JP6862986B2 - How to operate the gas preheater - Google Patents

How to operate the gas preheater Download PDF

Info

Publication number
JP6862986B2
JP6862986B2 JP2017060143A JP2017060143A JP6862986B2 JP 6862986 B2 JP6862986 B2 JP 6862986B2 JP 2017060143 A JP2017060143 A JP 2017060143A JP 2017060143 A JP2017060143 A JP 2017060143A JP 6862986 B2 JP6862986 B2 JP 6862986B2
Authority
JP
Japan
Prior art keywords
group
heat
gas
heat transfer
corrosion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017060143A
Other languages
Japanese (ja)
Other versions
JP2018162917A (en
Inventor
新悟 兼森
新悟 兼森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2017060143A priority Critical patent/JP6862986B2/en
Publication of JP2018162917A publication Critical patent/JP2018162917A/en
Application granted granted Critical
Publication of JP6862986B2 publication Critical patent/JP6862986B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、高炉ガスを含む燃料ガスを排気ガスによって予熱するガス予熱装置の操業方法に関するものである。 The present invention relates to an operation method of a gas preheating device that preheats a fuel gas including a blast furnace gas by an exhaust gas.

製鉄所で使用される一部のボイラの燃料として、高炉ガスと転炉ガスの混合気体(以下、燃料ガス)が使用されている。
ボイラが排出する排気ガスは高温なので、省エネルギーや環境問題の観点からこの熱を回収することは重要である。
このボイラからの排熱は同じボイラの燃料ガスの予熱に用いると効率がよい。
A mixed gas of blast furnace gas and linz-Donaw gas (hereinafter referred to as fuel gas) is used as fuel for some boilers used in steelworks.
Since the exhaust gas emitted by the boiler is hot, it is important to recover this heat from the viewpoint of energy saving and environmental problems.
It is efficient to use the exhaust heat from this boiler for preheating the fuel gas of the same boiler.

ボイラのガス予熱装置について説明する。
ガス予熱装置はガス流路10と、熱交換器20と、を備える。
ガス流路10は、高炉ガスを含む燃料ガスGが流れるパイプ又はダクトであり、この中で燃料ガスGを予熱する。
熱交換器20は、フィン22を有する伝熱管21が管台23を介して管寄24に接続されてなる。そして、内部に循環熱媒体Wを流し、排気ガスの熱を循環熱媒体Wを介して燃料ガスを予熱する。
より詳しくは、熱交換器20は複数あり、ガス流路10内に、一つ以上の熱交換器20を一つの群として互いに近接配置している。この群を燃料ガスに対して上流から昇順で第n群(n=1,2,3,…)とした。
また、熱交換器20の各部分は炭素鋼からなる。
The gas preheater of the boiler will be described.
The gas preheating device includes a gas flow path 10 and a heat exchanger 20.
The gas flow path 10 is a pipe or duct through which the fuel gas G including the blast furnace gas flows, in which the fuel gas G is preheated.
The heat exchanger 20 is formed by connecting a heat transfer tube 21 having fins 22 to a tube side 24 via a tube base 23. Then, the circulating heat medium W is allowed to flow inside, and the heat of the exhaust gas is preheated to the fuel gas via the circulating heat medium W.
More specifically, there are a plurality of heat exchangers 20, and one or more heat exchangers 20 are arranged close to each other as a group in the gas flow path 10. This group was designated as the nth group (n = 1, 2, 3, ...) In ascending order from the upstream with respect to the fuel gas.
Further, each part of the heat exchanger 20 is made of carbon steel.

ここで、高炉ガスには塩化アンモニウム等の腐食成分が含まれており、その高炉ガスを含む燃料ガスと熱交換する熱交換器20は高い腐食環境に曝されている。
伝熱管21が腐食しその腐食が進行すると、伝熱管21内の循環熱媒体Wが漏洩してしまう。
Here, the blast furnace gas contains a corrosive component such as ammonium chloride, and the heat exchanger 20 that exchanges heat with the fuel gas containing the blast furnace gas is exposed to a highly corrosive environment.
When the heat transfer tube 21 is corroded and the corrosion progresses, the circulating heat medium W in the heat transfer tube 21 leaks.

各群の伝熱管21が一本でも漏洩すると、群全体の機能が低下し熱交換効率が大きく低下するので、漏洩配管の補修を実施しなければならない。
漏洩部分の補修方法とは、漏洩した管を切除し管寄24側の管台23に閉止栓を溶接するものであるので、伝熱管21の稼働数が減少し熱交換器20の全体の効率が低下することを意味している。
If even one heat transfer tube 21 of each group leaks, the function of the entire group deteriorates and the heat exchange efficiency drops significantly. Therefore, the leaking pipe must be repaired.
The method of repairing the leaked portion is to cut off the leaked pipe and weld a closing plug to the pipe base 23 on the side of the pipe side 24, so that the number of operating heat transfer tubes 21 is reduced and the overall efficiency of the heat exchanger 20 is reduced. Means that is reduced.

