JP2018162917A - Method for operating gas preheating device - Google Patents

Method for operating gas preheating device Download PDF

Info

Publication number
JP2018162917A
JP2018162917A JP2017060143A JP2017060143A JP2018162917A JP 2018162917 A JP2018162917 A JP 2018162917A JP 2017060143 A JP2017060143 A JP 2017060143A JP 2017060143 A JP2017060143 A JP 2017060143A JP 2018162917 A JP2018162917 A JP 2018162917A
Authority
JP
Japan
Prior art keywords
group
heat
gas
heat exchangers
corrosion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017060143A
Other languages
Japanese (ja)
Other versions
JP6862986B2 (en
Inventor
新悟 兼森
Shingo Kanemori
新悟 兼森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP2017060143A priority Critical patent/JP6862986B2/en
Publication of JP2018162917A publication Critical patent/JP2018162917A/en
Application granted granted Critical
Publication of JP6862986B2 publication Critical patent/JP6862986B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Feeding And Controlling Fuel (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for operating a gas preheating device which can prolong life of a plurality of whole heat exchangers.SOLUTION: A method for operating a gas preheating device includes: a gas flow passage 10 where fuel gas G containing blast furnace gas to be fuel of a boiler flows inside; and a plurality of heat exchangers 30 having a plurality of heat transfer tubes 31 where circulating heat media W flow inside, fins 32 and headers 34 connected to both ends of the plurality of heat transfer tubes 31 via pipe stands 33. In the gas flow passage 10, one or more heat exchangers 30 are arranged closely to each other as one group, and a plurality of groups are arranged in an ascending order from an upstream with respect to the fuel gas G as n-th groups (n=1, 2, 3,...). The heat transfer tubes 31 of a first group 101 and a second group 102 are composed of corrosion resistant stainless materials and, before the heat exchangers 30 of the first group 101 and the second group 102 lose heat exchanging functions by corrosion at the same time, the heat exchangers 30 of one of the heat exchangers 30 of the first group 101 and the second group 102 are updated.SELECTED DRAWING: Figure 1

Description

本発明は、高炉ガスを含む燃料ガスを排気ガスによって予熱するガス予熱装置の操業方法に関するものである。   The present invention relates to a method for operating a gas preheating device that preheats fuel gas containing blast furnace gas with exhaust gas.

製鉄所で使用される一部のボイラの燃料として、高炉ガスと転炉ガスの混合気体(以下、燃料ガス)が使用されている。
ボイラが排出する排気ガスは高温なので、省エネルギーや環境問題の観点からこの熱を回収することは重要である。
このボイラからの排熱は同じボイラの燃料ガスの予熱に用いると効率がよい。
A mixed gas of blast furnace gas and converter gas (hereinafter referred to as fuel gas) is used as fuel for some boilers used in steelworks.
Since the exhaust gas discharged from the boiler is hot, it is important to recover this heat from the viewpoint of energy saving and environmental problems.
The exhaust heat from this boiler is efficient when used for preheating the fuel gas of the same boiler.

ボイラのガス予熱装置について説明する。
ガス予熱装置はガス流路10と、熱交換器20と、を備える。
ガス流路10は、高炉ガスを含む燃料ガスGが流れるパイプ又はダクトであり、この中で燃料ガスGを予熱する。
熱交換器20は、フィン22を有する伝熱管21が管台23を介して管寄24に接続されてなる。そして、内部に循環熱媒体Wを流し、排気ガスの熱を循環熱媒体Wを介して燃料ガスを予熱する。
より詳しくは、熱交換器20は複数あり、ガス流路10内に、一つ以上の熱交換器20を一つの群として互いに近接配置している。この群を燃料ガスに対して上流から昇順で第n群(n=1,2,3,…)とした。
また、熱交換器20の各部分は炭素鋼からなる。
A boiler gas preheating device will be described.
The gas preheating device includes a gas flow path 10 and a heat exchanger 20.
The gas flow path 10 is a pipe or duct through which the fuel gas G including the blast furnace gas flows, in which the fuel gas G is preheated.
The heat exchanger 20 is formed by connecting a heat transfer tube 21 having fins 22 to a header 24 via a nozzle base 23. Then, the circulating heat medium W is caused to flow inside, and the heat of the exhaust gas is preheated through the circulating heat medium W.
More specifically, there are a plurality of heat exchangers 20, and one or more heat exchangers 20 are arranged close to each other in the gas flow path 10 as one group. This group was designated as the nth group (n = 1, 2, 3,...) In ascending order from the upstream with respect to the fuel gas.
Moreover, each part of the heat exchanger 20 consists of carbon steel.

ここで、高炉ガスには塩化アンモニウム等の腐食成分が含まれており、その高炉ガスを含む燃料ガスと熱交換する熱交換器20は高い腐食環境に曝されている。
伝熱管21が腐食しその腐食が進行すると、伝熱管21内の循環熱媒体Wが漏洩してしまう。
Here, the blast furnace gas contains corrosive components such as ammonium chloride, and the heat exchanger 20 that exchanges heat with the fuel gas containing the blast furnace gas is exposed to a highly corrosive environment.
When the heat transfer tube 21 is corroded and the corrosion proceeds, the circulating heat medium W in the heat transfer tube 21 leaks.

