JP2020082147A - Pipe material welding method - Google Patents

Pipe material welding method Download PDF

Info

Publication number
JP2020082147A
JP2020082147A JP2018221647A JP2018221647A JP2020082147A JP 2020082147 A JP2020082147 A JP 2020082147A JP 2018221647 A JP2018221647 A JP 2018221647A JP 2018221647 A JP2018221647 A JP 2018221647A JP 2020082147 A JP2020082147 A JP 2020082147A
Authority
JP
Japan
Prior art keywords
pipe
welding
temperature
branch pipe
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018221647A
Other languages
Japanese (ja)
Inventor
修 城戸
Osamu Kido
修 城戸
昌光 橋本
Masamitsu Hashimoto
昌光 橋本
透 黒川
Toru Kurokawa
透 黒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Mitsubishi Hitachi Power Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Hitachi Power Systems Ltd filed Critical Mitsubishi Hitachi Power Systems Ltd
Priority to JP2018221647A priority Critical patent/JP2020082147A/en
Publication of JP2020082147A publication Critical patent/JP2020082147A/en
Pending legal-status Critical Current

Links

Images

Abstract

To provide a pipe material welding method that can improve creep strength of a weld zone while maintaining a mounting dimension of a branch pipe with good accuracy.SOLUTION: A main pipe and a branch pipe made of high chrome steel are subjected to normalizing processing at temperatures of 1040°C or more (step S1), then executed beveling of the main pipe and the branch pipe (step S2), and while subjecting the main pipe and the branch pipe to preheat treatment at temperatures of 300°C or more (step S3), the main pipe and the branch pipe are welded (step S4). After welded, the main pipe and the branch pipe are conveyed to a heat treatment furnace (step S5) while keeping the main pipe and the branch pipe at temperatures of 200°C or more, and the main pipe and the branch pipe are annealed at temperatures of 730-780°C in the heat treatment furnace (step S6).SELECTED DRAWING: Figure 3

Description

本発明は、ボイラ装置における熱交換器の管寄のように、母管に多数の枝管を溶接して接合する管材の溶接方法に係り、特に、高温強度の高い高クロム鋼からなる管材の溶接方法に関する。 The present invention relates to a welding method of a pipe material in which a large number of branch pipes are welded and joined to a mother pipe, such as a pipe side of a heat exchanger in a boiler apparatus, and in particular, a pipe material made of high chromium steel having high high temperature strength is used. Regarding the welding method.

一般的にボイラ装置では、火炉天井壁の上部に設けられたペントハウス内に管寄やマニホールドを収納し、天井部よりも下方の火炉内に熱交換器(過熱器や再過熱器)を構成する伝熱管を吊り下げる構成となっている。 Generally, in a boiler system, a pipe side and a manifold are housed in a penthouse provided above the furnace ceiling wall, and a heat exchanger (superheater or resuperheater) is configured in the furnace below the ceiling. It is configured to suspend the heat transfer tubes.

近年、特に大容量の発電用ボイラ装置においては、発電効率向上のために蒸気条件が高温高圧化しつつあり、それに伴って伝熱管や管寄などの管材として、高温強度の高い高クロム鋼が使用されている。高クロム鋼は、鋼材中のクロムの含有量が重量%で9〜12%のフェライト鋼材であり、1050℃前後の焼ならし及び780℃前後の焼戻し処理を行うことにより、焼戻しマルテンサイト組織あるいは焼戻しベイナイト組織として高温強度を高めることができる。 In recent years, especially in large-capacity power generation boiler devices, steam conditions are becoming higher in temperature and pressure in order to improve power generation efficiency, and along with this, high-temperature high-strength high-chromium steel is used as heat transfer tubes and pipe materials. Has been done. High-chromium steel is a ferritic steel material in which the content of chromium in the steel material is 9 to 12% by weight, and by performing normalizing at about 1050°C and tempering treatment at about 780°C, a tempered martensite structure or High temperature strength can be enhanced as a tempered bainite structure.

高クロム鋼を用いて管寄を構成するには、母管に多数の伝熱管を枝管として溶接する必要がある。ただし、高クロム鋼は溶接時の熱によって母材の金属組織が変化するため、クリープ強度の低い熱影響部が形成されてしまい、この熱影響部が溶接部の弱点部位となってしまう。 In order to construct a pipe stack using high chromium steel, it is necessary to weld a large number of heat transfer pipes as branch pipes to the mother pipe. However, in high-chromium steel, the metal structure of the base material changes due to heat during welding, so a heat-affected zone with low creep strength is formed, and this heat-affected zone becomes a weak point of the welded zone.

このような熱影響部のクリープ強度の低下を抑制する従来技術として、特許文献1に開示されているように、高クロム鋼からなる母管と短管を高クロム鋼と同一組成の溶接材料を用いて溶接した後、高クロム鋼の焼ならし及び焼戻し処理を行い、その後に、短管の先端にフェライト系又はオーステナイト系耐熱鋼の枝管を溶接し、当該溶接部に対しては焼ならし及び焼戻し処理を行わないという溶接方法が知られている。 As a conventional technique for suppressing such a decrease in creep strength of a heat-affected zone, as disclosed in Patent Document 1, a mother pipe and a short pipe made of high chromium steel are welded with a welding material having the same composition as that of the high chromium steel. After welding using, normalize and temper the high chromium steel, and then weld the branch pipe of ferritic or austenitic heat resistant steel to the tip of the short pipe, and normalize the welded part. Welding methods are known in which the tempering and tempering processes are not performed.

