JP6862689B2 - Monitoring method for all-solid-state secondary battery, power supply and all-solid-state secondary battery - Google Patents

Monitoring method for all-solid-state secondary battery, power supply and all-solid-state secondary battery Download PDF

Info

Publication number
JP6862689B2
JP6862689B2 JP2016120283A JP2016120283A JP6862689B2 JP 6862689 B2 JP6862689 B2 JP 6862689B2 JP 2016120283 A JP2016120283 A JP 2016120283A JP 2016120283 A JP2016120283 A JP 2016120283A JP 6862689 B2 JP6862689 B2 JP 6862689B2
Authority
JP
Japan
Prior art keywords
solid
secondary battery
negative electrode
state secondary
intermediate layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016120283A
Other languages
Japanese (ja)
Other versions
JP2017224536A (en
Inventor
亮治 伊藤
亮治 伊藤
純一 岩田
純一 岩田
肥田 勝春
勝春 肥田
山本 保
保 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2016120283A priority Critical patent/JP6862689B2/en
Publication of JP2017224536A publication Critical patent/JP2017224536A/en
Application granted granted Critical
Publication of JP6862689B2 publication Critical patent/JP6862689B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本発明は、全固体二次電池、全固体二次電池を有する電源装置及び全固体二次電池の監視方法に関する。 The present invention relates to an all-solid-state secondary battery, a power supply device having an all-solid-state secondary battery, and a method for monitoring the all-solid-state secondary battery.

ノートパソコン、携帯電話、スマートフォン等の携帯機器の電源等として使用されるリチウムイオン二次電池が知られている。リチウムイオン二次電池では、有機溶液系の電解液が電解質として使用される。また、リチウムイオン二次電池の安全性をより向上させるために、有機溶液系の電解液の代わりに、無機系の固体電解質を使用した全固体二次電池が知られている。 Lithium-ion secondary batteries used as power sources for portable devices such as laptop computers, mobile phones, and smartphones are known. In a lithium ion secondary battery, an organic solution-based electrolyte is used as the electrolyte. Further, in order to further improve the safety of the lithium ion secondary battery, an all-solid-state secondary battery using an inorganic solid electrolyte instead of the organic solution-based electrolyte is known.

例えば、負極と正極との間に介在する固体電解質を2層とし、その間に固体電解質の還元耐性を強化した固体電解質であるバッファー層を挿入したリチウムイオン二次電池が知られている(例えば、特許文献1を参照)。また、単一の負極を第1及び第2の電解質で挟持し、当該挟持物を更に第1及び第2の正極で挟持した構造体を備えるリチウムイオン二次電池が知られている(例えば、特許文献2を参照)。さらに、粉末を加圧成形し且つ熱処理を施して形成された第一固体層の上に気相法で第二固体層を形成して、固体層を2層積層することで、全固体二次電池の固体層における欠陥の発生を防止することが知られている(例えば、特許文献3を参照)。 For example, a lithium ion secondary battery is known in which a solid electrolyte interposed between a negative electrode and a positive electrode is formed into two layers, and a buffer layer which is a solid electrolyte having enhanced reduction resistance of the solid electrolyte is inserted between them (for example,). See Patent Document 1). Further, a lithium ion secondary battery having a structure in which a single negative electrode is sandwiched between the first and second electrolytes and the sandwiched object is further sandwiched between the first and second positive electrodes is known (for example,). See Patent Document 2). Further, a second solid layer is formed by a vapor phase method on the first solid layer formed by pressure molding the powder and heat treatment, and two solid layers are laminated to form an all-solid secondary. It is known to prevent the occurrence of defects in the solid layer of a battery (see, for example, Patent Document 3).

特開2004-213938号公報Japanese Unexamined Patent Publication No. 2004-213938 特開2012-138290号公報Japanese Unexamined Patent Publication No. 2012-138290 特開2013-89470号公報Japanese Unexamined Patent Publication No. 2013-89470

「バッテリーチェッカー「BCW」」NTTデータ先端技術株式会社、[online] 、[平成28年5月26日検索]、<URL: http://www.intellilink.co.jp/solutions/green/products/battery>"Battery checker" BCW "" NTT Data Advanced Technology Co., Ltd., [online], [Searched on May 26, 2016], <URL: http://www.intellilink.co.jp/solutions/green/produces/ battery>

しかしながら、従来の全固体二次電池では、負極と正極との間の短絡が発生する予兆を検知することは容易ではない。 However, with a conventional all-solid-state secondary battery, it is not easy to detect a sign that a short circuit occurs between the negative electrode and the positive electrode.

本発明は、負極と正極との間の短絡が発生する予兆を検知可能な全固体二次電池を提供することを目的とする。 An object of the present invention is to provide an all-solid-state secondary battery capable of detecting a sign that a short circuit occurs between a negative electrode and a positive electrode.

1つの態様では、全固体二次電池の監視方法は、正極層と、負極層と、負極と正極との間に配置された固体電解質と、固体電解質の間に配置され且つ負極と正極との間で授受されるイオン種であるアルカリ金属イオンを提供可能であり、且つアルカリ金属イオン及び電子の双方を導通可能な両導性を有する中間層とを有し、固体電解質は、負極と中間層との間に配置され、アルカリ金属イオンを含む第1固体電解質と、正極と前記中間層との間に配置され、アルカリ金属イオンを含む第2固体電解質とを有し、全固体二次電池の出力を測定し、測定した出力に基づいて、負極と中間層との間の短絡の有無を判定し、負極と中間層との間で短絡が発生したと判断したときに、全固体二次電池に短絡の予兆があることを示す短絡予兆信号を出力する。 In one embodiment, the monitoring method for the all-solid secondary battery is a method of monitoring the positive electrode layer, the negative electrode layer, the solid electrolyte disposed between the negative electrode and the positive electrode, and the negative electrode and the positive electrode arranged between the solid electrolytes. The solid electrolyte has a negative electrode and an intermediate layer, which can provide an alkali metal ion which is an ion species exchanged between the two, and has an intermediate layer having biconductivity capable of conducting both the alkali metal ion and an electron. A first solid electrolyte arranged between the electrodes and containing an alkali metal ion, and a second solid electrolyte arranged between the positive electrode and the intermediate layer and containing an alkali metal ion. When the output is measured, the presence or absence of a short circuit between the negative electrode and the intermediate layer is determined based on the measured output, and it is determined that a short circuit has occurred between the negative electrode and the intermediate layer, the all-solid secondary battery Outputs a short-circuit sign signal indicating that there is a short-circuit sign in.

1つの側面として、全固体二次電池において、負極と正極との間の短絡が発生する予兆を検知することが可能になる。 As one aspect, in an all-solid-state secondary battery, it becomes possible to detect a sign that a short circuit occurs between the negative electrode and the positive electrode.