各群の伝熱管21が一本でも漏洩すると、群全体の機能が低下し熱交換効率が大きく低下するので、漏洩配管の補修を実施しなければならない。
漏洩部分の補修方法とは、漏洩した管を切除し管寄24側の管台23に閉止栓を溶接するものであるので、伝熱管21の稼働数が減少し熱交換器20の全体の効率が低下することを意味している。
If even one heat transfer tube 21 of each group leaks, the function of the entire group is lowered and the heat exchange efficiency is greatly lowered. Therefore, repair of the leaked pipes must be carried out.
The repair method of the leaked part is to cut out the leaked pipe and weld a stopper plug to the nozzle base 23 on the side of the header 24. Therefore, the number of operating heat transfer pipes 21 is reduced, and the overall efficiency of the heat exchanger 20 is reduced. Is meant to decline.

そこで、腐食環境下(ここではアルカリ腐食)にある伝熱管の材料をCr含有量が9%以上のものにしたボイラが開示されている(例えば、特許文献1参照)。
特許文献1に記載の発明によれば、アルカリ腐食速度は、材料中のCr含有量が高くなるほど低減し、Cr含有量9%以上になると実質的に腐食が生じない。
よって、ごみ焼却発電設備等での過熱蒸気を得る過熱器のアルカリ腐食を防止でき、しかも低コストである。
Therefore, a boiler is disclosed in which the material of the heat transfer tube in a corrosive environment (here, alkali corrosion) has a Cr content of 9% or more (see, for example, Patent Document 1).
According to the invention described in Patent Document 1, the alkali corrosion rate decreases as the Cr content in the material increases, and when the Cr content is 9% or more, corrosion does not substantially occur.
Therefore, it is possible to prevent alkaline corrosion of the superheater that obtains superheated steam at a waste incineration power generation facility or the like, and at a low cost.

また、ショットピーニング加工を施すことにより、耐食性を向上させたステンレス鋼が開示されている(例えば、特許文献2参照)。
特許文献2に記載の発明によれば、ショットピーニング加工を施すことにより、ステンレス鋼の表面に圧縮応力を付与し引張応力を緩和させることで耐食性が向上するので、応力腐食割れが抑制される。
Moreover, stainless steel which improved the corrosion resistance by performing shot peening is disclosed (see, for example, Patent Document 2).
According to the invention described in Patent Document 2, by performing shot peening, the corrosion resistance is improved by applying a compressive stress to the surface of the stainless steel and relaxing the tensile stress, so that stress corrosion cracking is suppressed.

特開平11−201402号公報JP-A-11-201202 特開2001−198828号公報JP 2001-198828 A

しかしながら、高炉ガスに曝される環境下での腐食対策としてはいずれも不十分である。
このように腐食対策が不十分な状況では、短期間で第1群101の熱交換器20が腐食してしまい、その機能が失われると、腐食範囲はその下流の群に加速度的に拡大する。
However, both are insufficient as countermeasures against corrosion in an environment exposed to blast furnace gas.
In such a situation where countermeasures against corrosion are insufficient, if the heat exchanger 20 of the first group 101 is corroded in a short period of time and its function is lost, the corrosion range is accelerated to the downstream group. .

このような腐食の拡大を早く発見でき新しい熱交換器20に更新したとしても、ボイラを予定外に停止させることになってしまい、時間とコストが掛かる。
一方、ボイラを停止することができないとか、腐食の拡大の発見が遅れると、上流側から熱交換器20がどんどん機能停止してしまうので、ついには複数の熱交換器20全体が機能しなくなってしまう。
Even if such an expansion of corrosion can be found early and updated to a new heat exchanger 20, the boiler will be stopped unexpectedly, which will take time and cost.
On the other hand, if the boiler cannot be stopped or the discovery of the expansion of corrosion is delayed, the heat exchanger 20 will stop functioning from the upstream side, and eventually the entire plurality of heat exchangers 20 will not function. End up.

そこで、本発明の目的とするところは、複数の熱交換器全体を長寿命化させ得るガス予熱装置の操業方法を提供することにある。   Accordingly, an object of the present invention is to provide a method of operating a gas preheating device that can extend the life of the entire plurality of heat exchangers.

上記の目的を達成するために、本発明の請求項1に記載のガス予熱装置の操業方法は、ボイラの燃料である高炉ガスを含む燃料ガス(G)が内部を流れるガス流路(10)と、循環熱媒体(W)が内部を流れる複数の伝熱管(31)と、前記複数の伝熱管(31)の外面に設けられたフィン(32)と、前記複数の伝熱管(31)の両端に管台(33)を介して接続された管寄(34)と、を有する複数の熱交換器(30)と、を備え、前記ガス流路(10)内に、一つ以上の前記熱交換器(30)を一つの群として互いに近接配置するとともに、前記群を燃料ガス(G)に対して上流から昇順で第n群(n=1,2,3,…)として複数配置したガス予熱装置の操業方法であって、前記第1群(101)及び第2群(102)の前記伝熱管(31)を耐腐食性ステンレス材で構成し、前記第1群(101)及び第2群(102)の前記熱交換器(30)が両方同時に腐食によって熱交換機能を失う前に、前記第1群(101)及び第2群(102)の前記熱交換器(30)のうち一方の群の熱交換器(30)を更新することを特徴とする。   In order to achieve the above object, a gas preheating device operating method according to claim 1 of the present invention is a gas flow path (10) in which a fuel gas (G) containing blast furnace gas as fuel for a boiler flows. A plurality of heat transfer tubes (31) through which the circulating heat medium (W) flows, fins (32) provided on the outer surface of the plurality of heat transfer tubes (31), and the plurality of heat transfer tubes (31). A plurality of heat exchangers (30) having a nozzle (34) connected to both ends via a nozzle (33), and one or more of the above-mentioned gas flow paths (10) The heat exchangers (30) are arranged close to each other as one group, and a plurality of the groups are arranged as an n-th group (n = 1, 2, 3,...) In ascending order from the upstream with respect to the fuel gas (G). An operation method of a gas preheating device, wherein the heat transfer tubes of the first group (101) and the second group (102) 31) is made of a corrosion-resistant stainless steel, and the heat exchangers (30) of the first group (101) and the second group (102) both lose the heat exchange function due to corrosion at the same time. One of the heat exchangers (30) of the group (101) and the second group (102) is updated.

