JP5203064B2 - Welded structure of heat transfer tube made of header and nickel base alloy - Google Patents

Welded structure of heat transfer tube made of header and nickel base alloy Download PDF

Info

Publication number
JP5203064B2
JP5203064B2 JP2008164268A JP2008164268A JP5203064B2 JP 5203064 B2 JP5203064 B2 JP 5203064B2 JP 2008164268 A JP2008164268 A JP 2008164268A JP 2008164268 A JP2008164268 A JP 2008164268A JP 5203064 B2 JP5203064 B2 JP 5203064B2
Authority
JP
Japan
Prior art keywords
heat transfer
transfer tube
header
base alloy
precipitation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008164268A
Other languages
Japanese (ja)
Other versions
JP2010007873A (en
Inventor
剛 包
恭 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP2008164268A priority Critical patent/JP5203064B2/en
Publication of JP2010007873A publication Critical patent/JP2010007873A/en
Application granted granted Critical
Publication of JP5203064B2 publication Critical patent/JP5203064B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/04Arrangements for sealing elements into header boxes or end plates
    • F28F9/16Arrangements for sealing elements into header boxes or end plates by permanent joints, e.g. by rolling
    • F28F9/18Arrangements for sealing elements into header boxes or end plates by permanent joints, e.g. by rolling by welding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
    • F28F21/081Heat exchange elements made from metals or metal alloys
    • F28F21/082Heat exchange elements made from metals or metal alloys from steel or ferrous alloys
    • F28F21/083Heat exchange elements made from metals or metal alloys from steel or ferrous alloys from stainless steel

Description

本発明は主蒸気温度が700℃前後となる発電プラントのボイラにおいて、管寄せとニッケル(Ni)基合金からなる伝熱管の溶接構造に係わり、特に経年使用後の伝熱管の取替え補修工事が容易な溶接構造に関するものである。   The present invention relates to a welding structure for a heat transfer tube made of a header and a nickel (Ni) base alloy in a power plant boiler having a main steam temperature of around 700 ° C., and in particular, it is easy to replace and repair the heat transfer tube after aged use. This relates to a welded structure.

発電プラント用の大型ボイラにおいては、高温部の管寄せや主蒸気管等の厚肉大径の配管には、従来2.25〜11%クロム(Cr)含有フェライト系耐熱鋼が長年用いられてきた。近年、二酸化炭素の排出抑制を背景として、特に石炭焚火力発電プラントではプラント効率向上のため蒸気温度が向上しつつあり、現在では主蒸気温度600℃のプラントも稼動している。一方、更なるプラント効率の向上を目指して主蒸気温度700℃の発電プラント開発も欧州を中心に進められており、このような高温域では、高温強度及び耐食性に問題があるため、もはや従来のフェライト系耐熱鋼の適用は不可能となる。   In large boilers for power plants, 2.25-11% chromium (Cr) -containing ferritic heat-resistant steel has been used for many years for pipes with large diameters such as high temperature headers and main steam pipes. It was. In recent years, against the backdrop of carbon dioxide emission suppression, particularly in a coal-fired thermal power plant, the steam temperature is being improved to improve the plant efficiency. Currently, a plant with a main steam temperature of 600 ° C. is also operating. On the other hand, the development of power plants with a main steam temperature of 700 ° C has been promoted mainly in Europe with the aim of further improving plant efficiency. In such a high temperature range, there are problems with high temperature strength and corrosion resistance. Application of ferritic heat-resistant steel becomes impossible.

