respective angles. However, a single linear array holding a large number of light receivers inside is arranged to receive scattered light at a plurality of angles. Also good. Thereby, the choice of a light reception angle can be expanded. Further, instead of the light receiver, an optical system such as a fiber or a lens may be disposed at the scattered light receiving position, and light may be guided to the scattered light receiver disposed at another position.

サンプル1中の被測定物質の濃度定量は、次の手順で行われる。まず、サンプル分注機構10によりサンプルカップ2内のサンプル1をセル8内に一定量分注する。次に、試薬分注機構11により試薬ボトル5内の試薬4をセル8内に一定量分注する。これら分注の際は、サンプルディスク3、試薬ディスク6、セルディスク9は制御回路23の制御下にそれぞれの駆動部によって回転駆動され、サンプルカップ2、試薬ボトル5、セル8を分注機構10,11の分注タイミングに合わせて移動する。続いて、セル8内に分注されたサンプル1と試薬4を攪拌部12により攪拌し、反応液7とする。反応液7からの透過光及び散乱光は、セルディスク9の回転中に、透過光測定部13及び散乱光測定部16の測定位置を通過するたびに測定され、透過光測定回路24、散乱光測定回路25からデータ処理部26のデータ格納部に、反応過程データとして順次蓄積される。一定時間、例えば約10分間測定後、洗浄部14によりセル8内を洗浄し、次の検査項目の分析を行う。その間、必要であれば別の試薬4を試薬分注機構11によりセル8内に追加して分注し、攪拌部12により攪拌し、さらに一定時間測定する。これにより一定の時間間隔を持った反応液7の反応過程データがデータ格納部に格納される。格納された散乱光測定部の単一の受光角度もしくは複数の受光角度の反応過程データから、解析部において一定時間の反応による光量の変化を求め、あらかじめデータ格納部に保持された検量線データに基づき、定量結果が算出され、出力部より表示される。各部の制御・分析に必要なデータは、入力部27からデータ処理部26のデータ格納部に入力される。各種格納部のデータや結果、及びアラームは出力部28により表示等にて出力される。   The concentration of the substance to be measured in the sample 1 is determined by the following procedure. First, a certain amount of sample 1 in the sample cup 2 is dispensed into the cell 8 by the sample dispensing mechanism 10. Next, a predetermined amount of the reagent 4 in the reagent bottle 5 is dispensed into the cell 8 by the reagent dispensing mechanism 11. At the time of dispensing, the sample disk 3, the reagent disk 6, and the cell disk 9 are rotationally driven by the respective drive units under the control of the control circuit 23, so that the sample cup 2, the reagent bottle 5, and the cell 8 are dispensed. , 11 in accordance with the dispensing timing. Subsequently, the sample 1 and the reagent 4 dispensed in the cell 8 are stirred by the stirring unit 12 to obtain a reaction solution 7. The transmitted light and scattered light from the reaction liquid 7 are measured each time the cell disk 9 rotates and passes through the measurement positions of the transmitted light measurement unit 13 and the scattered light measurement unit 16, and the transmitted light measurement circuit 24, scattered light is measured. Reaction process data is sequentially accumulated from the measurement circuit 25 to the data storage unit of the data processing unit 26. After measurement for a certain time, for example, about 10 minutes, the inside of the cell 8 is cleaned by the cleaning unit 14 and the next inspection item is analyzed. Meanwhile, if necessary, another reagent 4 is added into the cell 8 by the reagent dispensing mechanism 11 and dispensed, stirred by the stirring unit 12, and further measured for a certain time. As a result, reaction process data of the reaction solution 7 having a constant time interval is stored in the data storage unit. From the stored reaction process data at a single received angle or multiple received angles of the scattered light measurement unit, the analysis unit determines the change in the amount of light due to the reaction for a certain period of time, and uses the calibration curve data stored in the data storage unit in advance. Based on this, a quantitative result is calculated and displayed from the output unit. Data necessary for control / analysis of each unit is input from the input unit 27 to the data storage unit of the data processing unit 26. Data, results, and alarms in various storage units are output on the display or the like by the output unit 28.