この熱交換機能を失うとは、熱交換機能を完全に喪失するものに限られず、第3群(103)以降の熱交換器(30)を急激に腐食させる程度に第1群(101)及び第2群(102)の熱交換器(30)が熱交換機能を失っていることを意味する。   The loss of the heat exchange function is not limited to the complete loss of the heat exchange function, and the first group (101) and the heat exchanger (30) after the third group (103) are rapidly corroded. It means that the heat exchanger (30) of the second group (102) has lost its heat exchange function.

また、請求項2に記載のガス予熱装置の操業方法は、前記第1群(101)の前記管台(33)に対してショットピーニングを施していることを特徴とする。   The operation method of the gas preheating apparatus according to claim 2 is characterized in that shot peening is performed on the nozzle (33) of the first group (101).

また、請求項3に記載のガス予熱装置の操業方法は、前記第1群(101)の熱交換器(30)のフィン(32)の間隔を、他の群の前記熱交換器(30)のフィン(32)の間隔より広くしていることを特徴とする。   Further, in the operation method of the gas preheating device according to claim 3, the interval between the fins (32) of the heat exchanger (30) of the first group (101) is set to be different from that of the heat exchanger (30) of the other group. The distance between the fins (32) is wider.

また、請求項4に記載のガス予熱装置の操業方法は、前記第1群(101)の熱交換器(30)には前記フィン(32)を設けず前記伝熱管(31)は裸管であることを特徴とする。   Further, in the operation method of the gas preheating device according to claim 4, the heat exchanger tube (31) of the first group (101) is not provided with the fin (32), and the heat transfer tube (31) is a bare tube. It is characterized by being.

ここで、上記括弧内の記号は、図面および後述する発明を実施するための形態に掲載された対応要素または対応事項を示す。   Here, the symbols in the parentheses indicate corresponding elements or corresponding matters described in the drawings and the embodiments for carrying out the invention described later.

本発明の請求項1に記載のガス予熱装置の操業方法によれば、第1群及び第2群の伝熱管を耐腐食性ステンレス材で構成したので、通常使用される炭素鋼からなる伝熱管と比べて腐食を抑制可能である。これにより、第1群の熱交換器が腐食し下流側が高腐食環境になっても、第2群の熱交換器の腐食が緩やかなので、第3群以降の熱交換器の腐食も抑制できる。
そして、第1群及び第2群の熱交換器が両方同時に腐食によって熱交換機能を失う前に、第1群及び第2群の熱交換器のうち一方の群の熱交換器を更新するので、複数の熱交換器全体の長寿命化が可能である。
また、第1群の熱交換器と第2群の熱交換器は腐食が緩やかなので、短期間で腐食が進む場合とは異なり、その一方の群の熱交換器の熱交換率の低下や更新の際に確認できる腐食の状況から、他方の群の熱交換器の腐食状況を推測可能である。よって、その推測に基いて最適なタイミングで他方の群の熱交換器を更新することができる。
According to the operation method of the gas preheating apparatus according to claim 1 of the present invention, since the heat transfer tubes of the first group and the second group are made of the corrosion-resistant stainless steel material, the heat transfer tube made of carbon steel which is usually used. Corrosion can be suppressed compared to Thereby, even if the heat exchanger of the first group is corroded and the downstream side is in a highly corrosive environment, the corrosion of the heat exchanger of the second group is moderate, so that the corrosion of the heat exchangers after the third group can also be suppressed.
And since both the heat exchangers of the first group and the second group simultaneously lose the heat exchange function due to corrosion, the heat exchangers of one of the first group and the second group of heat exchangers are updated. The life of the entire heat exchanger can be extended.
In addition, since the first group heat exchanger and the second group heat exchanger are moderately corroded, unlike the case where the corrosion proceeds in a short period of time, the heat exchange rate of one of the heat exchangers is reduced or renewed. It is possible to infer the corrosion status of the heat exchangers of the other group from the corrosion status that can be confirmed at the time. Therefore, the other group of heat exchangers can be updated at an optimal timing based on the estimation.

また、請求項2に記載ガス予熱装置の操業方法によれば、請求項1に記載の発明の作用効果に加え、第1群の管台に対してショットピーニングを施しているので、より耐食性が向上する。   Further, according to the operation method of the gas preheating device according to claim 2, in addition to the operational effect of the invention according to claim 1, since the shot peening is applied to the first group of nozzles, the corrosion resistance is further improved. improves.

また、請求項3に記載ガス予熱装置の操業方法によれば、請求項1又は2に記載の発明の作用効果に加え、第1群の熱交換器のフィンの間隔を、他の群の熱交換器のフィンの間隔より広くしているので、燃料ガス中の腐食性物質がフィンに詰まり難くなり、腐食を抑制可能である。   According to the operation method of the gas preheating device according to claim 3, in addition to the operation and effect of the invention according to claim 1 or 2, the interval between the fins of the first group of heat exchangers is set to the heat of another group. Since the distance between the fins of the exchanger is larger than that, the corrosive substance in the fuel gas is less likely to clog the fins, and corrosion can be suppressed.