このため高温部の管寄せや主蒸気管等の厚肉大径の配管にニッケル(Ni)基耐熱合金或いはオーステナイト系耐熱鋼の採用が必要となる。一方、高温部である火炉内の過熱器管等の薄肉小径の伝熱管材については従来からオーステナイト系耐熱鋼が用いられてきたが、設計温度が700℃以上となる高温域で使用される伝熱管材については、既存のオーステナイト系耐熱鋼はもちろん、固溶強化型Ni基合金でもクリープ強度が不足することが指摘され、アルミニウム(Al)とチタン(Ti)を添加してγ’相の析出で強化されている析出強化型Ni基合金の採用が必須となる。これらの析出強化型Ni基合金は、金属間化合物γ’相(Ni3Al、ガンマプライム)の析出強化により、設計温度が700℃以上の高温域で使用される場合においても高いクリープ強度が得られるものである。 For this reason, it is necessary to employ nickel (Ni) -based heat-resistant alloy or austenitic heat-resistant steel for thick-walled large-diameter pipes such as headers in the high-temperature part and main steam pipes. On the other hand, austenitic heat-resistant steel has been conventionally used for thin-walled small-diameter heat transfer tubes such as superheater tubes in furnaces, which are high-temperature parts. However, heat transfer steel used in a high-temperature range where the design temperature is 700 ° C or higher. Regarding heat pipe materials, not only the existing austenitic heat-resisting steels but also solid solution strengthened Ni-base alloys have been pointed out to have insufficient creep strength. Addition of aluminum (Al) and titanium (Ti) causes precipitation of γ 'phase. It is essential to use a precipitation-strengthened Ni-base alloy that has been strengthened by. These precipitation-strengthened Ni-base alloys have high creep strength even when used in a high temperature range of 700 ° C. or higher due to precipitation strengthening of the intermetallic compound γ ′ phase (Ni 3 Al, gamma prime). It is

析出強化型Ni基合金はAl、Tiを多く含み、γ’相の析出強化で高温強度を確保するが、実機使用中に強化相が大量析出して硬化するため、将来の予防保全による伝熱管取替工事の場合、既設管側の溶接熱影響部における割れのポテンシャルが高く、経年変化した伝熱管の溶接が一つの重要な課題と考えられる。   Precipitation-strengthened Ni-based alloys contain a lot of Al and Ti, and high temperature strength is secured by precipitation strengthening of the γ 'phase. In the case of replacement work, there is a high potential for cracking in the weld heat affected zone on the existing pipe side, and welding of heat transfer pipes that have changed over time is considered an important issue.

ボイラ管寄せに伝熱管を取り付けるに際して、伝熱管と同一材質の短管を管寄せと伝熱管の間に配置して溶接することが特許文献1に記載されている。またボイラのフェライト鋼管寄せにフェライト鋼伝熱管を取り付けるに際して、高温強度に優れたオーステナイト鋼管を短管として管寄せと伝熱管の間に配置して、インコネル系の溶接材料を用いて突き合わせ溶接することで疲労やクリープ損傷の少ない溶接接続ができることが特許文献2に記載されている。   Patent Document 1 describes that when a heat transfer tube is attached to a boiler header, a short tube made of the same material as the heat transfer tube is disposed between the header and the heat transfer tube and welded. Also, when installing a ferritic steel heat transfer tube to the ferritic steel header of a boiler, an austenitic steel tube with excellent high-temperature strength is placed between the header and the heat transfer tube as a short tube, and butt-welded using an Inconel welding material. Patent Document 2 describes that welding connection with less fatigue and creep damage can be achieved.

また上記タービンのオーステナイト系鋼からなる主蒸気管とロータを回転自在に支持するフェライト鋼製の外部ケーシングとの間にニッケル基合金部材を介在させて溶接することで強度に優れた600〜650℃、圧力352kg/cm2の主蒸気用の配管として使用できることが特許文献3に記載されている。
特開2004−34940号公報 特開平8−152291号公報 特開昭61−42492号公報
600-650 ° C., which is excellent in strength by welding with a nickel-base alloy member interposed between a main steam pipe made of austenitic steel of the turbine and an outer casing made of ferritic steel that rotatably supports the rotor. Patent Document 3 describes that it can be used as a main steam pipe having a pressure of 352 kg / cm 2 .
JP 2004-34940 A JP-A-8-152291 JP-A-61-42492

従来の析出強化型Ni基合金は、上述のように実機使用中に強化相が大量析出して硬化し、延性が低下する。このため、経年使用後の伝熱管の予防保全時又は漏洩等の事故時において、現場で取替作業を行う場合、従来のように伝熱管を切断して新しい伝熱管と溶接接合して交換すると、既設の伝熱管側で溶接割れのポテンシャルが高いという問題があった。   In the conventional precipitation strengthened Ni-based alloy, as described above, a large amount of the strengthening phase precipitates and hardens during use of the actual machine, and the ductility decreases. For this reason, when performing replacement work on-site at the time of preventive maintenance of a heat transfer tube after aged use or at the time of an accident such as leakage, if the heat transfer tube is cut and welded to a new heat transfer tube and replaced as before, There was a problem that the potential of weld cracking was high on the existing heat transfer tube side.