(a)は実施形態に係る全固体二次電池に関連する全固体二次電池の構造を示す図であり、(b)は(a)に示す全固体二次電池の平常状態の負極を基準電位とした電位の変化を示す図であり、(c)は(a)に示す全固体二次電池の負極と正極との間が短絡したときの負極を基準電位とした電位の変化を示す図である。(A) is a diagram showing the structure of the all-solid-state secondary battery related to the all-solid-state secondary battery according to the embodiment, and (b) is based on the negative electrode in the normal state of the all-solid-state secondary battery shown in (a). It is a figure which shows the change of the potential as a potential, (c) is the figure which shows the change of the potential with the negative electrode as a reference potential when the negative electrode and the positive electrode of the all-solid-state secondary battery shown in (a) are short-circuited. Is. (a)は実施形態に係る全固体二次電池の構造を示す図であり、(b)は(a)に示す全固体二次電池の平常状態の負極を基準電位とした電位の変化を示す図であり、(c)は(a)に示す全固体二次電池の負極と中間層との間が短絡したときの負極を基準電位とした電位の変化を示す図である。(A) is a diagram showing the structure of the all-solid-state secondary battery according to the embodiment, and (b) shows the change in the potential of the all-solid-state secondary battery shown in (a) with the negative electrode in the normal state as a reference potential. It is a figure (c) is a figure which shows the change of the potential with the negative electrode as a reference potential at the time of short-circuiting between the negative electrode and the intermediate layer of the all-solid-state secondary battery shown in (a). (a)は実施形態に係る全固体二次電池において、充電中に負極と中間層との間が短絡したときの負極と正極との間の電位差の変化を示す図であり、(b)は従来の全固体二次電池において、充電中に負極と正極との間が短絡したときの負極と正極との間の電位差の変化を示す図である。(A) is a diagram showing a change in the potential difference between the negative electrode and the positive electrode when the negative electrode and the intermediate layer are short-circuited during charging in the all-solid-state secondary battery according to the embodiment, and FIG. It is a figure which shows the change of the potential difference between a negative electrode and a positive electrode when the negative electrode and the positive electrode are short-circuited during charging in a conventional all-solid-state secondary battery. 実施形態に係る全固体二次電池を含む電源ユニットの回路ブロック図である。It is a circuit block diagram of the power supply unit including the all-solid-state secondary battery which concerns on embodiment. (a)は全固体二次電池を充電するときの第1スイッチ及び第2スイッチの切替状態を示す図であり、(b)は全固体二次電池を放電するときの第1スイッチ及び第2スイッチの切替状態を示す図である。(A) is a diagram showing the switching state of the first switch and the second switch when charging the all-solid-state secondary battery, and (b) is the first switch and the second switch when discharging the all-solid-state secondary battery. It is a figure which shows the switching state of a switch. 電源ユニットによる電池監視処理のフローチャートである。It is a flowchart of the battery monitoring process by a power supply unit. (a)は実施例に係る全固体二次電池の構造を示す図であり、(b)は(a)に示す全固体二次電池の斜視図である。(A) is a diagram showing the structure of the all-solid-state secondary battery according to the embodiment, and (b) is a perspective view of the all-solid-state secondary battery shown in (a). (a)は比較例に係る全固体二次電池の構造を示す図であり、(b)は(a)に示す全固体二次電池の側面図である。(A) is a diagram showing the structure of the all-solid-state secondary battery according to the comparative example, and (b) is a side view of the all-solid-state secondary battery shown in (a). (a)は実施例1に定電流を流した時の容量と分極との関係を示す図であり、(b)は実施例2に定電流を流した時の容量と分極との関係を示す図であり、(c)は比較例1に定電流を流した時の容量と分極との関係を示す図であり、(d)は比較例2に定電流を流した時の容量と分極との関係を示す図である。(A) is a diagram showing the relationship between capacitance and polarization when a constant current is applied in Example 1, and (b) shows the relationship between capacitance and polarization when a constant current is applied in Example 2. FIG. 3C is a diagram showing the relationship between capacitance and polarization when a constant current is applied to Comparative Example 1, and FIG. 3D is a diagram showing the relationship between capacitance and polarization when a constant current is applied to Comparative Example 2. It is a figure which shows the relationship of.

以下図面を参照して、全固体二次電池、電源装置及び全固体二次電池の監視方法について説明する。但し、本発明の技術的範囲はそれらの実施の形態に限定されず、特許請求の範囲に記載された発明との均等物に及ぶ点に留意されたい。 The monitoring method of the all-solid-state secondary battery, the power supply device, and the all-solid-state secondary battery will be described below with reference to the drawings. However, it should be noted that the technical scope of the present invention is not limited to those embodiments, but extends to the equivalent of the invention described in the claims.

(実施形態に係る全固体二次電池に関連する全固体二次電池について)
実施形態に係る全固体二次電池について説明する前に、実施形態に係る全固体二次電池に関連する全固体二次電池について説明する。
(About the all-solid-state secondary battery related to the all-solid-state secondary battery according to the embodiment)
Before explaining the all-solid-state secondary battery according to the embodiment, the all-solid-state secondary battery related to the all-solid-state secondary battery according to the embodiment will be described.

図1(a)は、実施形態に係る全固体二次電池に関連する全固体二次電池の構造を示す図である。図1(b)は図1(a)に示す全固体二次電池の平常状態の負極を基準電位とした電位の変化を示す図であり、図1(c)は図1(a)に示す全固体二次電池の負極と正極との間が短絡したときの負極を基準電位とした電位の変化を示す図である。図1(b)及び1(c)において、横軸は正極の端部からの距離を示し、縦軸は負極を基準電位とした電位を任意単位で示す。 FIG. 1A is a diagram showing a structure of an all-solid-state secondary battery related to the all-solid-state secondary battery according to the embodiment. FIG. 1 (b) is a diagram showing a change in potential with the negative electrode in the normal state of the all-solid secondary battery shown in FIG. 1 (a) as a reference potential, and FIG. 1 (c) is shown in FIG. 1 (a). It is a figure which shows the change of the potential with the negative electrode as a reference potential when the negative electrode and the positive electrode of an all-solid secondary battery are short-circuited. In FIGS. 1 (b) and 1 (c), the horizontal axis represents the distance from the end of the positive electrode, and the vertical axis represents the potential with the negative electrode as the reference potential in arbitrary units.

全固体二次電池100は、負極層とも称される負極101と、正極層とも称される正極102と、負極101と正極102との間に配置された固体電解質103とを有する。負極101は、チタン酸リチウム、硫化チタン、リチウム金属、リチウム合金、及びカーボン等を負極活物質として含有する。正極102は、コバルト酸リチウム、ニッケル酸リチウム、マンガン酸リチウム、リン酸鉄リチウム、リン酸コバルトリチウム、ピロリン酸鉄リチウム、ピロリン酸コバルトリチウム、チタン酸リチウム、硫化チタン、及び硫化ニッケル等を正極活物質として含有する。固体電解質103は、LiPON(リン酸リチウムオキシナイトライド)、Li7La3Zr2O12、Li1.5Al0.5Ge1.5P3O12、及びLi0.33La0.55TiO3等を含む。負極101、正極102及び固体電解質103の表面及び裏面の面積を等しくすることは使用部材を最小とできる点では理想的であるが、実用上は異なる方がよい。異なる面積とした場合、有効面積は小さくなり遊びが発生するが、積層時に位置ずれが発生してもその影響を許容できるため、量産時のバラツキを抑制できる。全固体二次電池100は、アルミニウム、白金、銅、又はステンレス・スチールを有する不図示の正極集電体及び負極集電体を介して、充電され且つ放電される。 The all-solid-state secondary battery 100 has a negative electrode 101, which is also called a negative electrode layer, a positive electrode 102, which is also called a positive electrode layer, and a solid electrolyte 103, which is arranged between the negative electrode 101 and the positive electrode 102. The negative electrode 101 contains lithium titanate, titanium sulfide, lithium metal, lithium alloy, carbon and the like as the negative electrode active material. The positive electrode 102 uses lithium cobalt oxide, lithium nickel oxide, lithium manganate, lithium iron phosphate, lithium cobalt phosphate, lithium iron pyrophosphate, lithium cobalt pyrophosphate, lithium titanate, titanium sulfide, nickel sulfide and the like as positive electrodes. Contains as a substance. The solid electrolyte 103 contains LiPON (lithium oxynitride phosphate), Li 7 La 3 Zr 2 O 12 , Li 1.5 Al 0.5 G e1.5 P 3 O 12 , Li 0.33 La 0.55 TiO 3, and the like. It is ideal that the areas of the front surface and the back surface of the negative electrode 101, the positive electrode 102, and the solid electrolyte 103 are equalized in that the members used can be minimized, but it is preferable that they are different in practical use. If the areas are different, the effective area becomes smaller and play occurs, but even if the position shift occurs during stacking, the effect can be tolerated, so that variation during mass production can be suppressed. The all-solid-state secondary battery 100 is charged and discharged via a positive electrode current collector and a negative electrode current collector (not shown) having aluminum, platinum, copper, or stainless steel.

全固体二次電池100は、薄膜型であれば、シリコン又はガラスで形成される基板上に、正極集電体、正極活性物質を有する正極102、固体電解質103、負極活性物質を有する負極101及び負極集電体の順に真空成膜することにより形成される。 If the all-solid-state secondary battery 100 is a thin film type, a positive electrode current collector, a positive electrode 102 having a positive electrode active material, a solid electrolyte 103, a negative electrode 101 having a negative electrode active material, and a negative electrode 101 having a negative electrode active material are placed on a substrate made of silicon or glass. It is formed by forming a vacuum in the order of the negative electrode current collector.

バルク型であれば、電極・固体電解質・集電体のいずれかを支持基板とし、その支持基板上に他の各層をペースト・焼結・プレスなどにより形成する。 In the case of the bulk type, any one of the electrode, the solid electrolyte, and the current collector is used as a support substrate, and the other layers are formed on the support substrate by paste, sintering, pressing, or the like.