そこで、腐食環境下(ここではアルカリ腐食)にある伝熱管の材料をCr含有量が9%以上のものにしたボイラが開示されている(例えば、特許文献1参照)。
特許文献1に記載の発明によれば、アルカリ腐食速度は、材料中のCr含有量が高くなるほど低減し、Cr含有量9%以上になると実質的に腐食が生じない。
よって、ごみ焼却発電設備等での過熱蒸気を得る過熱器のアルカリ腐食を防止でき、しかも低コストである。
Therefore, there is disclosed a boiler in which the material of the heat transfer tube in a corrosive environment (here, alkaline corrosion) has a Cr content of 9% or more (see, for example, Patent Document 1).
According to the invention described in Patent Document 1, the alkali corrosion rate decreases as the Cr content in the material increases, and when the Cr content is 9% or more, substantially no corrosion occurs.
Therefore, it is possible to prevent alkaline corrosion of a superheater that obtains superheated steam in a waste incineration power generation facility or the like, and the cost is low.

また、ショットピーニング加工を施すことにより、耐食性を向上させたステンレス鋼が開示されている(例えば、特許文献2参照)。
特許文献2に記載の発明によれば、ショットピーニング加工を施すことにより、ステンレス鋼の表面に圧縮応力を付与し引張応力を緩和させることで耐食性が向上するので、応力腐食割れが抑制される。
Further, a stainless steel having improved corrosion resistance by being subjected to shot peening processing is disclosed (see, for example, Patent Document 2).
According to the invention described in Patent Document 2, by performing shot peening processing, compressive stress is applied to the surface of stainless steel to relax tensile stress, thereby improving corrosion resistance and thus suppressing stress corrosion cracking.

特開平11−201402号公報JP-A-11-2014402 特開2001−198828号公報Japanese Unexamined Patent Publication No. 2001-198828

しかしながら、高炉ガスに曝される環境下での腐食対策としてはいずれも不十分である。
このように腐食対策が不十分な状況では、短期間で第1群101の熱交換器20が腐食してしまい、その機能が失われると、腐食範囲はその下流の群に加速度的に拡大する。
However, all of them are insufficient as measures against corrosion in an environment exposed to blast furnace gas.
In such a situation where corrosion countermeasures are inadequate, the heat exchanger 20 of the first group 101 corrodes in a short period of time, and when its function is lost, the corrosion range expands to the downstream group at an accelerating rate. ..

このような腐食の拡大を早く発見でき新しい熱交換器20に更新したとしても、ボイラを予定外に停止させることになってしまい、時間とコストが掛かる。
一方、ボイラを停止することができないとか、腐食の拡大の発見が遅れると、上流側から熱交換器20がどんどん機能停止してしまうので、ついには複数の熱交換器20全体が機能しなくなってしまう。
Even if the spread of such corrosion can be detected early and the new heat exchanger 20 is replaced, the boiler will be stopped unexpectedly, which is time consuming and costly.
On the other hand, if the boiler cannot be stopped or if the discovery of the spread of corrosion is delayed, the heat exchangers 20 will stop functioning steadily from the upstream side, and finally the entire plurality of heat exchangers 20 will not function. It ends up.

そこで、本発明の目的とするところは、複数の熱交換器全体を長寿命化させ得るガス予熱装置の操業方法を提供することにある。 Therefore, an object of the present invention is to provide a method of operating a gas preheating device capable of extending the life of a plurality of heat exchangers as a whole.

上記の目的を達成するために、本発明の請求項1に記載のガス予熱装置の操業方法は、ボイラの燃料である高炉ガスを含む燃料ガス(G)が内部を流れるガス流路(10)と、循環熱媒体(W)が内部を流れる複数の伝熱管(31)と、前記複数の伝熱管(31)の外面に設けられたフィン(32)と、前記複数の伝熱管(31)の両端に管台(33)を介して接続された管寄(34)と、を有する複数の熱交換器(30)と、を備え、前記ガス流路(10)内に、一つ以上の前記熱交換器(30)を一つの群として互いに近接配置するとともに、前記群を燃料ガス(G)に対して上流から昇順で第n群(n=1,2,3,…)とし、少なくとも第3群(103)以上の複数配置したガス予熱装置の操業方法であって、前記第1群(101)及び第2群(102)の前記伝熱管(31)を耐腐食性ステンレス材で構成し、前記第1群(101)及び第2群(102)の前記熱交換器(30)が両方同時に腐食によって熱交換機能を失う前に、前記第1群(101)及び第2群(102)の前記熱交換器(30)のうち一方の群の熱交換器(30)を更新することを特徴とする。 In order to achieve the above object, the method of operating the gas preheater according to claim 1 of the present invention is a gas flow path (10) in which a fuel gas (G) including a blast furnace gas which is a fuel for a boiler flows inside. A plurality of heat transfer tubes (31) through which the circulating heat medium (W) flows, fins (32) provided on the outer surfaces of the plurality of heat transfer tubes (31), and the plurality of heat transfer tubes (31). A plurality of heat exchangers (30) having a tube side (34) connected to both ends via a tube base (33), and one or more of the above in the gas flow path (10). The heat exchangers (30) are arranged close to each other as one group, and the group is designated as the nth group (n = 1, 2, 3, ...) In ascending order from the upstream with respect to the fuel gas (G), and at least the first group. It is an operation method of a plurality of gas preheaters arranged in three groups (103) or more, and the heat transfer tubes (31) of the first group (101) and the second group (102) are made of a corrosion-resistant stainless steel material. Before both the heat exchangers (30) of the first group (101) and the second group (102) lose their heat exchange function due to corrosion at the same time, the first group (101) and the second group (102) The heat exchanger (30) of one group of the heat exchangers (30) of the above is updated.