また、請求項4に記載ガス予熱装置の操業方法によれば、請求項1又は2に記載の発明の作用効果に加え、第1群の熱交換器にはフィンを設けず伝熱管は裸管であるので、燃料ガス中の腐食性物質が伝熱管に付着し難くなり、腐食をより抑制可能である。
以上のような対策を行った結果、熱交換器全体の寿命が二年から五年以上へ大幅に延びた。
Further, according to the operation method of the gas preheating device according to claim 4, in addition to the operation and effect of the invention according to claim 1 or 2, the heat exchanger tube is a bare tube without providing fins in the first group of heat exchangers. Therefore, the corrosive substance in the fuel gas is difficult to adhere to the heat transfer tube, and the corrosion can be further suppressed.
As a result of these measures, the overall life of the heat exchanger has been significantly extended from two years to more than five years.

なお、本発明のガス予熱装置の操業方法のように、第1群及び第2群の一方の群の熱交換器が腐食し伝熱管から循環熱媒体が漏洩したときに、他方の群の熱交換器の循環熱媒体が漏洩する前に一方の群の熱交換器を更新する点は、上述した特許文献1には全く記載されていない。   In addition, like the operation method of the gas preheating device of the present invention, when the heat exchanger of one group of the first group and the second group corrodes and the circulating heat medium leaks from the heat transfer tube, the heat of the other group The point that one group of heat exchangers is renewed before the circulating heat medium of the exchanger leaks is not described at all in Patent Document 1 described above.

本発明の実施形態に係るガス予熱装置におけるガス流路及び熱交換器を示す概略図である。It is the schematic which shows the gas flow path and heat exchanger in the gas preheating apparatus which concerns on embodiment of this invention. 図1に示す熱交換器を示す概略図である。It is the schematic which shows the heat exchanger shown in FIG. 従来例に係るガス予熱装置におけるガス流路及び熱交換器を示す概略図である。It is the schematic which shows the gas flow path and heat exchanger in the gas preheating apparatus which concerns on a prior art example. 図1及び図3に示す熱交換器を示す概略図である。It is the schematic which shows the heat exchanger shown in FIG.1 and FIG.3.

図1、図2、及び図4を参照して、本発明の実施形態に係るガス予熱装置の操業方法を説明する。
従来例で示したものと同一部分には同一符号を付した。
このガス予熱装置は、ガス流路10と、複数の熱交換器30と、を備え、製鉄所で使用されるボイラの燃料ガスGを予熱するものである。
燃料ガスGは、製鉄所で生成される高炉ガス(BFG)と転炉ガス(LDG)の混合ガスであり、その高炉ガスは塩化アンモニウム等の腐食成分を含んでいる。
With reference to FIG. 1, FIG. 2, and FIG. 4, the operation method of the gas preheating apparatus which concerns on embodiment of this invention is demonstrated.
The same parts as those shown in the conventional example are denoted by the same reference numerals.
This gas preheating device includes a gas flow path 10 and a plurality of heat exchangers 30, and preheats a fuel gas G for a boiler used in an ironworks.
The fuel gas G is a mixed gas of blast furnace gas (BFG) and converter gas (LDG) generated at an ironworks, and the blast furnace gas contains a corrosive component such as ammonium chloride.

ガス流路10は、燃料ガスGが内部を流れるパイプ又はダクトであり、この内部で燃料ガスGを予熱(加熱)する。
ガス流路10の内径は、熱交換器30一つの長さよりも大きく、内部に複数の熱交換器30が配置される。ガス流路10内部の熱交換器30にガス流路10の外部からの熱を伝えるため、ガス流路10は適宜パイプを介して外部と連通されており、循環熱媒体Wが熱交換器30へ流れるようになっている。
The gas flow path 10 is a pipe or duct through which the fuel gas G flows, and the fuel gas G is preheated (heated) therein.
The inner diameter of the gas flow path 10 is larger than the length of one heat exchanger 30, and a plurality of heat exchangers 30 are arranged inside. In order to transmit heat from the outside of the gas flow path 10 to the heat exchanger 30 inside the gas flow path 10, the gas flow path 10 is appropriately communicated with the outside through a pipe, and the circulating heat medium W is transferred to the heat exchanger 30. To flow.

熱交換器30は、伝熱管31と、フィン32と、管台33と、管寄34と、を備える。
本実施形態に係るガス予熱装置はボイラの高温の排気ガスから熱を取得する熱交換器30も別に備えるが、ここでは排気ガスに比べて低温の燃料ガスGに対して熱を付与する、ガス流路10内に配置される熱交換器30について主に説明する。
The heat exchanger 30 includes a heat transfer tube 31, fins 32, a nozzle 33, and a header 34.
The gas preheating device according to the present embodiment also includes a heat exchanger 30 that obtains heat from the high-temperature exhaust gas of the boiler, but here, the gas that gives heat to the fuel gas G that is lower in temperature than the exhaust gas. The heat exchanger 30 disposed in the flow channel 10 will be mainly described.

熱交換器30はガス流路10内に、一つ以上の熱交換器30を一つの群として互いに近接配置されるとともに、そのような群を燃料ガスGに対して上流から昇順で第n群(n=1,2,3,…)として複数配置した。
本実施形態においては第1群101から第6群まで設けた。
この近接配置とは、燃料ガスGの流れ方向(上流下流方向)に関してお互い近くに配置したという意味である。
The heat exchanger 30 is arranged in the gas flow path 10 in the vicinity of one or more heat exchangers 30 as a group, and such a group is arranged in ascending order from the upstream with respect to the fuel gas G. A plurality of (n = 1, 2, 3,...) Are arranged.
In the present embodiment, the first group 101 to the sixth group are provided.
This close arrangement means that the fuel gas G is arranged close to each other in the flow direction (upstream / downstream direction) of the fuel gas G.