特許文献1に記載された管材の溶接方法では、高クロム鋼からなる短管を高クロム鋼と同一組成の溶接材料を用いて母管に溶接した後、1040℃以上で焼ならし後に730〜780℃で焼戻しの熱処理を行うことにより、熱影響部の金属組織を母材と同等のものにしてクリープ強度を改善させている。また、短管と枝管との溶接部に対しては焼ならし及び焼戻し処理を行わないため、当該溶接部の強度低下を回復させることはできないが、過大な曲げ荷重の作用する可能性があるのは短管と母管の溶接部であるため、短管と枝管の溶接部での強度低下が問題とならないようにしている。 In the method for welding a pipe material described in Patent Document 1, a short pipe made of high chromium steel is welded to a mother pipe by using a welding material having the same composition as that of high chromium steel, and then 730 to 730 after normalizing at 1040°C or higher. By performing heat treatment for tempering at 780° C., the metal structure of the heat-affected zone is made equal to that of the base material and the creep strength is improved. Further, since the normalizing and tempering processes are not performed on the welded portion of the short pipe and the branch pipe, it is not possible to recover the strength reduction of the welded portion, but there is a possibility that an excessive bending load acts. Since there is a welded portion between the short pipe and the mother pipe, the reduction in strength at the welded portion between the short pipe and the branch pipe is not a problem.

特許第4015780号公報Japanese Patent No. 4015780

特許文献1に記載された技術は、高クロム鋼からなる母管と短管を溶接した後、焼ならし及び焼戻し処理を行ってクリープ強度を改善させ、その後に短管の先端に枝管を溶接するようにしているため、母管と枝管を接続する短管が必要となり、これら短管と枝管の溶接工程を含めた全体の作業工程が煩雑になるという課題がある。 In the technique described in Patent Document 1, after welding a mother pipe made of high chromium steel and a short pipe, normalizing and tempering treatments are performed to improve creep strength, and then a branch pipe is provided at the tip of the short pipe. Since the welding is performed, a short pipe that connects the mother pipe and the branch pipe is required, and there is a problem that the entire working process including the welding process of the short pipe and the branch pipe becomes complicated.

そこで、短管を省略して高クロム鋼からなる枝管を母管に直接溶接し、溶接後に1040℃以上で焼ならし後に730〜780℃で焼戻しの熱処理を行うことにより、溶接によって低下したクリープ強度を回復させることが考えられる。しかし、母管に多数の枝管を溶接する構造では、焼ならし温度下(1040℃以上)で高クロム鋼の強度が低いため、枝管が自重により曲がってしまい、枝管の取り付け寸法が狂うという問題が発生する。 Therefore, by omitting the short pipe, a branch pipe made of high-chromium steel was directly welded to the mother pipe, and after the welding, normalizing at 1040° C. or more and then performing heat treatment of tempering at 730 to 780° C., the welding deteriorated. It is considered to recover the creep strength. However, in the structure in which a large number of branch pipes are welded to the mother pipe, the strength of the high chromium steel at the normalizing temperature (1040°C or higher) is low, so the branch pipes bend due to their own weight, and the mounting dimensions of the branch pipes are small. The problem of going crazy arises.

本発明は、このような従来技術の実情からなされたもので、その目的は、枝管の取り付け寸法を精度良く維持しつつ、溶接部のクリープ強度を向上させることができる管材の溶接方法を提供することにある。 The present invention has been made in view of the circumstances of the prior art as described above, and an object thereof is to provide a welding method of a pipe material capable of improving the creep strength of a welded portion while maintaining the installation dimension of the branch pipe with high accuracy. To do.

上記目的を達成するために、代表的な本発明による管材の溶接方法は、高クロム鋼からなる母管と枝管を1040℃以上の温度で焼ならしのみを実施した後、前記母管と前記枝管に対して300℃以上の温度で予熱処理を施してから両者間を溶接し、次いで、低温割れ抑止処理を実施した後、前記母管と前記枝管を730〜780℃の温度で焼戻しすることを特徴とする。 In order to achieve the above object, a typical method of welding a pipe material according to the present invention is to perform normalizing only a mother pipe and a branch pipe made of high-chromium steel at a temperature of 1040° C. or higher, and then to form the mother pipe. The branch pipe is preheated at a temperature of 300° C. or higher, welded between them, and then subjected to cold cracking prevention treatment, and then the mother pipe and the branch pipe are heated at a temperature of 730 to 780° C. Characterized by tempering.

本発明による管材の溶接方法によれば、枝管の取り付け寸法を精度良く維持しつつ、溶接部のクリープ強度を向上させることができる。上記した以外の課題、構成及び効果は、以下に記載する実施形態の説明により明らかにされる。 According to the method for welding a pipe material of the present invention, it is possible to improve the creep strength of the welded portion while accurately maintaining the attachment dimension of the branch pipe. Problems, configurations and effects other than those described above will be clarified by the description of the embodiments described below.