全固体二次電池において、Li金属を負極活性物質に用いる場合、固体電解質103の中に枝状にLiが析出するデンドライト(dendrite)とも称される現象が発生することが知られている。デンドライト104は、負極を基点として正極に向けて成長する。デンドライトは、リチウムイオンLi+が正極から負極に流れる充電時に成長し易く、大きな電流を印加する急速充電時に特に成長し易い。デンドライトが成長して正極まで達すると、デンドライト・ショートとも称される短絡が発生する。 In an all-solid-state secondary battery, when Li metal is used as a negative electrode active substance, it is known that a phenomenon called dendrite, in which Li is precipitated in a branch shape in the solid electrolyte 103, occurs. The dendrite 104 grows from the negative electrode toward the positive electrode. The dendrite tends to grow during charging when lithium ion Li + flows from the positive electrode to the negative electrode, and is particularly likely to grow during rapid charging when a large current is applied. When the dendrite grows and reaches the positive electrode, a short circuit, also called a dendrite short circuit, occurs.

デンドライト・ショートが発生すると、図1(c)に示すように正極電位は、負極電位と略同電位になるため、全固体二次電池が電源喪失すると共に発熱等が発生するおそれがある。 When a dendrite short circuit occurs, the positive electrode potential becomes substantially the same potential as the negative electrode potential as shown in FIG. 1 (c), so that the all-solid-state secondary battery may lose power and generate heat.

(実施形態に係る全固体二次電池の概要)
そこで、実施形態に係る全固体二次電池は、負極と正極との間の短絡が発生する予兆を検知可能な全固体二次電池を提供することを目的とする。実施形態に係る全固体二次電池は、負極と正極との間に配置された固体電解質と、固体電解質の内部に配置され且つ負極と正極との間で授受されるイオン種を提供可能な中間層を含む。実施形態に係る全固体二次電池は、中間層が負極と短絡したときに発生する内部抵抗の減少を検知することで、負極と正極との間の短絡が発生する予兆を検知することができる。
(Outline of all-solid-state secondary battery according to the embodiment)
Therefore, it is an object of the all-solid-state secondary battery according to the embodiment to provide an all-solid-state secondary battery capable of detecting a sign that a short circuit occurs between the negative electrode and the positive electrode. The all-solid-state secondary battery according to the embodiment is an intermediate capable of providing a solid electrolyte arranged between the negative electrode and the positive electrode and an ion species arranged inside the solid electrolyte and transferred between the negative electrode and the positive electrode. Includes layers. The all-solid-state secondary battery according to the embodiment can detect a sign that a short circuit occurs between the negative electrode and the positive electrode by detecting a decrease in internal resistance that occurs when the intermediate layer is short-circuited with the negative electrode. ..

(実施形態に係る全固体二次電池の構造)
図2(a)は、実施形態に係る全固体二次電池の構造を示す図である。図2(b)は図2(a)に示す全固体二次電池の平常状態の負極を基準電位とした電位の変化を示す図であり、図2(c)は図2(a)に示す全固体二次電池の負極と中間層との間が短絡したときの負極を基準電位とした電位の変化を示す図である。図2(b)及び2(c)において、横軸は正極の端部からの距離を示し、縦軸は負極を基準電位とした電位を任意単位で示す。
(Structure of all-solid-state secondary battery according to the embodiment)
FIG. 2A is a diagram showing the structure of the all-solid-state secondary battery according to the embodiment. FIG. 2B is a diagram showing a change in potential with the negative electrode in the normal state of the all-solid secondary battery shown in FIG. 2A as a reference potential, and FIG. 2C is shown in FIG. 2A. It is a figure which shows the change of the potential with the negative electrode as a reference potential when the negative electrode and the intermediate layer of an all-solid secondary battery are short-circuited. In FIGS. 2 (b) and 2 (c), the horizontal axis represents the distance from the end of the positive electrode, and the vertical axis represents the potential with the negative electrode as the reference potential in arbitrary units.

全固体二次電池1は、負極11と、正極12と、第1固体電解質131と、第2固体電解質132と、中間層14とを含む。負極11、正極12、第1固体電解質131、中間層14及び第2固体電解質132の表面及び裏面の面積を等しくすることは使用部材を最小とできる点では理想的であるが、実用上は異なる方がよい。異なる面積とした場合、有効面積は小さくなり遊びが発生するが、積層時に位置ずれが発生してもその影響を許容できるため、量産時のバラツキを抑制できる。負極11は、チタン酸リチウム、硫化チタン、リチウム金属、リチウム合金、及びカーボン等を負極活物質として含有する。正極12は、コバルト酸リチウム、ニッケル酸リチウム、マンガン酸リチウム、リン酸鉄リチウム、リン酸コバルトリチウム、ピロリン酸鉄リチウム、ピロリン酸コバルトリチウム、チタン酸リチウム、硫化チタン、及び硫化ニッケル等を正極活物質として含有する。第1固体電解質131及び第2固体電解質132のそれぞれは、LiPON、Li7La3Zr2O12、Li1.5Al0.5Ge1.5P3O12、及びLi0.33La0.55TiO3等を含む。第1固体電解質131は負極11と中間層14との間に配置され、第2固体電解質132は正極12と中間層14との間に配置される。負極11と中間層14との間に配置される第1固体電解質131の厚さL1は、正極12と中間層14との間に配置される第2固体電解質132の厚さL2と等しい。 The all-solid-state secondary battery 1 includes a negative electrode 11, a positive electrode 12, a first solid electrolyte 131, a second solid electrolyte 132, and an intermediate layer 14. Equalizing the front and back areas of the negative electrode 11, the positive electrode 12, the first solid electrolyte 131, the intermediate layer 14, and the second solid electrolyte 132 is ideal in that the members used can be minimized, but it is practically different. Better. If the areas are different, the effective area becomes smaller and play occurs, but even if the position shift occurs during stacking, the effect can be tolerated, so that variation during mass production can be suppressed. The negative electrode 11 contains lithium titanate, titanium sulfide, lithium metal, lithium alloy, carbon and the like as the negative electrode active material. The positive electrode 12 uses lithium cobalt oxide, lithium nickel oxide, lithium manganate, lithium iron phosphate, lithium cobalt phosphate, lithium iron pyrophosphate, lithium cobalt pyrophosphate, lithium titanate, titanium sulfide, nickel sulfide and the like as positive electrodes. Contains as a substance. Each of the first solid electrolyte 131 and the second solid electrolyte 132 contains LiPON, Li 7 La 3 Zr 2 O 12 , Li 1.5 Al 0.5 G e1.5 P 3 O 12 , Li 0.33 La 0.55 TiO 3, and the like. The first solid electrolyte 131 is arranged between the negative electrode 11 and the intermediate layer 14, and the second solid electrolyte 132 is arranged between the positive electrode 12 and the intermediate layer 14. The thickness L1 of the first solid electrolyte 131 arranged between the negative electrode 11 and the intermediate layer 14 is equal to the thickness L2 of the second solid electrolyte 132 arranged between the positive electrode 12 and the intermediate layer 14.

中間電極である中間層14は、負極11と正極12との間で授受されるイオン種であるリチウムイオンLi+を提供可能であり、且つリチウムイオンLi+及び電子の双方を導通可能な両導性を有するLi金属、Li合金及びLi化合物で形成される。一例では、中間層14は、リチウムアルミニウム合金、リチウムインジウム合金、リチウムシリコン合金、リチウムスズ合金、又は炭化リチウムにより形成される。中間層14は、第1固体電解質131と第2固体電解質132との間に配置される。中間層14は、負極11及び正極12の何れの電極とも短絡していないとき、リチウムイオンLi+を導電する導電体として機能し、中間層14において電圧降下は発生しない。すなわち、中間層14が負極11及び正極12の何れとも短絡していないとき、負極11と正極12との間の電位差Vと、負極11と中間層14との間の電位差V1と、正極12と中間層14との間の電位差電圧V2とは、
V = V1 + V2 (1)
の関係を示す。中間層14は、一方の面が第1固体電解質131を介して負極11と対向し、他方の面が第2固体電解質132を介して正極12と対向するように配置される。
The intermediate layer 14, which is an intermediate electrode, can provide lithium ion Li + , which is an ion species transferred between the negative electrode 11 and the positive electrode 12, and is capable of conducting both lithium ion Li + and electrons. It is made of a property Li metal, Li alloy and Li compound. In one example, the intermediate layer 14 is formed of a lithium aluminum alloy, a lithium indium alloy, a lithium silicon alloy, a lithium tin alloy, or lithium carbide. The intermediate layer 14 is arranged between the first solid electrolyte 131 and the second solid electrolyte 132. When the intermediate layer 14 is not short-circuited with any of the electrodes of the negative electrode 11 and the positive electrode 12 , the intermediate layer 14 functions as a conductor that conducts lithium ion Li + , and no voltage drop occurs in the intermediate layer 14. That is, when the intermediate layer 14 is not short-circuited with either the negative electrode 11 or the positive electrode 12, the potential difference V between the negative electrode 11 and the positive electrode 12, the potential difference V 1 between the negative electrode 11 and the intermediate layer 14, and the positive electrode 12 The potential difference voltage V 2 between and the intermediate layer 14 is
V = V 1 + V 2 (1)
The relationship is shown. The intermediate layer 14 is arranged so that one surface faces the negative electrode 11 via the first solid electrolyte 131 and the other surface faces the positive electrode 12 via the second solid electrolyte 132.