つまり、第1群101が燃料ガスGの流れに対して最も上流側に位置している熱交換器30のグループで、第2群102は第1群101の下流側に配置されている熱交換器30のグループ、そして第3群103は第2群102の下流側に配置されている熱交換器30のグループである。
第3群103以下、第4群104、第5群105、第6群は順に同様である。
そして、各群について44列・3段で構成した。つまり各群は132本の伝熱管31を備える。
That is, the first group 101 is a group of the heat exchangers 30 that are located most upstream with respect to the flow of the fuel gas G, and the second group 102 is a heat exchange that is disposed on the downstream side of the first group 101. The group of the heat exchanger 30 and the third group 103 are a group of the heat exchangers 30 arranged on the downstream side of the second group 102.
The third group 103 and below, the fourth group 104, the fifth group 105, and the sixth group are the same in order.
Each group was composed of 44 rows and 3 stages. That is, each group includes 132 heat transfer tubes 31.

伝熱管31は、その内部を循環熱媒体Wが流れるパイプである。この循環熱媒体Wは、ガス流路10に到達するより前にボイラの排気ガスによって昇温されている。
伝熱管31の両端には管台33を介して管寄34が接続され、複数の伝熱管31を管寄34に集合させており、それにより一つの熱交換器30がなる。
The heat transfer tube 31 is a pipe through which the circulating heat medium W flows. The circulating heat medium W is heated by the exhaust gas of the boiler before reaching the gas flow path 10.
A pipe 34 is connected to both ends of the heat transfer pipe 31 via a nozzle 33, and a plurality of heat transfer pipes 31 are assembled in the pipe 34, thereby forming one heat exchanger 30.

フィン32は、伝熱管31の実質的な表面積を増加させるために、第2〜第6群のそれぞれの伝熱管31の外面に螺旋状に設けられている。
フィン32のピッチは4〜5mmとした。
一方、第1群101の伝熱管31にはフィン32を設けておらず、第1群101の伝熱管31は裸管になっている。
In order to increase the substantial surface area of the heat transfer tube 31, the fin 32 is spirally provided on the outer surface of each heat transfer tube 31 of the second to sixth groups.
The pitch of the fins 32 was 4-5 mm.
On the other hand, the fin 32 is not provided in the heat transfer tube 31 of the first group 101, and the heat transfer tube 31 of the first group 101 is a bare tube.

そして、第1群101と第2群102の伝熱管31、管台33及び第2群102のフィン32を耐腐食性ステンレス材で構成した。この耐腐食性ステンレス材とは出願人が製造する商品名:NSS SCRであり、その代表成分は18.5Cr−12Ni−3Si−2Cu−0.8Moである。
また、管寄34はSUS316Lで構成した。
さらに第1群101の管台33には、残留応力が10kg/mm2以下になる程度にショットピーニング処置を行った。
また、第1群101の管台33の溶接部には300℃耐熱防食塗装を施している。
The heat transfer tubes 31 and the nozzles 33 of the first group 101 and the second group 102 and the fins 32 of the second group 102 were made of a corrosion resistant stainless material. This corrosion-resistant stainless steel is a product name: NSS SCR manufactured by the applicant, and its representative component is 18.5Cr-12Ni-3Si-2Cu-0.8Mo.
In addition, the tube holder 34 is made of SUS316L.
Further, shot peening treatment was performed on the nozzle 33 of the first group 101 to such an extent that the residual stress was 10 kg / mm 2 or less.
Further, the welded portion of the nozzle 33 of the first group 101 is subjected to 300 ° C. heat and corrosion resistance coating.

一方、第3乃至第6群の伝熱管31、フィン32、管台33、管寄34は従来通り、炭素鋼からなる。
つまり、第1群101の熱交換器30を最も耐食性を高くし、次に第2群102の熱交換器30の耐食性を高くした。
On the other hand, the third to sixth groups of heat transfer tubes 31, fins 32, nozzles 33, and nozzles 34 are made of carbon steel as usual.
That is, the heat resistance of the heat exchanger 30 of the first group 101 was made highest, and then the corrosion resistance of the heat exchanger 30 of the second group 102 was made high.

次に、ガス流路10内の腐食環境について説明する。
第1群101の周囲環境(雰囲気)は、pH5.0、相対湿度100〜45%、cl-が最大1500ppmである。
第1群101の箇所を通過した燃料ガスGは熱を受け取り昇温するので、相対湿度が低下する。その結果、第2群102以下の周囲環境は第1群101の周囲環境に比べて低腐食環境となる。つまり、最も上流側である第1群101の周囲環境が最も腐食に関して過酷な条件であるが、その高腐食環境下に置かれていない第2群の熱交換器についても敢えて耐食性を高めている。
Next, the corrosive environment in the gas flow path 10 will be described.
The ambient environment (atmosphere) of the first group 101 has a pH of 5.0, a relative humidity of 100 to 45%, and a maximum of cl of 1500 ppm.
Since the fuel gas G that has passed through the location of the first group 101 receives heat and rises in temperature, the relative humidity decreases. As a result, the surrounding environment below the second group 102 is a low-corrosion environment compared to the surrounding environment of the first group 101. In other words, the environment surrounding the first group 101 on the most upstream side is the most severe condition with respect to corrosion, but the corrosion resistance of the second group heat exchanger not placed in the highly corrosive environment is also increased. .