ボイラ装置の全体構成図である。It is a whole block diagram of a boiler device. 本発明が適用される母管と枝管の溶接構造を示す説明図である。It is an explanatory view showing a welding structure of a mother pipe and a branch pipe to which the present invention is applied. 第1の実施形態に係る溶接方法の作業手順を示す説明図である。It is explanatory drawing which shows the work procedure of the welding method which concerns on 1st Embodiment. 第1の実施形態の各工程における時間と温度の関係を示す説明図である。It is explanatory drawing which shows the relationship between time and temperature in each process of 1st Embodiment. 第2の実施形態に係る溶接方法の作業手順を示す説明図である。It is explanatory drawing which shows the work procedure of the welding method which concerns on 2nd Embodiment. 第2の実施形態の各工程における時間と温度の関係を示す説明図である。It is explanatory drawing which shows the relationship between time and temperature in each process of 2nd Embodiment. 第3の実施形態に係る溶接方法の作業手順を示す説明図である。It is explanatory drawing which shows the work procedure of the welding method which concerns on 3rd Embodiment. 第3の実施形態の各工程における時間と温度の関係を示す説明図である。It is explanatory drawing which shows the relationship between time and temperature in each process of 3rd Embodiment. 第4の実施形態に係る溶接方法の作業手順を示す説明図である。It is explanatory drawing which shows the work procedure of the welding method which concerns on 4th Embodiment. 第4の実施形態の各工程における時間と温度の関係を示す説明図である。It is explanatory drawing which shows the relationship between time and temperature in each process of 4th Embodiment. 第4の実施形態が適用される母管と枝管の溶接構造を示す説明図である。It is explanatory drawing which shows the welding structure of the mother pipe and branch pipe to which 4th Embodiment is applied.

以下、本発明の実施の形態を図1〜図10を参照しつつ説明する。 Embodiments of the present invention will be described below with reference to FIGS.

図1はボイラ装置の全体構成図であり、このボイラ装置は、燃料を燃焼する火炉1と、火炉1内で発生した燃焼ガスの流路である燃焼ガス通路2と、火炉1及び燃焼ガス通路2の天井部に設けられたペントハウス3と、を備えている。火炉1の上部に連設された燃焼ガス通路2内には、燃焼ガスの熱を回収するための熱交換器として、一次過熱器4、二次過熱器5、三次過熱器6、四次過熱器7、一次再熱器8、二次再熱器9、節炭器(図示せず)が設けられており、火炉1内で発生した燃焼ガスと熱交換器を流れるボイラ給水との間で熱交換が行われる。給水ポンプから熱交換器に供給されたボイラ給水は、節炭器で予熱された後、火炉壁の水管に供給される間に加熱されて飽和蒸気となる。 FIG. 1 is an overall configuration diagram of a boiler apparatus. The boiler apparatus includes a furnace 1 for burning fuel, a combustion gas passage 2 which is a passage for combustion gas generated in the furnace 1, the furnace 1 and the combustion gas passage. 2 and the penthouse 3 provided on the ceiling part. In the combustion gas passage 2 connected to the upper part of the furnace 1, a primary superheater 4, a secondary superheater 5, a tertiary superheater 6, and a quaternary superheater are provided as heat exchangers for recovering heat of the combustion gas. A reactor 7, a primary reheater 8, a secondary reheater 9, and a economizer (not shown) are provided, and between the combustion gas generated in the furnace 1 and the boiler feed water flowing through the heat exchanger. Heat exchange takes place. The boiler feedwater supplied from the feedwater pump to the heat exchanger is preheated by the economizer and then heated while being supplied to the water pipe of the furnace wall to become saturated steam.

火炉1で加熱された過熱蒸気は、一次過熱器4の入口側に導入された後、一次過熱器4である程度過熱されて二次過熱器5に導入される。二次過熱器5に導入された過熱蒸気は、二次過熱器5と三次過熱器6でさらに過熱されて最終の四次過熱器7に導入され、四次過熱器7で所定温度まで昇温された後、四次過熱器7の出口側から排出されて不図示の高圧タービンに供給される。そして、四次過熱器7を出た過熱蒸気により高圧タービンが回転駆動され、高圧タービンで仕事をした蒸気は一次再熱器8の入口側に導入される。高圧タービンから一次再熱器8に導入された蒸気は、一次再熱器8で過熱されてから二次再熱器9に導入され、二次再熱器9で所定温度まで昇温された後、二次再熱器9の出口側から排出されて不図示の低圧タービンに供給される。 The superheated steam heated in the furnace 1 is introduced to the inlet side of the primary superheater 4, then superheated to some extent in the primary superheater 4, and then introduced into the secondary superheater 5. The superheated steam introduced into the secondary superheater 5 is further superheated in the secondary superheater 5 and the tertiary superheater 6 and introduced into the final quaternary superheater 7, and is heated to a predetermined temperature in the quaternary superheater 7. After that, it is discharged from the outlet side of the fourth superheater 7 and supplied to a high pressure turbine (not shown). Then, the high-pressure turbine is rotationally driven by the superheated steam that has exited the fourth superheater 7, and the steam that has worked in the high-pressure turbine is introduced to the inlet side of the primary reheater 8. The steam introduced into the primary reheater 8 from the high-pressure turbine is superheated in the primary reheater 8 and then introduced into the secondary reheater 9 and is heated to a predetermined temperature in the secondary reheater 9. , Is discharged from the outlet side of the secondary reheater 9 and supplied to a low pressure turbine (not shown).