この熱交換機能を失うとは、熱交換機能を完全に喪失するものに限られず、第3群(103)以降の熱交換器(30)を急激に腐食させる程度に第1群(101)及び第2群(102)の熱交換器(30)が熱交換機能を失っていることを意味する。 The loss of this heat exchange function is not limited to the one that completely loses the heat exchange function, and the first group (101) and the first group (101) and the heat exchangers (30) after the third group (103) are rapidly corroded. It means that the heat exchanger (30) of the second group (102) has lost the heat exchange function.

また、請求項2に記載のガス予熱装置の操業方法は、前記第3群(103)以降の前記熱交換器の前記伝熱管を炭素鋼で構成したことを特徴とする。前記第3群(103)以降とは、前記第1群(101)及び第2群(102)を除いた他の群を示す。 Further, the method of operating the gas preheating device according to claim 2 is characterized in that the heat transfer tube of the heat exchanger of the third group (103) or later is made of carbon steel. The third group (103) and subsequent groups refer to other groups excluding the first group (101) and the second group (102).

また、請求項3に記載のガス予熱装置の操業方法は、前記第1群(101)の熱交換器(30)のフィン(32)の間隔を、他の群の前記熱交換器(30)のフィン(32)の間隔より広くしていることを特徴とする。 Further, in the method of operating the gas preheating device according to claim 3, the distance between the fins (32) of the heat exchangers (30) of the first group (101) is set to the distance between the fins (32) of the heat exchangers (30) of the other group. The fins (32) are wider than the distance between the fins (32).

また、請求項4に記載のガス予熱装置の操業方法は、前記第1群(101)の熱交換器(30)には前記フィン(32)を設けず前記伝熱管(31)は裸管であることを特徴とする。 Further, in the operation method of the gas preheating device according to claim 4, the fin (32) is not provided in the heat exchanger (30) of the first group (101), and the heat transfer tube (31) is a bare tube. It is characterized by being.

ここで、上記括弧内の記号は、図面および後述する発明を実施するための形態に掲載された対応要素または対応事項を示す。 Here, the symbols in parentheses indicate the corresponding elements or corresponding items described in the drawings and the embodiment for carrying out the invention described later.

本発明の請求項1及び2に記載のガス予熱装置の操業方法によれば、第1群及び第2群の伝熱管を耐腐食性ステンレス材で構成したので、通常使用される炭素鋼からなる伝熱管と比べて腐食を抑制可能である。これにより、第1群の熱交換器が腐食し下流側が高腐食環境になっても、第2群の熱交換器の腐食が緩やかなので、第3群以降の熱交換器の腐食も抑制できる。
そして、第1群及び第2群の熱交換器が両方同時に腐食によって熱交換機能を失う前に、第1群及び第2群の熱交換器のうち一方の群の熱交換器を更新するので、複数の熱交換器全体の長寿命化が可能である。
また、第1群の熱交換器と第2群の熱交換器は腐食が緩やかなので、短期間で腐食が進む場合とは異なり、その一方の群の熱交換器の熱交換率の低下や更新の際に確認できる腐食の状況から、他方の群の熱交換器の腐食状況を推測可能である。よって、その推測に基いて最適なタイミングで他方の群の熱交換器を更新することができる。
According to the operating method of the gas preheating device according to claims 1 and 2 of the present invention, since the heat transfer tubes of the first group and the second group are made of corrosion-resistant stainless steel, they are made of carbon steel which is usually used. Corrosion can be suppressed compared to heat transfer tubes. As a result, even if the heat exchangers of the first group are corroded and the downstream side becomes a highly corroded environment, the heat exchangers of the second group are slowly corroded, so that the heat exchangers of the third and subsequent groups can be suppressed from being corroded.
Then, before both the first group and the second group heat exchangers lose their heat exchange function due to corrosion at the same time, the heat exchangers of one of the first group and the second group heat exchangers are updated. , It is possible to extend the life of multiple heat exchangers as a whole.
In addition, since the heat exchangers in the first group and the heat exchangers in the second group are slowly corroded, the heat exchange rate of the heat exchangers in one group is lowered or renewed, unlike the case where the corrosion progresses in a short period of time. From the corrosion status that can be confirmed at the time, it is possible to infer the corrosion status of the heat exchangers of the other group. Therefore, the heat exchangers of the other group can be updated at the optimum timing based on the guess.

また、請求項3に記載ガス予熱装置の操業方法によれば、請求項1又は2に記載の発明の作用効果に加え、第1群の熱交換器のフィンの間隔を、他の群の熱交換器のフィンの間隔より広くしているので、燃料ガス中の腐食性物質がフィンに詰まり難くなり、腐食を抑制可能である。 Further, according to the operation method of the gas preheater according to claim 3, in addition to the action and effect of the invention according to claim 1 or 2, the distance between the fins of the heat exchanger of the first group is set to the heat of the other group. Since the distance between the fins of the exchanger is wider, corrosive substances in the fuel gas are less likely to clog the fins, and corrosion can be suppressed.