そして、第1群101が機能しているときにはガス相対湿度は45%未満であるが、第1群101の機能が低下すると、燃料ガスGが第1群101を通過するときに昇温されない(昇温が不足する)ので、その下流である第2群102まわりの相対湿度が45%以上に上昇する。特に相対湿度が60%以上になると、急激に腐食が進むことが判明している。
つまり、第1群101の熱交換機能が低下すると、第2群102やそれより下流側が高腐食環境になってしまうということである。
And when the 1st group 101 is functioning, gas relative humidity is less than 45%, but if the function of the 1st group 101 falls, it will not raise temperature when fuel gas G passes the 1st group 101 ( Therefore, the relative humidity around the second group 102 downstream thereof increases to 45% or more. In particular, it has been found that when the relative humidity is 60% or more, corrosion proceeds rapidly.
That is, when the heat exchange function of the first group 101 is lowered, the second group 102 and the downstream side thereof are in a highly corrosive environment.

次に、以上のように構成されたガス予熱装置の効果と、その操業方法(補修・更新方法)について、説明する。
まず、ガス予熱装置を通常通り稼働させる。
第1群101の熱交換器30を耐腐食性ステンレス材で構成し、管台33に対してショットピーニングを施しているので耐食性が向上している。また、第1群101の熱交換器30にはフィン32を設けず裸管としたので、燃料ガスG中の腐食性物質が伝熱管31に付着し難くなり、腐食をより抑制可能である。
Next, the effect of the gas preheating device configured as described above and the operation method (repair / update method) will be described.
First, the gas preheating device is operated as usual.
Since the heat exchanger 30 of the first group 101 is made of a corrosion-resistant stainless steel and shot peening is applied to the nozzle 33, the corrosion resistance is improved. In addition, since the heat exchanger 30 of the first group 101 is not provided with the fins 32 and is a bare pipe, the corrosive substance in the fuel gas G is difficult to adhere to the heat transfer pipe 31, and the corrosion can be further suppressed.

このように第1群101の熱交換器30の耐食性を特に高めているが、先述の通り、第1群101まわりが最も過酷な腐食環境であるので、いつかは第1群101の熱交換器30に応力腐食割れ等が生じて伝熱管31内の循環熱媒体Wが漏洩する。   Thus, although the corrosion resistance of the heat exchanger 30 of the first group 101 is particularly enhanced, as described above, since the periphery of the first group 101 is the most severe corrosive environment, the heat exchanger of the first group 101 will someday. Stress corrosion cracking or the like occurs in 30 and the circulating heat medium W in the heat transfer tube 31 leaks.

ボイラ停止のタイミングで、漏洩した第1群101の伝熱管31を切除し閉止栓を溶接する。
このように補修により止栓した伝熱管31が複数に拡大し、第1群101全体の熱交換効率が低下するに伴い、第2群102まわりが高腐食環境となっていく。
そして、第2群102の伝熱管31も腐食及び補修により止栓が増加する。
At the timing of the boiler stop, the leaked heat transfer tube 31 of the first group 101 is cut off and a stopper plug is welded.
Thus, as the heat transfer tubes 31 stopped by the repair expand to a plurality and the heat exchange efficiency of the entire first group 101 decreases, the periphery of the second group 102 becomes a highly corrosive environment.
And the heat transfer tube 31 of the 2nd group 102 also increases a stop plug by corrosion and repair.

ここで、第1群101及び第2群102の熱交換器30が両方同時に腐食によって熱交換機能を失う前に、第1群101及び第2群102の熱交換器30のうち一方の群の熱交換器30を更新する。つまり、止栓するのではなく、新品の熱交換器30に交換する。
この点、第1群101及び第2群102の熱交換器30の耐食性を向上させているので、第1群101の熱交換器30が腐食し下流側が高腐食環境になっても、第2群102の熱交換器30の腐食が緩やかで、第3群以降の熱交換器の腐食も抑制できる。 よって、第3群103より下流側の群の熱交換器30において加速度的に腐食が進むことは抑制される。
このように、複数の熱交換器30全体の長寿命化が可能である。
Here, before both the heat exchangers 30 of the first group 101 and the second group 102 lose their heat exchange function due to corrosion at the same time, one of the heat exchangers 30 of the first group 101 and the second group 102 The heat exchanger 30 is updated. In other words, the heat exchanger 30 is replaced with a new one instead of being plugged.
In this regard, since the corrosion resistance of the heat exchangers 30 of the first group 101 and the second group 102 is improved, even if the heat exchanger 30 of the first group 101 corrodes and the downstream side becomes a highly corrosive environment, the second Corrosion of the heat exchangers 30 of the group 102 is moderate, and corrosion of the heat exchangers after the third group can be suppressed. Therefore, accelerated progress of corrosion in the heat exchangers 30 in the group downstream from the third group 103 is suppressed.
In this way, the life of the plurality of heat exchangers 30 as a whole can be extended.

また、第1群101の熱交換器30と第2群102の熱交換器30は腐食が緩やかなので、短期間で腐食が進む場合とは異なり、その一方の群の熱交換器30の熱交換率の低下や更新の際に確認できる腐食の状況から、他方の群の熱交換器30の腐食状況を推測可能である。よって、その推測に基いて最適なタイミングで他方の群の熱交換器を更新することができる。   Further, since the heat exchanger 30 of the first group 101 and the heat exchanger 30 of the second group 102 are moderately corroded, the heat exchange of the heat exchanger 30 of one group is different from the case where the corrosion proceeds in a short period of time. The corrosion status of the heat exchanger 30 of the other group can be estimated from the corrosion status that can be confirmed when the rate is reduced or updated. Therefore, the other group of heat exchangers can be updated at an optimal timing based on the estimation.