このように構成されたボイラ装置において、火炉1及び燃焼ガス通路2の天井部10は、複数の伝熱管と伝熱管相互を交互に接続することにより製作されている。そして、天井部10の上部に設けられたペントハウス3内に、吊下げ型の熱交換器である過熱器4,5,6,7や再熱器8,9を構成する伝熱管群の上部と、これら伝熱管群に溶接により接続された管寄及びマニホールドが配置されている。管寄はマニホールドの軸線方向に所定間隔を存して複数設置されており、各管寄から伝熱管群が吊り下げられている。 In the thus constructed boiler apparatus, the ceiling portion 10 of the furnace 1 and the combustion gas passage 2 is manufactured by alternately connecting a plurality of heat transfer tubes and the heat transfer tubes. Then, in the penthouse 3 provided at the upper part of the ceiling part 10, the upper part of the heat transfer tube group constituting the superheaters 4, 5, 6, 7 and the reheaters 8, 9 which are hanging heat exchangers. A pipe side and a manifold connected by welding to these heat transfer pipe groups are arranged. A plurality of tubes are installed at a predetermined interval in the axial direction of the manifold, and a heat transfer tube group is hung from each tube.

上記のボイラ装置は、蒸気温度が600℃級の超臨界圧のボイラ装置であるため、伝熱管や管寄などの管材として、高温強度の高い高クロム鋼が使用されている。図2はペントハウス3内に設置された管寄と伝熱管の説明図であり、同図に示すように、管寄である母管11に対して多数の伝熱管が枝管12として溶接されている。これら母管11と枝管12は、鋼材中のクロムの含有量が重量%で9〜12%の高クロム鋼からなり、以下に説明する溶接方法を用いて接合されるようになっている。 Since the above-described boiler device is a supercritical pressure boiler device having a steam temperature of 600° C. class, high-chromium steel having high high-temperature strength is used as a pipe material such as a heat transfer pipe and a pipe side. FIG. 2 is an explanatory view of a pipe side and a heat transfer pipe installed in the penthouse 3. As shown in FIG. 2, a large number of heat transfer pipes are welded as branch pipes 12 to a mother pipe 11 which is a pipe side. There is. The mother pipe 11 and the branch pipe 12 are made of high chromium steel in which the content of chromium in the steel material is 9 to 12% by weight, and are joined by the welding method described below.

図3は本発明の第1の実施形態に係る溶接方法の作業手順を示す説明図、図4は第1の実施形態の各工程における時間と温度の関係を示す説明図である。 FIG. 3 is an explanatory diagram showing a work procedure of the welding method according to the first embodiment of the present invention, and FIG. 4 is an explanatory diagram showing a relationship between time and temperature in each step of the first embodiment.

図3と図4に示すように、第1の実施形態に係る溶接方法では、まず、高クロム鋼からなる母管と枝管を1040℃以上の温度で焼ならしを実施する(ステップS1)。このステップS1では、高クロム鋼に対して焼戻し処理を行わず焼ならしのみを実施するため、クリープ強度を向上させることができる。しかし、焼ならし後の高クロム鋼は、硬くて(硬さ:400HV程度)脆い(吸収エネルギー:15J程度)ため、そのまま溶接すると、溶接後に低温割れが発生してしまう。そこで、焼ならし処理後に、母管と枝管の開先加工を実施した後(ステップS2)、母管と枝管を300℃以上(300〜400℃)の温度に熱する予熱処理を実施し(ステップS3)、母管と枝管を300℃以上に維持した状態で溶接する(ステップS4)。そして、溶接後に母管と枝管を200℃以上に維持したまま熱処理炉まで搬送し(ステップS5)、当該熱処理炉で母管と枝管を730〜780℃の温度で焼戻しする(ステップS6)。 As shown in FIGS. 3 and 4, in the welding method according to the first embodiment, first, a mother pipe and a branch pipe made of high chromium steel are normalized at a temperature of 1040° C. or higher (step S1). .. In this step S1, since the high chromium steel is not tempered but only normalized, the creep strength can be improved. However, the high chrome steel after normalizing is hard (hardness: about 400 HV) and brittle (absorbed energy: about 15 J), so if it is welded as it is, cold cracking will occur after welding. Therefore, after the normalizing process, after the groove processing of the mother pipe and the branch pipe is performed (step S2), a preheat treatment is performed to heat the mother pipe and the branch pipe to a temperature of 300°C or higher (300 to 400°C). Then, the mother pipe and the branch pipe are welded while being maintained at 300° C. or higher (step S3) (step S4). Then, after welding, the mother pipe and the branch pipe are conveyed to a heat treatment furnace while being maintained at 200° C. or higher (step S5), and the mother pipe and the branch pipe are tempered in the heat treatment furnace at a temperature of 730 to 780° C. (step S6). ..