また、請求項4に記載ガス予熱装置の操業方法によれば、請求項1又は2に記載の発明の作用効果に加え、第1群の熱交換器にはフィンを設けず伝熱管は裸管であるので、燃料ガス中の腐食性物質が伝熱管に付着し難くなり、腐食をより抑制可能である。
以上のような対策を行った結果、熱交換器全体の寿命が二年から五年以上へ大幅に延びた。
Further, according to the operation method of the gas preheating device according to claim 4, in addition to the action and effect of the invention according to claim 1 or 2, the heat exchanger of the first group is not provided with fins and the heat transfer tube is a bare tube. Therefore, the corrosive substance in the fuel gas is less likely to adhere to the heat transfer tube, and the corrosion can be further suppressed.
As a result of taking the above measures, the life of the entire heat exchanger has been significantly extended from two years to five years or more.

なお、本発明のガス予熱装置の操業方法のように、第1群及び第2群の一方の群の熱交換器が腐食し伝熱管から循環熱媒体が漏洩したときに、他方の群の熱交換器の循環熱媒体が漏洩する前に一方の群の熱交換器を更新する点は、上述した特許文献1には全く記載されていない。 When the heat exchanger of one group of the first group and the second group corrodes and the circulating heat medium leaks from the heat transfer tube as in the operation method of the gas preheater of the present invention, the heat of the other group is generated. The point of updating one group of heat exchangers before the circulating heat medium of the exchanger leaks is not described at all in Patent Document 1 described above.

本発明の実施形態に係るガス予熱装置におけるガス流路及び熱交換器を示す概略図である。It is the schematic which shows the gas flow path and the heat exchanger in the gas preheater which concerns on embodiment of this invention. 図1に示す熱交換器を示す概略図である。It is the schematic which shows the heat exchanger shown in FIG. 従来例に係るガス予熱装置におけるガス流路及び熱交換器を示す概略図である。It is the schematic which shows the gas flow path and the heat exchanger in the gas preheater which concerns on the prior art. 図1及び図3に示す熱交換器を示す概略図である。It is the schematic which shows the heat exchanger shown in FIG. 1 and FIG.

図1、図2、及び図4を参照して、本発明の実施形態に係るガス予熱装置の操業方法を説明する。
従来例で示したものと同一部分には同一符号を付した。
このガス予熱装置は、ガス流路10と、複数の熱交換器30と、を備え、製鉄所で使用されるボイラの燃料ガスGを予熱するものである。
燃料ガスGは、製鉄所で生成される高炉ガス(BFG)と転炉ガス(LDG)の混合ガスであり、その高炉ガスは塩化アンモニウム等の腐食成分を含んでいる。
A method of operating the gas preheating device according to the embodiment of the present invention will be described with reference to FIGS. 1, 2, and 4.
The same parts as those shown in the conventional example are designated by the same reference numerals.
This gas preheating device includes a gas flow path 10 and a plurality of heat exchangers 30, and preheats the fuel gas G of a boiler used in a steel mill.
The fuel gas G is a mixed gas of a blast furnace gas (BFG) and a linz-Donaw gas (LDG) produced at a steel mill, and the blast furnace gas contains a corrosive component such as ammonium chloride.

ガス流路10は、燃料ガスGが内部を流れるパイプ又はダクトであり、この内部で燃料ガスGを予熱(加熱)する。
ガス流路10の内径は、熱交換器30一つの長さよりも大きく、内部に複数の熱交換器30が配置される。ガス流路10内部の熱交換器30にガス流路10の外部からの熱を伝えるため、ガス流路10は適宜パイプを介して外部と連通されており、循環熱媒体Wが熱交換器30へ流れるようになっている。
The gas flow path 10 is a pipe or duct through which the fuel gas G flows, and preheats (heats) the fuel gas G inside the pipe or duct.
The inner diameter of the gas flow path 10 is larger than the length of one heat exchanger 30, and a plurality of heat exchangers 30 are arranged inside. In order to transfer heat from the outside of the gas flow path 10 to the heat exchanger 30 inside the gas flow path 10, the gas flow path 10 is appropriately communicated with the outside via a pipe, and the circulating heat medium W is the heat exchanger 30. It is designed to flow to.

熱交換器30は、伝熱管31と、フィン32と、管台33と、管寄34と、を備える。
本実施形態に係るガス予熱装置はボイラの高温の排気ガスから熱を取得する熱交換器30も別に備えるが、ここでは排気ガスに比べて低温の燃料ガスGに対して熱を付与する、ガス流路10内に配置される熱交換器30について主に説明する。
The heat exchanger 30 includes a heat transfer tube 31, fins 32, a tube base 33, and a tube side 34.
The gas preheater according to the present embodiment also separately includes a heat exchanger 30 that acquires heat from the high temperature exhaust gas of the boiler, but here, a gas that applies heat to the fuel gas G that is lower in temperature than the exhaust gas. The heat exchanger 30 arranged in the flow path 10 will be mainly described.

熱交換器30はガス流路10内に、一つ以上の熱交換器30を一つの群として互いに近接配置されるとともに、そのような群を燃料ガスGに対して上流から昇順で第n群(n=1,2,3,…)として複数配置した。
本実施形態においては第1群101から第6群まで設けた。
この近接配置とは、燃料ガスGの流れ方向(上流下流方向)に関してお互い近くに配置したという意味である。
The heat exchangers 30 are arranged in the gas flow path 10 in close proximity to each other with one or more heat exchangers 30 as one group, and such groups are arranged in the nth group in ascending order from the upstream with respect to the fuel gas G. A plurality of them were arranged as (n = 1, 2, 3, ...).
In this embodiment, the first group 101 to the sixth group are provided.
This close arrangement means that the fuel gas G is arranged close to each other in the flow direction (upstream / downstream direction).