中間層14は、リチウムイオンLi+及び電子の双方を導通可能な両導性を有することで、負極11と短絡したときに負極として機能することができる。すなわち、中間層14は、負極11と短絡したときに負極として機能して、正極12を正極とし且つ第2固体電解質132を固体電解質とする全固体二次電池を形成する。 Since the intermediate layer 14 has biconductivity capable of conducting both lithium ion Li + and electrons, it can function as a negative electrode when short-circuited with the negative electrode 11. That is, the intermediate layer 14 functions as a negative electrode when short-circuited with the negative electrode 11 to form an all-solid secondary battery in which the positive electrode 12 is the positive electrode and the second solid electrolyte 132 is the solid electrolyte.

また、中間層14は、平常状態では、第1固体電解質131と第2固体電解質132との間に挟まれているため、負極11及び正極12との間でリチウムイオンLi+を授受するが、負極11及び正極12との間で電子の授受は行わない。 Further, since the intermediate layer 14 is sandwiched between the first solid electrolyte 131 and the second solid electrolyte 132 in a normal state, lithium ion Li + is exchanged between the negative electrode 11 and the positive electrode 12. No electrons are exchanged between the negative electrode 11 and the positive electrode 12.

図2(c)に示すように、負極11と中間層14との間が短絡したとき、負極11は、中間層14と同電位となると共に、正極12との間で第1固体電解質131を固体電解質とする全固体二次電池を形成する。負極11と中間層14との間が短絡して、正極12との間で形成された全固体二次電池の固体電解質は、第2固体電解質132である。負極11と中間層14との間が短絡すると、負極11と中間層14との間が短絡して第1固体電解質131が固体電解質として機能しなくなることで、固体電解質の厚さは半減する。負極11と中間層14との間が短絡して固体電解質の厚さが半減することに応じて、全固体二次電池の内部抵抗値の大きさが減少して、内部抵抗に起因する分極の大きさは減少する。 As shown in FIG. 2C, when the negative electrode 11 and the intermediate layer 14 are short-circuited, the negative electrode 11 has the same potential as the intermediate layer 14 and the first solid electrolyte 131 is inserted between the negative electrode 11 and the positive electrode 12. Form an all-solid-state secondary battery as a solid electrolyte. The solid electrolyte of the all-solid-state secondary battery formed between the negative electrode 11 and the intermediate layer 14 by short-circuiting between the negative electrode 11 and the positive electrode 12 is the second solid electrolyte 132. When the negative electrode 11 and the intermediate layer 14 are short-circuited, the negative electrode 11 and the intermediate layer 14 are short-circuited and the first solid electrolyte 131 does not function as a solid electrolyte, so that the thickness of the solid electrolyte is halved. As the thickness of the solid electrolyte is halved due to the short circuit between the negative electrode 11 and the intermediate layer 14, the magnitude of the internal resistance value of the all-solid-state secondary battery decreases, and the polarization due to the internal resistance decreases. The size decreases.

(実施形態に係る全固体二次電池の作用効果)
全固体二次電池1は、リチウムイオンLi+及び電子の双方を導通可能な両導性を有する中間層14を負極11と正極12との間に有するので、負極11と中間層14との間が短絡した場合でも全固体二次電池として動作可能である。
(Action and effect of the all-solid-state secondary battery according to the embodiment)
Since the all-solid-state secondary battery 1 has an intermediate layer 14 having biconductivity capable of conducting both lithium ion Li + and electrons between the negative electrode 11 and the positive electrode 12, between the negative electrode 11 and the intermediate layer 14. Can operate as an all-solid-state secondary battery even if is short-circuited.

また、全固体二次電池1は、負極11と中間層14との間が短絡したときに、分極の減少から内部抵抗の減少を検知することができる。全固体二次電池1は、負極11及び正極12の何れか一方と中間層14との間が短絡したときの内部抵抗の減少を検知することで、負極と正極との間の完全な短絡が発生する予兆を検知することができる。 Further, the all-solid-state secondary battery 1 can detect a decrease in internal resistance from a decrease in polarization when a short circuit occurs between the negative electrode 11 and the intermediate layer 14. The all-solid-state secondary battery 1 detects a decrease in internal resistance when either one of the negative electrode 11 and the positive electrode 12 and the intermediate layer 14 are short-circuited, so that a complete short circuit between the negative electrode and the positive electrode can be achieved. It is possible to detect signs of occurrence.

図3(a)は、実施形態に係る全固体二次電池1において、充電中に負極11と中間層14との間が短絡したときの負極と正極との間の電位差の変化を示す図である。図3(b)は、従来の全固体二次電池100において、充電中に負極101と正極102との間が短絡したときの負極と正極との間の電位差の変化を示す図である。図3(a)及び3(b)において、横軸は充電時間を示し、縦軸は負極と正極との間の電位差を示す。 FIG. 3A is a diagram showing a change in the potential difference between the negative electrode and the positive electrode when the negative electrode 11 and the intermediate layer 14 are short-circuited during charging in the all-solid-state secondary battery 1 according to the embodiment. is there. FIG. 3B is a diagram showing a change in the potential difference between the negative electrode and the positive electrode when the negative electrode 101 and the positive electrode 102 are short-circuited during charging in the conventional all-solid-state secondary battery 100. In FIGS. 3 (a) and 3 (b), the horizontal axis represents the charging time, and the vertical axis represents the potential difference between the negative electrode and the positive electrode.

実施形態に係る全固体二次電池1は、矢印Aで示す時点で負極11と中間層14との間が短絡したときに、全固体二次電池としての機能を維持しながら、充電を継続する。実施形態に係る全固体二次電池1は、負極11と中間層14との間が短絡したときに、図3(a)において双方向矢印Bで示される、分極の減少に相当する電圧降下が発生する。実施形態に係る全固体二次電池1は、負極11と中間層14との間の短絡に応じて電圧降下が発生するので、負極11及び正極12の何れか一方と中間層14との間で短絡が発生したことを検知することができる。 The all-solid-state secondary battery 1 according to the embodiment continues to be charged while maintaining the function as an all-solid-state secondary battery when the negative electrode 11 and the intermediate layer 14 are short-circuited at the time indicated by the arrow A. .. In the all-solid-state secondary battery 1 according to the embodiment, when the negative electrode 11 and the intermediate layer 14 are short-circuited, a voltage drop corresponding to a decrease in polarization, which is indicated by a bidirectional arrow B in FIG. 3A, occurs. appear. In the all-solid-state secondary battery 1 according to the embodiment, a voltage drop occurs in response to a short circuit between the negative electrode 11 and the intermediate layer 14, so that any one of the negative electrode 11 and the positive electrode 12 and the intermediate layer 14 are separated from each other. It is possible to detect that a short circuit has occurred.

従来の全固体二次電池100は、矢印Cで示す時点で負極101と正極102との間が短絡したときに、負極101と正極102との間は略同電位になるため、短絡前の電位差分のエネルギーが急激に開放されて発熱等が発生するおそれがある。 In the conventional all-solid-state secondary battery 100, when the negative electrode 101 and the positive electrode 102 are short-circuited at the time indicated by the arrow C, the potentials between the negative electrode 101 and the positive electrode 102 are substantially the same, so that the potential difference before the short circuit occurs. There is a risk that the energy of the minute will be released rapidly and heat will be generated.

(実施形態に係る全固体二次電池を含む電源ユニットの構成及び機能)
図4は、全固体二次電池1を含む電源ユニットの回路ブロック図である。図4において、制御配線は一点鎖線で示される。
(Configuration and function of the power supply unit including the all-solid-state secondary battery according to the embodiment)
FIG. 4 is a circuit block diagram of a power supply unit including the all-solid-state secondary battery 1. In FIG. 4, the control wiring is indicated by an alternate long and short dash line.