このように第1の実施形態に係る溶接方法では、母管と枝管を1040℃以上で焼ならし処理した後、通常(200〜300℃)よりも高い温度で予熱処理したまま溶接し、溶接後も焼戻し処理まで予熱範囲を200℃以上に維持するようにしたので、低温割れの要因である材料中の水素を低減させて、焼ならし状態でも低温割れを生じさせることなく溶接部を製作することができると共に、溶接後に焼ならしを行わないため枝管の変形を抑制することができ、溶接部のクリープ強度を向上させることができる。すなわち、低温割れは、溶接部が冷却された後に、溶接熱によって生じた引張残留応力と材料中の水素とによって発生するものであり、発生要因の1つである材料中の水素量をステップS3の予熱処理で低減させ、ステップS5で低温割れが発生しにくい温度域(200℃以上)に維持することにより、低温割れが防止されるようになっており、かかるステップS3及びS5の工程が本発明の低温割れ抑止処理に相当する。
なお、以下に説明する第2の実施形態から第4の実施形態においても、溶接前の300℃以上の予熱処理による効果が同様に得られる。
As described above, in the welding method according to the first embodiment, after the normalizing treatment of the mother pipe and the branch pipe at 1040° C. or higher, the welding is performed while preheated at a temperature higher than normal (200 to 300° C.), Since the preheating range was maintained at 200°C or higher until the tempering process even after welding, hydrogen in the material, which is a factor of cold cracking, was reduced, and the welded part was maintained without cold cracking even in the normalized state. In addition to being manufactured, since normalization is not performed after welding, deformation of the branch pipe can be suppressed and creep strength of the welded portion can be improved. That is, the cold cracking is generated by the tensile residual stress generated by the welding heat and hydrogen in the material after the welded part is cooled, and the amount of hydrogen in the material, which is one of the factors of occurrence, is calculated in step S3. The low temperature cracking is prevented by reducing it by the preheat treatment in step S5 and maintaining it in a temperature range (200° C. or higher) in which low temperature cracking does not easily occur in step S5. This corresponds to the low temperature crack inhibiting process of the invention.
In addition, also in the second to fourth embodiments described below, the effect of the preheat treatment at 300° C. or higher before welding is similarly obtained.

図5は本発明の第2の実施形態に係る溶接方法の作業手順を示す説明図、図6は第2の実施形態の各工程における時間と温度の関係を示す説明図である。 FIG. 5: is explanatory drawing which shows the work procedure of the welding method which concerns on the 2nd Embodiment of this invention, and FIG. 6 is explanatory drawing which shows the relationship of the time and temperature in each process of 2nd Embodiment.

図5と図6に示すように、第2の実施形態に係る溶接方法では、まず、高クロム鋼からなる母管と枝管を1040℃以上の温度で焼ならしのみを実施する(ステップS10)。次に、母管と枝管の開先加工を実施した後(ステップS11)、母管と枝管を300℃以上の温度に熱する予熱処理を実施し(ステップS12)、母管と枝管を300℃以上に予熱した状態で溶接する(ステップS13)。ここまでの工程は第1の実施形態と同じであるが、溶接後に300℃以上で直後熱処理を行った後(ステップS14)、熱処理炉内で母管と枝管を730〜780℃の温度で焼戻しする(ステップS15)。 As shown in FIGS. 5 and 6, in the welding method according to the second embodiment, first, the mother pipe and the branch pipe made of high-chromium steel are only normalized at a temperature of 1040° C. or higher (step S10). ). Next, after the groove processing of the mother pipe and the branch pipe is performed (step S11), a preheat treatment for heating the mother pipe and the branch pipe to a temperature of 300° C. or higher is performed (step S12), and the mother pipe and the branch pipe are performed. Are welded in a state of being preheated to 300° C. or higher (step S13). The steps up to here are the same as those in the first embodiment, but after the heat treatment is performed immediately after welding at 300° C. or higher (step S14), the mother pipe and the branch pipe are heated at a temperature of 730 to 780° C. in the heat treatment furnace. Temper (step S15).

このように第2の実施形態に係る溶接方法では、溶接後に予熱範囲の温度を維持したまま熱処理炉に搬送することができない場合でも、直後熱により低温割れの要因となる材料中の水素量を低減することができるため、第1の実施形態と同様に、枝管の変形を抑制できると共に、溶接後の低温割れを生じさせることなく、クリープ強度を向上させることができる。なお、第2の実施形態においては、溶接後に300℃以上で直後熱処理を行うというステップS13の工程が本発明の低温割れ抑止処理に相当する。 As described above, in the welding method according to the second embodiment, the amount of hydrogen in the material that causes cold cracking due to the immediate heat is reduced even if it cannot be conveyed to the heat treatment furnace while maintaining the temperature in the preheating range after welding. Since it can be reduced, the deformation of the branch pipe can be suppressed and the creep strength can be improved without causing cold cracking after welding, as in the first embodiment. In the second embodiment, the process of step S13 of performing the heat treatment immediately after welding at 300° C. or higher corresponds to the low temperature crack suppression process of the present invention.

図7は本発明の第3の実施形態に係る溶接方法の作業手順を示す説明図、図8は第3の実施形態の各工程における時間と温度の関係を示す説明図である。 FIG. 7 is an explanatory diagram showing the work procedure of the welding method according to the third embodiment of the present invention, and FIG. 8 is an explanatory diagram showing the relationship between time and temperature in each step of the third embodiment.