なお、本実施形態において、第1群101の管台33に対してショットピーニングに施したが、これに限られるものではなく、第2群102の管台33に対してもショットピーニングを行ってもよい。
同様に、第2群102の管台33の溶接部にも300℃耐熱防食塗装を施してもよい。
In this embodiment, the shot peening is performed on the nozzle 33 of the first group 101. However, the present invention is not limited to this, and shot peening is also performed on the nozzle 33 of the second group 102. Also good.
Similarly, the welded portion of the nozzle 33 of the second group 102 may be subjected to 300 ° C. heat and corrosion resistance coating.

また、第1群101の熱交換器30にはフィン32を設けず裸管としたが、これに限られるものではなく、第1群101の熱交換器30のフィン32の間隔を、他の群の熱交換器30のフィン32の間隔よりも広くすることでも、燃料ガスG中の腐食性物質がフィン32に詰まり難くなり、腐食を抑制可能である。
もちろん、第1〜第6群までフィン32の間隔を等しくしてもよい。
In addition, the heat exchanger 30 of the first group 101 is not provided with fins 32 and is a bare tube, but the present invention is not limited to this, and the interval between the fins 32 of the heat exchanger 30 of the first group 101 can be set to other values. By making the distance between the fins 32 of the group of heat exchangers 30 wider than that, the corrosive substance in the fuel gas G becomes difficult to clog the fins 32, and corrosion can be suppressed.
Of course, you may make the space | interval of the fin 32 equal to 1st-6th group.

また、第6群まで配置したが、これに限られるものではなくこれより多くても少なくてもよい。
さらには、一つの群における伝熱管31の本数も、本実施形態のものに限られない。
Moreover, although arrange | positioned to the 6th group, it is not restricted to this, It may be more or less than this.
Furthermore, the number of heat transfer tubes 31 in one group is not limited to that of the present embodiment.

10 ガス流路
20 熱交換器
21 伝熱管
22 フィン
23 管台
24 管寄
30 熱交換器
31 伝熱管
32 フィン
33 管台
34 管寄
101 第1群
102 第2群
103 第3群
104 第4群
105 第5群
G 燃料ガス
W 循環熱媒体
DESCRIPTION OF SYMBOLS 10 Gas flow path 20 Heat exchanger 21 Heat transfer tube 22 Fin 23 Pipe stand 24 Nose 30 Heat exchanger 31 Heat transfer pipe 32 Fin 33 Nozzle 34 Nozzle 101 1st group 102 2nd group 103 3rd group 104 4th group 105 5th group G Fuel gas W Circulating heat medium

Claims (4)

ボイラの燃料である高炉ガスを含む燃料ガスが内部を流れるガス流路と、
循環熱媒体が内部を流れる複数の伝熱管と、前記複数の伝熱管の外面に設けられたフィンと、前記複数の伝熱管の両端に管台を介して接続された管寄と、を有する複数の熱交換器と、を備え、
前記ガス流路内に、一つ以上の前記熱交換器を一つの群として互いに近接配置するとともに、前記群を燃料ガスに対して上流から昇順で第n群(n=1,2,3,…)として複数配置したガス予熱装置の操業方法であって、
前記第1群及び第2群の前記伝熱管を耐腐食性ステンレス材で構成し、
前記第1群及び第2群の前記熱交換器が両方同時に腐食によって熱交換機能を失う前に、前記第1群及び第2群の前記熱交換器のうち一方の群の熱交換器を更新することを特徴とするガス予熱装置の操業方法。
A gas flow path through which fuel gas containing blast furnace gas, which is boiler fuel, flows;
A plurality of heat transfer tubes through which the circulating heat medium flows, fins provided on the outer surfaces of the plurality of heat transfer tubes, and pipes connected to both ends of the plurality of heat transfer tubes via nozzles A heat exchanger, and
In the gas flow path, one or more heat exchangers are arranged close to each other as a group, and the group is arranged in the ascending order from the upstream with respect to the fuel gas, the nth group (n = 1, 2, 3, ...) a plurality of gas preheating device operation methods,
The heat transfer tubes of the first group and the second group are made of a corrosion resistant stainless material,
The heat exchangers of one of the first and second groups of heat exchangers are updated before both the first and second group of heat exchangers simultaneously lose their heat exchange function due to corrosion. A method for operating a gas preheating device.
前記第1群の前記管台に対してショットピーニングを施していることを特徴とする請求項1に記載のガス予熱装置の操業方法。   The method of operating a gas preheating device according to claim 1, wherein shot peening is performed on the nozzles of the first group. 前記第1群の熱交換器のフィンの間隔を、他の群の前記熱交換器のフィンの間隔より広くしていることを特徴とする請求項1又は2に記載のガス予熱装置の操業方法。   The method of operating a gas preheating device according to claim 1 or 2, wherein a distance between fins of the first group of heat exchangers is wider than a distance between fins of the heat exchangers of the other group. . 前記第1群の熱交換器には前記フィンを設けず前記伝熱管は裸管であることを特徴とする請求項1又は2に記載のガス予熱装置の操業方法。   The operation method of the gas preheating device according to claim 1 or 2, wherein the fins are not provided in the first group of heat exchangers and the heat transfer tubes are bare tubes.
JP2017060143A 2017-03-24 2017-03-24 How to operate the gas preheater Active JP6862986B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017060143A JP6862986B2 (en) 2017-03-24 2017-03-24 How to operate the gas preheater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017060143A JP6862986B2 (en) 2017-03-24 2017-03-24 How to operate the gas preheater