電源ユニット20は、全固体二次電池1と、第1スイッチ21と、第2スイッチ22と、電源制御装置23と、電源監視装置24とを有する。電源ユニット20は、電力供給源31から第1入力端子Tin1と第2入力端子Tin2との間に印加される入力される入力電力により全固体二次電池1を充電する。また、電源ユニット20は、第1出力端子Tout1と第2出力端子Tout2との間に接続される負荷放電回路32に、全固体二次電池1に充電された電力を放電する。さらに、電源ユニット20は、全固体二次電池1を劣化診断すると共に、全固体二次電池1の負極11と正極12との間の短絡の予兆の有無を検知する。 The power supply unit 20 includes an all-solid-state secondary battery 1, a first switch 21, a second switch 22, a power supply control device 23, and a power supply monitoring device 24. The power supply unit 20 charges the all-solid-state secondary battery 1 with the input power applied between the first input terminal Tin1 and the second input terminal Tin2 from the power supply source 31. Further, the power supply unit 20 discharges the electric power charged in the all-solid-state secondary battery 1 to the load discharge circuit 32 connected between the first output terminal Tout1 and the second output terminal Tout2. Further, the power supply unit 20 diagnoses the deterioration of the all-solid-state secondary battery 1 and detects the presence or absence of a sign of a short circuit between the negative electrode 11 and the positive electrode 12 of the all-solid-state secondary battery 1.

第1スイッチ21及び第2スイッチ22のそれぞれは、電源制御装置23から入力される制御信号に応じて、全固体二次電池1と、電力供給源31及び負荷放電回路32との間の接続関係を切り換える。 Each of the first switch 21 and the second switch 22 has a connection relationship between the all-solid-state secondary battery 1 and the power supply source 31 and the load discharge circuit 32 according to the control signal input from the power supply control device 23. To switch.

図5(a)は全固体二次電池1を充電するときの第1スイッチ21及び第2スイッチ22の切替状態を示す図であり、図5(b)は全固体二次電池1を放電するときの第1スイッチ21及び第2スイッチ22の切替状態を示す図である。 FIG. 5A is a diagram showing a switching state of the first switch 21 and the second switch 22 when charging the all-solid-state secondary battery 1, and FIG. 5B is a diagram showing the switching state of the all-solid-state secondary battery 1 and discharging the all-solid-state secondary battery 1. It is a figure which shows the switching state of the 1st switch 21 and the 2nd switch 22 at the time.

全固体二次電池1を充電するとき、第1スイッチ21及び第2スイッチ22は、全固体二次電池1と電力供給源31との間を電気的に接続して、全固体二次電池1と負荷放電回路32との間を電気的に遮断する。全固体二次電池1を充電するとき、充電電流Icは、電力供給源31から全固体二次電池1に流れる。一方、全固体二次電池1を放電するとき、第1スイッチ21及び第2スイッチ22は、全固体二次電池1と電力供給源31との間を電気的に遮断して、全固体二次電池1と負荷放電回路32との間を電気的に接続する。全固体二次電池1を放電するとき、放電電流Idは、第2スイッチ22を介して全固体二次電池1から負荷放電回路32に流れる。 When charging the all-solid secondary battery 1, the first switch 21 and the second switch 22 electrically connect the all-solid secondary battery 1 and the power supply source 31 to form the all-solid secondary battery 1. And the load discharge circuit 32 are electrically cut off. When charging the all-solid-state secondary battery 1, the charging current Ic flows from the power supply source 31 to the all-solid-state secondary battery 1. On the other hand, when the all-solid secondary battery 1 is discharged, the first switch 21 and the second switch 22 electrically cut off between the all-solid secondary battery 1 and the power supply source 31, and the all-solid secondary battery 1 is discharged. The battery 1 and the load discharge circuit 32 are electrically connected. When the all-solid-state secondary battery 1 is discharged, the discharge current Id flows from the all-solid-state secondary battery 1 to the load discharge circuit 32 via the second switch 22.

また、全固体二次電池1の充放電を停止するとき、第1スイッチ21及び第2スイッチ22は、全固体二次電池1と電力供給源31及び負荷放電回路32との間を電気的に遮断する。 Further, when the charging / discharging of the all-solid-state secondary battery 1 is stopped, the first switch 21 and the second switch 22 electrically connect the all-solid-state secondary battery 1 with the power supply source 31 and the load discharge circuit 32. Cut off.

電源制御装置23は、電源監視装置24から入力される切替指示信号に応じて、第1スイッチ21及び第2スイッチ22の接続状態を切り換える。 The power supply control device 23 switches the connection state of the first switch 21 and the second switch 22 according to the switching instruction signal input from the power supply monitoring device 24.

電源監視装置24は、コンピュータプログラムと記憶する記憶部と、記憶部に記憶されるコンピュータプログラムに基づいて所定の処理を実行する演算部を有する。また、電源監視装置24は、全固体二次電池1の負極11と正極12との間の電位差を測定可能な直流電圧計と、全固体二次電池1に流れる充電電流Ic及び全固体二次電池1から流れる放電電流Idの双方を測定可能な直流電流計とを更に有する。また、電源監視装置24は、全固体二次電池1に1kHz程度の交流電流を流して全固体二次電池1の内部抵抗値を測定する内部抵抗測定装置を更に有する。電源監視装置24の一例は、非特許文献1に示される。 The power supply monitoring device 24 has a storage unit that stores a computer program and a storage unit, and a calculation unit that executes a predetermined process based on the computer program stored in the storage unit. Further, the power supply monitoring device 24 includes a DC voltmeter capable of measuring the potential difference between the negative electrode 11 and the positive electrode 12 of the all-solid secondary battery 1, a charging current Ic flowing through the all-solid secondary battery 1, and an all-solid secondary battery. It further has a DC current meter capable of measuring both the discharge current Id flowing from 1. Further, the power supply monitoring device 24 further includes an internal resistance measuring device for measuring the internal resistance value of the all-solid-state secondary battery 1 by passing an alternating current of about 1 kHz through the all-solid-state secondary battery 1. An example of the power supply monitoring device 24 is shown in Non-Patent Document 1.

電源監視装置24は、全固体二次電池1を充電する指示、及び全固体二次電池1を放電する指示に応じて、切替指示信号を電源制御装置23に出力する。全固体二次電池1を充電する指示、及び全固体二次電池1を放電する指示は、不図示の上位制御装置から入力される。また、電源監視装置24は、全固体二次電池1の負極11及び正極12の何れか一方と中間層14と短絡が発生したときに、全固体二次電池1の充放電の停止を示す切替信号を電源制御装置23に出力する。 The power supply monitoring device 24 outputs a switching instruction signal to the power supply control device 23 in response to an instruction to charge the all-solid-state secondary battery 1 and an instruction to discharge the all-solid-state secondary battery 1. The instruction to charge the all-solid-state secondary battery 1 and the instruction to discharge the all-solid-state secondary battery 1 are input from a higher-level control device (not shown). Further, the power supply monitoring device 24 switches to indicate the stop of charging / discharging of the all-solid-state secondary battery 1 when a short circuit occurs between either one of the negative electrode 11 and the positive electrode 12 of the all-solid-state secondary battery 1 and the intermediate layer 14. The signal is output to the power supply control device 23.

(実施形態に係る電源ユニットによる電池監視処理)
図6は、電源ユニット20による電池監視処理のフローチャートである。図6に示す電池監視処理は、電源監視装置24の記憶部に予め記憶されているプログラムに基づいて、主に電源監視装置24の演算部により電源ユニット20の各要素と協働して実行される。図6に示す電池監視処理は、電源監視装置24において予め定められた設定時間ごとの割り込みによって実行される。
(Battery monitoring process by the power supply unit according to the embodiment)
FIG. 6 is a flowchart of the battery monitoring process by the power supply unit 20. The battery monitoring process shown in FIG. 6 is executed mainly by the arithmetic unit of the power supply monitoring device 24 in cooperation with each element of the power supply unit 20 based on a program stored in advance in the storage unit of the power supply monitoring device 24. To. The battery monitoring process shown in FIG. 6 is executed by interrupts at predetermined time intervals in the power supply monitoring device 24.