図7は一般的な発電用大型ボイラの側断面構造の簡略図であり、火炉7の上部に設置された管寄せ1と、火炉7の内部に設置された伝熱管4の位置関係を示すものである。従来の前記ボイラ構造では、厚肉大径の管寄せ1は、図8及び図9の部分拡大図で示すように、スタブ管2を介して薄肉小径の伝熱管4と溶接接合されている。スタブ管2の材質は、一般に伝熱管4の材質よりも強度が低いため、スタブ管2と伝熱管4の間には、両者の肉厚調節のための中間ピース3が挿入されるものもある。   FIG. 7 is a simplified diagram of a side sectional structure of a general large-sized boiler for power generation, and shows the positional relationship between a header 1 installed at the top of the furnace 7 and a heat transfer tube 4 installed inside the furnace 7. It is. In the conventional boiler structure, the thick-walled and large-diameter header 1 is welded and joined to the thin-walled and small-diameter heat transfer tube 4 via the stub tube 2 as shown in the partially enlarged views of FIGS. Since the material of the stub tube 2 is generally lower in strength than the material of the heat transfer tube 4, some intermediate pieces 3 are inserted between the stub tube 2 and the heat transfer tube 4 for adjusting the thickness of the both. .

図8は管寄せ1の横断面とそれに接続されたスタブ管2と中間ピース3と伝熱管4を示す模式図であり、スタブ管2と中間ピース3と伝熱管4とは中心線を実線にして示す。また、スタブ管2と中間ピース3と伝熱管4との間に記載した垂直線は接続位置を示す。   FIG. 8 is a schematic view showing the cross section of the header 1, and the stub tube 2, the intermediate piece 3, and the heat transfer tube 4 connected to the header 1, and the stub tube 2, the intermediate piece 3 and the heat transfer tube 4 have their center lines as solid lines. Show. Moreover, the vertical line described between the stub pipe | tube 2, the intermediate piece 3, and the heat exchanger tube 4 shows a connection position.

経年使用後に伝熱管4を交換する際は、作業の簡易性を考慮するため、例えばオーステナイト鋼の伝熱管4を図10に示す位置で切断し、図11のように新しく製作した伝熱管6を現地でそのまま溶接接合していた。しかし上述のように伝熱管4が析出強化型のNi基合金の場合、既設管側(経年材)は実機使用中に強化相γ’が大量析出して硬化し、図11に示す位置(既設管側の溶接熱影響部)で溶接割れが発生し易い。   When exchanging the heat transfer tube 4 after aged use, in order to consider the simplicity of work, for example, the heat transfer tube 4 made of austenitic steel is cut at the position shown in FIG. 10, and the newly manufactured heat transfer tube 6 as shown in FIG. It was welded and joined in the field. However, when the heat transfer tube 4 is a precipitation-strengthened Ni-base alloy as described above, the existing tube side (aged material) is hardened with a large amount of the strengthening phase γ 'precipitated during use of the actual machine, and the position shown in FIG. Weld cracks are likely to occur at the weld heat affected zone on the pipe side.

このような溶接割れを回避するためには、溶接する前に既設の伝熱管(経年材)4の先端部分を1000℃以上に加熱する固溶化処理を行って新材と同等の組織に戻すことが望ましい。しかし、前記固溶化処理をボイラが設置されている現地で行うことは、交換する管の数が少ない場合は可能であるが、数十〜百本にもなる場合は多大な工数となって停缶期間が従来よりも長くなる可能性があり、現実には実施困難である。   In order to avoid such weld cracking, a solid solution treatment is performed by heating the tip of the existing heat transfer tube (aged material) 4 to 1000 ° C. or higher before welding to return it to the same structure as the new material. Is desirable. However, it is possible to perform the solution treatment at the site where the boiler is installed if the number of pipes to be replaced is small, but if the number of pipes to be exchanged is several tens to hundreds, the man-hours are increased. The can period may be longer than before, which is difficult to implement in practice.

また、管寄せと管の溶接構造に関しては、特許文献1と特許文献2が提案されているが、適用材料は全て従来のフェライト鋼とオーステナイト鋼で、経年使用によって析出強化型Ni基合金のように著しく硬化せず、補修時の伝熱管の溶接は容易であり、本発明で提案される析出強化型Ni基合金の経年使用後の補修問題は解決されていない。   As for the welded structure of the header and the pipe, Patent Document 1 and Patent Document 2 have been proposed. However, the applicable materials are all conventional ferritic steel and austenitic steel, and, like the precipitation-strengthened Ni-base alloy as aged. However, the heat transfer tube is easily welded at the time of repair, and the repair problem after aged use of the precipitation strengthened Ni-based alloy proposed in the present invention has not been solved.