つまり、第1群101が燃料ガスGの流れに対して最も上流側に位置している熱交換器30のグループで、第2群102は第1群101の下流側に配置されている熱交換器30のグループ、そして第3群103は第2群102の下流側に配置されている熱交換器30のグループである。
第3群103以下、第4群104、第5群105、第6群は順に同様である。
そして、各群について44列・3段で構成した。つまり各群は132本の伝熱管31を備える。
That is, the first group 101 is a group of heat exchangers 30 located on the most upstream side with respect to the flow of the fuel gas G, and the second group 102 is a heat exchange arranged on the downstream side of the first group 101. The group of vessels 30, and the third group 103 is a group of heat exchangers 30 arranged on the downstream side of the second group 102.
The third group 103 or less, the fourth group 104, the fifth group 105, and the sixth group are the same in order.
Then, each group was composed of 44 rows and 3 stages. That is, each group includes 132 heat transfer tubes 31.

伝熱管31は、その内部を循環熱媒体Wが流れるパイプである。この循環熱媒体Wは、ガス流路10に到達するより前にボイラの排気ガスによって昇温されている。
伝熱管31の両端には管台33を介して管寄34が接続され、複数の伝熱管31を管寄34に集合させており、それにより一つの熱交換器30がなる。
The heat transfer tube 31 is a pipe through which the circulating heat medium W flows. The circulating heat medium W is heated by the exhaust gas of the boiler before reaching the gas flow path 10.
A tube side 34 is connected to both ends of the heat transfer tube 31 via a tube base 33, and a plurality of heat transfer tubes 31 are gathered at the tube side 34, thereby forming one heat exchanger 30.

フィン32は、伝熱管31の実質的な表面積を増加させるために、第2〜第6群のそれぞれの伝熱管31の外面に螺旋状に設けられている。
フィン32のピッチは4〜5mmとした。
一方、第1群101の伝熱管31にはフィン32を設けておらず、第1群101の伝熱管31は裸管になっている。
The fins 32 are spirally provided on the outer surface of each of the heat transfer tubes 31 of the second to sixth groups in order to increase the substantial surface area of the heat transfer tubes 31.
The pitch of the fins 32 was 4 to 5 mm.
On the other hand, the heat transfer tube 31 of the first group 101 is not provided with the fin 32, and the heat transfer tube 31 of the first group 101 is a bare tube.

そして、第1群101と第2群102の伝熱管31、管台33及び第2群102のフィン32を耐腐食性ステンレス材で構成した。この耐腐食性ステンレス材とは出願人が製造する商品名:NSS SCRであり、その代表成分は18.5Cr−12Ni−3Si−2Cu−0.8Moである。
また、管寄34はSUS316Lで構成した。
さらに第1群101の管台33には、残留応力が10kg/mm2以下になる程度にショットピーニング処置を行った。
また、第1群101の管台33の溶接部には300℃耐熱防食塗装を施している。
Then, the heat transfer tubes 31 of the first group 101 and the second group 102, the tube base 33, and the fins 32 of the second group 102 were made of a corrosion-resistant stainless steel material. This corrosion-resistant stainless steel material is a trade name manufactured by the applicant: NSS SCR, and its representative component is 18.5Cr-12Ni-3Si-2Cu-0.8Mo.
Further, the pipe section 34 was composed of SUS316L.
Further, the tube base 33 of the first group 101 was subjected to shot peening treatment so that the residual stress was 10 kg / mm 2 or less.
Further, the welded portion of the tube base 33 of the first group 101 is coated with a heat resistant anticorrosive coating at 300 ° C.

一方、第3乃至第6群の伝熱管31、フィン32、管台33、管寄34は従来通り、炭素鋼からなる。
つまり、第1群101の熱交換器30を最も耐食性を高くし、次に第2群102の熱交換器30の耐食性を高くした。
On the other hand, the heat transfer tubes 31, fins 32, tube bases 33, and tube sections 34 of the third to sixth groups are made of carbon steel as before.
That is, the heat exchanger 30 of the first group 101 had the highest corrosion resistance, and then the heat exchanger 30 of the second group 102 had the highest corrosion resistance.

次に、ガス流路10内の腐食環境について説明する。
第1群101の周囲環境(雰囲気)は、pH5.0、相対湿度100〜45%、cl-が最大1500ppmである。
第1群101の箇所を通過した燃料ガスGは熱を受け取り昇温するので、相対湿度が低下する。その結果、第2群102以下の周囲環境は第1群101の周囲環境に比べて低腐食環境となる。つまり、最も上流側である第1群101の周囲環境が最も腐食に関して過酷な条件であるが、その高腐食環境下に置かれていない第2群の熱交換器についても敢えて耐食性を高めている。
Next, the corrosive environment in the gas flow path 10 will be described.
The ambient environment (atmosphere) of Group 1 101 has a pH of 5.0, a relative humidity of 100 to 45%, and a maximum cl − of 1500 ppm.
Since the fuel gas G that has passed through the location of the first group 101 receives heat and raises the temperature, the relative humidity decreases. As a result, the ambient environment of the second group 102 or less becomes a low corrosion environment as compared with the ambient environment of the first group 101. That is, the ambient environment of the first group 101, which is the most upstream side, is the harshest condition for corrosion, but the heat exchanger of the second group, which is not placed in the highly corroded environment, is also intentionally improved in corrosion resistance. ..