まず、電源監視装置24は、全固体二次電池1の内部抵抗値を測定し(S101)、S101の処理で測定された内部抵抗値が第1閾値以下であるか否かを判定する(S102)。一般に、リチウムイオン二次電池は、経年劣化の進行に応じて内部抵抗値が増加する傾向がある。第1閾値は、経年劣化により全固体二次電池1の内部抵抗値が増加した増加量を判定するための第1の閾値である。電源監視装置24は、S101の処理で測定された内部抵抗値が第1閾値より大きいと判定する(S102−NO)と、S101の処理で測定された内部抵抗値は第2閾値以下であるか否かを判定する(S103)。第2閾値は、経年劣化により全固体二次電池1の内部抵抗値が増加した増加量を判定するための第2の閾値であり、第1閾値よりも更に大きい値である。電源監視装置24は、S101の処理で測定された内部抵抗値が第2閾値以下であると判定する(S103−YES)と、全固体二次電池1の経年劣化が進行していることを示す劣化注意信号を不図示の上位制御装置に出力する(S104)。また、電源監視装置24は、S101の処理で測定された内部抵抗値が第2閾値より大きいと判定する(S103−NO)と、全固体二次電池1の経年劣化が更に進行していることを示す劣化警報信号を不図示の上位制御装置に出力する(S105)。オペレータは、劣化警報信号が不図示の上位制御装置に入力されたことを確認すると、全固体二次電池1を交換してもよい。 First, the power supply monitoring device 24 measures the internal resistance value of the all-solid-state secondary battery 1 (S101), and determines whether or not the internal resistance value measured in the process of S101 is equal to or less than the first threshold value (S102). ). In general, the internal resistance value of a lithium ion secondary battery tends to increase as the deterioration over time progresses. The first threshold value is a first threshold value for determining the amount of increase in the internal resistance value of the all-solid-state secondary battery 1 due to aged deterioration. When the power supply monitoring device 24 determines that the internal resistance value measured in the process of S101 is larger than the first threshold value (S102-NO), is the internal resistance value measured in the process of S101 equal to or less than the second threshold value? It is determined whether or not (S103). The second threshold value is a second threshold value for determining the amount of increase in the internal resistance value of the all-solid-state secondary battery 1 due to aged deterioration, and is a value even larger than the first threshold value. When the power supply monitoring device 24 determines that the internal resistance value measured in the process of S101 is equal to or less than the second threshold value (S103-YES), it indicates that the aged deterioration of the all-solid-state secondary battery 1 is progressing. A deterioration caution signal is output to a higher-level control device (not shown) (S104). Further, when the power supply monitoring device 24 determines that the internal resistance value measured in the process of S101 is larger than the second threshold value (S103-NO), the aged deterioration of the all-solid-state secondary battery 1 is further progressing. Is output to a higher-level control device (not shown). The operator may replace the all-solid-state secondary battery 1 after confirming that the deterioration alarm signal has been input to the higher-level control device (not shown).

電源監視装置24は、S101の処理で測定された内部抵抗値が第1閾値以下であると判定する(S102−YES)と、S101の処理で測定された内部抵抗値が第3閾値以上であるか否かを判定する(S106)。第3閾値は、負極11又は正極12と中間層14との間が短絡したことにより全固体二次電池1の内部抵抗値が減少した減少量を判定するための閾値であり、第1閾値及び第2閾値よりも小さい値である。 When the power supply monitoring device 24 determines that the internal resistance value measured in the process of S101 is equal to or less than the first threshold value (S102-YES), the internal resistance value measured in the process of S101 is equal to or greater than the third threshold value. Whether or not it is determined (S106). The third threshold value is a threshold value for determining the amount of decrease in the internal resistance value of the all-solid-state secondary battery 1 due to a short circuit between the negative electrode 11 or the positive electrode 12 and the intermediate layer 14, and the first threshold value and It is a value smaller than the second threshold value.

電源監視装置24は、S101の処理で測定された内部抵抗値が第3閾値より小さいと判定する(S106−NO)と、全固体二次電池1に短絡の予兆があることを示す短絡予兆信号を不図示の上位制御装置に出力する(S107)。次いで、電源監視装置24は、全固体二次電池1の充放電の停止を示す切替信号を電源制御装置23に出力する。電源制御装置23は、全固体二次電池1の充放電の停止を示す切替信号が入力されたことに応じて、第1スイッチ21及び第2スイッチ22を全固体二次電池1と電力供給源31及び負荷放電回路32との間を電気的に遮断するように切り替える。 When the power supply monitoring device 24 determines that the internal resistance value measured in the process of S101 is smaller than the third threshold value (S106-NO), the short-circuit sign signal indicating that the all-solid-state secondary battery 1 has a short-circuit sign. Is output to a higher-level control device (not shown) (S107). Next, the power supply monitoring device 24 outputs a switching signal indicating the stop of charging / discharging of the all-solid-state secondary battery 1 to the power supply control device 23. The power supply control device 23 sets the first switch 21 and the second switch 22 to the all-solid-state secondary battery 1 and the power supply source in response to the input of the switching signal indicating the stop of charging / discharging of the all-solid-state secondary battery 1. It is switched so as to electrically cut off between 31 and the load discharge circuit 32.

(実施形態に係る電源ユニットの作用効果)
電源ユニット20では、電源制御装置23は、全固体二次電池1の負極11及び正極12の何れか一方と中間層14と短絡が発生に伴う内部抵抗値の減少を検知することで、負極11と正極12との間の短絡が発生する予兆を検知することができる。
(Action and effect of the power supply unit according to the embodiment)
In the power supply unit 20, the power supply control device 23 detects a decrease in the internal resistance value due to a short circuit between the negative electrode 11 and the positive electrode 12 of the all-solid-state secondary battery 1 and the intermediate layer 14, and the negative electrode 11 It is possible to detect a sign that a short circuit occurs between the positive electrode 12 and the positive electrode 12.

また、電源ユニット20では、電源制御装置23は、全固体二次電池1の充電中及び放電中の何れの場合でも短絡の発生の予兆を検知可能なので、デンドライト・ショートが発生し易い急速充電時でも短絡が発生する予兆を検知することができる。 Further, in the power supply unit 20, the power supply control device 23 can detect a sign of a short circuit when the all-solid-state secondary battery 1 is being charged or discharged, so that a dendrite short circuit is likely to occur during rapid charging. However, it is possible to detect signs that a short circuit will occur.

また、電源ユニット20では、電源制御装置23は、全固体二次電池1の負極11と正極12との間が完全に短絡する前に負極11と中間層14との間の短絡を検知可能なので、電源喪失による機器停止期間の短縮が可能である。 Further, in the power supply unit 20, the power supply control device 23 can detect a short circuit between the negative electrode 11 and the intermediate layer 14 before the negative electrode 11 and the positive electrode 12 of the all-solid-state secondary battery 1 are completely short-circuited. , It is possible to shorten the equipment outage period due to power loss.

(実施形態に係る電源ユニットの変形例)
全固体二次電池1は、リチウムイオンLi+をイオン種とするリチウムイオン二次電池であるが、実施形態に係る全固体二次電池は、ナトリウムイオン等の他のアルカリ金属イオンをイオン種とする全固体二次電池であってもよい。
(Modification example of power supply unit according to the embodiment)
The all-solid-state secondary battery 1 is a lithium-ion secondary battery having lithium ion Li + as an ionic species, but the all-solid-state secondary battery according to the embodiment has another alkali metal ion such as sodium ion as an ionic species. It may be an all-solid-state secondary battery.

全固体二次電池1では、第1固体電解質131の厚さは、第2固体電解質132の厚さと等しいが、実施形態に係る全固体二次電池では、中間層を挟持する固体電解質の厚さは相違してもよい。 In the all-solid-state secondary battery 1, the thickness of the first solid electrolyte 131 is equal to the thickness of the second solid electrolyte 132, but in the all-solid-state secondary battery according to the embodiment, the thickness of the solid electrolyte sandwiching the intermediate layer. May be different.

また、電源ユニット20では、電源監視装置24は、交流電流を流して全固体二次電池1の内部抵抗値を測定したが、実施形態に係る電源ユニットでは、電源監視装置は、容量の低下及び内部抵抗の増加等の劣化現象を検知可能な他の手段を採用してもよい。例えば、電源監視装置は、全固体二次電池1の出力電流及び出力電圧等の出力に基づいて、全固体二次電池1の劣化現象を検知してもよい。 Further, in the power supply unit 20, the power supply monitoring device 24 applies an alternating current to measure the internal resistance value of the all-solid-state secondary battery 1, but in the power supply unit according to the embodiment, the power supply monitoring device has a reduced capacity and a decrease in capacity. Other means capable of detecting deterioration phenomena such as an increase in internal resistance may be adopted. For example, the power supply monitoring device may detect the deterioration phenomenon of the all-solid-state secondary battery 1 based on the output such as the output current and the output voltage of the all-solid-state secondary battery 1.