図7と図8に示すように、第3の実施形態に係る溶接方法では、まず、高クロム鋼からなる母管と枝管を1040℃以上の温度で焼ならしのみを実施する(ステップS20)。次に、母管と枝管の開先加工を実施した後(ステップS21)、母管と枝管を300℃以上の温度に熱する予熱処理を実施し(ステップS22)、母管と枝管を300℃以上に予熱した状態で溶接する(ステップS23)。ここまでの工程は第1の実施形態と同じであるが、溶接後に200℃以上の状態で溶接止端部にピーニング処理を施した後(ステップS24)、熱処理炉内で母管と枝管を730〜780℃の温度で焼戻しする(ステップS25)。なお、ステップS24のピーニング処理としては、ハンマーピーニングや超音波ピーニングが用いられる。 As shown in FIGS. 7 and 8, in the welding method according to the third embodiment, first, the mother pipe and the branch pipe made of high chromium steel are only normalized at a temperature of 1040° C. or higher (step S20). ). Next, after the groove processing of the mother pipe and the branch pipe is performed (step S21), a preheat treatment for heating the mother pipe and the branch pipe to a temperature of 300° C. or higher is performed (step S22), and the mother pipe and the branch pipe are performed. Are welded in a state of being preheated to 300° C. or higher (step S23). The steps up to this point are the same as those in the first embodiment, but after the welding toe portion is subjected to peening treatment at a temperature of 200° C. or higher after welding (step S24), the mother pipe and the branch pipe are formed in the heat treatment furnace. Tempering is performed at a temperature of 730 to 780°C (step S25). Hammer peening and ultrasonic peening are used as the peening processing in step S24.

このように第3の実施形態に係る溶接方法では、高クロム鋼からなる母管と枝管を1040℃以上の温度で焼ならし処理した後に、通常(200〜300℃)よりも高い温度で予熱処理することで、低温割れの要因である材料中の水素を低減させ、また、溶接後に予熱範囲の温度を維持したまま熱処理炉に搬送することができない場合でも、温度が下がる前に応力集中部である溶接止端部にピーニング処理を施して圧縮応力を付与することで、同じく低温割れの要因である引張残留応力を低減することができるため、第1の実施形態と同様に、枝管の変形を抑制できると共に、溶接後の低温割れを生じさせることなく、クリープ強度を向上させることができる。すなわち、第3の実施形態においては、溶接後に200℃以上の状態で溶接止端部にピーニング処理を施すというステップS23の工程が本発明の低温割れ抑止処理に相当する。 As described above, in the welding method according to the third embodiment, after normalizing the mother pipe and the branch pipe made of high chromium steel at a temperature of 1040° C. or higher, the temperature is higher than normal (200 to 300° C.). Pre-heat treatment reduces hydrogen in the material, which is a cause of cold cracking, and even if it cannot be transported to the heat treatment furnace while maintaining the temperature in the pre-heating range after welding, stress concentration before the temperature decreases. Since the tensile residual stress, which is also a factor of cold cracking, can be reduced by subjecting the weld toe portion, which is the welded portion, to the peening treatment to give the compressive stress, as in the first embodiment, The deformation can be suppressed, and the creep strength can be improved without causing cold cracking after welding. That is, in the third embodiment, the process of step S23 of performing peening treatment on the weld toe portion at a temperature of 200° C. or higher after welding corresponds to the cold crack prevention treatment of the present invention.

図9は本発明の第4の実施形態に係る溶接方法の作業手順を示す説明図、図10は第4の実施形態の各工程における時間と温度の関係を示す説明図である。また、図11は第4の実施形態が適用される母管と枝管の溶接構造を示す説明図であり、第4の実施形態に係る溶接方法は、既設の管寄(母管)11に取り付けられた枝管12を部分的に新たなものに取り替える場合に適用される。 FIG. 9 is an explanatory diagram showing the work procedure of the welding method according to the fourth embodiment of the present invention, and FIG. 10 is an explanatory diagram showing the relationship between time and temperature in each step of the fourth embodiment. In addition, FIG. 11 is an explanatory view showing a welding structure of a mother pipe and a branch pipe to which the fourth embodiment is applied, and a welding method according to the fourth embodiment is applied to an existing pipe side (mother pipe) 11. It is applied when the attached branch pipe 12 is partially replaced with a new one.