本発明の課題は、経年変化した析出強化型Ni基合金からなる伝熱管の現地での大量の取替溶接工事が容易な管寄せのNi基合金からなる伝熱管の溶接構造を提供することにある。   SUMMARY OF THE INVENTION An object of the present invention is to provide a welded structure of a heat transfer tube made of a Ni-base alloy of a header that makes it easy to perform a large amount of replacement welding work on the spot of a heat-transfer tube made of a precipitation-strengthened Ni-base alloy that has changed over time. is there.

本発明の上記課題は次の解決手段で解決される。
請求項1記載の発明は、チタン(Ti)とアルミニウム(Al)を含有するγ’相の平衡析出量10重量%以上のγ’相析出強化型ニッケル(Ni)基合金からなるボイラ伝熱管に析出強化型Ni基合金、固溶強化型Ni基合金、弱析出強化型Ni基合金又は高強度オーステナイト鋼のいずれかからなる管寄せを溶接接合する伝熱管と管寄せの溶接構造において、前記管寄せに固溶強化型ニッケル(Ni)基合金、γ’相の平衡析出量10重量%以下の弱析出強化型ニッケル(Ni)基合金又は高強度オーステナイト鋼からなるスタブ管の一端を接合し、当該スタブ管の下端部側を鉛直方向に伸ばし、該鉛直方向に伸びたスタブ管の他端に、伝熱管と同材質の肉厚調整用の中間ピースを介して前記伝熱管を接合することを特徴とする管寄せと伝熱管の溶接構造である。
The above-mentioned problem of the present invention is solved by the following means.
The invention according to claim 1 is a boiler heat transfer tube made of a γ 'phase precipitation strengthened nickel (Ni) based alloy containing titanium (Ti) and aluminum (Al) and having an equilibrium precipitation amount of 10% by weight or more. In a welded structure of a heat transfer tube and a header which welds and joins a header made of either precipitation strengthened Ni-base alloy, solid solution strengthened Ni-base alloy, weak precipitation strengthened Ni-base alloy or high strength austenitic steel, At the same time, one end of a stub tube made of a solid solution strengthened nickel (Ni) base alloy, a weak precipitation strengthened nickel (Ni) base alloy having an equilibrium precipitation amount of 10% by weight or less of the γ 'phase, or a high-strength austenitic steel is joined, The lower end side of the stub tube is extended in the vertical direction, and the heat transfer tube is joined to the other end of the stub tube extended in the vertical direction via an intermediate piece for adjusting the thickness of the same material as the heat transfer tube. Characteristic header and heat transfer tube It is a welded structure.

(作用)
経年使用後の伝熱管取替工事において、上記スタブ管の位置で切断し、その先端に工場で新しく製作した伝熱管を溶接接合する。スタブ管が固溶強化型Ni基合金、弱析出強化型Ni基合金或いは高強度オーステナイト鋼で、析出強化型Ni基合金伝熱管に比べ、経年使用によっても著しい硬化や延性低下が生じないので溶接割れのポテンシャルが小さく、溶接前にスタブ管先端を固溶化処理することなく、そのまま現地溶接することができる。
(Function)
In the heat transfer tube replacement work after aged use, cut at the position of the stub tube and weld and join the newly manufactured heat transfer tube at the tip. The stub tube is a solid solution strengthened Ni-base alloy, weak precipitation-strengthened Ni-base alloy or high-strength austenitic steel. Compared to precipitation-strengthened Ni-base alloy heat transfer tubes, welding does not cause significant hardening or ductility deterioration even with age. The potential of cracking is small, and it is possible to perform on-site welding as it is without subjecting the stub tube tip to solution treatment before welding.