Publications (2)

Publication Number Publication Date
JP2018162917A true JP2018162917A (en) 2018-10-18
JP6862986B2 JP6862986B2 (en) 2021-04-21

Family

ID=63861001

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017060143A Active JP6862986B2 (en) 2017-03-24 2017-03-24 How to operate the gas preheater

Country Status (1)

Country Link
JP (1) JP6862986B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020209203A1 (en) * 2019-04-12 2020-10-15 株式会社神戸製鋼所 Replacement method for vaporization device
US11769774B2 (en) 2018-03-29 2023-09-26 Sony Semiconductor Solutions Corporation Solid-state imaging device and electronic device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5611313B2 (en) * 1976-04-07 1981-03-13
JPS61231302A (en) * 1985-04-08 1986-10-15 三菱重工業株式会社 Blast furnace gas heater for blast furnace gas fired boiler
JPH0257814A (en) * 1988-08-23 1990-02-27 Ngk Insulators Ltd Combustion device
JPH1089806A (en) * 1996-09-20 1998-04-10 Hitachi Ltd Refrigerator
JPH10122501A (en) * 1996-10-21 1998-05-15 Toshiba Corp Waste heat recovery boiler
JPH11230687A (en) * 1998-02-13 1999-08-27 Toshiba Corp Heat exchanger
JP2000161647A (en) * 1998-12-01 2000-06-16 Babcock Hitachi Kk Waste gas processing device, and gas re-heater
JP2001198828A (en) * 2000-01-20 2001-07-24 Nkk Corp Manufacturing method for stainless steel with excellent corrosion resistance

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5611313B2 (en) * 1976-04-07 1981-03-13
JPS61231302A (en) * 1985-04-08 1986-10-15 三菱重工業株式会社 Blast furnace gas heater for blast furnace gas fired boiler
JPH0257814A (en) * 1988-08-23 1990-02-27 Ngk Insulators Ltd Combustion device
JPH1089806A (en) * 1996-09-20 1998-04-10 Hitachi Ltd Refrigerator
JPH10122501A (en) * 1996-10-21 1998-05-15 Toshiba Corp Waste heat recovery boiler
JPH11230687A (en) * 1998-02-13 1999-08-27 Toshiba Corp Heat exchanger
JP2000161647A (en) * 1998-12-01 2000-06-16 Babcock Hitachi Kk Waste gas processing device, and gas re-heater
JP2001198828A (en) * 2000-01-20 2001-07-24 Nkk Corp Manufacturing method for stainless steel with excellent corrosion resistance

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11769774B2 (en) 2018-03-29 2023-09-26 Sony Semiconductor Solutions Corporation Solid-state imaging device and electronic device
WO2020209203A1 (en) * 2019-04-12 2020-10-15 株式会社神戸製鋼所 Replacement method for vaporization device
JP2020173005A (en) * 2019-04-12 2020-10-22 株式会社神戸製鋼所 Method for replacing vaporizing device

Also Published As

Publication number Publication date
JP6862986B2 (en) 2021-04-21

Similar Documents

Publication Publication Date Title
US20230258326A1 (en) Systems and methods for utilizing flue gas
JP6040308B2 (en) Heat exchanger with excellent corrosion resistance
CA2759343C (en) Heat exchanger
JP2007155233A (en) Boiler furnace and manufacturing method of panel for boiler furnace
JP2018162917A (en) Method for operating gas preheating device
CN210036337U (en) Tube array type optical tube evaporator
US20090266529A1 (en) Protected Carbon Steel Pipe for Fire Tube Heat Exchange Devices, Particularly Boilers
CA3108377A1 (en) High pressure heating installation comprising an advanced panel design and cladding thereof
TWI640736B (en) Heat exchanger using waste heat and manufacturing method of the same
CN208817449U (en) A kind of horizontal type waste heat boiler
JP4749082B2 (en) Repair method for flow accelerated corrosion thinning part
TWI520894B (en) Anticorrosion method of heat exchanger and anticorrosive structure of heat exchanger
CN110806135A (en) Composite heat conduction pipe containing low-melting-point metal and production method thereof
CN204573978U (en) A kind of modularization assembling list drum longitudinal yellow phosphoric tail gas boiler
CN111351066A (en) Sealing structure for boiler, and method for operating boiler
US10955201B2 (en) Heat exchanger, boiler, and setting method for heat exchanger
JP6049256B2 (en) Oxidation resistance method for ferritic heat resistant steel
JP6015681B2 (en) Method for manufacturing boiler or water-cooled panel for converter OG equipment and method for extending the life of boiler or water-cooled panel for converter OG equipment
JP2006010110A (en) Heat exchanger
JP2023140935A (en) Water-cooled wall and method for producing the same
CN208139237U (en) A kind of high temperature and pressure multitubular boiler
CN211902819U (en) Boiler with reheating municipal refuse and sludge for combustion
JP2020082147A (en) Pipe material welding method
CN112548381A (en) Surfacing, melting and coating anti-corrosion device for water-cooled wall of high-temperature area of hearth
JP5645534B2 (en) Heat exchanger for corrosive hot gas

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190822

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200702

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200714

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20200901

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200908

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210302

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210315

R151 Written notification of patent or utility model registration

Ref document number: 6862986

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151