(実施例)
図7(a)は実施例に係る全固体二次電池の構造を示す図であり、図7(b)は図7(a)に示す全固体二次電池の斜視図である。図8(a)は比較例に係る全固体二次電池の構造を示す図であり、図8(b)は図8(a)に示す全固体二次電池の側面図である。
(Example)
FIG. 7 (a) is a diagram showing the structure of the all-solid-state secondary battery according to the embodiment, and FIG. 7 (b) is a perspective view of the all-solid-state secondary battery shown in FIG. 7 (a). FIG. 8A is a diagram showing the structure of the all-solid-state secondary battery according to the comparative example, and FIG. 8B is a side view of the all-solid-state secondary battery shown in FIG. 8A.

(実施例の構造)
実施例1及び実施例2の双方は、以下に示す構造とした。正極に相当する作用極と負極に相当する対極の活物質は、何れもLi金属であるので、正極活性物質と負極活物質との電位差による起電力は生じることはなく、分極による電位差が測定される。
作用極(正極):活性物質Li金属、口径6mm、厚さ0.6mm
第2固体電解質:固体電解質Li7La3Zr2O12、10mm角、厚さ1mm
中間層:活性物質Li金属、口径6mm、厚さ0.6mm
第1固体電解質:固体電解質Li7La3Zr2O12、10mm角、厚さ1mm
対極(負極):活性物質Li金属、口径8mm、厚さ0.6mm
(Structure of Example)
Both Example 1 and Example 2 have the structure shown below. Since the active material of the working electrode corresponding to the positive electrode and the active material of the counter electrode corresponding to the negative electrode are both Li metals, no electromotive force is generated due to the potential difference between the positive electrode active material and the negative electrode active material, and the potential difference due to polarization is measured. To.
Working electrode (positive electrode): Active substance Li metal, caliber 6 mm, thickness 0.6 mm
Second solid electrolyte: Solid electrolyte Li 7 La 3 Zr 2 O 12 , 10 mm square, 1 mm thick
Intermediate layer: Active substance Li metal, caliber 6 mm, thickness 0.6 mm
First solid electrolyte: Solid electrolyte Li 7 La 3 Zr 2 O 12 , 10 mm square, 1 mm thick
Counter electrode (negative electrode): Active substance Li metal, caliber 8 mm, thickness 0.6 mm

(比較例の構造)
以下に示すように、比較例1及び比較例2の作用極及び対極は、実施例1及び実施例2の作用極及び対極と同一構造とした。また、比較例1及び比較例2の固体電解質は、実施例1及び実施例2の第1固体電解質及び第2固体電解質のそれぞれと同一構造とした。
作用極(正極):活性物質Li金属、口径6mm、厚さ0.6mm
固体電解質:固体電解質Li7La3Zr2O12、10mm角、厚さ1mm
対極(負極):活性物質Li金属、口径8mm、厚さ0.6mm
(Structure of comparative example)
As shown below, the working poles and counter poles of Comparative Examples 1 and 2 have the same structure as the working poles and counter poles of Examples 1 and 2. Further, the solid electrolytes of Comparative Example 1 and Comparative Example 2 had the same structure as the first solid electrolyte and the second solid electrolyte of Examples 1 and 2, respectively.
Working electrode (positive electrode): Active substance Li metal, caliber 6 mm, thickness 0.6 mm
Solid electrolyte: Solid electrolyte Li 7 La 3 Zr 2 O 12 , 10 mm square, 1 mm thick
Counter electrode (negative electrode): Active substance Li metal, caliber 8 mm, thickness 0.6 mm

(実施例及び比較例への通電)
実施例1及び実施例2は、作用極にLi金属が析出する方向に定電流が流された。実施例1、比較例1及び比較例2は0.5mA/cm2の定電流が流され、実施例2は0.3mA/cm2の定電流が流された。実施例1及び実施例2は、対極と中間層との間が短絡した後に作用極と対極との間が短絡するまで定電流が流された。比較例1及び比較例2は、作用極と対極との間が短絡するまで定電流が流された。
(Energization of Examples and Comparative Examples)
In Examples 1 and 2, a constant current was applied in the direction in which the Li metal was deposited on the working electrode. A constant current of 0.5 mA / cm 2 was applied to Example 1, Comparative Example 1 and Comparative Example 2, and a constant current of 0.3 mA / cm 2 was applied to Example 2. In Examples 1 and 2, a constant current was applied until the counter electrode and the intermediate layer were short-circuited and then the working electrode and the counter electrode were short-circuited. In Comparative Example 1 and Comparative Example 2, a constant current was passed until the working electrode and the counter electrode were short-circuited.

図9(a)は実施例1に定電流を流した時の容量と分極との関係を示す図であり、図9(b)は実施例2に定電流を流した時の容量と分極との関係を示す図である。図9(c)は比較例1に定電流を流した時の容量と分極との関係を示す図であり、図9(d)は比較例2に定電流を流した時の容量と分極との関係を示す図である。 FIG. 9A is a diagram showing the relationship between capacitance and polarization when a constant current is applied in Example 1, and FIG. 9B is a diagram showing the relationship between capacitance and polarization when a constant current is applied in Example 2. It is a figure which shows the relationship of. FIG. 9 (c) is a diagram showing the relationship between the capacitance and polarization when a constant current is applied in Comparative Example 1, and FIG. 9 (d) is a diagram showing the capacitance and polarization when a constant current is applied in Comparative Example 2. It is a figure which shows the relationship of.

表1は、実施例1及び実施例2のそれぞれにおいて、作用極又は対極と中間層との間が短絡したときの第1容量Aと、作用極と対極との間が短絡したときの第2容量Bと、(第2容量B−第1容量A)/第1容量Aとの関係を示す。 Table 1 shows, in each of Examples 1 and 2, the first capacitance A when the working electrode or the counter electrode and the intermediate layer are short-circuited, and the second capacitance A when the working electrode and the counter electrode are short-circuited. The relationship between the capacity B and (second capacity B-1st capacity A) / first capacity A is shown.

Figure 0006862689
Figure 0006862689

作用極と対極との間が短絡したときの第2容量Bと作用極又は対極と中間層との間が短絡したときの第1容量Aとの差の第1容量Aに対する割合は、実施例1では21%であり、実施例2では6.3%であった。実施例1及び実施例2の何れでも、第2容量Bに対応する分極から内部抵抗の減少を検知することで、作用極と対極との間が短絡する予兆を検知することができる。 The ratio of the difference between the second capacitance B when the working electrode and the counter electrode are short-circuited and the first capacitance A when the working electrode or the counter electrode and the intermediate layer is short-circuited with respect to the first capacitance A is an embodiment. In 1, it was 21%, and in Example 2, it was 6.3%. In both Examples 1 and 2, by detecting a decrease in internal resistance from the polarization corresponding to the second capacitance B, it is possible to detect a sign of a short circuit between the working electrode and the counter electrode.

一方、比較例1は容量が13.1μAhのときに作用極と対極との間が短絡し、比較例2は容量が11.2μAhのときに作用極と対極との間が短絡した。比較例1及び比較例2は何れも中間層を有していないので、作用極と対極との間が短絡する予兆を検知することはできない。 On the other hand, in Comparative Example 1, when the capacitance was 13.1 μAh, the working electrode and the counter electrode were short-circuited, and in Comparative Example 2, when the capacitance was 11.2 μAh, the working electrode and the counter electrode were short-circuited. Since neither Comparative Example 1 nor Comparative Example 2 has an intermediate layer, it is not possible to detect a sign of a short circuit between the working electrode and the counter electrode.