請求項1記載の発明によれば、高温で長期間経年使用した高強度の析出強化型Ni基合金からなる伝熱管群を、現地にて高温固溶化処理することなく取替溶接を行って交換することができ、また、溶接部で鉛直方向に自重が作用するため、曲げ応力はほとんど当該溶接部に作用せず、長期間使用中の損傷という面で信頼性を向上させることができる。従って、700℃級火力発電プラントの将来の信頼性向上を高めることができ、高効率発電プラントの実現を促進することができ、火力発電プラントからの二酸化炭素排出量を削減し、地球温暖化の抑止に寄与できる。 According to the first aspect of the present invention, the heat transfer tube group made of a high strength precipitation strengthened Ni-base alloy that has been used for a long period of time at a high temperature is replaced by performing a replacement welding without performing a high temperature solution treatment at the site. In addition, since the self-weight acts in the vertical direction at the welded portion, the bending stress hardly acts on the welded portion, and the reliability can be improved in terms of damage during long-term use. Therefore, the future reliability improvement of 700 ℃ class thermal power plant can be improved, the realization of high efficiency power plant can be promoted, the carbon dioxide emission from the thermal power plant can be reduced, and the global warming Can contribute to deterrence.

本発明の実施例を図面と共に説明する。   Embodiments of the present invention will be described with reference to the drawings.

図1は、本発明になる伝熱管と管寄せの溶接構造を示す断面図である。析出強化型Ni基合金ナイモニック(登録商標)263(NIMONIC alloy 263)からなる管寄せ1と析出強化型Ni基合金インコネル(登録商標)740(INCONEL alloy 740)からなる伝熱管4の間に、高強度オーステナイト鋼HR3C(登録商標)(火SUS310J1TB)からなるスタブ管2及び伝熱管4と同材質の肉厚調整用の中間ピース3を設けた溶接構造である。これらの材料の組成を表1に示す。

Figure 0005203064
FIG. 1 is a cross-sectional view showing a welded structure between a heat transfer tube and a header according to the present invention. Between the header 1 made of precipitation-strengthened Ni-based alloy Nimonic (registered trademark) 263 (NIMONIC alloy 263) and the heat transfer tube 4 made of precipitation-strengthened Ni-based alloy Inconel (registered trademark) 740 (INCONEL alloy 740) This is a welding structure in which a stub tube 2 made of high-strength austenitic steel HR3C (registered trademark) (fire SUS310J1TB) and an intermediate piece 3 for adjusting the thickness of the same material as the heat transfer tube 4 are provided. Table 1 shows the composition of these materials.
Figure 0005203064

スタブ管2と中間ピース3の溶接材料及び中間ピース3と伝熱管4の溶接材料は管寄せ材1の母材と類似の成分の共金系ワイヤナイモニック(登録商標)263(NIMONIC Filler Metal 263)を用いる。   The welding material of the stub tube 2 and the intermediate piece 3 and the welding material of the intermediate piece 3 and the heat transfer tube 4 are the same components as the base material of the header 1, such as a metal alloy wire Nimonic (registered trademark) 263 (NIMONIC Filler Metal 263). ) Is used.

高強度オーステナイト鋼のスタブ管2は析出強化型Ni基合金のような大量のγ’相の析出が生じないため、実機で経年使用しても著しい硬化や延性の低下が生じなく、溶接の熱サイクルによる割れのポテンシャルが小さく、析出強化型Ni基合金を溶接する前に必須の高温での固溶化熱処理を略すことができる。   The stub tube 2 of high-strength austenitic steel does not cause precipitation of a large amount of γ 'phase unlike the precipitation-strengthened Ni-base alloy. The cracking potential due to the cycle is small, and the solution heat treatment at a high temperature essential before welding the precipitation-strengthened Ni-base alloy can be omitted.

経年使用した伝熱管を取り替える際、前記溶接構造のスタブ管2の部分を切断し、開先を取り、固溶化熱処理無しで新管の析出強化型Ni基合金伝熱管6(INCONEL alloy 740)と繋いだ新規の中間ピース5(INCONEL alloy 740)に溶接する。   When replacing the heat transfer tube used over time, the stub tube 2 part of the welded structure is cut, the groove is removed, and the precipitation-reinforced Ni-based alloy heat transfer tube 6 (INCONEL alloy 740) is formed without a solution heat treatment. Weld to new intermediate piece 5 (INCONEL alloy 740).