図9と図10に示すように、第4の実施形態に係る溶接方法では、まず、枝管12の取替え部と同形状の高クロム鋼管を1040℃以上の温度で焼ならしたもの(以下、これを焼ならし管13と呼称する)を用意する(ステップS30)。次に、接合相手の管材と焼ならし管13に開先加工を実施する(ステップS31)。この場合、接合相手の管材は、管寄11と既設の枝管12の両方である。しかる後、焼ならし管13を300℃以上の温度に熱する予熱処理を実施し(ステップS32)、この状態で焼ならし管13の両端を接合相手の管寄11と枝管12にそれぞれ溶接する(ステップS33)。そして、溶接後に200℃以上の状態で両方の溶接止端部にピーニング処理を施した後(ステップS34)、焼ならし管13の両端の溶接部に囲まれた範囲を730〜780℃の温度で焼戻しする(ステップS35)。なお、焼ならし管13の接合相手である管寄11と枝管12は、焼ならし管13と同一材または異種材のいずれでも良い。 As shown in FIGS. 9 and 10, in the welding method according to the fourth embodiment, first, a high-chromium steel pipe having the same shape as the replacement portion of the branch pipe 12 is normalized at a temperature of 1040° C. or higher (hereinafter, This is called a normalizing tube 13) (step S30). Next, groove processing is performed on the pipe material to be joined and the normalizing pipe 13 (step S31). In this case, the pipe materials to be joined are both the pipe side 11 and the existing branch pipe 12. Thereafter, pre-heat treatment for heating the normalizing pipe 13 to a temperature of 300° C. or higher is performed (step S32), and in this state, both ends of the normalizing pipe 13 are respectively connected to the pipe side 11 and the branch pipe 12 to be joined. Welding (step S33). Then, after welding, both welding toes are subjected to peening treatment at a temperature of 200° C. or higher (step S34), and then the range surrounded by the welds at both ends of the normalizing pipe 13 is heated to a temperature of 730 to 780° C. And temper (step S35). The pipe side 11 and the branch pipe 12, which are joint partners of the normalizing pipe 13, may be the same material as or different materials from the normalizing pipe 13.

このように第4の実施形態に係る溶接方法では、1040℃以上で焼ならし処理した焼ならし管を通常(200〜300℃)よりも高い温度で予熱処理することで、低温割れの要因である材料中の水素を低減させ、溶接後に応力集中部となる焼ならし管の溶接止端部にピーニング処理を施して圧縮応力を付与することで、同じく低温割れの要因である引張残留応力を低減させることができる。これにより、焼ならし管のような部分的な溶接部に対しても、溶接後の低温割れを生じさせることなく、クリープ強度を向上させることができる。 As described above, in the welding method according to the fourth embodiment, the normalizing pipe that has been subjected to the normalizing treatment at 1040° C. or higher is preheated at a temperature higher than normal (200 to 300° C.), which causes a factor of low temperature cracking. The tensile residual stress, which is also a factor of cold cracking, is reduced by reducing the hydrogen in the material and applying compressive stress to the weld toe of the normalizing pipe that becomes the stress concentration part after welding by peening treatment. Can be reduced. This makes it possible to improve the creep strength even in a partially welded portion such as a normalizing pipe without causing cold cracking after welding.

なお、本発明は上記した実施形態に限定されず、本発明の要旨を逸脱しない範囲で種々の変形が可能であり、特許請求の範囲に記載された技術思想に含まれる技術的事項の全てが本発明の対象となる。前記実施形態は、好適な例を示したものであるが、当業者ならば、本明細書に開示の内容から、各種の代替例、修正例、変形例あるいは改良例を実現することができ、これらは添付の特許請求の範囲に記載された技術的範囲に含まれる。 The present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the gist of the present invention, and all the technical matters included in the technical idea described in the claims are It is the subject of the present invention. Although the above-described embodiment shows a suitable example, those skilled in the art can implement various alternatives, modifications, variations, or improvements from the contents disclosed in this specification. These are included in the technical scope described in the appended claims.

1 火炉
2 燃焼ガス通路
3 ペントハウス
4 一次過熱器
5 二次過熱器
6 三次過熱器
7 四次過熱器
8 一次再熱器
9 二次再熱器
10 天井部
11 母管(管寄)
12 枝管(伝熱管)
13 焼ならし管
1 furnace 2 combustion gas passage 3 penthouse 4 primary superheater 5 secondary superheater 6 tertiary superheater 7 quaternary superheater 8 primary reheater 9 secondary reheater 10 ceiling 11 mother pipe
12 Branch tubes (heat transfer tubes)
13 Normalizing tube

Claims (5)