1 全固体二次電池
11 負極
12 正極
131 第1固体電解質
132 第2固体電解質
14 中間層
20 電源ユニット(電源装置)
21 第1スイッチ
22 第2スイッチ
23 電源制御装置
24 電源監視装置
1 All-solid-state secondary battery 11 Negative electrode 12 Positive electrode 131 First solid electrolyte 132 Second solid electrolyte 14 Intermediate layer 20 Power supply unit (power supply device)
21 1st switch 22 2nd switch 23 Power supply control device 24 Power supply monitoring device

Claims (5)

負極と、正極と、前記負極と前記正極との間に配置された固体電解質と、前記固体電解質の間に配置され且つ前記負極と前記正極との間で授受されるイオン種であるアルカリ金属イオンを提供可能であり、且つ前記アルカリ金属イオン及び電子の双方を導通可能な両導性を有する中間層とを有し、前記固体電解質は、前記負極と前記中間層との間に配置され、前記アルカリ金属イオンを含む第1固体電解質と、前記正極と前記中間層との間に配置され、前記アルカリ金属イオンを含む第2固体電解質とを有する全固体二次電池の出力を測定し、
前記測定した出力に基づいて、前記負極と前記中間層との間の短絡の有無を判定し、
前記負極と前記中間層との間で短絡が発生したと判断したときに、全固体二次電池に短絡の予兆があることを示す短絡予兆信号を出力する、
ことを含む全固体二次電池の監視方法。
An alkali metal ion which is an ion species arranged between a negative electrode, a positive electrode, a solid electrolyte arranged between the negative electrode and the positive electrode, and between the solid electrolyte and between the negative electrode and the positive electrode. The solid electrolyte has an intermediate layer having biconductivity capable of conducting both the alkali metal ion and the electron, and the solid electrolyte is arranged between the negative electrode and the intermediate layer. The output of an all-solid secondary battery having a first solid electrolyte containing alkali metal ions and a second solid electrolyte disposed between the positive electrode and the intermediate layer and containing the alkali metal ions was measured.
Based on the measured output, the presence or absence of a short circuit between the negative electrode and the intermediate layer is determined.
When it is determined that a short circuit has occurred between the negative electrode and the intermediate layer, a short circuit sign signal indicating that the all-solid-state secondary battery has a short circuit sign is output.
All-solid-state secondary battery monitoring methods, including that.
負極と、
正極と、
前記負極と前記正極との間に配置された固体電解質と、
前記固体電解質の間に配置され且つ前記負極と前記正極との間で授受されるイオン種であるアルカリ金属イオンを提供可能であり、且つ前記アルカリ金属イオン及び電子の双方を導通可能な両導性を有する中間層と、を有し、
前記固体電解質は、
前記負極と前記中間層との間に配置され、前記アルカリ金属イオンを含む第1固体電解質と、
前記正極と前記中間層との間に配置され、前記アルカリ金属イオンを含む第2固体電解質と、
を有する全固体二次電池と、
前記負極と前記中間層との間の短絡を検知して、前記全固体二次電池の短絡の予兆を検知する電源監視装置と、
を有する電源装置。
With the negative electrode
With the positive electrode
A solid electrolyte disposed between the negative electrode and the positive electrode,
Alkali metal ions, which are ionic species arranged between the solid electrolytes and transferred between the negative electrode and the positive electrode, can be provided , and both the alkali metal ions and electrons can be conducted. With an intermediate layer, and
The solid electrolyte is
A first solid electrolyte disposed between the negative electrode and the intermediate layer and containing the alkali metal ion,
A second solid electrolyte disposed between the positive electrode and the intermediate layer and containing the alkali metal ion,
With an all-solid-state secondary battery,
A power supply monitoring device that detects a short circuit between the negative electrode and the intermediate layer and detects a sign of a short circuit of the all-solid-state secondary battery.
Power supply with.
前記中間層は、前記負極と短絡したときに負極として機能する、請求項2に記載の電源装置。 The power supply device according to claim 2, wherein the intermediate layer functions as a negative electrode when short-circuited with the negative electrode. 前記中間層は、前記アルカリ金属イオンを提供可能であり、且つ前記アルカリ金属イオン及び電子の双方を導通可能な両導性を有する単金属、合金又は化合物の何れかを含む、請求項2又は3に記載の電源装置。 Claim 2 or 3 wherein the intermediate layer contains any of a monometal, an alloy or a compound having biconductivity capable of providing the alkali metal ion and conducting both the alkali metal ion and an electron. The power supply described in. 記アルカリ金属イオンは、リチウムイオンである、請求項2〜4の何れか一項に記載の電源装置。 Before Kia alkali metal ions are lithium ion power supply apparatus according to any one of claims 2-4.
JP2016120283A 2016-06-16 2016-06-16 Monitoring method for all-solid-state secondary battery, power supply and all-solid-state secondary battery Active JP6862689B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016120283A JP6862689B2 (en) 2016-06-16 2016-06-16 Monitoring method for all-solid-state secondary battery, power supply and all-solid-state secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016120283A JP6862689B2 (en) 2016-06-16 2016-06-16 Monitoring method for all-solid-state secondary battery, power supply and all-solid-state secondary battery

Publications (2)

Publication Number Publication Date
JP2017224536A JP2017224536A (en) 2017-12-21
JP6862689B2 true JP6862689B2 (en) 2021-04-21

Family

ID=60687200

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016120283A Active JP6862689B2 (en) 2016-06-16 2016-06-16 Monitoring method for all-solid-state secondary battery, power supply and all-solid-state secondary battery

Country Status (1)

Country Link
JP (1) JP6862689B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7454336B2 (en) * 2019-03-29 2024-03-22 日産自動車株式会社 An all-solid-state lithium-ion secondary battery and its manufacturing method, an all-solid-state lithium-ion secondary battery system using the same, and a charging method for an all-solid-state lithium-ion secondary battery
WO2020226334A1 (en) * 2019-05-03 2020-11-12 주식회사 엘지화학 Solid electrolyte membrane and solid-state battery comprising same
JP7391621B2 (en) * 2019-11-12 2023-12-05 日産自動車株式会社 Secondary battery short circuit estimation device, short circuit estimation method, and short circuit estimation system

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4887581B2 (en) * 2001-07-26 2012-02-29 パナソニック株式会社 Battery inspection method and inspection apparatus
JP4145647B2 (en) * 2002-12-27 2008-09-03 東芝電池株式会社 Lithium secondary battery and manufacturing method thereof
JP5093449B2 (en) * 2007-01-09 2012-12-12 住友電気工業株式会社 Lithium battery
JP2009181872A (en) * 2008-01-31 2009-08-13 Ohara Inc Lithium ion secondary battery, and manufacturing method thereof
JP2011141982A (en) * 2010-01-06 2011-07-21 Sumitomo Electric Ind Ltd Nonaqueous electrolyte battery
CN102906928A (en) * 2010-05-25 2013-01-30 住友电气工业株式会社 Nonaqueous electrolyte battery and method for producing same
JP5902579B2 (en) * 2011-08-25 2016-04-13 京セラ株式会社 Secondary battery and manufacturing method thereof
JP2013161646A (en) * 2012-02-03 2013-08-19 Sumitomo Electric Ind Ltd Nonaqueous electrolyte battery and manufacturing method therefor, and electric vehicle using the same
JP2015122169A (en) * 2013-12-20 2015-07-02 トヨタ自動車株式会社 Method of inspecting all-solid battery

Also Published As

Publication number Publication date
JP2017224536A (en) 2017-12-21

Similar Documents

Publication Publication Date Title
US20210020897A1 (en) Pulse plating of lithium material in electrochemical devices
Quinn et al. Energy density of cylindrical Li-ion cells: a comparison of commercial 18650 to the 21700 cells
Chevrier et al. Challenges for Na-ion negative electrodes
JP5904039B2 (en) Secondary battery control device
US20180123181A1 (en) All-solid battery with stable negative electrode interface
US20140002269A1 (en) Detection of swelling in batteries
JP5459319B2 (en) Vehicle system and hydrogen sulfide detection method
JP2014096376A5 (en)
JP6862689B2 (en) Monitoring method for all-solid-state secondary battery, power supply and all-solid-state secondary battery
EP3014692B1 (en) Detection mechanism
US20190058224A1 (en) Internal short detection and mitigation in batteries
WO2015064735A1 (en) Charging device, electricity storage system, charging method, and program
JP2017199667A (en) Battery cell, battery module, and detection system, and determination system
KR102470882B1 (en) Unit battery module and measuring for state of health thereof
JP2018190531A (en) Laminate battery
JP5289983B2 (en) Electrochemical cell
CN104953087B (en) A kind of lithium battery and its cathode, battery core, cathode voltage monitoring method
JP2013175417A (en) Lithium ion secondary battery and charge control method therefor
JP2013044701A (en) Battery system
JP6476826B2 (en) All solid state secondary battery
JP2013118090A (en) Battery state monitoring device and battery state monitoring method
US10243243B2 (en) Battery and charging method
JP2016164851A (en) Lithium ion secondary battery charging system
JP2015103437A (en) Method for short circuit inspection on all-solid battery
JP2015169483A (en) Secondary battery abnormality determination device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190311

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200121

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200825

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210302

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210315

R150 Certificate of patent or registration of utility model

Ref document number: 6862689

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150