なお、本発明は伝熱管の取替補修を想定したものであり、管寄せ1の材料は、上記の析出強化型Ni基合金のほか、固溶強化型Ni基合金、弱析出強化型Ni基合金又は高強度オーステナイト鋼を用いた場合でも、前述と同様な効果が得られる。   In addition, this invention assumes replacement | exchange repair of a heat exchanger tube, and the material of the header 1 other than said precipitation strengthening type Ni base alloy, solid solution strengthening type Ni base alloy, weak precipitation strengthening type Ni base Even when an alloy or high-strength austenitic steel is used, the same effect as described above can be obtained.

以上のように、本実施例によれば、次世代700℃級超々臨界ボイラの高温部に使われる高強度析出強化型Ni基合金伝熱管の溶接割れの危険性を抑え、現地での高温固溶化処理を略し、補修の時に伝熱管の取替溶接作業が簡易に実施できる。   As described above, according to this embodiment, the risk of weld cracking of the high strength precipitation strengthened Ni-base alloy heat transfer tube used in the high temperature part of the next generation 700 ° C super supercritical boiler is suppressed, and the high temperature solidification in the field is performed. Oxidizing treatment is omitted, and replacement welding work for heat transfer tubes can be easily performed during repair.

本実施例は、溶接構造の基本的な要件は前記実施例1と同じものであるが、図4に示すようにスタブ管2の長さを延長して、中間ピース3及び伝熱管4の溶接部を管寄せ1から離れた位置に設け、これらの溶接部を鉛直方向に伸びるスタブ管2に位置させたものである。経年補修の際の切断は図5に示す位置で行い、図6のようにスタブ管2に新規の中間ピース5と新規伝熱管6を溶接接合する。厚肉のスタブ管2の長さが長くなるので材料費は肉厚増加分だけ上昇するが、実施例1では伝熱管4の自重による曲げ応力が当該溶接部に作用するのに対し、本実施例では伝熱管4の自重が鉛直方向に作用するため曲げ応力はほとんど当該溶接部に作用せず、長期間使用中の損傷という面で信頼性を向上させることができる。   In this embodiment, the basic requirements of the welded structure are the same as those of the first embodiment, but the length of the stub tube 2 is extended as shown in FIG. 4 to weld the intermediate piece 3 and the heat transfer tube 4. The parts are provided at positions away from the header 1, and these welds are positioned on the stub pipe 2 extending in the vertical direction. Cutting at the time of aging repair is performed at the position shown in FIG. 5, and the new intermediate piece 5 and the new heat transfer tube 6 are welded to the stub tube 2 as shown in FIG. Since the length of the thick-walled stub tube 2 is increased, the material cost increases by an increase in the wall thickness. In Example 1, the bending stress due to the weight of the heat transfer tube 4 acts on the welded portion. In the example, since the weight of the heat transfer tube 4 acts in the vertical direction, almost no bending stress acts on the welded portion, and the reliability can be improved in terms of damage during long-term use.

本発明によれば、高温蒸気条件(700℃級ボイラ)でボイラ高温部に使用できるNi基合金が将来の実証機、商用機となりうる可能性がある。   According to the present invention, there is a possibility that a Ni-based alloy that can be used in a boiler high-temperature part under a high-temperature steam condition (700 ° C. class boiler) can be a future demonstration machine or a commercial machine.

本発明の実施例1における、伝熱管と管寄せの溶接構造を示す断面図であるIt is sectional drawing which shows the welding structure of a heat exchanger tube and a header in Example 1 of this invention. 本発明の実施例1における、経年使用後の補修工事における伝熱管と管寄せの溶接接続部分の切断位置を示す図である。It is a figure which shows the cutting position of the welding connection part of a heat exchanger tube and a header in the repair work after aged use in Example 1 of this invention. 本発明の実施例1における、経年使用後の補修工事における伝熱管と管寄せの溶接接続後の断面図である。It is sectional drawing after the welding connection of the heat exchanger tube and the header in the repair work after aged use in Example 1 of this invention. 本発明の実施例2における、伝熱管と管寄せの溶接接続部分の溶接構造を示す断面図であるIt is sectional drawing which shows the welding structure of the welding connection part of a heat exchanger tube and a header in Example 2 of this invention. 本発明の実施例2における、経年使用後の補修工事における伝熱管と管寄せの溶接接続部分の切断位置を示す図である。In Example 2 of this invention, it is a figure which shows the cutting position of the welding connection part of a heat exchanger tube and a header in repair work after aged use. 本発明の実施例2における、経年使用後の補修工事における伝熱管と管寄せの溶接接続後の断面図である。It is sectional drawing after the welding connection of the heat exchanger tube and the header in the repair work after aged use in Example 2 of this invention. 一般的な発電用大型ボイラの側断面図の例である。It is an example of a side sectional view of a general large-sized boiler for power generation. 一般的な発電用大型ボイラの伝熱管と管寄せの伝熱管と管寄せの溶接接続部分の構造図であるIt is a structural diagram of the heat transfer tube of a general large-sized boiler for power generation and the heat transfer tube of the header and the welded connection portion of the header. 従来技術における、伝熱管と管寄せの伝熱管と管寄せの溶接接続部分の溶接構造の一例を示す断面図である。It is sectional drawing which shows an example of the welding structure of the welding connection part of the heat exchanger tube of a heat exchanger tube and a header, and a header in a prior art. 従来技術における、経年使用後の補修工事における伝熱管と管寄せの溶接接続部分の切断位置を示す図である。It is a figure which shows the cutting position of the welding connection part of a heat exchanger tube and a header in the repair work after aged use in a prior art. 従来技術における、経年使用後の補修工事における伝熱管と管寄せの溶接接続後の断面図であるIt is sectional drawing after welding connection of a heat exchanger tube and a header in repair work after aged use in conventional technology.