そして、第1群101が機能しているときにはガス相対湿度は45%未満であるが、第1群101の機能が低下すると、燃料ガスGが第1群101を通過するときに昇温されない(昇温が不足する)ので、その下流である第2群102まわりの相対湿度が45%以上に上昇する。特に相対湿度が60%以上になると、急激に腐食が進むことが判明している。
つまり、第1群101の熱交換機能が低下すると、第2群102やそれより下流側が高腐食環境になってしまうということである。
The relative humidity of the gas is less than 45% when the first group 101 is functioning, but when the function of the first group 101 deteriorates, the temperature of the fuel gas G does not rise when it passes through the first group 101 ( Since the temperature rise is insufficient), the relative humidity around the second group 102, which is downstream of the temperature rise, rises to 45% or more. In particular, it has been found that corrosion progresses rapidly when the relative humidity is 60% or more.
That is, if the heat exchange function of the first group 101 deteriorates, the second group 102 and the downstream side thereof become a highly corrosive environment.

次に、以上のように構成されたガス予熱装置の効果と、その操業方法(補修・更新方法)について、説明する。
まず、ガス予熱装置を通常通り稼働させる。
第1群101の熱交換器30を耐腐食性ステンレス材で構成し、管台33に対してショットピーニングを施しているので耐食性が向上している。また、第1群101の熱交換器30にはフィン32を設けず裸管としたので、燃料ガスG中の腐食性物質が伝熱管31に付着し難くなり、腐食をより抑制可能である。
Next, the effect of the gas preheating device configured as described above and its operation method (repair / renewal method) will be described.
First, the gas preheater is operated normally.
Since the heat exchanger 30 of the first group 101 is made of a corrosion-resistant stainless steel material and shot peening is applied to the tube base 33, the corrosion resistance is improved. Further, since the heat exchanger 30 of the first group 101 is not provided with fins 32 and is a bare tube, corrosive substances in the fuel gas G are less likely to adhere to the heat transfer tube 31, and corrosion can be further suppressed.

このように第1群101の熱交換器30の耐食性を特に高めているが、先述の通り、第1群101まわりが最も過酷な腐食環境であるので、いつかは第1群101の熱交換器30に応力腐食割れ等が生じて伝熱管31内の循環熱媒体Wが漏洩する。 In this way, the corrosion resistance of the heat exchanger 30 of the first group 101 is particularly improved, but as described above, the area around the first group 101 is the most severe corrosion environment, so someday the heat exchanger of the first group 101 Stress corrosion cracking or the like occurs in 30, and the circulating heat medium W in the heat transfer tube 31 leaks.

ボイラ停止のタイミングで、漏洩した第1群101の伝熱管31を切除し閉止栓を溶接する。
このように補修により止栓した伝熱管31が複数に拡大し、第1群101全体の熱交換効率が低下するに伴い、第2群102まわりが高腐食環境となっていく。
そして、第2群102の伝熱管31も腐食及び補修により止栓が増加する。
At the timing of stopping the boiler, the leaked heat transfer tube 31 of the first group 101 is cut off and a closing plug is welded.
As the heat transfer tubes 31 that have been stopped by the repair expand to a plurality of heat transfer tubes 31 and the heat exchange efficiency of the entire first group 101 decreases, the area around the second group 102 becomes a highly corrosive environment.
Then, the heat transfer tube 31 of the second group 102 also has an increased number of stoppers due to corrosion and repair.

ここで、第1群101及び第2群102の熱交換器30が両方同時に腐食によって熱交換機能を失う前に、第1群101及び第2群102の熱交換器30のうち一方の群の熱交換器30を更新する。つまり、止栓するのではなく、新品の熱交換器30に交換する。
この点、第1群101及び第2群102の熱交換器30の耐食性を向上させているので、第1群101の熱交換器30が腐食し下流側が高腐食環境になっても、第2群102の熱交換器30の腐食が緩やかで、第3群以降の熱交換器の腐食も抑制できる。 よって、第3群103より下流側の群の熱交換器30において加速度的に腐食が進むことは抑制される。
このように、複数の熱交換器30全体の長寿命化が可能である。
Here, before both the heat exchangers 30 of the first group 101 and the second group 102 lose their heat exchange functions due to corrosion at the same time, one of the heat exchangers 30 of the first group 101 and the second group 102 Update the heat exchanger 30. That is, instead of stopping the plug, the heat exchanger 30 is replaced with a new one.
In this respect, since the corrosion resistance of the heat exchangers 30 of the first group 101 and the second group 102 is improved, even if the heat exchangers 30 of the first group 101 are corroded and the downstream side becomes a highly corroded environment, the second group The corrosion of the heat exchangers 30 of the group 102 is gradual, and the corrosion of the heat exchangers of the third and subsequent groups can also be suppressed. Therefore, the acceleration of corrosion in the heat exchanger 30 in the group downstream of the third group 103 is suppressed.
In this way, the life of the plurality of heat exchangers 30 as a whole can be extended.