散乱光測定用の波長は、650nm〜750nmに含まれる波長であればよい。散乱光受光角度は15°〜35°の範囲であれば構わない。図7は、上記光学シミュレーションで算出した各粒径、粒子密度(波長700nmにおける吸光度で表示)時の光量変化率倍率であるが、前方散乱(15°〜35°)であれば、光量変化率倍率がほぼ変わらないことが確認された。   The wavelength for scattered light measurement may be any wavelength included in 650 nm to 750 nm. The scattered light receiving angle may be in the range of 15 ° to 35 °. FIG. 7 shows the light quantity change rate magnification at each particle size and particle density (expressed by absorbance at a wavelength of 700 nm) calculated by the optical simulation, but if the forward scattering (15 ° to 35 °), the light quantity change rate. It was confirmed that the magnification was almost unchanged.

反応液7に含まれるラテックス粒子は、粒径が0.3μmから0.43μmである。この粒径範囲のラテックス粒子を用いることにより、図4に示したように、透過光よりも大きい光量変化率を得られるため、従来よりも微小な濃度の抗原を測定することが可能である。   The latex particles contained in the reaction solution 7 have a particle size of 0.3 μm to 0.43 μm. By using latex particles in this particle size range, as shown in FIG. 4, it is possible to obtain a light quantity change rate larger than that of transmitted light, so that it is possible to measure an antigen with a smaller concentration than in the past.

反応液7に含まれるラテックス粒子の濃度が薄いほど、照射光が反応液7によって散乱されにくくなるため、反応液7に含まれるラテックス粒子の密度を、吸光度で0.25abs以上とすることで散乱光受光器22で測定される散乱光の光量を十分大きくすることができる。   As the concentration of latex particles contained in the reaction solution 7 is lower, the irradiation light is less likely to be scattered by the reaction solution 7. Therefore, the density of the latex particles contained in the reaction solution 7 is scattered by setting the absorbance to 0.25 abs or more. The amount of scattered light measured by the optical receiver 22 can be made sufficiently large.

抗原抗体反応に用いられるラテックス粒子、さらに担体に感作される抗体は、試薬コストの大半を占める。そこで、反応液7に含まれるラテックス粒子の密度を、吸光度で0.25absから1.10absの範囲にすることで、光量変化率倍率を高くしつつ、用いるラテックス粒子ならびに担体に感作される抗体を減らし、試薬製造コストを低減することができる。   Latex particles used for antigen-antibody reaction and antibodies sensitized to the carrier account for the majority of reagent costs. Therefore, by increasing the density of latex particles contained in the reaction solution 7 in the range of 0.25 abs to 1.10 abs in terms of absorbance, an antibody sensitized to the latex particles used and the carrier while increasing the light quantity change rate magnification. And the reagent manufacturing cost can be reduced.

抗原抗体反応において、結合定数の小さい抗体が存在する。それら結合定数の小さい抗体においても、より高い光量変化率倍率を得るために、反応液7に含まれるラテックス粒子の密度を、吸光度で0.25absから0.5absの範囲にしてもよい。   In an antigen-antibody reaction, an antibody having a small binding constant exists. Even in the case of antibodies having a small binding constant, the density of latex particles contained in the reaction solution 7 may be in the range of 0.25 abs to 0.5 abs in order to obtain a higher light quantity change rate magnification.

反応液7に含まれるラテックス粒子を、体積を基準とした粒径分布において、粒径の半値全幅が分布のピークとなる粒径(ピーク粒径)の±15%以内に含まれ、かつピーク粒径が0.3μmから0.43μmの範囲に入るものを用いてもよい。一般的に微粒子の粒径は分布をもち、その分布幅を抑えるほどにコストが高くなる。図4から、数%程度の粒径の違いでは光量変化率倍率はほぼ変わらないことが確認できるため、体積を基準とした粒径分布において、粒径の半値全幅が分布のピークとなる粒径(ピーク粒径)の±15%以内に含まれ、かつピーク粒径が0.3μmから0.43μmの範囲に入るラテックス粒子を用いることで、高い光量変化率倍率を得つつ、コストを抑えることができる。一方で、粒径のばらつきによる反応液からの散乱光強度ばらつきを抑えるために、粒径の半値全幅をピーク粒径の±10%以内としてもかまわない。また、同一サンプルの測定間のばらつきを抑えるために、粒径の半値全幅をピーク粒径の±7%以内としてもかまわない。   In the particle size distribution based on volume, the latex particles contained in the reaction liquid 7 are included within ± 15% of the particle size (peak particle size) at which the full width at half maximum of the particle size becomes the peak of the distribution, and the peak particle You may use what a diameter falls in the range of 0.3 micrometer to 0.43 micrometer. Generally, the particle size of fine particles has a distribution, and the cost increases as the distribution width is suppressed. From FIG. 4, it can be confirmed that the light quantity change rate magnification is not substantially changed by a difference of about several percent of the particle size. Therefore, in the particle size distribution based on the volume, the particle size at which the full width at half maximum of the particle size becomes the distribution peak. By using latex particles that are included within ± 15% of (peak particle size) and that have a peak particle size in the range of 0.3 μm to 0.43 μm, the cost can be reduced while obtaining a high light quantity change rate magnification. Can do. On the other hand, the full width at half maximum of the particle size may be within ± 10% of the peak particle size in order to suppress the scattered light intensity variation from the reaction liquid due to the particle size variation. Moreover, in order to suppress the variation between measurements of the same sample, the full width at half maximum of the particle size may be within ± 7% of the peak particle size.

なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。また、図面は説明上必要と考えられるものを示しており、製品上必ずしも全ての構成部や機能を示しているわけではない。   In addition, this invention is not limited to an above-described Example, Various modifications are included. For example, the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described. Further, a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. Further, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment. Further, the drawings show what is considered necessary for explanation, and do not necessarily show all the components and functions on the product.

1…サンプル、2…サンプルカップ、3…サンプルディスク、4…試薬、5…試薬ボトル、6…試薬ディスク、7…反応液、8…セル、9…セルディスク、10…サンプル分注機構、11…試薬分注機構、12…攪拌部、13…透過光測定部、14…洗浄部、15…恒温粒体、16…散乱光測定部、17…LED光源ユニット、18…照射光、19…透過光、20…透過光受光器、21…散乱光、22…散乱光受光器、23…制御回路、24…透過光測定回路、25…散乱光測定回路、26…データ処理部、27…入力部、28…出力部 DESCRIPTION OF SYMBOLS 1 ... Sample, 2 ... Sample cup, 3 ... Sample disc, 4 ... Reagent, 5 ... Reagent bottle, 6 ... Reagent disc, 7 ... Reaction liquid, 8 ... Cell, 9 ... Cell disc, 10 ... Sample dispensing mechanism, 11 DESCRIPTION OF SYMBOLS ... Reagent dispensing mechanism, 12 ... Stirring part, 13 ... Transmitted light measuring part, 14 ... Washing part, 15 ... Constant temperature granule, 16 ... Scattered light measuring part, 17 ... LED light source unit, 18 ... Irradiation light, 19 ... Transmission Light, 20 ... Transmitted light receiver, 21 ... Scattered light, 22 ... Scattered light receiver, 23 ... Control circuit, 24 ... Transmitted light measuring circuit, 25 ... Scattered light measuring circuit, 26 ... Data processing unit, 27 ... Input unit , 28 ... Output unit

Claims (1)

自動分析装置を用いた抗原抗体反応に基づく被測定物質の分析方法において、
反応容器内でサンプルと、平均ピーク粒径が0.3μm〜0.43μmであって抗体が感作されたラテックス粒子を含む試薬を混合して反応液とする工程と、
前記反応容器を回転移動中に、前記反応容器内の前記反応液に、波長0.65〜0.75μmの範囲の照射光を照射し、前記照射光の照射方向に対して15〜35°の角度に散乱された散乱光を検出する工程と、
前記ラテックス粒子が前記サンプル内の抗原を介して凝集することで起こる散乱光の光量変化を測定する工程とを有し、
前記抗体は、前記サンプルに含まれる抗原との結合定数が108 mol/L以上、1011 mol/L以下であり、
前記反応液は、波長0.7μmの照射光に対する吸光度が0.25abs〜1.10absとなる濃度で前記ラテックス粒子を含むことを特徴とする分析方法。
In the method for analyzing a substance to be measured based on an antigen-antibody reaction using an automatic analyzer,
Mixing a sample in a reaction vessel with a reagent containing latex particles having an average peak particle size of 0.3 μm to 0.43 μm and sensitized with an antibody to obtain a reaction solution;
While rotating the reaction vessel, the reaction solution in the reaction vessel is irradiated with irradiation light having a wavelength in the range of 0.65 to 0.75 μm, and is 15 to 35 ° with respect to the irradiation direction of the irradiation light. Detecting scattered light scattered at an angle;
Measuring the change in the amount of scattered light caused by aggregation of the latex particles via the antigen in the sample,
The antibody has a binding constant of 10 8 mol / L or more and 10 11 mol / L or less with an antigen contained in the sample,
The analysis method, wherein the reaction solution contains the latex particles at a concentration such that the absorbance with respect to irradiation light with a wavelength of 0.7 μm is 0.25 abs to 1.10 abs.
JP2015090431A 2015-04-27 2015-04-27 Automatic analyzer and analysis method Active JP6031552B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015090431A JP6031552B2 (en) 2015-04-27 2015-04-27 Automatic analyzer and analysis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015090431A JP6031552B2 (en) 2015-04-27 2015-04-27 Automatic analyzer and analysis method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2011204916A Division JP5740264B2 (en) 2011-09-20 2011-09-20 Automatic analyzer and analysis method