符号の説明Explanation of symbols

1 管寄せ
2 スタブ管
3 中間ピース
4 伝熱管
5 中間ピース(新材)
6 伝熱管(新材)
7 火炉
1 Tube header 2 Stub tube 3 Intermediate piece 4 Heat transfer tube 5 Intermediate piece (new material)
6 Heat transfer tube (new material)
7 Furnace

Claims (1)

チタン(Ti)とアルミニウム(Al)を含有するγ’相の平衡析出量10重量%以上のγ’相析出強化型ニッケル(Ni)基合金からなるボイラ伝熱管に析出強化型Ni基合金、固溶強化型Ni基合金、弱析出強化型Ni基合金又は高強度オーステナイト鋼のいずれかからなる管寄せを溶接接合する伝熱管と管寄せの溶接構造において、
前記管寄せに固溶強化型ニッケル(Ni)基合金、γ’相の平衡析出量10重量%以下の弱析出強化型ニッケル(Ni)基合金又は高強度オーステナイト鋼からなるスタブ管の一端を接合し、当該スタブ管の下端部側を鉛直方向に伸ばし、該鉛直方向に伸びたスタブ管の他端に、伝熱管と同材質の肉厚調整用の中間ピースを介して前記伝熱管を接合することを特徴とする管寄せと伝熱管の溶接構造。
Precipitation-strengthened Ni-base alloy, solid-state heat treatment of a boiler heat transfer tube made of γ'-phase precipitation-strengthened nickel (Ni) -base alloy having an equilibrium precipitation amount of 10% by weight or more of γ 'phase containing titanium (Ti) and aluminum (Al). In a welded structure of a heat transfer tube and a header that welds and joins a header made of either a melt strengthened Ni-base alloy, a weak precipitation strengthened Ni-base alloy, or a high-strength austenitic steel,
One end of a stub tube made of a solid solution strengthened nickel (Ni) base alloy, a weak precipitation strengthened nickel (Ni) base alloy having an equilibrium precipitation amount of 10% by weight or less, or a high strength austenitic steel is joined to the header. Then, the lower end side of the stub tube is extended in the vertical direction, and the heat transfer tube is joined to the other end of the stub tube extended in the vertical direction via an intermediate piece for adjusting the thickness of the same material as the heat transfer tube. A welded structure of a header and a heat transfer tube characterized by
JP2008164268A 2008-06-24 2008-06-24 Welded structure of heat transfer tube made of header and nickel base alloy Active JP5203064B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008164268A JP5203064B2 (en) 2008-06-24 2008-06-24 Welded structure of heat transfer tube made of header and nickel base alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008164268A JP5203064B2 (en) 2008-06-24 2008-06-24 Welded structure of heat transfer tube made of header and nickel base alloy

Publications (2)

Publication Number Publication Date
JP2010007873A JP2010007873A (en) 2010-01-14
JP5203064B2 true JP5203064B2 (en) 2013-06-05

Family

ID=41588601

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008164268A Active JP5203064B2 (en) 2008-06-24 2008-06-24 Welded structure of heat transfer tube made of header and nickel base alloy

Country Status (1)