また、第1群101の熱交換器30と第2群102の熱交換器30は腐食が緩やかなので、短期間で腐食が進む場合とは異なり、その一方の群の熱交換器30の熱交換率の低下や更新の際に確認できる腐食の状況から、他方の群の熱交換器30の腐食状況を推測可能である。よって、その推測に基いて最適なタイミングで他方の群の熱交換器を更新することができる。 Further, since the heat exchanger 30 of the first group 101 and the heat exchanger 30 of the second group 102 are slowly corroded, the heat exchange of the heat exchanger 30 of one group is different from the case where the corrosion progresses in a short period of time. It is possible to infer the corrosion status of the heat exchanger 30 of the other group from the corrosion status that can be confirmed at the time of decrease in rate or renewal. Therefore, the heat exchangers of the other group can be updated at the optimum timing based on the guess.

なお、本実施形態において、第1群101の管台33に対してショットピーニングに施したが、これに限られるものではなく、第2群102の管台33に対してもショットピーニングを行ってもよい。
同様に、第2群102の管台33の溶接部にも300℃耐熱防食塗装を施してもよい。
In the present embodiment, shot peening is performed on the tube base 33 of the first group 101, but the present invention is not limited to this, and shot peening is also performed on the tube base 33 of the second group 102. May be good.
Similarly, the welded portion of the tube base 33 of the second group 102 may also be coated with a heat resistant anticorrosive coating at 300 ° C.

また、第1群101の熱交換器30にはフィン32を設けず裸管としたが、これに限られるものではなく、第1群101の熱交換器30のフィン32の間隔を、他の群の熱交換器30のフィン32の間隔よりも広くすることでも、燃料ガスG中の腐食性物質がフィン32に詰まり難くなり、腐食を抑制可能である。
もちろん、第1〜第6群までフィン32の間隔を等しくしてもよい。
Further, the heat exchanger 30 of the first group 101 is not provided with fins 32 and is a bare tube, but the present invention is not limited to this, and the distance between the fins 32 of the heat exchanger 30 of the first group 101 is set to another. Even if the distance between the fins 32 of the heat exchangers 30 of the group is made wider, the corrosive substances in the fuel gas G are less likely to be clogged in the fins 32, and corrosion can be suppressed.
Of course, the intervals of the fins 32 may be equal in the first to sixth groups.

また、第6群まで配置したが、これに限られるものではなくこれより多くても少なくてもよい。
さらには、一つの群における伝熱管31の本数も、本実施形態のものに限られない。
In addition, although the arrangement is made up to the sixth group, the present invention is not limited to this, and may be more or less than this.
Furthermore, the number of heat transfer tubes 31 in one group is not limited to that of the present embodiment.

10 ガス流路
20 熱交換器
21 伝熱管
22 フィン
23 管台
24 管寄
30 熱交換器
31 伝熱管
32 フィン
33 管台
34 管寄
101 第1群
102 第2群
103 第3群
104 第4群
105 第5群
G 燃料ガス
W 循環熱媒体
10 Gas flow path 20 Heat exchanger 21 Heat transfer tube 22 Fin 23 Tube base 24 Tube side 30 Heat exchanger 31 Heat transfer tube 32 Fin 33 Tube base 34 Tube side 101 1st group 102 2nd group 103 3rd group 104 4th group 105 Group 5 G Fuel gas W Circulating heat medium

Claims (4)

ボイラの燃料である高炉ガスを含む燃料ガスが内部を流れるガス流路と、
循環熱媒体が内部を流れる複数の伝熱管と、前記複数の伝熱管の外面に設けられたフィンと、前記複数の伝熱管の両端に管台を介して接続された管寄と、を有する複数の熱交換器と、を備え、
前記ガス流路内に、一つ以上の前記熱交換器を一つの群として互いに近接配置するとともに、前記群を燃料ガスに対して上流から昇順で第n群(n=1,2,3,…)とし、少なくとも第3群以上の複数配置したガス予熱装置の操業方法であって、
前記第1群及び第2群の前記伝熱管を耐腐食性ステンレス材で構成し、
前記第1群及び第2群の前記熱交換器が両方同時に腐食によって熱交換機能を失う前に、前記第1群及び第2群の前記熱交換器のうち一方の群の熱交換器を更新することを特徴とするガス予熱装置の操業方法。
A gas flow path through which fuel gas including blast furnace gas, which is the fuel for the boiler, flows inside,
A plurality of heat transfer tubes through which a circulating heat medium flows, fins provided on the outer surfaces of the plurality of heat transfer tubes, and pipes connected to both ends of the plurality of heat transfer tubes via a tube stand. With a heat exchanger,
In the gas flow path, one or more heat exchangers are arranged close to each other as one group, and the nth group (n = 1, 2, 3,) is arranged in ascending order from the upstream with respect to the fuel gas. ...), and it is a method of operating a plurality of gas preheaters arranged at least in the third group or more.
The heat transfer tubes of the first group and the second group are made of a corrosion-resistant stainless steel material.
Before both the heat exchangers of the first group and the second group lose their heat exchange function due to corrosion at the same time, the heat exchangers of one of the heat exchangers of the first group and the second group are updated. A method of operating a gas preheater, which is characterized by doing so.
前記第3群以降の前記熱交換器の前記伝熱管を炭素鋼で構成したことを特徴とする請求項1に記載のガス予熱装置の操業方法。 The method for operating a gas preheater according to claim 1, wherein the heat transfer tube of the heat exchanger of the third group or later is made of carbon steel. 前記第1群の熱交換器のフィンの間隔を、他の群の前記熱交換器のフィンの間隔より広くしていることを特徴とする請求項1又は2に記載のガス予熱装置の操業方法。 The method for operating a gas preheater according to claim 1 or 2, wherein the distance between the fins of the heat exchangers of the first group is wider than the distance between the fins of the heat exchangers of the other group. .. 前記第1群の熱交換器には前記フィンを設けず前記伝熱管は裸管であることを特徴とする請求項1又は2に記載のガス予熱装置の操業方法。 The method for operating a gas preheating device according to claim 1 or 2, wherein the heat exchanger of the first group is not provided with the fins and the heat transfer tube is a bare tube.
JP2017060143A 2017-03-24 2017-03-24 How to operate the gas preheater Active JP6862986B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017060143A JP6862986B2 (en) 2017-03-24 2017-03-24 How to operate the gas preheater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017060143A JP6862986B2 (en) 2017-03-24 2017-03-24 How to operate the gas preheater