高クロム鋼からなる母管と枝管を1040℃以上の温度で焼ならしのみを実施した後、前記母管と前記枝管に対して300℃以上の温度で予熱処理を施してから両者間を溶接し、次いで、低温割れ抑止処理を実施した後、前記母管と前記枝管を730〜780℃の温度で焼戻しすることを特徴とする管材の溶接方法。 After only normalizing the mother pipe and the branch pipe made of high chromium steel at a temperature of 1040°C or higher, the mother pipe and the branch pipe are preheated at a temperature of 300°C or higher before Welded, and then subjected to cold crack prevention treatment, and then tempering the mother pipe and the branch pipe at a temperature of 730 to 780°C. 請求項1に記載の管材の溶接方法において、
前記低温割れ抑止処理は、溶接後の前記母管と前記枝管を熱処理炉まで200℃以上に維持する予熱処理であることを特徴とする管材の溶接方法。
The method for welding a pipe material according to claim 1,
The method for welding a pipe material, wherein the cold crack prevention treatment is a preheat treatment for maintaining the mother pipe and the branch pipe after welding at 200° C. or higher until a heat treatment furnace.
請求項1に記載の管材の溶接方法において、
前記低温割れ抑止処理は、溶接後の前記母管と前記枝管を300℃以上の温度で直後熱処理する処理であることを特徴とする管材の溶接方法。
The method for welding a pipe material according to claim 1,
The method for welding a pipe material, wherein the cold crack prevention treatment is a treatment in which the mother pipe and the branch pipe after welding are immediately heat-treated at a temperature of 300° C. or higher.
請求項1に記載の管材の溶接方法において、
前記低温割れ抑止処理は、溶接後の前記母管と前記枝管を200℃以上に維持したまま溶接部位にピーニング処理を施す処理であることを特徴とする管材の溶接方法。
The method for welding a pipe material according to claim 1,
A method for welding a pipe material, wherein the cold crack prevention treatment is a treatment of performing a peening treatment on a welded portion while maintaining the mother pipe and the branch pipe after welding at 200°C or higher.
高クロム鋼製の管材を1040℃以上の温度で焼ならし処理して焼ならし管を形成した後、前記焼ならし管と接合相手の管材に対して300℃以上の温度で予熱処理を施してから両者間を溶接し、次いで、予熱範囲を200℃以上に維持したまま溶接部位にピーニング処理を施した後、前記溶接部位に囲まれた範囲を730〜780℃の温度で焼戻しすることを特徴とする管材の溶接方法。 After forming a normalizing tube by normalizing a tube material made of high chromium steel at a temperature of 1040°C or higher, a preheat treatment is performed at a temperature of 300°C or higher for the normalizing tube and the pipe material of the joining partner. After performing the welding between the two, then, after the peening treatment on the welded portion while maintaining the preheating range at 200 ℃ or more, temper the region surrounded by the welded portion at a temperature of 730 ~ 780 ℃. Welding method for pipe materials.
JP2018221647A 2018-11-27 2018-11-27 Pipe material welding method Pending JP2020082147A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018221647A JP2020082147A (en) 2018-11-27 2018-11-27 Pipe material welding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018221647A JP2020082147A (en) 2018-11-27 2018-11-27 Pipe material welding method

Publications (1)

Publication Number Publication Date
JP2020082147A true JP2020082147A (en) 2020-06-04

Family

ID=70905375

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018221647A Pending JP2020082147A (en) 2018-11-27 2018-11-27 Pipe material welding method

Country Status (1)

Country Link
JP (1) JP2020082147A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5192746A (en) * 1975-02-12 1976-08-14 ATSUITATEIGOKINKONOYOSETSUHOHO
JPS63157769A (en) * 1986-12-22 1988-06-30 Babcock Hitachi Kk Method for welding cr mo steel
JPH08164481A (en) * 1994-12-09 1996-06-25 Nippon Steel Corp Welding method of high cr ferritic heat resistant steel
JP2017159350A (en) * 2016-03-11 2017-09-14 株式会社神戸製鋼所 Weld metal, and weld structure including weld metal

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5192746A (en) * 1975-02-12 1976-08-14 ATSUITATEIGOKINKONOYOSETSUHOHO
JPS63157769A (en) * 1986-12-22 1988-06-30 Babcock Hitachi Kk Method for welding cr mo steel
JPH08164481A (en) * 1994-12-09 1996-06-25 Nippon Steel Corp Welding method of high cr ferritic heat resistant steel
JP2017159350A (en) * 2016-03-11 2017-09-14 株式会社神戸製鋼所 Weld metal, and weld structure including weld metal

Similar Documents

Publication Publication Date Title
JP5320010B2 (en) Welding structure of the nozzle head
JP5940247B2 (en) Welding structure and welding method
JP4254483B2 (en) Long-life heat-resistant low alloy steel welded member and method for producing the same
JP2007155233A (en) Boiler furnace and manufacturing method of panel for boiler furnace
JP2014055760A (en) Prevention maintenance repair method for weld of membrane panel for boiler and boiler device with this prevention maintenance repair
JP5203064B2 (en) Welded structure of heat transfer tube made of header and nickel base alloy
Saito et al. Development of materials for use in A-USC boilers
JP2020082147A (en) Pipe material welding method
JP4015780B2 (en) Heat-resistant steel welding method and post-heat treatment method
JP6862986B2 (en) How to operate the gas preheater
JP2011194458A (en) Repair welding method
Paddea et al. T23 and T24–new generation low alloyed steels
JP4191460B2 (en) Piping reinforcement method
JP2015112642A (en) Pipe connection method, and pipe connection structure
Saito et al. Fabrication trials of Ni-based alloys for advanced USC boiler application
Penso et al. Stress Relaxation Cracking of Thick-Wall Stainless Steel Piping in Various Refining Units
JP3611434B2 (en) Plate bending welded steel pipe and manufacturing method thereof
JP3869576B2 (en) Heat-resistant steel welding method
JP3466341B2 (en) How to assemble a heat exchanger
JP6015681B2 (en) Method for manufacturing boiler or water-cooled panel for converter OG equipment and method for extending the life of boiler or water-cooled panel for converter OG equipment
JPS63157769A (en) Method for welding cr mo steel
Easwaran et al. Welding and Heat Treatment Behaviour of T23 (2.25 Cr-1.6 WV-Nb) Steel Tubes in Power Plant Applications
Nicol High temperature steels in pulverised coal technology
JP2003105442A (en) Welded steel tube of bent plate and method for manufacturing the same
JPH10277773A (en) Method of welding execution for stainless steel tube

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20210917

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20220113

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20220215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220705

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20221227