Country Link
JP (1) JP5203064B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015017778A (en) * 2013-07-12 2015-01-29 株式会社Ihi Header part structure and heat exchanger using the same
JP6118714B2 (en) * 2013-11-19 2017-04-19 三菱日立パワーシステムズ株式会社 Welded joint structure of thick-walled large-diameter pipe and its welding method
JP6241234B2 (en) * 2013-12-04 2017-12-06 新日鐵住金株式会社 Welding material for austenitic heat resistant steel, weld metal and welded joint using the same
CN109387089B (en) * 2018-10-17 2020-06-26 中广核工程有限公司 Passive condenser of nuclear power plant
CN111687519A (en) * 2020-07-02 2020-09-22 哈尔滨锅炉厂有限责任公司 Boiler header lug plate welding method
JP2022063049A (en) * 2020-10-09 2022-04-21 三菱重工業株式会社 Stub tube and boiler
CN112984492A (en) * 2021-03-03 2021-06-18 华能(天津)煤气化发电有限公司 Conveniently-overhauled small-sized tube panel device at tail part of waste heat boiler and installation method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2554049B2 (en) * 1986-01-20 1996-11-13 三菱重工業株式会社 Ni-based alloy and method for producing the same
JP4792355B2 (en) * 2006-09-12 2011-10-12 バブコック日立株式会社 Yokoyose / stub tube welded structure and boiler apparatus including the same
JP4885672B2 (en) * 2006-09-26 2012-02-29 バブコック日立株式会社 TUBE WELDING STRUCTURE, TUBE WELDING METHOD, AND BOILER DEVICE HAVING TUBE WELDING STRUCTURE

Also Published As

Publication number Publication date
JP2010007873A (en) 2010-01-14

Similar Documents

Publication Publication Date Title
JP5203064B2 (en) Welded structure of heat transfer tube made of header and nickel base alloy
Abe Research and development of heat-resistant materials for advanced USC power plants with steam temperatures of 700 C and above
Patel et al. Nickel base superalloys for next generation coal fired AUSC power plants
JP5236651B2 (en) Low thermal expansion Ni-base superalloy for boiler excellent in high temperature strength, boiler component using the same, and method for manufacturing boiler component
WO2010041577A1 (en) Welded header/nozzle structure
JP2011063838A (en) Ni-BASED ALLOY PRODUCT AND MANUFACTURING METHOD THEREFOR
TWI518184B (en) Welding process and corrosion-resistant filler alloy and consumables therefor
EP3064307A1 (en) System and method for linking by friction welding a first piece of steel to a second piece of steel with use of ni-based alloys adapter
JP5979665B2 (en) Method for welding tube body to header and welded structure in which tube body is welded to header
JP4792355B2 (en) Yokoyose / stub tube welded structure and boiler apparatus including the same
CN105689919A (en) Nickel base alloy welding wire with weld deposit metal capable of being recrystallized
CN103358050A (en) An Ni-based alloy for a welding material, a welding wire and a welding rod employing the material, and a welding power
Saito et al. Development of materials for use in A-USC boilers
JP2010264510A (en) Welding alloy and articles for use in welding, welded product and method for producing welded product
Liu et al. The Chinese 700° C A-USC development program
Srinivasan et al. Choice of welding consumable and procedure qualification for welding of 304HCu austenitic stainless steel boiler tubes for Indian Advanced Ultra Super Critical power plant
JP3170720B2 (en) Dissimilar material welding method
JP4885672B2 (en) TUBE WELDING STRUCTURE, TUBE WELDING METHOD, AND BOILER DEVICE HAVING TUBE WELDING STRUCTURE
RU2637844C1 (en) Heat resistant nickel-based alloy for producing boiler parts and steam turbines operating under ultra-supercritical steam parameters
EP2698215A1 (en) Method for manufacturing high temperature steam pipes
CN107975786A (en) The header of 630 DEG C of steam parameter Boiler of Ultra-supercritical Unit
CN112756753B (en) Fillet welding method for high-nickel-iron-base austenitic stainless steel film type wall pipe panel
JP2678230B2 (en) Heat treatment method for welds
Pikos et al. Perspectives of materials for fin tubes
CN115198161B (en) Header for boiler unit with temperature of 650 ℃ and above and preparation method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121002

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130213

R150 Certificate of patent or registration of utility model

Ref document number: 5203064

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160222

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350