Publications (2)

Publication Number Publication Date
JP2015132634A true JP2015132634A (en) 2015-07-23
JP6031552B2 JP6031552B2 (en) 2016-11-24

Family

ID=53899900

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015090431A Active JP6031552B2 (en) 2015-04-27 2015-04-27 Automatic analyzer and analysis method

Country Status (1)

Country Link
JP (1) JP6031552B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018016252A1 (en) * 2016-07-19 2018-01-25 株式会社日立ハイテクノロジーズ Automatic analysis device and automatic analysis method
CN113310919A (en) * 2016-01-22 2021-08-27 株式会社日立高新技术 Standard solution, automatic analyzer, and method for adjusting light quantity of light source of automatic analyzer

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000275245A (en) * 1999-03-25 2000-10-06 Iatron Lab Inc Immunoassay reagent and immunoassay
JP2011174842A (en) * 2010-02-25 2011-09-08 Hitachi High-Technologies Corp Automatic analysis device
JP5740264B2 (en) * 2011-09-20 2015-06-24 株式会社日立ハイテクノロジーズ Automatic analyzer and analysis method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000275245A (en) * 1999-03-25 2000-10-06 Iatron Lab Inc Immunoassay reagent and immunoassay
JP2011174842A (en) * 2010-02-25 2011-09-08 Hitachi High-Technologies Corp Automatic analysis device
JP5740264B2 (en) * 2011-09-20 2015-06-24 株式会社日立ハイテクノロジーズ Automatic analyzer and analysis method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113310919A (en) * 2016-01-22 2021-08-27 株式会社日立高新技术 Standard solution, automatic analyzer, and method for adjusting light quantity of light source of automatic analyzer
WO2018016252A1 (en) * 2016-07-19 2018-01-25 株式会社日立ハイテクノロジーズ Automatic analysis device and automatic analysis method
JPWO2018016252A1 (en) * 2016-07-19 2019-05-16 株式会社日立ハイテクノロジーズ Automatic analyzer and automatic analysis method

Also Published As

Publication number Publication date
JP6031552B2 (en) 2016-11-24

Similar Documents

Publication Publication Date Title
JP5740264B2 (en) Automatic analyzer and analysis method
JP5613298B2 (en) Automatic analyzer
US8858882B2 (en) Automatic analysis device
JP5948173B2 (en) Automatic analyzer and automatic analysis method
JP5296015B2 (en) Automatic analyzer
WO2014203741A1 (en) Automatic analysis device and automatic analysis method
US9459271B2 (en) Analyzer and automatic analyzer
US9645160B2 (en) Automatic analysis device
JP7077175B2 (en) Automatic analyzer, automatic analysis method, and program
JP6031552B2 (en) Automatic analyzer and analysis method
JP6576843B2 (en) Automatic analyzer and its standard solution for evaluation of scattered light measurement optical system
JP6138564B2 (en) Automatic analyzer
JP6437390B2 (en) Automatic analyzer
JP6657016B2 (en) Automatic analyzer
JP7330869B2 (en) Automatic analysis method and automatic analysis device
WO2016129029A1 (en) Automatic analyzer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150427

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160329

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160426

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160622

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161024

R150 Certificate of patent or registration of utility model

Ref document number: 6031552

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350