Publications (2)

Publication Number Publication Date
JP2018162917A JP2018162917A (en) 2018-10-18
JP6862986B2 true JP6862986B2 (en) 2021-04-21

Family

ID=63861001

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017060143A Active JP6862986B2 (en) 2017-03-24 2017-03-24 How to operate the gas preheater

Country Status (1)

Country Link
JP (1) JP6862986B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019176089A (en) 2018-03-29 2019-10-10 ソニーセミコンダクタソリューションズ株式会社 Solid state imaging device and electronic device
JP6741820B1 (en) * 2019-04-12 2020-08-19 株式会社神戸製鋼所 How to replace the vaporizer

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52122216A (en) * 1976-04-07 1977-10-14 Nippon Steel Corp Stainless steel pipe having excellent high temperature, corrosion resistance for heat exchanger of boiler
JPS61231302A (en) * 1985-04-08 1986-10-15 三菱重工業株式会社 Blast furnace gas heater for blast furnace gas fired boiler
JPH0257814A (en) * 1988-08-23 1990-02-27 Ngk Insulators Ltd Combustion device
JPH1089806A (en) * 1996-09-20 1998-04-10 Hitachi Ltd Refrigerator
JPH10122501A (en) * 1996-10-21 1998-05-15 Toshiba Corp Waste heat recovery boiler
JP2937988B1 (en) * 1998-02-13 1999-08-23 株式会社東芝 Heat exchanger
JP2000161647A (en) * 1998-12-01 2000-06-16 Babcock Hitachi Kk Waste gas processing device, and gas re-heater
JP2001198828A (en) * 2000-01-20 2001-07-24 Nkk Corp Manufacturing method for stainless steel with excellent corrosion resistance

Also Published As

Publication number Publication date
JP2018162917A (en) 2018-10-18

Similar Documents

Publication Publication Date Title
US11486572B2 (en) Systems and methods for Utilizing flue gas
US20190024990A1 (en) Heat exchanger having enhanced corrosion resistance
JP6862986B2 (en) How to operate the gas preheater
WO2017170661A1 (en) Stoker-type garbage incinerator provided with waste heat recovery boiler
TWI520894B (en) Anticorrosion method of heat exchanger and anticorrosive structure of heat exchanger
JP6015681B2 (en) Method for manufacturing boiler or water-cooled panel for converter OG equipment and method for extending the life of boiler or water-cooled panel for converter OG equipment
CN111351066A (en) Sealing structure for boiler, and method for operating boiler
Sobota Increasing the Performance and Reliability of Power Boiler by Monitoring Thermal and Strength Parameters
JP6736936B2 (en) Boiler repair method
US10955201B2 (en) Heat exchanger, boiler, and setting method for heat exchanger
Taler et al. Thermal performance and stress monitoring of power boiler
JP2023140935A (en) Water-cooled wall and method for producing the same
JP2018189282A (en) Boiler and manufacturing method and repair method of the same
JP6049256B2 (en) Oxidation resistance method for ferritic heat resistant steel
Jayaprakasam et al. ANALYSIS OF TUBE FAILURE IN ECONOMIZER AND SUPER HEATER TUBE IN THERMAL POWER STATION
JP2020082147A (en) Pipe material welding method
US20010037877A1 (en) Device and method for cooling fume intakes
RU2621452C1 (en) Cleaning method of convection heating surfaces of steam boilers
JP2006010110A (en) Heat exchanger
JP2011127714A (en) Steam pipe, and steam boiler using the same
AU2012379973B2 (en) Heat exchanger having enhanced corrosion resistance
JP2009191282A (en) Method for preventing stress-corrosion cracking of hot stove
Dillon et al. Case Histories of Failures in Heat Recovery Steam Generating Systems
CZ27728U1 (en) Steam superheater with increased resistance to the action of combustion products
JPH0755387A (en) Heat transfer tube for heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190822

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200702

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200714

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20200901

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200908

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210302

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210315

R151 Written notification of patent or utility model registration

Ref document number: 6862986

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151